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Abstract 
 

 
 
 
This thesis deals with the numerical simulation of particulate composites using one of 

the more stable and accurate meshless methods namely the element free Galerkin 

(EFG) method. To accurately describe the material inhomogeneities present in 

particulate composites, an extrinsic enrichment function is incorporated into the 

approximation of the EFG method which produces more versatile, robust and 

effective computational methodology. The effectiveness of the proposed numerical 

model is then investigated by employing the model to analyse different configurations 

of particulate composites. The accuracy and efficiency of this enriched EFG method 

are studied numerically by comparing the results obtained with the available 

analytical solutions and other numerical techniques. Further, it is demonstrated that 

the method developed in this work has the potential to efficiently model syntactic 

foam, a type of particulate composites. This is illustrated by performing multi-scale 

modelling using homogenisation technique which confirms satisfactory comparison of 

the numerical method with experimental results. To further explore the applicability 

of the developed methodology, an enriched or extended finite element method 

(XFEM) based technique, is applied to study crack inclusion and interaction of crack 

propagation with matrix and particles within particle reinforced composite material.      
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1.1 Composite materials 

Contemporary engineering tools and applications have been significantly improved by 

the use of composite materials that are specially designed to provide the desired 

mechanical behaviour. Composite materials have introduced a new dimension in the 

field of mechanics because of their distinctive characteristics and wide range of 

applicability. These materials are heterogeneous man-made mixtures of two or more 

homogeneous phases that are bonded together. Multi-phase composites have attracted 

more attention in recent years due to their tailorable properties of stiffness, fracture 

toughness and other favourable characteristics [1]. Composite materials (often called 

composites) are engineered materials with significantly new physical or chemical 

properties. The first phase or base material is called the matrix and is usually a light 

metal (e.g. aluminium, titanium etc.) while the  other phase is the reinforcement and is 

commonly either particles or fibres, the former being the more widely used. In 

general, the second phase substance or particles has much higher stiffness than the 

matrix. 

 

The term “composite” is usually reserved for those materials in which the distinct 

phases are separated on a scale larger than the atomic, and in which properties such as 

the elastic modulus are significantly altered in comparison with those of a 

homogeneous material. Composite materials offer a variety of advantages in 

comparison with homogeneous materials. These include the ability for scientists or 

engineers to exercise considerable control over material properties, the potential to 

produce stiffer, stronger, lightweight materials as well as for highly resilient and 

compliant materials. For this reason increasing interest in composite materials exists 

in engineering.  

Composite materials  can be classified based on a number of criteria. Based on the 

type of matrix materials used, composite materials can be divided into three types: 

1. Metal matrix composites 

2. Polymer matrix composites 

3. Ceramic matrix composites 
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Based on the nature of reinforcement, common composite materials can be classified 

as follows:  

i. Fibres as the reinforcement (Fibrous Composites) 

Fibre reinforced composites provide improved strength, strength-to-weight ratio and 

other mechanical properties by incorporating strong, stiff but brittle fibres into a 

softer, more ductile matrix. The matrix material acts as a medium to transfer the load 

to the fibres, which carry most of the applied load. These composites are classified 

into two types: 

a. Random fibre (short fibre) reinforced composites (Figure 1.1(a)) 

b. Continuous fibre (long fibre) reinforced composites (Figure 1.1(b)) 

ii. Particles as the reinforcement (Particulate composites) 

Particulate Composites consist of a matrix reinforced with a dispersed phase in the 

form of particles (Figure 1.1(c)). Plastics, cermets and metals are examples of 

particles. 

  iii.      Flat flakes as the reinforcement (Flake composites) 

Flake composites consist of thin, flat flakes held together by a binder or placed in a 

matrix (Figure 1.1(d)). Almost all flake composite matrices are plastic resins. The 

most commonly used flake materials are glass, mica and aluminium. 

  iv.      Fillers as the reinforcement (Filler composites) 

In filler composites, filler materials are added to a composite result in strengthening 

the composite and reducing weight (Figure 1.1(e)). 
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  (a) Short fibre                          (b) Long fibre                             (c) Particulate composites 

       
          
   (d) Flake composites              (e) Filler composites 

 

Figure 1.1: Schematic diagrams of different types of composites [2] 

 

Particulate Composites have the potential to enable the development of new materials, 

and alter some of their properties and property combinations to unprecedented level. 

The high costs and technical difficulties involved with the fabrication of many fibre-

reinforced composites often limit their use in many practical applications [3]. 

Particulate composites can be regarded as viable alternatives to them. They can be 

processed to the desired shape and can have improved stiffness, strength and fracture 

toughness characteristics. They hold high potential where shock or impact properties 

are important. For example, particle-reinforced metal matrix composites have shown 

great potential for many automotive applications [4]. In this proposed research, 

particulate composites will be discussed as they have been more widely used as 

composite materials. 

 

1.2 Particulate Composites 

 

As the name itself indicates, the reinforcement is of particulate nature. It may be 

spherical, cubic, tetragonal, a platelet, or of other regular or irregular shape. However, 
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particulate composites are slightly less broad than ordinary composites. A particulate 

composite has homogenous properties. For example it would make no difference if a 

force was applied to the front, back or side of the object as the material would have 

the same properties throughout. Soil is the most common example of natural 

particulate composites; where as concrete is the most widely used man-made 

particulate composites for past several decades. This particular material can be 

considered as extensively understood because of the amount of research and 

experimental work that have been done on it in the past decades. 

 

 
Figure 1.2: The microstructure of syntactic foam containing 60% microballoons by 

volume [5] 

 
Figure 1.3: Distribution of titanium carbide particles in a matrix of titanium alloy,  

Ti-6Al-4V [6] 
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Figure 1.2 and 1.3 illustrate scanning electron microscopic (SEM) pictures of two 

different types of particulate composites. 

 

Particulate composites are designed not only to improve the strength, but also to 

produce specific performance oriented applications. One approach to predict the 

effective mechanical properties of a two-phase composite is to apply the rule of 

mixtures [7]. According to the rule of mixtures, each of the constituent phases of the 

composite contributes to the effective mechanical property to an extent depending on 

the volume fraction of the constituent phase. Mechanical properties, such as modulus 

of elasticity, of particulate composites are achievable within the range defined by rule 

of mixtures as follows:  

 

Upper bound is represented by: ( )c m m p pE upper E V E V= +  

And lower bound is represented by: ( ) m p
c

p m m p

E E
E lower

E V E V
=

+
  

where E  and V  denote modulus of elasticity and volume fractions respectively while 

subscripts , ,c m p represent composite, matrix and particulate phases respectively. 

From Figure 1.4, it can be seen that for a given volume fraction, the moduli of various 

conceivable composites lie between an upper bound given by isostrain condition and a 

lower bound given by isostress condition. 

Figure 1.4: Rule of mixtures for particulate composites [8] 

Volume fraction, V  

upper bound 

lower bound 
mE  

pE  

isostrain 

isostress 
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f e

la
st

ic
ity
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Functionally graded materials (FGMs), produced from particulate composites, are 

attracting considerable attention due to the increasing performance demands in 

modern engineering applications [9]. Such materials have been used in various fields, 

for example in biomedical [10], sensor and energy applications [11]. FGMs contain 

either a gradual or a stepwise change in material properties along a given direction. In 

particulate composites a graded structure can be obtained by either changing (a) the 

particle volume fraction or (b) the particle size along the thickness of the composite 

[12]. 

 
 
1.3 Application of particulate composites 
 

Composite materials are continuously replacing traditional engineering materials 

because of their advantages of high stiffness and strength over homogeneous 

materials. The type, shape and spatial arrangement of the reinforcing phase in 

particulate composites are the key parameters in determining their mechanical 

behaviour. In the processing of particulate composites, one of the subjects of interest 

is to choose a suitable matrix and a reinforcement material. In some cases, chemical 

reactions that occur at the interface between the matrix and its reinforcement materials 

have been considered harmful to the final mechanical properties and are usually 

avoided. Sometimes, the interfacial reactions are intentionally induced, because, the 

new layer formed at the interface acts as a strong bond between the phases [13].  

Particulate composites are used with all three matrix material types – metals, 

polymers and ceramics. One of the major applications of particulate composites have 

been in the metal matrix composites (MMCs), where silicon carbide, silicon nitride, 

alumina, and other inorganic particles are used as reinforcements for aluminium 

alloys and for higher temperature materials such as the nickel base alloys and  

titanium. Various applications of the MMCs are listed in Table 1.1.  
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Table 1.1: Features and applications of metal matrix composites (MMCs) [13] 

    

MMC Types Industrial applications  Special features 

Graphite reinforced in 

aluminium 

Bearings Cheaper, lighter, self-

lubricating, conserves 

copper, lead, tin, zinc 

Graphite reinforced in  

aluminium, silicon carbide 

reinforced in aluminium, 

aluminium oxide reinforced in 

aluminium 

Automobile pistons, 

cylinder liners, piston 

rings, connecting rods 

Reduced wear, anti 

seizing, cold start, 

lighter, conserves fuel, 

improved efficiency.  

Graphite reinforced in copper Sliding electrical contacts Excellent conductivity 

and anti seizing 

properties. 

Silicon carbide reinforced in  

aluminium 

Turbocharger impellers High temperature use 

Glass or carbon bubbles 

reinforced in aluminium 

 Ultra light material. 

Cast carbon fibre reinforced 

magnesium fibre composites 

Tubular composites for 

space structures 

Zero thermal 

expansion, high 

temperature strength, 

good specific strength 

and specific stiffness. 

Zircon reinforced in aluminium-

silicon alloy, aluminium silicate 

reinforced in aluminium 

Cutting tool,  machine 

shrouds, impellers 

Hard, abrasion- 

resistant materials. 

 

During the production of MMCs, several oxides are used as reinforcements, in the 

form of particulates. For example, alumina, zirconium oxide and thorium oxide 

particulates are used as reinforcements in aluminium, magnesium and other metallic 

matrices. Because of their high specific stiffness, lightweight, and high thermal 

conductivity, boron in an aluminium matrix have been used for structural tubular 
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supports in the space shuttle orbiter. MMCs having silicon carbide and a titanium 

matrix are being used for the skin, beams, stiffeners and frames of the hypersonic 

aircraft under development [13]. 

The cermets are the examples of ceramic–metal composites. Cermets contain hard 

ceramic particles dispersed in a metallic matrix, e.g., titanium carbide (TiC) or 

tungsten carbide (WC) embedded in cobalt or nickel. They are utilised extensively as 

cutting tools for hardened steels. The hard carbide particles provide the cutting 

surface but, being extremely brittle, are not themselves capable of withstanding the 

cutting stresses. Toughness is enhanced by their inclusion in the ductile metal matrix, 

which isolates the carbide particles from one another and prevents particle to particle 

crack propagation [14].  

 

The most common cermet is the cemented carbide. In cemented carbides, particles of 

tungsten, titanium or tantalum-carbide of dimensions 0.8-5 micrometers are dispersed 

in cobalt or other metals of the iron group with concentrations up to 94% by volume 

[14]. Because of utilising relatively large volume fraction of the particulate phase, it 

maximises the abrasive action of the composite.  

 

Polymers are frequently reinforced with various particulate materials such as carbon 

black. Carbon black consists of very small and essentially spherical particles of 

carbon, produced by the combustion of natural gas or oil in an atmosphere that has 

only a limited air supply. When added to vulcanized rubber, carbon black enhances 

tensile strength, toughness, tear and abrasion resistance of the rubber. Automobile 

tires contain in the order of 15 to 30 % volume of carbon black [15]. Aluminium alloy 

castings containing dispersed SiC particles are widely used for automotive 

components including pistons and brake applications. 

 

Particulate composites have many engineering applications because they are easy to 

mould (depending on the type and application) and they have significantly improved 

stiffness. However, a major drawback is that damage and cracks may occur in the 

particles and the matrix and at the particle/matrix interface depending on the relative 

stiffness and the strength of the two constituent materials and the interface strength. If 

the embedded particles are much stronger and stiffer than the matrix, matrix cracking 
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and particle/matrix interface debonding (often refer to as dewetting) become the 

major damage modes [16]. On the other hand, if both constituent materials have 

material properties in the same order of magnitude, particle cracking can occur. These 

damages will influence the nature of load response characteristics or in other words 

non- linear stress-strain relation curve of a particulate composite material [17].  

 

1.4 Importance of numerical simulation 

 

The attractive features of particulate composites have been exploited to investigate 

their applicability in different branches of engineering. More sophisticated particulate 

composites have become significantly important in materials engineering over the last 

couple of decades. They have excelled in certain industries such as the aviation and 

locomotive industries and other specialist applications such as in space shuttle design. 

The materials used in these industries are generally on the forefront of technology and 

are constantly being modified to enhance their material properties as they become 

better understood. As these materials are relatively new, the development of their 

behaviour is relatively unknown. Therefore, when designing new applications or 

modifying material properties of these particulate composites, it is essential that their 

material properties can be predicted accurately to obtain the desired behaviour. 

 

The investigation of the characteristics and effective material parameters could be 

done by either performing experiments with the existing material sample or by using 

analytical methods making rather strong assumptions on the mechanical field 

variables. However quite often, analytical methods do not lead to sufficiently accurate 

results. Moreover, they are very few in numbers to be present for a number of 

applications. The experimental procedure can be expensive and time-consuming as 

the processing costs can be extremely high to produce them. Hence numerical or 

computational modelling techniques are preferred. Numerical simulation can play an 

important role in providing a validation for theories, offers insights to the 

experimental results and assists in the interpretation or even the discovery of new 

phenomena. Numerical tools are often more useful than traditional experimental 

methods in terms of providing an insightful and complete information that can not be 

directly measured or observed, or difficult to obtain through other means. In the next 
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section of this chapter, research carried out in the past on particulate composites and 

modelling heterogeneities using computational modelling and numerical simulations 

will be discussed. 

