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ABSTRACT
The linear stability analysis of Rivlin–Ericksen fluids of second order is investigated for boundary layer flows, where a semi-infinite wedge is
placed symmetrically with respect to the flow direction. Second order fluids belong to a larger family of fluids called order fluids, which is one
of the first classes proposed to model departures from Newtonian behavior. Second order fluids can model non-zero normal stress differences,
which is an essential feature of viscoelastic fluids. The linear stability properties are studied for both signs of the elasticity number K, which
characterizes the non-Newtonian response of the fluid. Stabilization is observed for the temporal and spatial evolution of two-dimensional
disturbances when K > 0 in terms of increase of critical Reynolds numbers and reduction of growth rates, whereas the flow is less stable
when K < 0. By extending the analysis to three-dimensional disturbances, we show that a positive elasticity number K destabilizes streamwise
independent waves, while the opposite happens for K < 0. We show that, as for Newtonian fluids, the non-modal amplification of streamwise
independent disturbances is the most dangerous mechanism for transient energy growth, which is enhanced when K > 0 and diminished
when K < 0.
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0018300., s

I. INTRODUCTION

The mechanical behavior of many real fluids is described by
Navier–Stokes theory. This theory is based on the assumption of a
Newtonian constitutive equation. More specifically, the extra-stress
tensor is expressed as a linear, isotropic function of the compo-
nents of the velocity gradient. Many common fluids, such as water
and air, can be assumed to be Newtonian. However, many rheologi-
cally complex fluids, such as polymer solutions, soaps, blood, paints,
shampoo, and ketchup, exhibit a variety of phenomena that cannot
be adequately described by a Newtonian constitutive equation.

Viscoelastic fluids are examples of non-Newtonian fluids, and
they exhibit both viscous and elastic properties when undergoing
deformation. Elasticity is the tendency of the material to return to
its original shape once the external force is removed. Viscoelastic
fluids undergo a gradual deformation and recovery when they are
subjected to loading and unloading. The stress is directly propor-
tional to neither the strain nor the rate of strain, and the relationship
is more complex.

In this paper, we consider a subclass of differential type fluids
known as the Rivlin–Ericksen fluids of second order.1 In these models,
only an infinitesimal part of the history of the deformation gradi-
ent has an influence on the stress. The extra stress is a function of
the velocity gradient and its higher time derivatives. These materials
lack a gradually fading memory, and they cannot represent the phe-
nomenon of stress relaxation. However, they can predict non-zero
normal stress differences, which is an important feature of viscoelas-
tic fluids. As models to describe viscoelastic fluids, order fluids are
suitable to describe slightly elastic fluids, where the fluid is only a
small departure from the Newtonian fluid and flows for which the
Rivlin–Ericksen tensors vary slowly.2

In theoretical work, Rajagopal et al.3 showed that it is possi-
ble to apply Prandtl’s boundary layer theory to the case of a non-
Newtonian fluid of second order. In particular, they showed that the
equations of motion of a second order fluid can be satisfied by an
irrotational flow, and they identified suitable assumptions to obtain
a consistent theory. In the case of fluids of a differential type, the
equations of motion are an order higher than the Navier–Stokes
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equations, and thus, the no-slip and no-penetration boundary con-
ditions are insufficient to determine the solution completely.4,5 The
same is also true for the boundary layer approximation. In order to
overcome this difficulty, in their study of an incompressible fluid of
liquid B′ near a stagnation point, Beard and Walters6 suggested a
perturbation method. This method was also adopted by Rajagopal
et al.7 in their analysis of the flow past a wedge of an incompress-
ible fluid of second grade. The perturbation method reduces the
order of the problem but is only valid for small values of the non-
Newtonian parameter. This parameter multiplies the higher order
spatial derivatives in the equation.

While studying flow near a stagnation point and flow past a
wedge, Garg and Rajagopal8,9 suggested that it would be preferable
to use an augmented boundary condition justified by physically rea-
sonable assumptions, also adopted by Vajravelu and Roper,10 and by
Vajravelu and Rollins.11

Another difficulty that arises is the impossibility of finding a
similarity solution to the boundary layer equations as in the New-
tonian case, with the exception of stagnation flow. In this paper, we
apply a pseudo-similarity transformation9 to obtain the mean flow,
which will be the starting point of the linear stability analysis.

The aim of this paper is to understand the stability properties
of second order fluids in boundary layers. Specifically, a configu-
ration of flow over a semi-infinite wedge is investigated (Fig. 1).
One important motivation for studying the stability behavior of vis-
coelastic fluids, and in particular, polymer suspensions can be found
in drag reduction in turbulent regime.12–14 This phenomenon was
first observed over 70 years ago. In turbulent boundary layers, dis-
solving a small quantity of long-chain flexible polymers in solution
can reduce turbulent friction by a significant amount. For a sum-
mary of the historical findings and recent developments, we refer to
the review by Xi.15

First, we perform a classical linear stability analysis by solving
the linearized system of equations around the steady mean flow,
which is assumed to be parallel. The mean flow and the stabil-
ity equations are solved numerically. For two-dimensional distur-
bances, the results are represented in terms of temporal growth
rates, neutral stability curves, and critical Reynolds numbers. Later,
the linear stability analysis is extended to three-dimensional distur-
bances.

Classical linear stability analysis is based on eigenvalues. How-
ever, in hydrodynamic stability and many other physical situa-
tions dominated by non-normal systems, eigenvalues prove to be

FIG. 1. Semi-infinite wedge flow configuration (γ > 0).

misleading, and they do not describe correctly the whole dynam-
ics.16 In non-normal systems, such as Poiseuille, Couette, and Bla-
sius flows, there can be short-time growth of energy even if all the
eigenvalues decay exponentially.17 This phenomenon is known as
transient growth.

For Newtonian fluids, the possibility of transient growth has
been known since the 1980s.18 Some previous work has investigated
transient growth of viscoelastic fluids in channel flows.19 In this
paper, we extend the analysis and consider the transient growth of
second order fluids in boundary layers.

II. SECOND ORDER FLUIDS
The Cauchy stress tensor σ in a fluid of second order has the

form1

σ = −pI + μA1 + α1A2 + α2A2
1, (1)

where p is the pressure, μ is the dynamic viscosity, and α1 and α2 (SI:
kg/m) are the material moduli usually referred to as normal stress
moduli. The spherical stress −pI is due to the constraint of incom-
pressibility, while A1 and A2 are the Rivlin–Ericksen tensors of order
1 and order 2, respectively, defined by

A1 = ∇v +∇vT , A2 =
DA1

Dt
+ (∇v)A1 + A1(∇v)T , (2)

where v denotes the velocity field and D/Dt denotes the material
time derivative.

The sign of the material parameters in this model has been a
source of some controversy.20 In this paper, we consider both cases
α1 > 0 and α1 < 0. The second order model with α1 > 0 is studied
because of its compatibility with thermodynamics. Since the form
(1) is frame-indifferent, it can be used as an exact model. In this
view, Dunn and Fosdick21 and Fosdick and Rajagopal22 justified
some assumptions on the coefficients of the second order consti-
tutive equation. In order for the fluid model to be compatible with
thermodynamics, in the sense that all motions of the fluid satisfy
the Clausius–Duhem inequality and the assumption that the specific
Helmholtz free energy be a minimum in equilibrium, it is necessary
that

μ ≥ 0, α1 ≥ 0, and α1 + α2 = 0. (3)

A detailed discussion of these assumptions can be found in the
critical review of Dunn and Rajagopal.20

The second order model with α1 < 0 is studied because it gives
the right sign for the first normal stress difference.2 Moreover, in
terms of linear stability, it is a consistent approximation to a stress-
relaxing fluid, such as the Maxwell fluid, at small elasticity num-
bers and when the disturbance time scale is large compared to the
characteristic time scale of the fluid.23

To the best of our knowledge, little work has been performed
on the stability of second order fluids in boundary layers unlike
the situation for channel flows. Chun and Schwarz24 studied the
stability of the plane Poiseuille flow of a second order fluid (α1
< 0). Their analysis yields an Orr–Sommerfeld equation modified
by adding a non-Newtonian term. They showed that the critical
Reynolds number decreases as the magnitude of the non-Newtonian
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parameter increases. Later, Sadeghy et al.25 solved the same modified
Orr–Sommerfeld equation for the plane Poiseuille flow of a second
order fluid (α1 > 0). They showed that non-Newtonian effects in this
model are stabilizing.

Regarding the stability of other viscoelastic fluids, some results
were obtained for channel flows but, to the best of our knowledge,
not much has been done for boundary layer flows. Porteous and
Denn23 studied the linear stability analysis of plane Poiseuille flow
for the second order (α1 < 0) and Maxwell fluids. They showed a
destabilization process due to elasticity. At high values of the elas-
ticity number, the stability is qualitatively different from that for
Newtonian fluids because it results from the second mode of the
Orr–Sommerfeld equation.

Sureshkumar and Beris26 used an Arnoldi-based orthogonal-
ization algorithm to investigate the linear stability of Poiseuille flow.
The models investigated are Upper Convected Maxwell (UCM),
Oldroyd-B, and Chilcott–Rallison fluids. The results show that the
destabilization caused by elasticity for the UCM fluid is reduced
when the effects of solvent viscosity and finite extensibility are taken
into account. Zhang et al.27 showed that when the polymer relax-
ation time is shorter than the instability time scale, the Poiseuille
flow of FENE-P fluids appears to be less stable. However, in the
opposite case, the strong elastic effect stabilizes the flow.

III. GOVERNING EQUATIONS
The field equations for an incompressible second order fluid

can be derived by substituting expression (1) for the Cauchy stress
into the balance of linear momentum,

ρ
Dv
Dt
= ∇ ⋅ σ, (4)

where ρ is the density of the fluid. Since the fluid is incompress-
ible, we require all possible motions be isochoric, and hence, the
continuity equation reduces to

∇ ⋅ v = 0. (5)

The geometric configuration considered consists of a wedge of
angle γπ, which is placed symmetrically with respect to the direction
of the uniform velocity field, as shown in Fig. 1 for γ > 0. The x-axis is
chosen to be in the streamwise direction, the z-axis in the spanwise
direction, and the y-axis in the wall-normal direction. Due to the
symmetric nature of the problem, we can restrict our analysis to the
case y ≥ 0. Note that if γ = 0, we recover the case of flow over a semi-
infinite flat plate, while γ = 1 corresponds to the case of a stagnation
point flow. When γ > 1, we have the flow into an acute corner, γ < 0
gives a flow past a corner, and 0 < γ < 1 is the flow past an acute
wedge.