 

1.5 Previous research on particulate composites 

The main aim will be to focus on the previous work that has been done in modelling 

particulate composites using numerical simulation. An overview of these research 

works is presented below: 

Scalon [18] stated that a great deal of attention and study has been devoted to the 

understanding of particulate composite materials. This attention derives from the fact 

that these materials have achieved a dominant position in the metal matrix composite 

area because of their relative low cost and easier fabrication when compared with the 

fibre reinforced materials. Furthermore, these materials have potential in automotive 

and aerospace applications. 

 

Lloyd [19] and Prangnell [20] showed that the particles in particulate composites were 

not uniformly distributed in space due to, for instance, the molten metal mixing route 

in metal matrix composites. As a result, some particle-rich regions, which are usually 

called clusters, were formed. It has been observed that damage evolution tended to 

originate preferentially in clustered regions [19] and that different particle shapes 

show different susceptibility to interfacial decohesion [21]. 

 

Kwon et al [16] studied the crack initiation and propagation for particulate composite 

specimens with a notch. A numerical simulation was conducted to predict the crack 

behaviour based on the damage initiation, growth and local saturation; and the results 

were compared to those obtained from the experimental study. It was indicated in the 

study that an inhomogeneous material property, which usually results from a non-

uniform particle distribution in a matrix material, significantly affected the crack 

behaviour in a particulate composite. 

 

Wilkins and Shen [22] studied the evolution of stresses inside the native inclusion 

particles in silicon carbide (SiC) particulate reinforced aluminium matrix composites 
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computationally by recourse to the finite element method. The analyses were 

performed for a simplistic model. The simplistic model was found to be able to 

predict the stress enhancement in the inclusion that is consistent with the measured 

propensity of fatigue crack initiation when elasticity dominates. 

 

Chen et al [23] proposed an effective analytical approach which was developed for 

the problem of particulate composites containing spherical inclusion with imperfect 

interface between the matrix and spherical inclusions. In case of thin elastic 

interphase, the displacement field and the stress field in the inclusion and the matrix 

was exactly solved for the boundary problem of hydrostatic compression of an infinite 

spherical symmetrical body.  

 

Okada et al [24] proposed a new boundary element method (BEM) formulation for 

the analysis of particulate composite materials. Homogenisation analysis based on 

representative volume element (RVE) was carried out considering a unit cell which 

contained a number of distributed particles (up to 1000). The effective properties 

obtained by the  approach were accurate when the volume fraction of the particles was 

less than about 25%. 

 
Tan et al [25] proposed a cohesive particle/matrix interface model for high explosive 

composite materials and determined the model parameters by experiments. Their 

model is based on a bilinear cohesive law with three stages, namely, the rising, 

descending and complete debonding sections which are governed by three parameters 

(i.e. interface cohesive strength and two moduli for rising and descending linear 

stages) [26].  

 

Adopting this cohesive interface model, Inglis and Geubelle [27] studied the effect of 

damage due to particle debonding on the constitutive response of particulate 

composite materials by using the micromechanics solution and  compared it with the 

multi-scale finite element analysis. Tan et al. [28] studied the interface debonding and 

its effect on particulate composite materials that are subjected to uniaxial tension.  

 

Chen and Kulasegaram [26] developed a smooth particle hydrodynamics (SPH) [29] 

based numerical technique to investigate the mechanical properties and evolution of 
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debonding process in particulate composites. A Lagrangian corrected SPH method 

was presented together with an appropriate numerical model for treating material 

interface discontinuity within the particulate composites. 

 

Studies showed that particulate composites have the advantage of simplicity of 

fabrication and low cost compared with fibrous and laminate composites [30]. 

Particulates chosen as reinforcement are usually harder and stiffer than the matrix 

material. This improves the hardness and stiffness of polymeric composites. However, 

owing to the limited surface area of contact, the load transfer from matrix to particles 

occurs to a smaller extent. This could lead to insignificant improvement in strength 

and impact resistance [30]. 

 

Rabczuk and Zi [31] presented an extended element free Galerkin (EFG) [32] method 

for dealing with cohesive cracks. The cracks were described by a jump in the 

displacement field for particles whose domain of influence was cut by the crack. 

Particles with partially cut domain of influence were enriched with branch functions. 

The accuracy of the method, due to the smoothness and higher order continuity, was 

demonstrated by several quasi static and dynamic crack propagation examples. 

 

Rabczuk et al [33] proposed a three-dimensional extended EFG method for arbitrary 

crack initiation and propagation that ensured crack path continuity for non- linear 

material models and cohesive laws. An extrinsic enrichment of the meshfree shape 

functions was used with discontinuous and near-front branch functions to close the 

crack front and improve accuracy. The crack was modelled as a jump in the 

displacement field. The method was applied to several static, quasi-static and dynamic 

crack problems, illustrating very accurate numerical results compared with available 

experimental and analytical results. 

 

Yvonnet et al [34] proposed an efficient numerical procedure for computing the 

effective thermal conductivities of a particulate composite in which the inclusions 

have different sizes and arbitrary shapes and the interfaces are highly conducting. The 

elaborated numerical procedure, tested and validated by means of relevant analytical 

exact and approximate results as benchmarks, has been applied to quantify the size 
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and shape effects on the effective thermal conductivities of particular composites 

where the inclusions are coated by a highly conducting interface. 

 

Huynh and Belytschko [35] described the methods for treating fracture in composite 

materials by the extended finite element method (XFEM) [36, 37] with meshes that 

are independent of matrix/inclusion interfaces. All discontinuities and near-tip 

enrichments were modelled using the framework of local partition of unity. Level sets 

were used to describe the geometry of the interfaces and cracks so that no explicit 

representation of either the cracks or the material interfaces is needed. A number of 

numerical results for both two-dimensional and three-dimensional examples 

illustrated that interface enrichment is sufficient to model the correct mechanics of an 

interface crack. 

 

Gupta et al [9]  studied hollow particle filled composites, called syntactic foams to 

fabricate functionally gradient composites based on a new approach, which relies on 

creating a gradient of particles as per their wall thickness. Since this approach is 

independent of volume fractions, the dimensional stability will be better for such 

composites. Experimental results, compared with theoretical and finite element 

analysis, showed that the flexural properties of functionally graded syntactic foams 

(FGSF) based on wall thickness approach can be controlled more effectively. 

 

Du et al [38] adapted enrichment techniques to account for the material interfaces in 

the framework of the XFEM for particle reinforced composites. The level set function 

was used to describe the geometry of material distribution, as well as to construct 

enrichment function for material boundaries. A plate with multi-circular inclusions 

under uniaxial tension was simulated by finite element method (FEM) and XFEM 

respectively where the results showed that XFEM was highly effective and efficient.   

 

Ying et al [39] showed that for particle reinforced composites, the enrichment 

technique for the XFEM was used to account for the material interfaces. It was 

demonstrated that the particle reinforced composites with three kinds of distributions 

of particles under uniaxial tension was simulated by XFEM and FEM, respectively. 

The comparison showed the effectiveness of the XFEM.  
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Zhu et al [40] proposed an efficient three dimensional numerical approach based on 

the extended finite element method to model linear spring- layer curved imperfect 

interfaces and then applied to predict the effective bulk and shear moduli of spherical 

particle composites in which such imperfect interfaces intervene. The computed 

effective bulk and shear moduli of composites were compared with the analytical 

upper and lower bounds derived by Hashin [41]. 

 

Wang et al [42] developed a numerical technique for modelling the interaction 

between propagating cracks and the second phase particles by using the XFEM. The 

numerical results showed that the energy release rate may substantially be affected by 

the presence of the particles. Consequently the crack growth trajectories are also 

changed. A pre-existing flaw on the interface of a particle could attract the crack, to 

promote rapid crack propagation and increase the energy release rate.  

 

There is a plethora of literature available in modelling composite materials. However, 

the above review has only highlighted a number of key numerical methodologies 

mainly adopted for modelling particulate composites. 

 

There have been many techniques developed in order to exploit the attractive features 

of particulate composites. However, for a number of engineering applications which 

involve large deformation of material or complicated boundaries, meshless methods 

can be best suited due to their unique characteristics. Moreover, for irregular shape 

particles, meshless methods would be more suitable compared to the mesh-based 

methods due to the burden of mesh generation. In this particular study, one of the 

most popular, stable and accurate meshless methods namely the EFG method will be 

used. 

 

1.6 Scopes and objectives of the thesis 

 

The objectives of the research presented in this thesis are to: 

 

• Develop an EFG based numerical model to simulate particulate composites. 

• Determine the accuracy of the model and investigate possible improvements. 
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• Explore the characteristics of enriched EFG formulation for particulate 

composites and compare with general EFG formulation.  

• Validate the accuracy of the model by comparing the results obtained with 

analytical and other numerical methods. 

• Make a comparison between two enrichment based methods – enriched EFG 

and XFEM. 

 

1.7 Outline of the thesis 

 

This thesis is organised as follows. Chapter 2 reviews the general background of the 

meshless methods along with a brief description of some of the well known meshless 

methods. Then a detailed formulation of the EFG method is presented, followed by 

the numerical discretisation of a 2-D linear elastic problem. This chapter concludes 

with different types of enrichment techniques that can be applied into the EFG 

method.  

 

Chapter 3 reviews the problem dealing with heterogeneous materials. A numerical 

model which can simulate particulate composites is developed and presented in this 

chapter. The discontinuity in the model is tackled by the enrichment function, which 

was implemented by the level set methods. Level set functions for circular 

discontinuity are presented, along with their fo rmulations. 

 

Numerical results obtained from the simulation of particulate composites are 

presented in chapter 4. The accuracy of the model is compared with suitable analytical 

solutions available in the literature, and the convergence analysis of the method is 

carried out by validating the results against similar results produced in other 

numerical methods. 

 

Chapter 5 reviews the findings from this research, which emphasises the main 

contributions of this PhD research work. A brief summary of the key findings and 

recommendations are presented, where perspectives of the possible future directions 

that could be developed in this research field are discussed. 
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2.1 General background 

 

A mesh is defined as any of the open spaces or interstices between the strands of a net 

that is formed by connecting nodes in a predefined manner [1]. In finite difference 

method (FDM), the meshes used are often called grids; in finite volume method 

(FVM), they are called volumes or cells; and in finite element method (FEM), they 

are called elements. The terminologies of grids, volumes, cells and elements carry 

certain physical meanings as they are defined for different physical problems. 

However, all these notations - grids, volumes, cells, and elements can be termed 

meshes according to the above definition of mesh. The key aspect is that a mesh must 

be predefined to provide a certain relationship between the nodes, which is the core of 

the formulation of these conventional numerical methods. 

 

A recent strong interest is focused on the development of the next generation of 

computational methods - meshless methods, which are expected to be more suitable 

than the conventional grid-based methods for a number of applications. Meshless 

methods use a set of nodes scattered within the problem domain as well as set of 

nodes scattered on the boundaries of the domain to represent the problem domain and 

its boundaries. These set of scattered nodes do not form a mesh, which means that no 

information between the nodes is required at least for field variable interpolation. The 

key idea of the meshless methods is to provide accurate and stable numerical 

solutions with all types of possible boundary conditions with a set of arbitrarily 

distributed nodes (or particles) without using any mesh that provides the connectivity 

of these nodes or particles. One important goal of the initial research to perform 

meshless method is to modify the internal structure of the grid-based FDM and FEM 

to become more adaptive, versatile and robust. Much effort is concentrated on 

problems to which the conventional FDM and FEM are difficult to apply, such as 

problems with free surface, deformable boundary, moving interfaces (for FDM), large 

deformation (for FEM), complex mesh generation, mesh adaptivity, and multi-scale 

resolution (for both FDM and FEM) [2]. To overcome these problems, a number of 

meshless methods have been proposed for analysing solids and structures as well as 

fluid flows. These meshless methods share some common features, but are different in 

the means of function approximation and implementation procedures. 
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2.2 Classification of meshless methods 

 

Based on the formulation, meshless methods can generally be divided into two major 

categories: methods based on strong form formulations and methods based on weak 

form formulations. Most of the current meshless applications have been based on the 

Galerkin (global weak-form) formulation. Galerkin based meshless methods are 

similar to FEM in that they both require numerical integration to form the disrectised 

system of equations. However, unlike FEM where the basis functions are simple 

piecewise polynomials, the basis functions used for meshless methods are often 

highly nonlinear and not in closed form, as they must satisfy a number of stringent 

requirements [3]. 

 

Some commonly used methods for generating the basis functions include the moving 

least square (MLS) method [4], the reproducing kernel particle method (RKPM) [3] 

and point interpolation method [1]. In general, Galerkin-based meshless methods 

require higher-order numerical integration and a background mesh (though unlike the 

mesh in FEM, it is not totally dependent of the nodes) for the global integration, 

which tends to increase the computational cost. In addition to that, most of the basis 

functions in meshless methods do not satisfy Kronecker delta property (refer to page 

35), which often makes it difficult to directly apply the essential boundary conditions. 

 

The strong form methods such as point collocation method [5] and finite point method 

[6, 7] have attractive advantages of being simple to implement, computationally 

efficient  and "truly" meshfree, as it does not even require a background mesh since no 

integration is required in establishing the discrete system of equations. Such distinct 

features facilitate the implementation of the refinement or coarsening scheme as node 

can be easily inserted or removed without concerning too much about the nodal 

connectivity. However, they are often unstable and less accurate, especially when 

irregularly distributed nodes are used for problems governed by partial differential 

equations (PDEs) with Neumann (derivative) boundary conditions, such as in solid 

mechanics problems with stress (natural) boundary conditions.  
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On the other hand, weak form methods, such as the EFG method and meshless local 

Petrov Galerkin (MLPG) method, are well-established methods due to the advantage  

of excellent stability and accuracy. The Neumann boundary conditions can be 

naturally satisfied due to the use of the weak form that involves smoothing (integral) 

operators. However, the weak form method is said not to be "truly" meshfree, as a 

background mesh (local or global) is required for the integration of the weak form. An 

extensive overview of these methods can be found in [8, 9]. A very brief description 

of some of the popular meshless methods is given below: 

 

2.2.1 Smoothed particle hydrodynamics (SPH) method 

 

The oldest of the meshless methods is the SPH method [10, 11]. SPH, as a meshfree 

and particle method, was originally invented for modelling astrophysical phenomena, 

and later extended for applications to problems of continuum solid and fluid 

mechanics [11]. Gingold and Monaghan [12] provided a rationale for this method by 

invoking a notion of a kernel approximation which is illustrated below.  