IV. MEAN FLOW
Applying the boundary layer approximation to the field equa-

tions (4) and (5) in the same way it is done for Newtonian fluids, we
obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u∗
∂x∗

+
∂v∗
∂y∗
= 0,

u∗
∂u∗
∂x∗

+ v∗
∂u∗
∂y∗

= −
1
ρ
∂p∗
∂x∗

+
μ
ρ
∂2u∗
∂y2
∗

+
α1

ρ
[v∗

∂3u∗
∂y3
∗

+
∂

∂x∗
(u∗

∂2u∗
∂y2
∗

) +
∂u∗
∂y∗

∂2v∗
∂y2
∗

],

(6)

where starred dependent and independent variables indicate dimen-
sional variables. If the plate forms an angle γπ/2 with respect to the
uniform velocity field (Fig. 1), the free-stream velocity varies with
distance to the leading edge according to potential flow theory28 as a
power law,

Ue(x∗) = axm
∗ , (7)

where a is a positive constant and the exponent m is related to the
angle parameter: γ = 2m/(m + 1).

After the boundary layer transformation,

η =
y∗
δ

, ψ∗ = δUe(x∗)f ,

where

δ =
√

ν
a(m + 1)

x
1−m

2
∗

(8)

is a measure for the displacement thickness and ψ∗ is the stream
function, the boundary layer equations (6) are transformed into the
following local ordinary differential equation (ODE):

2(m + 1)f ′′′ + (m + 1)f f ′′ + 2m − 2m(f ′)2

=
α1a
ρν
(m + 1)xm−1

∗ [(m + 1)f ivf

+ 2(1 − 3m)f ′f ′′′ + (3m − 1)(f ′′)2
], (9)

where ′ indicates the derivative with respect to the boundary layer
variable, η. The key idea is to solve Eq. (9) numerically for fixed val-
ues of x∗ in order to obtain a local solution. It can be easily seen
that a similarity solution is possible only for stagnation point flow,8,9

where m = 1. For the stability analysis, Eq. (9) will be transformed
and the dependency on the streamwise position x∗ will be included
in the elasticity parameter, which will be defined later in this section.

The stability analysis is traditionally performed, for a Newto-
nian fluid, by choosing a fixed streamwise position x∗ = x0, as first
proposed by Tollmien.29 The approach consists of finding the lon-
gitudinal velocity at that station, ignoring the relatively small trans-
verse velocity, and then solving the Orr–Sommerfeld equation for
the resulting base profile.

Following the example of Schmid and Henningson,30 we apply
the same procedure to the second order fluid and we define a
displacement thickness, δ0, at position x0, as follows:

δ0 = C
√

ν
a(m + 1)

x
1−m

2
0 , (10)

where C is a constant given by

C = ∫
∞

0
(1 − f ′Newt(η))dη, (11)
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calculated in the Newtonian case. This choice was made in order to
easily compare non-Newtonian solutions with Newtonian solutions.
The Reynolds number Re0 = Ue(x0)δ0/ν based on the displacement
thickness satisfies the following relation:

x0

δ0
=

m + 1
C2 Re0. (12)

Using relation (12), Eq. (9) at the fixed position x0 can be
rewritten as

2(m + 1)f ′′′ + (m + 1)f f ′′ + 2m − 2m(f ′)2

= K0C2
[(m + 1)f ivf + 2(1 − 3m)f ′f ′′′ + (3m − 1)(f ′′)2

],
(13)

FIG. 2. Velocity profile and relative varia-
tion with respect to the Newtonian profile
for increasing and decreasing values of
the parameter K = K0C2. [(a) and (b)] γ
= 0 (flat plate), [(c) and (d)] γ = 0.5 (flow
past a wedge), and [(e) and (f)] γ = 1
(stagnation flow).
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where K0 = α1/(ρδ2
0) is a non-dimensional parameter known as the

elasticity number that can be interpreted as representing the ratio
of non-Newtonian normal stress forces to inertial forces. In fact,
K0 = Wi0/Re0, where Wi0 = α1Ue(x0)/(μδ0) is the Weissenberg
number.

In order to have a valid boundary layer theory for non-
Newtonian fluids of second order, it is necessary that not only the
ratio of the inertial forces to the forces due to the tangential stresses
be large (high Reynolds number), as in the Newtonian case, but also
the ratio of the inertial forces to the forces due to the normal stresses
should be large.3 This implies the following assumptions:

Re0 ≫ 1 and ∣K0∣ ≪ 1.

The mean flow for the stability analysis is non-dimensionalized
using the free-stream velocity Ue(x0), defined by (7), at the stream-
wise location x0. Hence, the velocity in the x-direction is

UB =
u∗

Ue(x0)
= f ′. (14)

The wall-normal velocity VB is

VB =
v∗

Ue(x∗)
=

1
2

C
(m + 1)Re0

[(1 −m)ηf ′ − (m + 1)f ].

It is clear that this flow is nearly parallel because the transverse veloc-
ity VB is smaller than UB by a factor of Re−1

0 , so it will be neglected in
order to perform the stability analysis. This is a valid approximation
when the Reynolds number Re0 based on the displacement thickness
is large.

Equation (13) is solved by applying the usual boundary con-
ditions that ensure no-slip and no-penetration at the wall and
matching with the free-stream velocity at infinity,

f (η) = 0, f ′(η) = 0 at η = 0,

f ′(η) → 1 as η→∞,

augmented by the condition

f ′′(η) → 0 as η→∞. (15)

The additional boundary condition (15) is required since the differ-
ential equation (13) is of fourth order. Condition (15) is derived by
imposing ∂u∗