                               

In SPH, a kernel interpolation is used to approximate the field variables at any point 

in a domain. The spatial discretisation of the state variables is provided by a set of 

particles (points). These particles have a spatial distance (known as the "smoothing 

length"), over which their properties are "smoothed" by a kernel function. This means 

that the physical quantity of any particle can be obtained by summing the relevant 

properties of all the particles which lie within the range of the kernel. For example, an 

approximation of the value of a function f at the location x is given in a continuous 

form by an integral of the product of the function and a kernel (weighting) 

function ( ', )W r−x x : 

 

                     ( ) ( ) ( ', ) 'f f W r d= −∫x x' x x x                                                          (2.1)              

 

where the angle brackets  denote a kernel approximation, r is a parameter that 

defines size of the kernel support known as the smoothing length, and x '  is the new 

independent variable. 
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Figure 2.1: Principles of the SPH kernel function [13] 

 

The kernel function usually has the property of compact support, which means it is 

zero everywhere, but on a finite domain inside the range of the smoothing length 2r: 

 

               ( ', ) 0 '  2W r for r− = − ≥x x x x                                                                 (2.2)                 

 

In a normalised form, it can be written as: 

 

               ( ', ) ' 1W r d− =∫ x x x                                                                                    (2.3)                     

 

2.2.2 Element free Galerkin (EFG) method 

 

The EFG method [4], an innovative approach, can be categorised as a meshless 

method as discrete equations can be generated with a set of nodes and the description 

of the internal and external surfaces of the domain, i.e., boundary of the model. This 

method is based on MLS approximation. Nayroles et al. [14] are the first to use 

moving least square approximations in a Gale rkin method to formulate the so-called 

diffuse element method (DEM). Based on the idea of Nayroles and motivated by the 

purpose to model arbitrary crack propagation without computationally expensive 

remeshing, Belytschko and his co-workers developed the EFG method in 1994 [2]. 

More detailed description of EFG method is given later in this chapter. 
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2.2.3 Meshless local Petrov Galerkin (MLPG) method 

 

Atluri and Zhu [15] have proposed the MLPG method that requires only local 

background cells for the integration. The MLPG method is based on a local weak 

form and MLS approximation. Because the MLPG does not need any element or 

mesh either for interpolation or for integration purposes, it has been applied for a 

number of applications, for example, two-dimensional elasto-statics [16], the analysis 

of beam and plate structures [17], fluid flows [18] etc. However, the drawback of the 

MLPG method is the difficulty in handling of the numerical integration near the 

boundary and the asymmetry of the discretised system matrix. 

 

 

 
Figure 2.2: The MLPG scheme for a two dimensional domain [19] 

 

Apart from the afore-mentioned meshless methods, many other methods were 

proposed, such as the reproducing kernel particle method (RKPM) [20], the natural 

element method [21], the free mesh method [22], method of finite spheres [23], the h-

p cloud method [24] etc. On the basis of these proposed methods and theoretical 

development, meshless methods have been applied to many engineering areas, such as 

fracture mechanics [25-27], fluid mechanics [28, 29] etc. 
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In our proposed study, the EFG method will be used, because of its potential to be 

modified and developed for the efficient, reliable and accurate solution for the 

analysis of static problems in solid mechanics. The EFG method utilises moving least 

square interpolants, in which only nodes are required to construct the shape function. 

Cordes and Moran [30] showed that in solid mechanics problems containing material 

discontinuities, the EFG method was proven to have higher convergence rates over 

the finite element method. Moreover, moving discontinuities or interfaces can usually 

be treated without remeshing with minor costs and accuracy degradation (for instance, 

see Belytschko and Organ [31]).  

 

2.3 Element Free Galerkin (EFG) Method 

 

The EFG method was proposed by Belytschko et al. [4] as an improved version of the 

DEM as introduced by Nayroles et al.[14]. This is categorised as a meshless method 

as discrete equations can be generated with a set of nodes and the description of the 

internal and external surfaces of the domain, i.e., boundary of the model.  

 

Belytschko et al. [4] identified the spatial discretisation mentioned by Nayroles et al. 

[14] as moving least squares and made three alterations to enhance the accuracy of the 

method: 

 

1. MLS approximation is employed for the construction of the shape function.  

2. Lagrangian multipliers are introduced in the potential energy function to 

enforce the essential boundary condition.  

3. Background mesh, which is flexible in terms of dependency of nodes is 

corncerned, is required to carry out the integration to calculate system 

matrices.  

 

The resulting formulation is then called the EFG method. Although EFG is considered 

meshless while referring to the shape function approximation, an ‘auxiliary’ mesh will 

be required for solving the PDEs derived from the Galerkin approach [32] . Either a 

regular background mesh or cell structure is applied while computing the integrals in 

the weak form, hence it partially opposes the original mesh-free philosophy.  
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In the traditional mesh-based method, the approximation is based on the rigid 

connectivity defined by elements. This is one reason why it is difficult to handle large 

material distortions. The meshless methods, which construct the interpolation in terms 

of a set of particles rather than elements, are less susceptible to distortion difficulties. 

Because of the advantages in handling problems which are difficult for the finite 

element method, the meshless approach has attracted much attention. For instance, 

EFG method was successfully used in evaluating fracture and crack propagation 

problems [33-36].  

 

2.3.1 Moving least squares (MLS) approximation 

 

The EFG method is based on the MLS technique introduced by Shepard [37] and 

Lancaster and Salkauskas [38]. It consists of three components: a basis function, a 

weight function associated with each node, and a set of coefficients that depends on 

node position. In this section the main characteristics of the MLS approximation are 

given. In the MLS approximation, we let 

 

                   
1

( ) ( ) ( ) ( ) ( )
m

h T
i i

i

p a
=

= =∑u x x x p x a x                                                         (2.4)                    

 

where ( )hu x is the approximation of the function u, m is the number of terms in the 

basis, 1 2 3( ) [ ( ), ( ), ( ),..., ( )]i =x x x x xmp p p p p  is a polynomial basis function, and 

1 2 3( ) [ ( ), ( ), ( ),..., ( )]i =x x x x xma a a a a  is a vector of unknown coefficients, which are 

functions of the spatial coordinates x.  

 

The basis is usually a complete set of polynomial functions of specific order. 

Examples of commonly used one dimensional linear and quadratic basis are: 

 

                    ( ) (1, )x=p xT              (Linear basis)                                                     (2.5) 

                    2( ) (1, , )T x x=p x         (Quadratic basis)                                                (2.6)                     

 

Similarly in two dimensions ( ( , ))x = x y , linear and quadratic bases are used which are 



 29

 

                    ( ) (1, , )x y=p xT            (Linear basis)                                                    (2.7)                   

                    2 2( ) (1, , , )x y,xy,x y=p xT   (Quadratic basis)                                        (2.8)                   

 

For example, the approximation )(xhu with a quadratic basis can be expressed 

explicitly as: 

 
2 2

1 2 3 4 5 6( , ) ( , ) ( , ). ( , ). ( , ). ( , ). ( , ).= + + + + +hu x y a x y a x y x a x y y a x y xy a x y x a x y y   (2.9)              

  

This type of approximation is commonly known as curve-fitting or surface fitting 

approximation.        

 

Now let us consider any point x  in the domain Ω  and all the nodes ( ) x In  whose 

domain of influence contain this point. The vector of coefficients ( )a x  are obtained 

by performing a weighted least-square fit for the local approximation,  which is 

obtained by minimising the difference between the local approximation and the 

function. This yields a quadratic form: 

 

                          2

1

( ) ( )( ( , ) ( ))
n

h
I I I

I

J w
=

= − −∑x x x u x x u x                                         (2.10) 

                  

                                   = 2

1

( )[ ( ) ( ) ]
n

T
I I I

I

w
=

− −∑ x x p x a x u                          (2.11)                                             

 

where Ix  denotes coordinates of node I , ( )Iw x  is the weight function of node I at 

point x , n  is the number of nodes in the neighbourhood of x  for which the weight 

function ( )Iw −x x  is non-zero, Iu  representing unknown parameters associated with 

node I . The neighbourhood of x  is called the domain of influence of x , providing 

the compact support associated with it. It is desirable that the weight function 

( )Iw −x x  is smooth.  
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Figure 2.3: Definition of domain of influence  

 

The weight functions are defined so that their overlapping compact supports will 

cover the entire domain. The overlap of nodal domains of influence defines the nodal 

connectivity [39]. 

 

 
Figure 2.4: Division of domain Ω on overlapping nodal domains of influence [39] 

              

The minimisation of J with respect to ( )a x  leads to the following expression: 

 

                       
( )

( ) ( ) ( ) 0
( )

J∂
= − =

∂
x

A x a x B x u
a x

                                                        (2.12)                  

 
            or,      ( ) ( ) ( )=A x a x B x u                                                                             (2.13)                
 
            or,      1( ) ( ) ( )−=a x A x B x u                                                                          (2.14)               

Iu  
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where  

                       
1

( ) ( ) ( ) ( )
n

T
I I I

I

w
=

= ∑A x x p x p x                                                         (2.15)                

 
                       ( ) ( )I Iw w≡ −x x x                                                                             (2.16)                   
 
                       1 1 2 2( ) [ ( ) ( ), ( ) ( ),..., ( ) ( )]n nw p w p w p=B x x x x x x x                              (2.17)                  
 
                       { }n

T uuu ,..., 21=u                                                                             (2.18)                 
                      

Substituting ( )a x  into equation (2.3), the approximation ( )hu x can be rewritten as a 

sum of nodal components:                                                                     

 

                          
1

( ) ( )
n

h
I I

I

φ
=

= ∑u x x u                                                                         (2.19)                    

                                                                                  

where Iφ  is the shape function given by: 

 

                          1( ) ( ) ( ) ( )T
I Iφ −=x p x A x B x                                                             (2.20)                    

 

where ( )IB x  is the I-th column of ( )B x . 

 

The spatial derivatives of the shape functions are obtained by 

 

                         1
, ,( ( ) ( ) ( ))T

I i I iφ −= p x A x B x                                                              (2.21)                                  

                                      

                         1 1 1
, , 1 , ,( ) ( ) ( ) ( )[ ( ) ( ) ( ) ( )]T T

I i i i I I iφ − − −= + +p x A x B x p x A x B x A x B x   (2.22)                  

 

where      

 

                          1 1 1, ( ) ,i i
− − −= −A x A A A                                                                  (2.23)                       

 

and the index following a comma is a special derivative. 
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Weight functions ( ) ( )I Iw w≡ −x x x play an important role in the performance of the 

method [4]. They should be constructed so that they are positive, they should be 

relatively large for the Ix  close to x  and their magnitude should be decreased as the 

distance from x  to Ix  increases. In other words, one has to consider weight functions 

which will depend only the distance between two nodes as follows: 

 

                         ( ) ( )I Iw d w≡ −x x                                                                           (2.24)                   

 

where  Id = −x x  is the distance between point x  and node point Ix . 

 

 
Figure 2.5: Different types of weight function [40] 

 

In this thesis, the cubic spline weight function is chosen which is given by: 
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where 
−

=
x xI

mI

r
d

,  mId  is the size of the domain of influence of the Ith  node and is 

computed by: 

 

                           maxmI Id d c=                                                                                  (2.25)                   

 

where maxd  is a scaling parameter which is typically 2.0-4.0 for a static analysis [32], 

Ic  is the nodal spacing which is a distance to the second nearest node for equally 

spaced nodes. maxd = 2.5 was shown in [41, 42] as optimal for various static and 

dynamic fracture mechanics problems.  

  

2.4 Discretisation 

 

In this thesis, only materials with linear elastic behaviour are considered. Hence, the 

approaches and criteria of linear elastic materials are used. The linear elasticity 

assumes that displacements in a body are small and that there is a linear relation 

between stress and strain. For static problems of linear elasticity, this is formulated by 

the following fundamental system of differential equations and boundary conditions 

(2.26)-(2.31).  

 

                                          

 

 

 

 

 

Figure 2.6: An elastic body subject to boundary conditions 

 

The following two dimensional problem of a homogeneous isotropic body is 

considered on the domain O bounded by the G, as shown in figure 2.6, for which the 

equation of equilibrium is: 

 

Γ t  

b 
Ω  Γu  

Γ  
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                           , 0 in ij j jbσ + = Ω                                                                          (2.26)                               

 

where ijσ  are the component of the stress tensor and jb is the body force vector.  

 

The essential boundary conditions are chosen as: 

 

              i iu u=  on 
iuΓ                                                                               (2.27)                  

                                                                                   

while the natural boundary conditions are written  as:  

 

                            ij j in tσ =   on 
it

Γ                                                                          (2.28)                    

                                      

where iu and it being the prescribed displacements and tractions respectively, and jn  

is the unit normal outward vector on the boundary G. The subscripts u and t on 

Γ denote parts of the boundary on which essential and natural boundary conditions 

are defined respectively. 

 

The linear stress-strain relation (constitutive relation) is given by the equation: 

   

                             
xx xx

yy yy

xy xy

σ ε
σ ε
σ ε

   
   

=   
   
   

D                                                                         (2.29)                 

                                                                                         

where D is the fourth order elastic tensor, which is given as: 

                            
1 0

1 0 , for plane strain
(1 )(1 2 )

1 2
0 0

2

E
ν ν

ν ν
ν ν

ν

 
 −
 

= − + −  −
 
 

D       (2.30a)                 
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2

1 0
1 0 , for plane stress

1
1

0 0
2

E
ν

ν
ν

ν

 
 
 

=  −  −
 
 

D                               (2.30b)               

 

where E is the Young’s modulus of elasticity and ν  is the Poisson’s ratio. 

 

For small displacements, the strain components can be written as: 

 

                              ( ), ,
1
2ij j i i ju uε = +                                                                       (2.31)                     

 

where iu are the components of the displacement. 

 

Equation (2.26) is called the ‘strong form’ and computational solutions of equation 

(2.26) rely on a process called ‘discretisation’ which converts the problem into system 

of algebraic equations. 

 

The variational (or weak) form for the equilibrium equation (2.26) can be written as: 

 

                    ,( ) ( ) 0
t

i j ij i i i i uW u d u b d u t d Wδ δ σ δ δ δ
Ω Ω Γ

= Ω − Ω − Γ − =∫ ∫ ∫u u                (2.32)             

 

where ( )uWδ u represents a term to enforce the essential boundary conditions. 

 
It should be noted that the EFG method does not satisfy the Kronecker delta property,  
i.e.  
 
 

                              
1         

( )
0      


≠ = 


xI J IJ

i f  I = J
otherwise

φ δ                                                 (2.33)                                          

 
 
where ( )xI Jφ  is the shape function corresponding to the node at x I , evaluated at a 

nodal point, xJ , and IJδ  is the Kronecker delta. Therefore they are not interpolants, 
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and the term ‘approximants’ is used. Hence ( ) ≠xh
I Iu u , i.e., the nodal parameters Iu  

are not the nodal values of ( )xh
Iu . The approximation to the displacement at the 

thI node depends on the nodal parameter Iu  as well as the nodal parameters 1u  

through nu  corresponding to all other nodes within the domain of influence of node I. 

Therefore the essential boundary conditions can not be imposed directly. To 

overcome the problem, a number of techniques were developed for enforcing the 

essential boundary conditions. These are: the Lagrange multiplier method [4], the 

modified variational principle method [43], the penalty method [35], and coupling 

with the finite element method [44].  

 

In the proposed study, the Lagrange multiplier method will be used to enforce the 

essential boundary conditions, since this method is relatively stable and sufficiently 

accurate. According to this method, uWδ  in the variational form can be defined as: 

 

                              ( ) ( )
u u

u i i i i iW u u d u dδ δλ δ λ
Γ Γ

= − Γ − Γ∫ ∫u                                     (2.34)                 

 

 where iλ  is the Lagrange multiplier. 

 

Hence the governing equation of the weak form can be written as: 

 

     ( ), 0
t u u

i j ij i i i i i i i i iu d u b d u t d u u d u dδ σ δ δ δλ δ λ
Ω Ω Γ Γ Γ

Ω − Ω − Γ − − Γ − Γ =∫ ∫ ∫ ∫ ∫           (2.35)                   

 

The discrete form of the equation (2.35) is given as: 

 

                              
0T

     
=    

     

K G u f
G qλ

                                                                (2.36)                                       

   

where K, u  and f  are the stiffness matrix, the displacement vector and the force 

vector respectively, and are defined as: 
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Ω

= Ω∫K B DBT
IJ I J d                                                                    (2.37)                    

          

where I and J represent I-th and J-th node respectively, and IB  is the matrix of the 

shape function derivatives: 

 

                              
,

,

, ,

0
0

 
 

=  
  

B
I x

I I y

I y I x

φ
φ

φ φ
                                                                      (2.38)                      

 

where a comma designates a partial derivative with respect to the indicated spatial 

variable. 

 

                              
u

IK I K dφ
Γ

= Γ∫G N                                                                       (2.39)                      

 

                              
u

K K d
Γ

= − Γ∫q N u                                                                        (2.40)                                             

 

                              
0

0
K

K
K

N
N

 
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 
N                                                                       (2.41)                   

 

where KN  is the Lagrange interpolant for node K 

 

                              
Ω Γ

= Ω + Γ∫ ∫f b t
t

I I Id dφ φ                                                              (2.42)                   

 

It can be noticed that K IJ  will be non-zero only when Iφ  and Jφ are non-zero on a 

common part ofΩ . Hence, when each weight function (and therefore each shape 

function) is only non-zero on a small part of Ω , the matrix K will be sparse.  

 

The enriched EFG method, an extended EFG technique, has been utilised for the 

approximation of solutions with discontinuities, singularities, or other locally non-
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polynomial phenomena. Thereby, optimal convergence rates are achieved for 

solutions that involve kinks, jumps, and also high gradients within elements. The 

simulation is typically carried out on simple (often regular) meshes without mesh 

alignment or refinement near the discontinuities. Two types of enrichment functions 

will be discussed in the next section.  

 

2.5 Enriched element free Galerkin (EFG) method 
 
 
The enriched EFG method is designed to enhance the conventional EFG method in 

order to solve problems that exhibit strong and weak discontinuities in material and 

geometric behaviour, while preserving the EFG original advantages. In comparison to 

the EFG method, the enriched EFG method has the following differences [9]: 

• Detection of enriched and non-enriched nodes 

• Treatment of enriched (additional degrees of freedom)  

• Computation of stiffness matrices 

 

Theoretically, enrichment can be regarded as the principal of increasing the order of 

completeness that can be achieved. In terms of computation, it may simply target 

higher accuracy of the approximation by including the information obtained from the 

analytical solution. The choice of the enriched functions depends on the a priori 

solution of the problem. For instance, in a crack analysis this is equivalent to an 

increase in accuracy of the approximation if analytical near crack tip solutions are 

somehow included in the enrichment terms [45]. 

 

The basic idea of the enrichment is to transform equation (2.3) into a more 

appropriate form to enhance the way approximation is constructed. The enhancement 

may be attributed to the degree of consistency of the approximation, or to the 

capability of approximation to reproduce a given complex field of interest.  

 

There are basically two ways of enriching an EFG approximation: (a) intrinsic 

enrichment, where the enrichment functions are included in the EFG basis; and (b) 

extrinsic enrichment, where the approximation is enriched by adding functions 

externally to the EFG basis. 
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2.5.1 Intrinsic enrichment  

 

Meshless approximations can be intrinsically enriched by including the enrichment 

functions in the basis. The MLS approximations used in the EFG method allows the 

number of bases to be independent of the number of degree of freedom. The field can, 

therefore, be enriched in an intrinsic way without introducing any extra unknowns. In 

terms of computational cost, intrinsic method is very much desirable in this aspect.  

 

The basic idea in this approach is to enhance the approximation equation (2.4) by 

transforming the basis function p  to include new terms so that a certain condition of 

reproducing a complex field can be satisfied [46]. For instance, for a first order 

standard linear basis function { }1, ,lin x y=p ; new enrichment terms { }1 2,enr f f=p are 

added so that  

 

                         { } { }1 21, , , ,lin enr x y f f= =p p , p                                                        (2.43)                                  

 

2.5.2 Coupling enriched and linear approximation 

 

Enriching the approximation for the entire domain of a problem is generally 

unnecessary and increases computational cost. A special technique is presented for 

coupling the enriched and the linear approximations. The technique involves coupling 

the approximation over a transition region as a linear basis combination of the 

enriched linear approximation (this is similar to the way Belytschko et al. [9] coupled 

EFG to finite elements). The approximation is written as: 

 

                        ( ) ( ) (1 ) ( )h enr linR R= + −u x u x u x                                                      (2.44)                                                  

 

where ( )enru x is the enriched approximation, ( )linu x is the linear approximation; R is a 

ramp function which is equal to unity on the enriched boundary of the coupling 

domain and 0 on the linear boundary of the coupling domain. This is the only 

requirement imposed on the variable R.  
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The coupled approximation for the enriched intrinsic basis is then written as:  

 

                    
1

( ) ( )
n

I I
I

φ
=

= ∑u x x u%h                                                                               (2.45)                                             

 where  

 

                   ( ) ( ) (1 ) ( )enr lin
I I IR Rφ φ φ= + −x x x%                                                            (2.46)                     

 

where enr
Iφ is the shape function formed from the enriched basis and lin

Iφ is the shape 

function formed from a linear basis. One of the advantages of this method is that it 

ensures a compatible displacement field. However, the continuity of the strain field 

depends on the continuity of the ramp function, R [47]. 

 

Belytschko and Fleming [47] found out that mixing the enriched and linear 

approximations was found to work better for the intrinsically enriched basis than for 

the extrinsic MLS enrichment. The extrinsic MLS enrichment is sensitive to 

discontinuities and some loss of accuracy was noticed.  

 

2.5.3 Extrinsic enrichment 

 

Another form of enrichment is based on a so-called extrinsic enrichment. This uses 

extrinsic bases ( )p xk to increase the order of completeness.  

 

                    
1 1

( ) ( ) ( )
n m

h
i i k k

i k

pφ
= =

= +∑ ∑u x x u x a                                                           (2.47)                    

 

where ka are additional unknowns or degrees of freedom associated to the enriched 

solution. It should be noted that the enrichment should be added to each node whose 

domain of influence extends into the region to be enriched. In a general partition of 

unity enrichment, equation (2.47) is rewritten as, 

    

                    
1 1

( ) ( ) ( ) ( )
n m

h pu
i i k k

i k

fφ
= =

= +∑ ∑u x x u x p x a                                               (2.48)                  
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2.5.4 Double nodes 

 

In addition to the enrichment strategy that is added to the approximation function in 

the EFG method, double nodes or pair nodes technique can also be used for solving 

problems which exhibit material discontinuities. The detailed formulation of this 

technique will be presented in the next chapter.  

 

2.6 Conclusion 

 

A rigorous description of meshless methods is given in this chapter. Some of the 

popular meshless methods are described briefly. The EFG method has been illustrated 

in details, so as the MLS technique. Later it was shown how the enrichment function 

can be incorporated into the EFG method to solve problems regarding material 

discontinuity.  

    

A numerical model which can simulate particulate composites will be developed 

using the enriched EFG method as well as the EFG with double nodes technique in 

the next chapter.  
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3.1 Introduction  
 
 
Most engineering materials produced in industry are heterogeneous on one or another 

spatial scale. Some of the common examples include metal alloys, porous media and 

composites. The particulate composites as discussed in chapter 1 are heterogeneous 

materials in nature. The effective physical behaviour of a heterogeneous structure 

strongly depends on the size, shape, spatial distribution and properties of the 

constituents and their respective interfaces.  

 

To determine the macroscopic overall characteristics of heterogeneous media is an 

essential problem in many engineering applications. For example, material interfaces 

in composites are modelled to predict the mechanical behaviour and to establish 

macroscopic material properties [1]. Sometimes a heterogeneous structure is 

specifically created for a particular product or application. For instance, in aluminium 

metal matrix composites, silica fibres, fine stainless steel wires or small ceramic 

particles may be distributed throughout the matrix. This can produce vastly improved 

properties such as higher strength, enhanced toughness and weight reduction [2].   

 

The different phases present in heterogeneous materials constitute a material 

microstructure. The relation between macroscopic behaviour and microstructural 

phenomena not only allows predicting the behaviour of existing multi-phase 

materials, but also provides a tool to design a material microstructure such that the 

resulting macroscopic behaviour exhibits the required characteristics [3]. 

 

The problem that will be carried out in the proposed study involves particulate 

composites as circular inclusion for heterogeneous materials. The governing equations 

have already been given in chapter 2 for single material. Due to the presence of 

heterogeneity (in this case, the inclusion), the EFG approximation is enriched by an 

additional function.   
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3.2 Implementation of the Enriched EFG method 

 

Following are the necessary steps involved in the implementation of the enriched EFG 

method [4]: 

 

1. Representation of the interface: The interface or discontinuity can be 

represented by using the level set method [5, 6]. Level set method will be 

described in detail later in this chapter. 

2. Selection of enriched nodes: In case of local enrichment, only a subset of the 

nodes closer to the region of interest is enriched. The nodes that are needed to 

be enriched can be selected by using the nodal values of the level set function.  

3. Choice of enrichment functions: Depending on the physics of the problem, 

different enrichment functions can be used. 

 

3.3 Enrichment functions for the inclusions 

 

Inclusions are inhomogeneities in material properties within a body, which can 

produce discontinuities in the gradient of the displacement field. In order to 

incorporate such discontinuities in the derivatives of the function, an enrichment 

function in the form of a ramp function was proposed in the frame work of enriched 

EFG method by Fleming et al. [7] and later, it was used by Sukumar et al. [1] within 

XFEM framework.  It is worth mentioning that due to the problems in blending 

elements Sukumar et al. [1] have also proposed a modified enrichment function for 

inclusions.  

 

One of the key steps in the implementation is the selection of region of interest, where 

the field is required to be enriched. This automatically implies the selection of 

enriched nodes, where additional degrees of freedom are added to the system.  

Although interfaces do not have to be re-meshed, the correct integration of the  

stiffness matrix, for nodes enriched by a discontinuous function along an interface, 

needs to be done carefully. Enrichment functions are usually defined with the help of 

the level set functions to access the distance to the interface at any given point, which 

will develop the local enrichment function for material interfaces. The level set 
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function will be discussed in detail later in this chapter. First the importance of 

numerical integration and discretisation of the governing equations for enriched EFG 

will be represented. 

 

3.4 Discretisation in the weak form of enriched EFG method 

 

3.4.1 Numerical integration 

 

Accurate integration is one of the important factors in the accuracy of the solution, 

since the stiffness matrix and force vector are calculated by numerical integration. 

There are several schemes for numerical integration. One of them is the Gauss 

quadrature, which is used in this work. The method requires subdivision of the 

domain O on cells by means of a background mesh. Generally, the background mesh 

is independent of the nodal distribution. 4×4 Gauss quadrature points has been used 

for each regular cell in this proposed study.  

 

Numerical integration of a two-dimensional function ( , )f x y over domain Ω  can be 

expressed as [8]: 

 

                  
1

( , ) ( , )
n

k k k
k

f x y d f x y w
=Ω

Ω = ∑∫                                                                 (3.1) 

 

where ( , )k kx y are the coordinates of a Gauss quadrature point, kw  is the weight of this 

Gauss quadrature point and 2
qn n= , where qn  is the order of the Gauss quadrature rule.  