∂y∗
→ 0 at infinity and is equivalent to requiring that the

solution approaches the free-stream velocity smoothly far from the
wall.8,9

The effect of elasticity on the velocity profile changes with the
geometrical configuration. For K0 > 0, we can see from Figs. 2(a)
and 2(b) that the velocity at all points in the boundary layer is larger
in the non-Newtonian case for the flow over a flat plate (γ = 0)
and the greater variation appears at the wall. Instead, for the second
order model with K0 < 0, the velocity at all points in the bound-
ary layer is smaller in the non-Newtonian case for flow over a flat
plate. Figures 2(c) and 2(d) show that, for a wedge angle of π/2,
there is a smaller relative variation than for the flat plate observed
in Figs. 2(a) and 2(b). When K0 > 0, the non-Newtonian velocity is

slightly smaller inside the boundary layer, while when K0 < 0, the
non-Newtonian velocity is larger. In both cases, the greater devia-
tion from the Newtonian profile happens at a distance η ≈ 2 from
the wall. In Figs. 2(e) and 2(f), we see that the effect of increasing
|K0| for stagnation point flow (γ = 1) is the opposite of the flat plate
case. Further investigations on the effects of elasticity on the mean
flow are given by Cracco.31

Note that the non-Newtonian parameter K0 in Fig. 2 has been
chosen to be large enough to be able to distinguish clearly the non-
Newtonian effects on the mean flow. However, as already men-
tioned, we need |K0|≪ 1 for the boundary layer theory to be valid.

V. MODAL ANALYSIS
For the purpose of the stability analysis, we scale the veloci-

ties with the constant free-stream velocity Ue(x0) and the lengths
with the displacement thickness δ0 relative to the fixed location x0,
defined by Eq. (10). The new dimensionless variables are

x =
x∗
δ0

, t =
Ue(x0)t∗

δ0
,

v =
v∗

Ue(x0)
, p =

p∗
ρUe(x0)2 .

(16)

In order to perform a local linear stability analysis, we assume the
undisturbed flow to be steady and parallel, neglecting the trans-
verse component of the velocity. The velocity of the base flow in
the streamwise direction is taken to be UB(y) given by (14), i.e.,
the solution of the ODE (13) resulting from the boundary layer
approximation at the fixed location x0, as shown in Sec. IV.

The governing equations (4) and (5) are linearized around the
mean flow UB = (UB, 0, 0)T and written in terms of the disturbance
wall-normal velocity v and the disturbance wall-normal vorticity,
η = ∂u

∂z −
∂w
∂x . The linear system governing three-dimensional distur-

bances is obtained after the application of the normal mode form, as
follows:

(v,η) = (v̂(y), η̂(y))ei(αx+βz−ωt),

where α and β are, respectively, the streamwise (x-direction) and
spanwise (z-direction) wavenumbers and ω represents the fre-
quency.

Defining q = (v̂, η̂)T , the problem to be solved is a linear system
of the form

Lq = ωMq, (17)

where M and L are linear operators defined as follows:

M = [
k2
−D2 + K0(k2

−D2
)

2
0

0 1 + K0(k2
−D2
)
], (18a)

L = [
LOS LCN
LC LSQ

], (18b)
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with

LOS = αUB(k2
−D2
) + αU′′B +

1
iRe0
(k2
−D2
)

2

+ K0(−αU iv
B + αk4UB − 2αk2UBD2 + αUBD4

),

LCN = K0(−βk2U′B − βU′′′B + βU′BD2
),

LC = βU′B − K0βU′′′B ,

LSQ = αUB +
1

iRe0
(k2
−D2
) + αK0UB(k2

−D2
),

where D denotes the derivative with respect to y and k2 = α2 + β2.
We can see that in the Newtonian case, when K0 = 0, the equa-

tion for v̂ does not involve the wall-normal vorticity η̂ and reduces
to the well-known Orr–Sommerfeld equation when β = 0. Instead,
the equation for η̂, also known as Squire’s equation, is driven by
solutions to the Orr–Sommerfeld equation through the forcing term
βU′v̂. In the Newtonian case, this term is responsible for an alge-
braic growth of energy and is referred to as the vortex tilting term.32

We observe that, for a non-zero non-Newtonian parameter K0 and
a non-zero spanwise wavenumber β, system (17) is fully coupled
due to the presence of a purely non-Newtonian coupling operator,
LCN .

The system of equations (17) is subject to the boundary condi-
tions

v̂ = Dv̂ = η̂ = 0 at y = 0 and y →∞.

The conditions at y = 0 are due to the no-slip and no-penetration at
the rigid wall. The conditions at infinity derive from assuming that
the disturbances tend to zero far from the surface of the plate.

The linear stability equations (17) are solved using a Cheby-
shev collocation method.33 The semi-infinite domain y ∈ [0, ∞) is
mapped into the finite interval ξ ∈ [−1, 1] by means of the algebraic
transformation

ξ =
y − 2
y + 2

.

All the numerical results are validated in the Newtonian limiting
case by comparing with results in the literature.30,34

A. Growth rates
At first, we focus on two-dimensional disturbances where β = 0

and we solve the equation in the first row of system (17), which con-
sists of a modified Orr–Sommerfeld equation.24 In Fig. 3, the eigen-
values resulting from the linear temporal analysis of the flow over a
flat plate (γ = 0) are displayed. In Fig. 3(a), we compare the eigen-
spectrum for the second order model with K = K0C2 = 0.03 with
eigenvalues obtained in the Newtonian case. The choice of Reynolds
number Re = Re0/C = 580 and wavenumber α∗ = α/C = 0.179 [C
defined by (11)] generates an unstable mode (i.e., ci > 0) in the New-
tonian case, known as a Tollmien–Schlichting wave. We can see the
stabilizing effect of elasticity that moves the unstable mode into the
lower half-plane. Thus, the flow is temporally stable for the second
order model for this choice of wavenumber, elasticity, and Reynolds
numbers. In Fig. 3(b), we compare the eigenvalues for the model
with K = −0.03 with the Newtonian eigenvalues for the same values
of Reynolds number and wavenumber. We observe that in this case,
elasticity is destabilizing since it pushes the unstable eigenvalues for-
ward into the positive half-plane. We also note that the structure of
the rest of the spectrum is different for the non-Newtonian models
depending on the sign of K0.

Considering the flat plate configuration (γ = 0), Fig. 4(a) shows
the temporal growth rate ω∗i = ωi/C as a function of α∗. We note
that when K = 0.01, the maximum growth rate reduces dramati-
cally from ω∗i ≈ 1.8 × 10−3 to about 10−3. Instead, when K = −0.01,
the maximum growth rate increases to almost 3 × 10−3. In general,
decreasing K extends the range of positive rates to shorter waves.
Figure 4(b) shows the spatial growth rate −α∗i as a function of
frequency ω∗. Again, we observe the marked stabilizing effect of
elasticity in terms of growth rate reduction for K = 0.01. We observe
that, for K = −0.05, the maximum growth rate increases, but not
so dramatically. We also note that for some wavenumbers α∗, the
growth rate is actually smaller in the non-Newtonian case. The non-
Newtonian effects in both models move the maximum to longer
waves.

Since the spatial stability properties seem to reflect the tempo-
ral characteristics we choose to focus on the temporal problem.31

Figure 5 shows the temporal growth rates in the Newtonian and non-
Newtonian cases for different values of γ. In each case, we observe
a reduction in temporal growth rate of the Tollmien–Schlichting

FIG. 3. Comparison between Newtonian
and non-Newtonian eigenspectrum for
the temporal problem for flow over a flat
plate (γ = 0) with α∗ = 0.179, Re = 580
and (a) K = 0.03, (b) K = −0.03. The
least damped eigenvalues are those in
the gray circle.
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FIG. 4. Temporal (a) and spatial (b)
growth rates for flow over a flat plate (γ
= 0) and Re = 580. Newtonian and non-
Newtonian cases with (a) K = ±0.01 and
(b) K = 0.01, −0.05.

waves due to elasticity for K > 0 and an increase in growth rate
for K < 0.

B. Neutral stability curves
Temporal neutral stability curves define the region in the

Re0-α plane where exponentially growing modes exist and where

they do not. The region inside the curves represents instability, while
the region outside corresponds to stability.

In order to plot neutral stability curves, we need to take into
account that both Re0 and K0 depend on the location x0. If we
decide to perform the stability analysis in which the Reynolds num-
ber varies depending on the distance x0 from the leading edge to the
location where the local stability analysis is performed, then we need

FIG. 5. Temporal growth rates for a
flow past a wedge, Newtonian, and non-
Newtonian cases. (a) γ = 0.5, Re =
10 000, K = 3 × 10−4; (b) γ = 1 (stag-
nation point), Re = 27 000, K = 10−4; (c)
γ = 1.2, Re = 27 000, K = 10−4; and (d)
γ = −0.14 (inflection point), Re = 300,
K = 0.05.
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to write K0 in terms of the Reynolds number and the base profile
needs to be computed for each value of Re0. In the flat plate case
(γ = 0), the non-Newtonian parameter based on the displacement
thickness can be rewritten as

K0(Re0) =
α1

ρδ2
0
=
α1a2

ρν2
1

Re2
0

.

Thus, we define the fixed quantity,

K̃ =
α1a2

ρν2 ,

which is independent of x0 so that K0(Re0) = K̃/Re2
0.

Figure 6(a) shows a comparison between the neutral stability
curves in the Newtonian case and for K̃ = ±103 for flow over a
flat plate. This clearly shows the stabilizing effect of elasticity in the
second order model with K̃ > 0 in terms of increase of the criti-
cal Reynolds number. The non-Newtonian effects in the model with

FIG. 6. Temporal neutral curves in the
Newtonian and non-Newtonian cases.
(a) γ = 0 (flat plate), K̃ = ±103; (b) γ
= 0.5, K̃ = ±104, x0 = 1; (c) γ = 1 (stag-
nation point), K̃ = ±2.5×104, x0 = 1; (d)
γ = 1.2, K̃ = ±5 × 104, x0 = 1; and (e) γ
= −0.14 (inflection point), K̃ = ±100; x0
= 1.
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K̃ < 0 promote the onset of instabilities. For high Reynolds numbers,
the non-Newtonian neutral curves approach the Newtonian neutral
curve. This behavior is expected, since when Re0 → ∞, we have K0
→ 0.

In the case of a non-zero pressure gradient (γ ≠ 0), it is not pos-
sible to isolate Re0 to vary the position x0 only through the Reynolds
number since we have

K0 =
α1

ρδ2
0
=
α1a2

ρν2
x2m

0

Re2
0

.

For this reason, we decided to plot the neutral curves in Figs. 6(b)–
6(e) by fixing the streamwise position at x0 = 1. In this case, the inter-
pretation must be different, the Reynolds number varies through a
variation of the free-stream velocity Ue. Once again, when K̃ > 0,
elasticity has the effect of reducing the region of two-dimensional
instability as shown in Fig. 6 for different angle parameters. When
K̃ < 0, the instability happens at lower Reynolds numbers. More-
over, the neutral curves in the non-Newtonian case approach the
Newtonian curves when the Reynolds number increases. It is worth
noticing in Fig. 6(e) that, for the flow past a corner (γ = −0.14), as
the Reynolds number increases, the non-Newtonian curves over-
lap the Newtonian curve. This means that the inviscid instability,
which arises in the presence of an inflectional velocity profile, does
not seem to be affected by non-Newtonian effects.