 

3.4.2 Discrete equation 

 

The enriched EFG approximation is based on the decomposition of the displacement 

field into a continuous (standard) and discontinuous (enriched) part. The continuous 

EFG approximation is based on the MLS method and is shown in chapter 2. For the 

discontinuous part, also called the enriched part, of the displacement approximation 

due to all the enriched nodes is the sum of the discontinuous contribution associated 
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with each enriched node. Hence for the enriched EFG, the total approximation can be 

written as: 

 

( ) ( ) ( )h h h
std enr= +u x u x u x  

                      =
1 1

( ) ( ) ( )
n m

std enr
i i k k

i k

φ φ ψ
= =

+∑ ∑x u x x u                                                        (3.2)          

 

where n is the number of all the nodes, m is the number of nodes that are enriched 

with the enrichment function ψ , φ  is the EFG shape function, stdu  and enru  are the 

standard and the enriched nodal variables associated with node i and k respectively.  

 

Using the variational principle and assuming independent standard and enriched 

degrees of freedom stdu and enru , lead to the following discrete system of linear 

equilibrium equation: 

  

               =Ku f                                                                                                        (3.3)                                               

 

where K is the stiffness matrix, u is the vector of degrees of nodal freedom (for both 

standard and enriched nodes) and f is the vector of external forces. The global matrix 

and vectors are calculated by assembling the matrix and vectors for each node. For 

simplicity, it is assumed that the superscript u means standard part and e means 

enriched part. For example, K and f for node i and j are defined as:  

 

           
uu ue
ij ij

ij eu ee
ij ij

 
=  

  

K K
K

K K
                                                                                         (3.4)          

 

where ,   and K K Kuu ee ue are the stiffness matrix associated with the standard EFG 

approximation, the enriched approximation and the coupling between the standard 

EFG and the enriched approximation respectively.  

 

            { }Tu e
i i i=f f f                                                                                                (3.5)                
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            { }Tu e=u u u                                                                                               (3.6)               

 

where  

 

           ( )
Ω

= Ω∫K B DB
Tuu u u

ij i j d                                                                                    (3.7)        

           ( )
Ω

= Ω∫K B DB
enr

Tee e e
ij ij ijd                                                                                  (3.8)                                                                  

           
Ω Γ

= Ω Γ∫ ∫f b t
t

u
i i id + dφ φ                                                                                    (3.9) 

           
Ω Γ

= Ω Γ∫ ∫f b t
enr t

e
i i id + dφψ φ                                                                            (3.10) 

In equation (3.7), B is the matrix of shape function derivatives, 

 

       u e
i i i =  B B B                                                                                                 (3.11)   

      
,

,

, ,

0
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i x
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i i y

i y i x

φ
φ

φ φ
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 
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B                                                                                                (3.12) 
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i x
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i i y

i iy x
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φψ

φψ φψ

 
 
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  

B                                                                                   (3.13)      

 

To accurately model interface discontinuity, various types of enrichment schemes are 

available in the literature. Some of them are described in the following section.  

 

3.5 Enrichment schemes  

  
3.5.1 Enrichment for strong discontinuity 

 

For strong discontinuities (jumps), the sign-enrichment function ( )signψ x  is often used 

as the enrichment function leading to the following enriched EFG approximation: 
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              ( ) ( ) ( ) ( )
enr

h
i i j sign j

i N j N

φ φ ψ
∈ ∈

= +∑ ∑u x x u x x a                                                 (3.14) 

 

   where ( )signψ x is defined as: 

 

                   

1  ( ) 0

( )  ( ( )) 0  ( ) 0 
1  ( ) 0

sign

if

sign if
if

ϕ

ψ ϕ ϕ
ϕ

− <


= = <
 >

x

x x x
x

                                             (3.15) 

 

 
3.5.2 Enrichment for weak discontinuity 

 
 
Two types of enrichment functions are used in the literature in case of weak 

discontinuities. For the case of weak discontinuities (kinks), the abs-enrichment 

function ( )absψ x is often chosen as the enrichment function leading to the following 

enriched EFG approximation: 

 

                 ( ) ( ) ( ) ( )
enr

h
i i j abs j

i N j N

φ φ ψ
∈ ∈

= +∑ ∑u x x u x x a                                               (3.16) 

 

   where ( )signψ x is defined as: 

 

                ( )  ( ( )) ( )abs absψ ϕ ϕ= =x x x                                                                   (3.17) 

 

Hence the first choice for the enrichment function is defined as the absolute value of 

the level set function [1], which has a discontinuous first derivative on the interface.  

 

Moes et al.[9]  proposed another choice for the enrichment function given by: 

 

                 ( ) ( ) ( )i i i i
i i

ψ ϕ φ ϕ φ= −∑ ∑x x x                                                            (3.18) 
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Figure 3.1: Weak discontinuity: different choices of enrichment functions [4] 

 

Figure 3.1 shows the two choices of the enrichment function in the 1-D case. For two 

and three dimensional problems, the enrichment function proposed by Moes et al. [9] 

is a ridge centred on the interface and has zero value on the nodes which are not 

crossed by the interface.   

 

3.6 Level set method 
 
 
The level set method [10] is a numerical technique introduced by Osher and Sethian 

[6] for tracking moving interfaces. It is based upon the idea of representing the 

interface as a level set curve of a higher dimensional function. The key point in the 

level set method is to represent the geometric interface (for example, the boundary of 

a hole or inclusion) at any time t, with a zero level set function, i.e.  

 

                            ( , ) 0tϕ =x                                                                                    (3.19)                                                                                         

 

where ( , )tϕ x   is the level set function.  

Nodes 

( )ψ x  ( )absψ x  

Interface 

Enriched nodes 



 54

The interface is located from the value of the level set information stored at the nodes. 

However, the level set function can be interpolated at any point x in the domain by the 

use of the shape function: 

 

                            
1

( ) ( )
n

i i
i

ϕ φ ϕ
=

= ∑x x                                                                       (3.20) 

 

where the summation is over all the nodes that contains x and iϕ  are the nodal values 

of the level set function.  

 

Since its introduction in [6], the above level set approach has been used in a wide 

collection of problems involving moving interfaces. Some of these applications 

include the generation of minimal surfaces [11], singularities and geodesics in moving 

curves and surfaces in [12], and shape reconstruction [13, 14]. 

 

Let Γ  be an interface that divides the domain Ω  into two non-overlapping sub  

domains, 1Ω  and 2Ω , as illustrated in Figure 3.2. The level set function ϕ  is defined 

as:                                                   

 

 
Figure 3.2: Definition of the level set function 

 

 

 

1Ω  
Γ  

2Ω
 0ϕ <  

0ϕ >  
0ϕ =  
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1

2

0,

( ) 0,
0,

ϕ

> ∈Ω


= = ∈Γ
< ∈Ω

x

x x
x

                                                                                     (3.21) 

 

An interpretation of equation (3.21) is that the interface Γ can be regarded as the zero 

level contour of the level set function ( ).ϕ x  

 

One of the common choices for the level set function, ϕ , can then be simply defined 

in terms of the signed distance function: 

 

        1

2

,
( )

,
d
d

ϕ
∈Ω

= 
− ∈Ω

x
x

x
                                                                                         (3.22) 

 

The initial condition is usually taken as the signed distance function such that the  

level set function has positive values on one side of the interface and negative values 

at the other side of the interface and the interface is identified by the zero level set 

function. In order to construct a level set function using a signed distance function, we 

find the closest point on the discontinuity Γ  such that Γ−x x  is a minimum, where x  

is any query point and Γx  is a point on the discontinuity Γ  as shown in Figure 3.3. 

This actually defines a vector ( )Γ= −d x x
r

 which is orthogonal to the discontinuity Γ  

at point Γx . Next in order to construct the level set function we define a normal to the 

discontinuity at point Γx . The level set function is then given as [15]: 

 

                                                 ( )Γ= −d x x
r

                                                            (3.23) 

                                                ˆ( , = 0 ) .tϕ =x d n
r

                                                      (3.24) 
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Figure 3.3: Signed distance function [15] 

 

The following section will describe the implementation of circular discontinuity using 

the level set method. 

  

3.6.1 Circular discontinuity 

 

The signed distance function is one of the commonly used level set functions, and can 

be used to construct level set function for discontinuity of different types and shapes, 

such as circular, elliptical and polygonal voids. For a circular inclusion, we find the 

minimum signed distance to construct the level set function as follows:    

         

                                           ( ,0) rϕ = − −x x xc c                                                     (3.25) 

                            

where x  is any query point, xc denotes the centre of the circle and rc  is the radius of 

the circle. The level set function can then simply be the signed distance function to the  

circular discontinuity. In this case, the level set function will have a positive value 

outside the circle and a negative distance value for any point inside the circle. The 

points that lie on the circle will be represented as a zero value of the function.  

X 

ΓX  

Γ  

d
r

 

n̂  
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(a) 

 
(b) 

Figure 3.4: Level set function for single inclusion 

 

If a body contains number of circular discontinuities then a single level set function 

for all the discontinuities can be defined as: 

                                        { }1,2,3,....( ,0) min i n rϕ == − −x x x
c

i i
c c                                 (3.26)   

where nc  is the total number of circular inclusions,  i
cx and i

cr  refers to the centre and 

radius of i-th inclusion respectively. 
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(a) 

 
(b) 

Fig. 3.5: Level set function for multiple inclusions  

 

3.6.2 Complex shaped discontinuity 

 

The signed distance function can also be used to construct level set function for 

complex shaped inclusions. A ‘star’ shape is considered for this particular case. First 

the implementation will be carried out for a single inclusion, and then for nine 

inclusions to illustrate multi- inclusions problem.  

 

For complex shaped inclusion as shown in Figure 3.6, i
cr  in equation (3.26) is 

replaced by [4]: 
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                ( ) cos( )i i i i
c or r a bθ θ= +                                                                            (3.27) 

 

where or  is the reference radius, ia and ib  are parameters that control the amplitude 

and period of oscillations for i-th inclusion.  

 
(a) 

 
(b) 

Figure 3.6: Level set function for complex shaped single inclusion 
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(a) 

 
(b) 

Figure 3.7: Level set function for complex shaped multiple inclusions  

 

Another strategy to model heterogeneous materials is by using double nodes or pair 

nodes technique which does not need any enrichment function in the approximation 

space. The following section will illustrate the double nodes technique in detail. 
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3.7 Modelling heterogeneous materials using double nodes 
 
 
Material discontinuity, fo r example, interface problem, can be treated through the use 

of the pair nodes near the region of the discontinuity in the EFG method. The 

following technique can be applied in implementing the interface discontinuity.  

 
 

                                                 
 
 
                                                        Figure 3.8: Pair nodes 
 
For instance, a particle pair, B and B- , located on opposite side close to an interface, 

are considered. The EFG approximation of the displacement and its derivative on 

particle B are (Figure 3.8) given by: 

 ( ) ( ) h
B B bB

Bb M

u φ
∈

= ∑x x u                                    (3.28) 

  where 
B

φ  is the shape function 

                              and            
( )

( )
h

B
a B

a

u
φ

∂
=

∂
x

x
u

                                               (3.29)                                                       

 And the displacement approximation of particle B- can be expressed as: 
                                                                   

                                              ( ) ( ) 
B

h
B B B b

b M

u
ε

φ− − − −

−
−

= ∑x x u                                     (3.30)                  

The spring potential function is defined by: 

2( ( ) ( ))
1
2

B
b p

-

N

B h B h B
B = 1

bp p= k A -? ∑ u x u x            (3.31) 

where pk is the penalty value and B
bpN are relevant boundary points. 

B B-

h
h

b
b-
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Differentiating  bp?  with respect to au  yields the interfacial traction as: 

                                        ( ( ) ( )) ( )
bpbp

a p B h B h - a BB
BeMa a

?
= = k A u - u φ

∂
∂ ∑T x x x
u                                (3.32) 

Let,                             

                         [ ]( ) ( )
B
ab

bp
ab p B B b B

BeM

a= k A φ φ∑K x x                                         (3.33) 

                           
[ ]( ) ( )- --

-- B
-ab

bp
p B B b Bab

B eM

a= k A φ φ∑K x x
                                   (3.34) 

 

Hence equation (3.5) can be re-written as: 

                          

-B B
bi bi

--

-

N N
bp bp bp
a ab b bab

b=1 b =1

= -∑ ∑T K u K u                                                   (3.35)  

 

As we know, the governing equation incorporating the essential boundary conditions 

can be written as:  

 

                           
1

 
N

b=
 + = + ∑ K K u T Tbp bp

ab ab b a a                                             (3.36) 

                           

Substituting (3.34) into (3.35), the final system of equation on interfacial particles can 

be expressed in the following form: 

                       0  = ∑ ∑u K uK + K --

-

N N
bp

b bab
b=1 b = 1

bp
ab ab -                                        (3.37) 

where   

                     
Ω

= Ω∫K B DBT
ab a bd                                                                           (3.38) 

 
 
The numerical model established using the enriched EFG method will be validated 

with the XFEM. Hence a brief description of the XFEM method is given in the next 

section.  
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3.8 Extended finite element method (XFEM) 

 

Within the finite element method, the domain Ω  is divided into elements, called finite 

elements and constituting a mesh. The displacement field is approximated on these 

elements: 

 

                          ( ) ( )
n

i i
i

φ= ∑u x x u                                                                           (3.39)      

where ( )iφ x are the finite element shape functions, and iu the nodal displacements.  

 

For the sake of mesh simplification, the extended finite element method (XFEM) was 

developed a decade ago, initially for crack propagation problem [16, 17]. Within 

XFEM, the mesh does not necessarily conform to internal discontinuities (such as 

holes, cracks, and material interfaces), which allows the use of simple meshes 

(structured or not). Moreover, the finite element approximation is enriched by 

additional functions (through the partition of unity [18]) that model the behaviour of 

boundaries, as follows: 

 

     ( ) ( ) ( ) ( )
enr

h
i i j j

i N j N

φ φ ψ
∈ ∈

= +∑ ∑u x x u x x a                                                                (3.40) 

 

Where ( )ψ x  is the enrichment function, ja are additional degrees of freedom, for 

enriched nodes; N represents the set of the nodes of the mesh, and enrN  the set of 

enriched nodes. 

 

For example, in the case of material interfaces, only nodes belonging to elements 

crossed by the interface are enriched. If the mesh conforms to discontinuities, there is 

no enrichment on nodes, and classical finite element method is recovered [19]. Since 

the surfaces are not represented explicitly by mesh boundaries, level set is introduced 

to track them. This function usually gives the signed distance to the interface at any 

point of the domain (Figure 3.3).  
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3.9 Error analysis and convergence studies 

 

The importance of error estimation when solving physical problems numerically 

(discretely) should be clear. The first source of error lies in the construction of the 

mathematical model, the second, is related to the error committed by the numerical 

model (discretised version of the mathematical model) [20]. Szabó and Babuška [21] 

suggest that knowledge of the error is essential to be able to correlate experimental 

and numerical results: one must ensure that the numerical results are close to the true 

solution of the mathematical model, to guarantee that any discrepancy between the 

numerical and experimental results can be ascribed to the unsuitability of the 

mathematical model.  

 

For the purpose of error estimation and convergence studies, the relative error, L2 and 

H1 are used.  The relative error in the displacement norm (L2 ) is defined by: 

 

Displacement norm = 

( ) ( )

1
2

1
2

( ) ( )NUM EXACT T NUM EXACT

TEXACT EXACT

d

d

Ω

Ω

 
− − Ω 

 

 
Ω 

 

∫

∫

u u u u

u u

                       (3.41) 

 
                                
where NUMu  is the numerical displacement solution and EXACTu  is the analytical 

displacement solution, or a reference solution.  

 

The rate of convergence in the energy norm (H1) is calculated by using: 

Energy norm =  

1
21

( ) ( )
2

NUM EXACT T NUM EXACT d
Ω

 
− − Ω 

 
∫ Dε ε ε ε                                (3.42) 

 
where ε is defined as the symmetric gradient of the displacement u.   
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3.10 2-D program description 
 
3.10.1 Enriched EFG method 
 

MATLAB is used to develop the model for simulation of particulate composites 

within the framework of the enriched EFG method. A chart that shows the list of 

actions  is illustrated below to represent the main algorithm used in the program [22].  

 

Table 3.1: List of actions of 2-D enriched EFG program 

 

a. Define the material propertie s and physical parameters. 

b. Define the boundary condition.  

c. Set up the nodal co-ordinates for a uniform mesh.  

d. Determine the domain of influence for each node. 

e. Set up quadrature cells in the domain.  

f. Set up gauss points, weights and jacobian for each cell.  

g. Determine the enriched nodes. 

h. Loop over the gauss points to determine the neighbourhood nodes, 

weights, shape functions and shape function derivatives. 

i. Assemble standard B matrix and additional B matrix due to the 

enrichment.  

j. Add contributions to the K matrix.   

k. Determine nodes on traction boundary and essential boundary.  

l. Set up gauss points along traction boundary and essential boundary.  

m. Integrate forces along traction boundary to form f vector. 

n. Integrate Lagrange multipliers along essential boundary to form the G 

matrix and q vector. 

o. Enforce essential boundary conditions using Lagrange multipliers. 

p. Solve for nodal parameters. 

q. Loop over gauss points to determine stress at quadrature point. 
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3.10.2 EFG method using double nodes 

 

FORTRAN is used to develop the alternative model for simulation of particulate 

composites within the framework of the EFG method using double nodes technique. 

A chart that shows the list of actions is illustrated below to represent the main 

algorithm used in the program. 

 

Table 3.2: List of actions of 2-D EFG program using double nodes 

 

a. Define the material properties and physical parameters. 

b. Define the boundary conditions. 

c. Set up the nodal co-ordinates for a uniform mesh.  

d. Determine the domain of influence for each node. 

e. Set up quadrature cells in the domain.  

f. Set up gauss points, weights and jacobian for each cell.  

g. Loop over the gauss points to determine the neighbourhood nodes, 

weights, shape functions and shape function derivatives. 

h. Assemble standard B matrix.  

i. Add contributions to the K matrix.  

j. Add the additional K matrix due to the pair nodes constrains.  

k. Determine nodes on traction boundary and essential boundary.  

l. Set up gauss points along traction boundary and essential boundary.  

m. Integrate forces along traction boundary to form f vector. 

n. Integrate Lagrange multipliers along essential boundary to form the G 

matrix and q vector. 

o. Enforce essential boundary conditions using Lagrange multipliers. 

p. Solve for nodal parameters. 

q. Loop over gauss points to determine stress at quadrature point. 
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3.11 Conclusion 

 

A numerical model has been developed using two different techniques namely the 

enriched EFG and EFG with double nodes. The detailed formulation for both the 

techniques has been presented, along with their governing equations. Level set 

method is described in details, which is applied to implement the enrichment function 

for the weak discontinuity.   

 

The numerical simulation and the validation of the proposed model will be carried out 

in the next chapter. The results will be compared with some test cases for which the 

analytical solutions are available as well as with the results of other numerical 

techniques.  
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4.1 Introduction 

 

The main concept and formulation of the enriched EFG was discussed in chapter 3. 

Based on that, a reliable, accurate and efficient way of solving linear elastic material 

discontinuity problem will be performed. Following the validation of convergence 

and accuracy of the results in the applications with simple configurations, the model 

will be employed to test more complex problems. The chapter is organised as follows. 

Firstly particulate composites as a single inclusion in a square domain will be 

analysed and the results will be validated with the XFEM. Then the accuracy of the 

model will be compared with some test cases for which the analytical solutions are 

available. In order to demonstrate the capability of the model, multi- inclusion 

problems are going to be analysed and compared, where the model will be simulated 

for randomly distributed as well as complex shaped particles.  

 

The numerical model will also be used in simulating syntactic foam and the results 

will be validated against the observation made from the FEM simulation. 

Homogenisation technique will be applied for multi-scale modelling of syntactic foam 

and will be compared with the experimental results.  The XFEM will be applied to 

study the crack inclusion and interaction of crack propagation with particles in a 

particle reinforced composite material, where crack growth will be observed for 

different parameters including different positions of the inclusion and different ratio 

of Young’s modulus for the matrix and the inclusion. The results obtained from the 

numerical study will be compared with the observations from the literature. Finally, 

the EFG technique using double nodes as described in chapter 3 will be applied to a 

simple configuration and compared with the results of the FEM to illustrate the 

capability of the technique to solve more complex problems.     

 

4.2 Material discontinuity problem 

 

The numerical model that was developed in the previous chapter to simulate 

particulate composites is going to be analysed for different orientation within the 

framework of the enriched EFG method. In order to perform the analysis, a two-
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dimensional bi-material linear elastic problem is considered here. First the test will be 

carried out for single inclusion. Multi- inclusion problem will be performed following 

the validation and convergence study of the single inclusion problems. 

 

4.2.1 Single inclusion problem 

 

For the single inclusion problem, a heterogeneous material having a circular inclusion 

in a square matrix domain under uniform loading applied in the y-direction, as shown 

in Figure 4.1, is considered. The geometry, loading and boundary conditions are as 

follows: 

 

 
Figure 4.1: Bi-material single inclusion problem 

 

The dimension of the square domain is 2×2. The inclusion is placed at the centre of 

the domain having a radius of 0.4. A uniform tension P = 1 is applied at the upper 

edge of the domain and the lower edge is fixed. Young’s modulus of elasticity (E) for 

matrix is 1 and Poisson’s ratio is 0.3; where as for inclusion they are 10 and 0.3 

respectively. Plane stress conditions are assumed.  

 

The selected EFG scheme includes a regular nodal distribution, a 4×4 Gauss 

quadrature rule and linear basis functions. The cubic spline weight functions are used 

for the construction of the weight functions and the domain of influence is chosen to 

be 1.5. Three different mesh sizes (h) are chosen, namely 0.2, 0.1 and 0.05. The nodal 

distributions for these three cases are 11×11, 21×21 and 41×41 respectively. For all 
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cases, 12% volume fraction is considered. Nodal distribution for h = 0.1 is shown in 

Figure 4.2 to indicate the distribution of all the nodes and selection of the enriched 

nodes. Normal nodes are shown by the circles, where as stars in the circles depicting 

enriched nodes. 

 
Figure 4.2: Distribution of nodes and location of enriched nodes for single inclusion 

  
 
Numerical results are computed and compared with the results generated by the 

XFEM. The comparison between the XEFG and the XFEM is shown below by 

plotting the y co-ordinates of centre line nodes along the Y axis in the horizontal 

direction to the y-displacement of centre line nodes along the Y axis in the vertical 

direction for 3 different mesh sizes: 

 
(a) Mesh size, h = 0.2 
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(b) Mesh size, h = 0.1 

 
(c) Mesh size, h = 0.05 

 
Figure 4.3: Comparison of the y-displacement along the Y axis between XEFG and 

XFEM for different mesh sizes (a) 0.2 (b) 0.1 and (c) 0.05 

 

As it can be seen from Figure 4.3 above that for the finer mesh (h = 0.05), the y-

displacement values at the node points in the XEFG exactly match with those 

produced in the XFEM. Hence the proposed model can be implemented further for 

more complex configurations. Figures 4.4 and 4.5 will show the displacement and 

stress contour in the y-direction for both the methods (mesh size is used as h = 0.05). 
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(a)  

 
(b) 

Figure 4.4: Displacement contour in the y-direction of single inclusion for (a) XEFG 

and (b) XFEM 
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(a) XEFG 

 
(b) XFEM  

 

Figure 4.5: Stress contour in the y-direction of single inclusion for (a) XEFG and (b) 

XFEM 

 

As it can be observed from these figures, there is a good agreement in terms of 

displacement contour between the XEFG and the XFEM. Regarding the stress plot, it 

is understandable that the derivative of displacement plot will not be as smooth as 

displacement plot. However, the XEFG shows better convergence than the XFEM as 
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more oscillations are observed around the interface region in case of the XFEM. In 

the following section, this numerical model will be validated with analytical solutions 

available in the literature.  

 

4.2.2. Test case: Bi-material boundary value problem - elastic circular 

inhomogeneity 

 

In this example, an analytical solution for the elastostatic response of a circular 

material inhomogeneity under radially symmetric loading, as shown in Figure 4.6, is 

examined within the framework of the enriched EFG. Inside a circular plate of radius 

b, whose material is defined by 1 10E = and 1 0.3υ = , a circular inclusion with radius 

‘a’ of a different material with 2 1E = and 2 0.25υ = are considered. The material 

properties are constant within each domain, 1 2 and Ω Ω , but there is a material 

discontinuity across the interface 1( )r aΓ = . The Lame constants in 1 2 and Ω Ω  

are: 1 10.4, 0.4χ µ= =  and   2 25.7692, 3.8461χ µ= = , respectively. A linear 

displacement field: 1 1 2 2,u x u x= =  ( ( , )  ru b rθ = and ( , ) 0 u bθ θ = ) on the outer 

boundary 2Γ (r = b) is imposed. 

           
Figure 4.6: Bi-material boundary value problem 
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By considering displacement and traction continuity across the interface, the exact 

displacement solutions can be written as [1]: 

 

  

2 2
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  ( , ) 0u rθ θ =                                                                                                              (4.2) 

 

The parameter α  involved in these definitions is: 
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The radial ( )rr rε and hoop ( )rθθε strains are given by: 
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For the present numerical study, a square domain of size L L× with L = 2 is 

considered, where the outer radius is chosen to be as b = 2 and the inner radius as a = 

0.4. Closed-form displacements are imposed along the outer boundary. Plane strain 

conditions are assumed. A convergence study is conducted using equi-spaced 

rectangular h hL L×  meshes for nodes, where hL =10, 20, 40, 80, 160. Hence five 

different mesh sizes - 0.2, 0.1, 0.05, 0.025 and 0.0125 are used respectively.   
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Figure 4.7: Rate of convergence in displacement norm  

 

Figure 4.7 shows the rate of convergence in the displacement norm ( 2L ) for the 

enriched EFG method, in which the accuracy is improved as the number of degrees of 

freedom is increased. Also the convergence is compared with the XFEM for the same 

problem. The enriched EFG method achieves a convergence rate of 1.80 where as the 

XFEM achieves 1.84. Thus, sufficient accuracy in the enriched EFG method can be 

achieved compared to the XFEM and other approximation methods. 

 

In addition, the computed displacement, and radial and hoop strains along the line y=0 

are compared with the analytical ones given in equation (4.1) to (4.5). Figure 4.8 and 

4.9 show the results with the model for mesh sizes h = 0.1 and 0.05 respectively. 

Although when relatively coarse mesh is used (h = 0.1), a lot of oscillations are 

observed in the strain diagrams in Figure 4.8. However, using finer mesh (h = 0.05) 

generally cures those oscillations. As it can be seen, both displacement and strains are 

successfully reproduced by the enriched EFG in Figure 4.9.    
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(a) 

 
(b) 

 
(c) 

Figure 4.8: Comparison of the displacement and strains calculated by the enriched 

EFG with the analytical solution for mesh size 0.1: (a) displacement in the r-

direction, ru ; (b) radial strain, rrε ; (c) hoop strain, θθε  
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(a) 

 
(b)    

 
(c) 

Figure 4.9: Comparison of the displacement and strains calculated by the enriched 

EFG with the analytical solution for mesh size 0.05: (a) displacement in the r-

direction, ru ; (b) radial strain, rrε ; (c) hoop strain, θθε  
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Previous results have shown the robustness of this numerical technique for single 

inclusion problem. In order to demonstrate the effectiveness and capability of the 

proposed model, analyses of the multi- inclusion problems will be carried out next. 