Note that, for different values of γ, different values of K̃ are cho-
sen in order to ensure that the Weissenberg number, Wi0, is of order
1 when the Reynolds number is close to critical for the onset of insta-
bility. This is to ensure that the boundary layer theory is valid, while
the elasticity effects remain significant.3

C. Critical Reynolds numbers
The critical Reynolds number is defined as the smallest

Reynolds number for which there exists an exponentially unstable
mode. We calculated the critical wavenumbers, αcr, and Reynolds
numbers, Recr, for different values of γ, and the results are displayed
in Table I. In order to be able to compare the non-Newtonian effect
of elasticity for different values of γ we choose, as a measure of
elasticity, the critical Weissenberg number,

Wi0,cr = K0,crRe0,cr,

defined with reference to the Newtonian critical Reynolds num-
ber Re0,cr and the critical elasticity number K0,cr = K̃/Re2

0,cr. From
Table I, we observe that the critical Reynolds numbers for Wi0,cr > 0
increase for all values of γ considered, including the slightly nega-
tive value of γ that represents a profile with an inflection point. The
effect is the opposite for Wi0,cr < 0, where the critical Reynolds num-
bers decrease and the instability is anticipated for each value of the
angle parameter γ.

Note that the magnitude of the critical Reynolds number Re0,cr
for the Newtonian case is strongly dependent upon the configura-
tion characterized by γ. This strong dependence is maintained for
the variation found in Re0,cr when the non-Newtonian effects are
introduced in the manner that we have described. For example, with
a critical Weissenberg number Wi0,cr = 0.5, for a flat plate (γ = 0),
the increase or decrease in critical Reynolds number is of order 10,
while for the stagnation point flow (γ = 1), it is of order 102.

TABLE I. Critical Reynolds numbers and critical wavenumbers in the Newtonian and
non-Newtonian cases.

Non-Newtonian Newtonian Non-Newtonian

Wi0,cr −1 −0.5 0 0.5 1

γ Re0,cr Re0,cr Re0,cr Re0,cr Re0,cr

−0.14 126.68 132.58 138.42 144.07 149.48
0 470.71 495.70 519.06 540.96 561.60
0.5 7 005.78 7 324.05 7 617.06 7 890.03 8 146.65
1 11 483.50 11 949.02 12 380.61 12 784.75 13 166.26
1.2 12 563.43 13 064.70 13 529.76 13 965.65 14 377.28

γ αcr αcr αcr αcr αcr

−0.14 0.5115 0.5025 0.4920 0.4843 0.4774
0 0.3231 0.3130 0.3038 0.2965 0.2902
0.5 0.1776 0.1742 0.1713 0.1687 0.1664
1 0.1722 0.1692 0.1665 0.1642 0.1622
1.2 0.1720 0.1690 0.1665 0.1643 0.1622

D. 3D results
We solved the three-dimensional eigenvalue problem (17). The

results obtained are summarized by displaying the neutral stability
curves in the α–β plane. A study of three-dimensional disturbances
for fluids of second order is required. For parallel Newtonian flow,
Squire’s theorem justifies the study of two-dimensional instead of
three-dimensional disturbances. Squire’s theorem states that each
three-dimensional mode corresponds to some two-dimensional
mode at a lower Reynolds number. Therefore, to determine the crit-
ical Reynolds number, it is sufficient to study two-dimensional dis-
turbances for Newtonian fluids. A result similar to Squire’s theorem
for a fluid of second order cannot be proven. Therefore, an extension
to the study of three-dimensional disturbances is necessary.

Figure 7 shows the contour plot of the temporal growth rate ωi
in the Newtonian case for the flat plate (γ = 0). Figure 7(a) shows that
the choice of a subcritical Reynolds number (Re0 = 500) gives a stable
flow. In Fig. 7(b), we increase the Reynolds number to Re0 = 1000,
and we can see an exponential instability for which ωi > 0, appearing
at small spanwise wavenumbers. The red asterisk (∗) represents the
maximum growth rate reached in the α–β plane, i.e., maxα ,βωi. We
can see that, in both cases, the maximum is reached for spanwise
independent waves. This confirms Squire’s theorem for Newtonian
fluids.

Figures 8(a) and 8(b) show the contour plots of the temporal
growth rates ωi for the model with K < 0 and for the model with K
> 0, respectively. We can see that when K > 0, there is a region of
exponential instability for small streamwise wavenumbers and for a
value of the Reynolds number (Re0 = 500) that corresponds to a sta-
ble flow in the Newtonian case. In Fig. 8(c), we displayed the growth
rates for a fixed and small α and for a fixed value of β in Fig. 8(d).
We observe how a positive elasticity number K destabilizes spanwise
disturbances, while it stabilizes the Tollmien–Schlichting waves. The
opposite happens for a negative value of K, which decreases the
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FIG. 7. Contour plot for the temporal growth rate, ωi , in the
Newtonian case (K = 0) for the flat plate (γ = 0). The red
asterisk (∗) represents maxα ,βωi . The black line represents
the neutral curve. (a) Re0 = 500 and (b) Re0 = 1000.

growth rates of mainly streamwise independent waves (α ≈ 0) and
increases the growth rates of mainly spanwise independent waves (β
≈ 0).

Figure 9 shows the results for a Reynolds number of Re0 = 1000.
The conclusions are the same, for K > 0, the Tollmien–Schlichting
wave is slightly stabilized while growth rates near the α = 0 axis
become larger. The opposite happens for K < 0. Figure 10 shows

growth rates for the flow past a corner with γ = −0.14. The results
are very similar to those for the flat plate. We do not report results
for other values of the angle parameter γ since they are in line with
the results we have discussed so far.

To the best of our knowledge, the differing effects of elasticity
on two-dimensional and three-dimensional disturbances have not
been observed in the past for other viscoelastic models.

FIG. 8. [(a) and (b)] Contour plots for ωi
in the non-Newtonian cases for the flat
plate (γ = 0) and Re0 = 500. The red
asterisk (∗) represents maxα ,βωi . The
black line represents the neutral curve.
(a) K = −0.001 and (b) K = 0.001. [(c)
and (d)] Comparison of Newtonian (solid
line) and non-Newtonian (dashed line)
temporal growth rates for (c) α = 0.02
and (d) β = 0.2.
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FIG. 9. [(a) and (b)] Contour plots for ωi in the non-
Newtonian cases for the flat plate (γ = 0) and Re0 = 1000.
The red asterisk (∗) represents maxα ,βωi . The black lines
represent neutral curves. (a) K = −0.0001 and (b) K =
0.0001. [(c) and (d)] Comparison of Newtonian (solid line)
and non-Newtonian (dashed line) temporal growth rates for
(c) α = 0.02 and (d) β = 0.2.

FIG. 10. [(a) and (b)] Contour plots for ωi in the non-
Newtonian cases for the flow past a corner (γ = −0.14) and
Re0 = 150. The red asterisk (∗) represents maxα ,βωi . The
black lines represent neutral curves. (a) K = −0.003 and (b)
K = 0.003. [(c) and (d)] Comparison of Newtonian (solid line)
and non-Newtonian (dashed line) temporal growth rates for
(c) α = 0.02 and (d) β = 0.04.
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VI. NON-MODAL ANALYSIS
In this section, the initial-value problem that drives the devel-

opment of disturbances is derived for the second order fluid. A for-
mulation based on the initial-value problem enables us to study the
behavior of general solutions not only of single eigenmodes.30

Brandt19 reviewed the main results in bypass transition for
non-Newtonian fluids. Zhang et al.27 performed the modal and
non-modal linear analysis of the inertia-dominated channel flow
of viscoelastic fluids modeled by Oldroyd-B and FENE-P closures.
The authors observed that both modal and non-modal instabili-
ties are enhanced when the polymer relaxation time is shorter than
the instability timescale (i.e., for Weissenberg numbers, Wi ≲ 1),
whereas the flow is more stable in the opposite case. In the subcrit-
ical regime, the non-modal amplification of streamwise elongated
structures is still the most dangerous energy growth mechanism
and is slightly enhanced by the presence of polymers. The lift-up
effect is still the dominant instability mechanism also for viscoelastic
fluids.27

Hoda et al.35 studied energy amplification in channel flows of
Oldroyd-B fluids from an input–output point of view and found
that increasing fluid elasticity through polymer contribution to the
viscosity or the elasticity number enhances energy amplification.
Once again, the disturbances that are most amplified are streamwise-
elongated, with elasticity acting to reduce spanwise length scale.

Some other authors focused on weakly inertial or inertialess
flows (e.g., Lieu et al.36 and Page and Zaki37), while more recently,
others studied the secondary instability of streaks for viscoelastic
fluids (e.g., Burshtein et al.38).

After linearization around the mean flow UB = (UB, 0, 0)T , we
take the normal mode form for the perturbations. However, unlike
in Sec. V, we do not assume an exponential time-dependence. The
initial value problem can be written as follows:

M
∂q
∂t
= −iLq, with q = q0 at t = 0, (19)

where q(t, y) = (v̂(t, y), η̂(t, y))T . The linear operators M, L are
defined by Eq. (18). General solutions of the initial-value problem
(19) are assumed to belong to the space SN spanned by a sufficient
number N of eigenfunctions, which is defined as follows:

SN
= span{q̃1, q̃2, . . . , q̃N},

where {q̃j}j are solutions of the eigenvalue problem (17). In other
words, q ∈ SN can be expressed as

q =
N

∑
j=1

kj(t)q̃j, (20)

where {kj}j are the coefficients of the expansion. This allows us
to express the initial value problem (19) as N separated ordinary
differential equations for the expansion coefficients, as follows:

k′j(t) = −iωjkj(t) for j = 1, . . . , N,

or in a more compact form, i.e.,

k′(t) = −iΩk(t), (21)

where k = (k1, . . . , kN)
T and Ω = diag{ω1, . . ., ωN }. The sim-

plified formulation (21) of the initial-value problem (19) is possi-
ble provided that the eigenspectrum is a complete set composed
of discrete eigenmodes. For Newtonian fluids, it is known that if
the domain is bounded, then the eigenspectrum is discrete, but for
unbounded boundary layers, the spectrum is composed of a discrete
and a continuous part. Although the discrete approximation differs
from the exact representation, the sum of these eigenmodes correctly
describes the solutions to the initial-value problem.17

For Newtonian fluids, the completeness of the spectrum is
proven by Gustavsson.39 To the best of our knowledge, the com-
pleteness of the spectrum has not been proven yet for second order
fluids or non-Newtonian fluids in general. We will not research this
further in this paper, and we discretize the continuous spectrum for
the second order models, as done by Butler and Farrell.17 Therefore,
particular attention is paid to ensure that the results are independent
of the discretization parameter.