Two problems are going to be considered – one having four inclusions and the other 

having nine inclusions. 

 
4.2.3 Multi-inclusion problem 
 
4.2.3.1 Four inclusions problem 
 
 
In case of four inclusions, radius of each circle is chosen to be 0.2 for 12% volume 

fraction. Domain of influence is 1.5. Nodal distribution for h = 0.1 is shown below to 

indicate the position of the circles and selection of the enriched nodes. 

 
Figure 4.10: Distribution of nodes and location of enriched nodes for four inclusions  

 
 

The dimension of the square domain is 2×2. A uniform tension P = 1 is applied at the 

upper edge of the domain and the lower edge is fixed. Young’s modulus of elasticity 

(E) for matrix is 1 and Poisson’s ratio is 0.3; where as for inclusion they are 10 and 

0.3 respectively. Plane stress conditions are assumed. The comparison between the 

XEFG and the XFEM for the same criterion is shown in Figure 4.11: 
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(a) Mesh size, h = 0.2 

 
 

(b) Mesh size, h = 0.1  

 
(c) Mesh size, h = 0.05 

 
Figure 4.11: Comparison of the y-displacement along the Y axis between XEFG and 

XFEM for different mesh sizes (a) 0.2 (b) 0.1 and (c) 0.05 
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In case of four inclusions, a high convergence of the XEFG is observed. As it can be 

seen from Figure 4.11 that for the finer mesh (h = 0.05), the y-displacement values at 

the node points in the XEFG exactly match with those produced in the XFEM. The 

following diagrams show the displacement contour in the y-direction for both the 

methods (mesh size is used as h = 0.05). 

 
(a) XEFG 

 
(b) XFEM  

Figure 4.12: Displacement contour in the y-direction of four inclusions for (a) XEFG 

and (b) XFEM 
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4.2.3.2 Nine inclusions problem 
 
 
In case of nine inclusions, radius of each circle is chosen to be 0.133 for 12% volume 

fraction. Domain of influence is 1.4 for h=0.1 and 1.2 for h=0.05, respectively. The 

loading condition and material properties are exactly the same as in the case of four 

inclusions. Nodal distribution for h = 0.1 is shown in Figure 4.13 to indicate the 

position of the circles and selection of the enriched nodes. 

 
Figure 4.13: Distribution of nodes and location of enriched nodes for nine inclusions  

 
 
The comparison between XEFG and XFEM for the same criterion is given below: 

 

 
(a) Mesh size, h = 0.1  
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(b) Mesh size, h = 0.05  

 
Figure 4.14: Comparison of the y-displacement along the Y axis between XEFG and 

XFEM for different mesh sizes (a) 0.1 and (b) 0.05 

 

There is a good overall agreement between the two methods is observed in case of 

nine inclusions as well. As it can be seen from Figure 4.14 that for the finer mesh (h = 

0.05), the y-displacement values at the node points in the XEFG generally match with 

those constructed in the XFEM. Figure 4.15 shows the displacement contour in the y-

direction for both the methods (mesh size is used as h = 0.05). The displacement 

contour plots are very much comparable between the two methods. 

 

 
(a) XEFG 
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(b) XFEM  

 
Figure 4.15: Displacement contour in the y-direction of nine inclusions for (a) XEFG 

and (b) XFEM 

 

In order to establish the effectiveness of the proposed numerical tool, soft inclusions 

compared to the matrix material are considered too. In this case young’s modulus of 

elasticity (E) for matrix is 10 and Poisson’s ratio is 0.3; where as for inclusion they 

are 1 and 0.3 respectively. Three different cases will be considered just like the 

previous test cases – single inclusion, four inclusions and nine inclusions. The domain 

size and nodal distributions will remain exactly the same. Numerical results are 

computed and compared with the XFEM. The comparison between the XEFG and the 

XFEM is shown below by plotting the y co-ordinates of centre line nodes along the Y 

axis in the horizontal direction to the y-displacement of centre line nodes along the Y 

axis in the vertical direction for 3 different mesh sizes: 
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1. For single inclusion: 

                           
(a) Mesh size, h = 0.2  

 
(b) Mesh size, h = 0.1  

 
(c) Mesh size, h = 0.05  

Figure 4.16: Comparison of the y-displacement along the Y axis between XEFG and 

XFEM for different mesh size (a) 0.2 (b) 0.1 and (c) 0.05 
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2. For four inclusions: 

 
(a) Mesh size, h = 0.2  

 
(b) Mesh size, h = 0.1  

 
(c) Mesh size, h = 0.05  

 
Figure 4.17: Comparison of the y-displacement along the Y axis between XEFG and 

XFEM for different mesh size (a) 0.2 (b) 0.1 and (c) 0.05 
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3. For nine inclusions: 

 
(a) Mesh size, h = 0.1  

 
(b) Mesh size, h = 0.05  

 
Figure 4.18: Comparison of the y-displacement along the Y axis between XEFG and 

XFEM for different mesh sizes (a) 0.1 and (b) 0.05 

 

From the above analyses, it can be concluded that this numerical model can predict 

the behaviour of particulate composites of any given properties accurately. In the next 

section, randomly distributed particles are going to be analysed.  

 
4.3 Randomly distributed particles 
 
 
The proposed model can also be utilised for randomly distributed particles. A brief 

description is presented here to show the efficiency of the enriched EFG in modelling 

randomly distributed particles. The geometry and boundary conditions are as follows: 
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The selected domain size is 2×2. A uniform tension P = 1 is applied at the upper edge 

of the domain and the lower edge is fixed. Young’s modulus of elasticity (E) for 

matrix is 1 and Poisson’s ratio is 0.3; where as for inclusion they are 10 and 0.3 

respectively. Plane stress conditions are assumed. The implementation can be divided 

in 2 parts: 

 

1) To keep the radii size same of all the inclusions for a particular volume fraction, 

which is 12% in this case. The y displacement contours are shown below for this case: 

 
(a) 

 
(b) 

Figure 4.19: Displacement contour for randomly distributed particles with same radii 

size 
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2) To change the radii size of all the inclusions for the same volume fraction, which is 

12%. The y-displacement contours are shown below for this case: 

 
(a) 

 
(b) 

Figure 4.20: Displacement contour for randomly distributed particles with different 

radii size  

 

From the displacement contours shown above, it can be seen that the displacements in 

both cases are very smooth regardless the sizes and positions of the inclusions. In the 

next section, configurations involving complex shaped inclusions will be investigated 

to further demonstrate the effectiveness of this method. 
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4.4 Complex shaped inclusion 

 

One of the major advantages in using the enriched EFG method is to overcome the 

tedious job of meshing for complex shaped inclusion as opposed to mesh based 

methods. An irregular shape of ‘star’ is modelled as particulate composites within the 

framework of the enriched EFG to demonstrate the potential of this method. Two 

different cases are considered – single inclusion and nine inclusions. The geometry, 

loading and boundary conditions are as follows: 

 

The selected domain size is 2×2. The ‘star’ shaped inclusion is placed at the centre of 

the domain for single inclusion. A uniform tension P = 1 is applied at the upper edge 

of the domain and the lower edge is fixed. Young’s modulus of elasticity (E) for 

matrix is 1 and Poisson’s ratio is 0.3; where as for inclusion they are 10 and 0.3 

respectively. Plane stress conditions are assumed. The displacement contour along the 

x- and y-direction is shown in the following diagrams: 

 
Figure 4.21: Displacement contour in the x-direction for single inclusion 
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Figure 4.22: Displacement contour in the y-direction for single inclusion 

 

As it can be seen from Figure 4.21 and Figure 4.22 that the displacements are very 

smooth and are in good agreement with the displacements of regular shaped inclusion.  

 

In order to demonstrate the effectiveness and capability of this method, a problem 

involving multi- inclusions is also performed, for which the displacement contour 

along the x- and y-direction are shown in the following diagrams: 

 
Figure 4.23: Displacement contour in the x-direction for nine inclusions 
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Figure 4.24: Displacement contour in the y-direction for nine inclusions 

 

 

4.5 Syntactic foams 

 

4.5.1 Introduction 

 

Syntactic foams are a special kind of particulate composite materials made by a 

matrix (“binder”) and a gas-filled aggregate (“filler”) consisting of hollow spherical 

microspheres [2]. These composite materials are classified as foams since they 

possess a structure formally similar to that of a cellular, gas-expanded, solidified 

liquid. The term syntactic (from the Greek “syntaktikos” - orderly disposed system) 

indicates a constructed foam, in the sense that the material is manufactured by a 

specific mixing procedure of fillers and binders with appropriate volume fractions [3]. 

However, the filler is randomly dispersed in the matrix, in a way to obtain a 

homogeneous and isotropic macroscopic behaviour. 
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Figure 4.25: Syntactic foam 

 

Syntactic foams are normally tertiary systems, since matrix and gas-filled aggregate 

are usually made of different materials.  Thermosetting polymers such as epoxy and 

phenolic resins and silicons are often used as binders; where as glass, carbon, metal, 

and resin made of microbubbles are frequently taken as fillers. However, syntactic 

foams are basically classified as two-phase systems, when they do not contain 

dispersed air bubbles between binder and filler, or as three-phase systems, when air 

bubbles are included, in some cases on purpose, in view of lowering the foam density 

[4, 5]. 

 

The structure of syntactic foams comprises two constituents: matrix material and 

microballoons. In experimental studies such structure is termed as a two-phase 

structure based on the two physical phases present in the material [6]. The void 

enclosed inside microballoons is not considered as a separate phase. Some 

fundamental differences are present between solid  and hollow particles, which cause 

significant deviation of predictions based on theories developed for solid particle 

filled composites from the experimental results. For particulate composites 

comprising solid or hollow particle of the same material, shape and size, the effective 

elastic moduli are different. In the case of hollow particles, the effective Young’s 

modulus depends on the wall thickness of the particles and, more specifically, on the 

wall thickness to particle size ratio. Hence, wall thickness must appear in the 

theoretical models. This requires that the void enclosed inside the microballoons 

should be considered as a separate phase. Hence, the microstructure of syntactic 

foams is considered to be composed of three phases, namely matrix, microballoon 

shell and the air void inside the microballoon.  

Hollow  

Inclusion  

Matrix  
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4.5.2 Significance in the properties of syntactic foams  

 

Additionally, the moisture absorption is significantly lower in these composites 

compared to the matrix material and other foam types due to the presence of porosity 

only inside the hollow inclusions [7, 8]. It mainly depends on the chemical and 

physical properties of filler and binder and their volume ratio. Thermal properties are 

normally dominated by the matrix characteristics. Syntactic foams are also 

characterized by good thermal insulation and dielectric properties [6]. Glass 

microbubbles are frequently preferred due to mechanical strength, smoothness and 

regularity of the surface, good wetting characteristics and low viscosity of the 

resulting foam [3]. 

 

4.5.3 Application of syntactic foams  

 

Syntactic foams are known for their low weight, high specific compressive strength, 

low moisture absorption, and impact resistance coupled with excellent damping 

characteristics [9]. They are used in many applications due to the flexibility in 

tailoring the material to provide a combination of desired mechanical properties. The 

spectrum of engineering applications of syntactic foams is quite broad as significant 

applications of syntactic foams date back a long way.  Syntactic foams are used as 

core materials in sandwich composites for aerospace and marine structural 

applications [10, 11]. Syntactic foams made with glass and more often carbon 

microbubbles are widely used in aeronautical and aerospace engineering as fillers of 

alveolate structures [12] and as protection shields for space vehicles and missile heads 

[13]. Syntactic foams are extensively used in deep sea, marine structures and offshore 

applications due to their light weight structure, buoyancy and water insulation 

properties [9, 14]. Syntactic foams are often used in civil and industrial engineering, 

in construction and as an imitation of wood and marble [6]; often they are employed 

as core materials due to good shear stiffness and strength,  fatigue and impact 

resistance [15, 16]. 
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4.5.4 Modelling of syntactic foams  

 

In this section, the present numerical technique is applied to model syntactic foam. 

The following geometry and material properties are considered: 

 

The selected domain has the dimension of 2×2. A uniform tension P = 1 is applied at 

the upper edge of the domain and the lower edge is fixed. Young’s modulus of 

elasticity (E) for matrix is 1 and Poisson’s ratio is 0.3; where as for the microballons, 

they are 150 and 0.3 respectively. For the hollow part, Young’s modulus of elasticity 

and Poisson’s ratio are considered zero. The radius is taken as 0.3 and 0.4 for the 

inner and outer circle respectively. Plane stress conditions are assumed.  

 

The selected EFG scheme includes a regular nodal distribution, a 4×4 Gauss 

quadrature rule and linear basis functions. The cubic spline weight functions are used 

for the construction of the weight functions and the domain of influence is chosen to 

be 1.5. The distribution of nodes and selections of enriched nodes are shown below 

for mesh size, h = 0.1. 

 
Figure 4.26: Distribution of nodes for syntactic foam 

 

The results are validated and compared with the FEM results. The comparison 

between the XEFG and FEM is shown below by plotting the y co-ordinates of centre 

line nodes along the Y axis in the horizontal direction to the y-displacement of centre 

line nodes along the Y axis in the vertical direction: 
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Figure 4.27: Comparison of the y-displacement along the Y axis between XEFG and 

FEM  

 

It can be seen from Figure 4.27 that the model that has been developed using the 

enriched EFG technique has shown very good agreement and is very much 

comparable with the FEM.  The y-displacement contour for this particular case is 

shown in Figure 4.28 below: 

 

 
(a) XEFG 
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(b) FEM 

Figure 4.28: Comparison of y-displacement contour between (a) XEFG and (b) 

FEM 

 

Once the model is established, then the results are compared for different radii 

positions of the inner and outer circle. Stress contour in the y-direction for some of the 

cases are shown below: 

 

 
Figure 4.29: Stress contour in the y-direction for inner radius 0.2 and outer radius 0.6 
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Figure 4.30: Stress contour in the y-direction for inner radius 0.3 and outer radius 0.6 

 

 
Figure 4.31: Stress contour in the y-direction for inner radius 0.4 and outer radius 0.6 

 

It can be seen from the diagrams above that when the distance between the inner and 

outer circle is sufficiently large, the stress distribution is very smooth. However, when 

the distance is very small, i.e., they are close to each other; oscillation starts forming 

in the stress plot within the inclusion and makes it unsmooth.   
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4.6 Homogenisation technique for syntactic foams 

 

In order to compute the effective elastic properties of particulate composites, this 

section will focus on investigating the correlations among material parameters, 

mechanical properties and microstructural parameters of syntactic foams. First order 

homogenisation technique is applied assuming the materials are linear elastic, micro 

scale is prescribed with a constant strain, and using Hill Mandel condition combined 

with stress/strain averaging. First-order homogenization assumes that the RVE is 

infinitely small compared to the macroscopic characteristic length scale and that there 

is clear separation of scales. 

 

The inner and outer radii of the microballoon are called ir  and or . The volume 

fraction of microballoon is denoted by Φ , where as the wall thickness is denoted as t. 

for matrix and microballoons, the elastic properties are represented by same notations 

with subscripts m and b respectively. Hollow particles can be characterized based on 

their wall thickness. A parameter named ‘radius ratio’ is defined for hollow particles 

as [17]: 

                                       i

o

=η
r
r

                                                                                (4.6)                            

 
Figure 4.32: Notations used to define various physical parameters for microballoons 

[17] 

 

 

Hollow  

Microballoon wall 

Matrix  

t 

or  ir  
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The following material properties are used for the investigation: 

 

Young’s modulus of elasticity (E) for matrix is 3.060×109 and Poisson’s ratio is 0.3; 

where as for microballoons, they are 60×109 and 0.21 respectively. For the hollow 

part, Young’s modulus of elasticity and Poisson’s ratio are considered zero. Plane 

stress conditions are assumed. The result obtained from the numerical simulation is 

compared with the experimental data of glass embedded microballoons in a vinyl 

ester resin matrix. The properties of the resin are taken from [17]. 

  
Figure 4.33: Change in the elastic modulus with respect to the microballoon wall 

thickness 

 

The variation in / mE E  for epoxy matrix syntactic foams in the range of 0.3-0.5 for 

(1 )−η is shown in Figure 4.33 for three different volume fractions. It is signified from 

the figure that the rate of increase of the Young’s modulus decreases as η  decreases. 

The values of  / mE E  are strongly dependant on Φ  [14]. The effect of η diminishes 

faster at lower values ofΦ .  

 

Next, the effect of microballoon wall thickness on the modulus of syntactic foams is 

compared in Figures 4.34 to 4.37 for vinyl ester resin matrix syntactic foams, 

containing Φ  in the range of 0.3-0.6. In these figures, non-dimensional wall thickness 

of microballoons in the form of (1 )−η is plotted on the horizontal axis. The relative 
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modulus of the composite with respect to the modulus of the matrix material ( / mE E ) 

is plotted on the vertical axis.  

 

 
Figure 4.34: Effect of microballoon wall thickness on Young’s modulus for Φ  = 0.3 

 
Figure 4.35: Effect of microballoon wall thickness on Young’s modulus for Φ  = 0.4 
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Figure 4.36: Effect of microballoon wall thickness on Young’s modulus for Φ  = 0.5 

 
Figure 4.37: Effect of microballoon wall thickness on Young’s modulus for Φ  = 0.6 

 

It can be observed from these figures shown above that as the value of 

(1 )−η increases, the dependence of the relative Young’s modulus on the wall 

thickness decreases, i.e., the slope of the curves decreases. Although the experimental 

values are higher in magnitude, there is an overall agreement between the predicted 

and measured values. One of the reasons for that is the quantity of microballoons used 

in the numerical simulation is less than they are in the experimental data. In addition 

to that, numerical models are developed for a constant particle size, where as the 

particle size varies over a certain range in the experimental studies.  
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4.7 Crack growth 

 

In this section, the XFEM is applied to study a quasi-static crack growth. The crack 

growth is governed by the maximum hoop stress criterion [18], which states that the 

crack will propagate from its tip in the direction cθ  where the circumferential (hoop) 

stress is maximum. The critical angle is calculated by solving the following equations: 

 

                              sin( ) (3cos( ) 1) 0+ − =I c II cK Kθ θ                                                (4.7) 

 

Solving equation (4.7) gives the crack propagation angle [19]: 
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                                                (4.8) 

 

where IK  and IIK  are Mode I and II stress intensity factors. 

 

In this particular study, the amount by which the crack advances at each step is fixed 

in advance, rather than being computed at each step based on some crack growth law.  

 

4.7.1 Crack inclusion interaction 

 

Crack growth in presence of an inclusion is studied in the following example. A 

square plate of dimension 2×2, subjected to a uniform tensile load, 1P = at the upper 

edge of the plate and lower edge being fixed is considered. An inclusion of radius 

0.166 is situated at the centre of the plate. The geometry and boundary conditions are 

shown in Figure 4.38.  The length of the crack is considered to be 0.2; crack growth 

increment is taken to be 0.1 for this study and crack growth is simulated for 13 steps. 

A mesh size of  41×41 is used in this case. 
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Figure 4.38: Crack inclusion interaction: geometry and boundary conditions  

 

Let = matrix
ratio

inclusion

EE E be the ratio of Young’s modulus between the matrix and the 

inclusion. The crack growth around the inclusion is studied for two different ratios of 

Young’s modulus: (a) soft inclusion (for which ratioE  is taken as 0.01) and (b) stiff 

inclusion ( ratioE is taken as 100). The crack path for both the inclusions (soft and stiff) 

is shown in Figure 4.39 and 4.40. It can be seen that in case of the soft inclusion, the 

crack is attracted towards the inclusion where as the crack is deflected in the presence 

of stiff inclusion. The results obtained are consistent with the results available in the 

literature [20].    
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Figure 4.39: Numerically computed crack path for soft inclusion 

 
Figure 4.40: Numerically computed crack path for stiff inclusion 

 

Next, another example is carried out where the inclusion is off-centred in the square 

plate. Apart from the change in the position of the inclusion, the geometry, loading 

and boundary conditions are kept exactly the same as in the previous case which is 

shown in Figure 4.41. 
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Figure 4.41: Crack inclusion interaction: geometry and boundary conditions  

 

It can be seen from the figures below that crack path follows the same pattern in this 

case as well. The crack is attracted towards the inclusion if the inclusion is less rigid 

than the matrix. But if the inclusion is more rigid than the matrix, then the crack is 

moving away from the inclusion.  

 

 
Figure 4.42: Numerically computed crack path for soft inclusion 
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Figure 4.43: Numerically computed crack path for stiff inclusion 

 

An edge crack containing in a square plate of 2×2 interacts with two inclusions (one is 

a star-shaped and the other one is circular) is considered as the next example. The 

plate is subjected to a uniform tensile load, 1P = at the upper edge of the plate and the 

lower edge is fixed. The length of the crack is considered to be 0.2; crack growth 

increment is 0.1 and crack growth is simulated for 13 steps. A mesh size of 41×41 is 

used in this study. Young’s modulus of elasticity (E) for matrix is 1 and Poisson’s 

ratio is 0.3; where as for inclusions they are 100 and 0.3 respectively.  
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Figure 4.44: Crack propagation phenomenon for soft inclusion 

 
Figure 4.45: Crack propagation phenomenon for stiff inclusion 

 

The computed crack trajectories are shown in Figure 4.44 and 4.45. It can be seen that 

for soft inclusion, the crack tends to move straight, where as for stiff inclusion, it 

tends to move away from the inclusions.  
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4.7 Comparison between EFG using double nodes and FEM 

 

A comparative study is performed between the EFG using double nodes, as discussed 

in section 3.7, and the FEM to highlight the efficiency and reliability of this 

technique. The selected domain has width 0.01 and height 0.01. The inclusion is 

placed at the centre of the domain having a radius of 0.0018. A uniform tension P = 1 

is applied at the upper edge of the domain and the lower edge is fixed. Young’s 

modulus of elasticity (E) for matrix is 1×106 and Poisson’s ratio is 0.4; where as for 

inclusion they are 150×106 and 0.4 respectively. Plane stress conditions are assumed. 

The displacement contour along the x- and y-direction is shown in the following 

diagrams: 

 
(a) 

 
(b) 

Figure 4.46: y-displacement contour in (a) XEFG (b) FEM 
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(a) 

 
(b) 

Figure 4.47: x-displacement contour in (a) XEFG (b) FEM 

 

From the above diagrams, it can be seen that this EFG method using double nodes is 

highly comparable with the FEM for problems involving material discontinuities and 

hence the technique can be utilised further to predict the behaviour of particulate 

composites.  
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Chapter 5 
 

CONCLUSION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 117

5.1 General conclusion  
 
This thesis focussed on the development, comparison and validation of two enriched 

numerical methods: the enriched EFG method and the enriched/extended finite 

element method (XFEM). Both methods are weak form based and rely on enriching 

the approximation space with special functions representing knowledge about the 

solution which is known a priori. It is noteworthy to mention that any type of function 

describing the general behaviour of the solution can be used as an enrichment 

function. It can be polynomial or non-polynomial functions, discontinuous functions 

or even data obtained experimentally about the characteristic behaviour of the 

solution.  

 

This thesis presented the potential of the enriched EFG method for the numerical 

simulation of particulate composites. The efficiency and accuracy of this method were 

illustrated with a number of numerical examples by comparing with available 

analytical solutions and other numerical methods. The work also set strategy for more 

complicated problems and future work. Separate conclusions were drawn at the end of 

each chapter. The important contributions and key findings of the thesis are 

summarized below: 

 
• A novel numerical technique namely the enriched EFG method was studied to 

model particulate composites. The accuracy and efficiency of this method was 

validated by satisfactory comparison with other numerical techniques. Hence a 

simple, reliable and robust EFG scheme for solving problems in linear elastic 

solid mechanics was developed.  

 
•   The use of a single level set for all inclusions affords modelling any number of 

inhomogeneities present in a linear elastic body of any physical shape and 

location. Hence the material discontinuities for multiple inclusions were dealt 

with minimum computational efforts and complexity.  

• This numerical technique was applied in modelling syntactic foams, which are 

nothing but particulate composites with microballons used as filler materials. 

The investigation was limited to simple configurations; however, the initial 

tests showed that the results were satisfactory.  
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• Multi-scale modelling of syntactic foam was performed using homogenisation 

technique in order to find out the effective properties. The numerical results, 

compared with the experimental results, provide evidence that the model can 

be effectively utilised to establish macro-micro structure property relation for 

multi-phase materials. 

 
• The XFEM was applied to study the crack inclusion interaction in a particle 

reinforced composite material, where crack trajectories were observed for 

different parameters. The results obtained from the numerical study were 

consistent with the results available in the literature.     

• Another form of the EFG method was developed to account for the interface 

discontinuity between the matrix and the inclusion to model particulate 

composites. This technique involves double nodes or pair nodes around the 

region of discontinuity (interface) to create continuity condition between the 

matrix and the inclusion. The numerical investigation was limited to simple 

configurations due to the problems of enforcing penalty method in the 

interface region. However, if corrected, this technique can also be applied to 

predict the behaviour of particulate composites. 

 

 
5.2 Future work 
 
 
The enriched EFG method has a lot of potential and presents a wider area of its 

implementation for the solution of numerous problems. Performing numerical study 

either to verify some experimental test results or to develop some numerical models 

presents motivation to develop a numerical tool, where such analysis could be done 

with accuracy and computational efficiency. Enriched EFG method in this sense is 

quite appealing as the arbitrary discontinuities can be treated independent of the mesh. 

Some future recommendations are listed below: 

 
• Generating the initial particle distribution from digital images would be 

beneficial to study actual microstructures and compare the numerical results to 

experimentally observed force displacement curves for various 
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microstructures. The flexib ility brought by the lack of conforming meshing of 

the interfaces will make this image-based analysis simpler. Applications are 

also expected in biomechanics, where the numerical model could be obtained 

simply using medical resonance imagery (MRI) or other imaging modalities. 

 
• Because the microstructure is fully parameterised using a single level set 

function, two phase microstructural optimisation, for example based on 

topological derivatives would be a natural extension of the method. Similarly 

to the more recently introduced isogeometric analysis, the boundary between 

the matrix and the inclusions could be optimised for a given objective function 

(which could be measured on the macro scale) without any changes in the 

mesh. However, it would be necessary to ensure the accuracy of each 

evaluation of the objective function using adaptivity and mesh refinement 

driven by sound error estimators. The method could then be compared with 

Cartesian-based FEM. 

  
• More sophisticated models can obviously be looked at, fo r example including 

the models for debonding and crack propagation phenomena. Also problems 

related to various particles having different material properties within the same 

matrix can be explored. That would help in understanding on the quality and 

life span of particulate composites, hence could be beneficiary for the design 

of particulate composites and the relative manufactured products.  

 
• The model can be employed further for investigating more complex problems. 

For example, large deformation problems where mesh distortion can be 

burdensome, the enriched EFG will hold high potential to solve those 

problems.  

 
• The work has been done using a simple 2-D model. The present model has the 

potential to be extended into 3-D, where various aspects like crack 

propagation can be explored.  
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• There has been a lot of research work being carried out on syntactic foam 

experimentally, however numerically very limited amount of research has 

been performed. Enriched EFG has the potential to model and analyse the 

fracture properties of syntactic foam, e.g., the debonding of the microballoons.  

 
• It was observed that the XFEM was applied to study the crack inclusion 

interaction. Different crack propagation problems can also be investigated 

using the enriched EFG method, for example graded mesh to observe crack 

growth within the inclusion, inclined crack, multiple cracks, effect of distance 

between the crack and the inclusion to name a few.  
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