In order to determine the perturbation that grows the most in
some sense, we need a way to quantify the growth. The energy norm
is taken to be

E(q) =
1
k2 ∫

∞

0
qHMqdy, (22)

where M is defined by (18a). In order to quantify the transient
growth, we define the maximum possible amplification of initial
energy density as follows:

G(t,α,β) = max
q0∈SN∖{0}

∥q(t)∥2
E

∥q0∥
2
E
= ∥eL1t

∥
2
E, (23)

where L1 = −iM−1L and L, M are the linear operators given by
(18). Fixing the wavenumber vector (α, β), the function G represents
the envelope of the energy evolution of all the initial perturbations,
q0, with unit energy norm. At each moment in time, we maximize
over all possible initial conditions. Note that traditional stability
analysis focuses attention only on the eigenvalues of e−iΩt . These do
not capture the whole behavior of G, which is also determined by
the eigenvector matrix F and its inverse. Deducing the behavior of G
from the eigenvalue matrix Ω alone is only valid when the similar-
ity transformation given by F does not alter the norm, that is, when
V is unitary and composed of orthogonal eigenvectors. This is the
case when B is normal. If this is not the case, B is non-normal and
short-time growth of perturbation energy is possible even though
the matrix has stable eigenvalues.

In order to compute the exponential norm (23), we use the
decomposition (20). Thus, G can be calculated easily as follows:

G(t,α,β) = max
k0∈CN

∖{0}

∥k(t)∥2
E

∥k0∥
2
E
= σ2

1(Fe−iΩtF−1
),

where σ1 is the principal singular value of the matrix B = Fe−iΩtF−1.
Employing the decomposition (20) provides an easy way to com-
pute the maximum possible amplification G, which can be obtained
by calculating the singular value decomposition (SVD) of the
matrix B.

Phys. Fluids 32, 084102 (2020); doi: 10.1063/5.0018300 32, 084102-12

© Author(s) 2020

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

A. Global optima
We define the global optimal disturbance as the initial condi-

tion, q0, that maximizes the growth over time, i.e.,

Gmax(α,β) = G(tmax,α,β) = max
t∈[0,∞)

G(t,α,β). (24)

Note that Gmax can only be defined when all the eigenvalues are sta-
ble. If an unstable mode exists, then G(t)→∞ as t→∞. We can also
define the largest global growth obtained for any wavenumber vector
as follows:

GΓ = Gmax(αΓ,βΓ) = max
α,β

Gmax(α,β). (25)

The latter depends only on the base flow conditions and Re.
The results obtained have been validated by comparing with

those found in the literature for Newtonian fluids. For this purpose,
we refer to the book by Schmid and Henningson30 and the paper
by Corbett and Bottaro.40 Figure 11 shows the contour plot of Gmax
defined by (24) for the flat plate (γ = 0). The black line represents the
neutral stability curve inside which an exponentially growing mode
exists and where the maximum possible amplification is not defined
or can be thought of as infinite. The Newtonian results in Fig. 11(a)

are in agreement with the literature.30,41 The largest global optimal
growth defined by (25) is GΓ = 1515.6 reached at time t = 782 for
αΓ = 0, βΓ = 0.65, as calculated by Corbett and Bottaro.40

Figures 11(b) and 11(c) show the contour plot for K = 10−4

and K = −10−4, respectively. These non-Newtonian parameters have
been chosen as an example to show the non-Newtonian effects.
We can see that the largest amplification of energy is still reached
for streamwise independent disturbances, as in the Newtonian case.
However, when K > 0, the amplification of energy is generally larger,
and when K < 0, the amplification of energy is smaller than in
the Newtonian case. Figure 12 shows the contour plot of Gmax for
the flow past a wedge (γ = 0.5). The non-Newtonian effects on the
transient growth are qualitatively similar to the flat plate case. Fig-
ure 13(a) displays the ratio of non-Newtonian Gmax to Newtonian
Gmax for a fixed spanwise wavenumber β = 0.6 and varying Weis-
senberg number Wi0. We can observe that the non-Newtonian terms
mostly affect streamwise independent disturbances, i.e., for α = 0. In
Fig. 13(b), we can see that for K > 0, the global optima happen at
larger times than in the Newtonian case, while for K < 0, the global
optima happen at shorter times.

In Table II, we report the largest global optima GΓ defined in
(25). For these calculations, we choose the momentum thickness
scaling, following Corbett and Bottaro.40 The reason is that when
scaled using the momentum thickness, the spanwise wavenumber

FIG. 11. Contour plot of Gmax for γ
= 0 (flat plate) and Re0 = 1000. The
black line indicates where an exponen-
tially unstable mode exists. (a) K = 0, (b)
K = 10−4, and (c) K = −10−4.
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FIG. 12. Contour plot of Gmax for γ = 0.5
and Re0 = 500. (a) K = 0, (b) K = 10−4,
and (c) K = −10−4.

at which the largest global optimum is reached is independent of
the mean flow conditions. Moreover, momentum thickness scal-
ing accounts for the variation in tΓ (the time in which the optimal
disturbance reaches its maximum) resulting from differences in the
base flow.

We choose to scale the lengths with the momentum thickness
θ0 relative to the fixed streamwise location x0, which is defined as
follows:

θ0 = θNewtδ(x0),

where δ is defined by Eq. (8) and θNewt is the constant,

θNewt = ∫

∞

0
(f ′Newt(1 − f ′Newt))dη,

calculated in the Newtonian case. We introduce Reynolds and Weis-
senberg numbers based on θ0 as follows:

FIG. 13. Ratio of non-Newtonian to New-
tonian maximum possible amplification
for the flat plate γ = 0 and Re0 =
500, β = 0.6. (a) Gmax/Gmax,Newt and (b)
tmax/tmax,Newt.
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TABLE II. Largest global optima for Reθ = 166 and Reθ = 385. The asterisk (∗) indicates where an exponentially unstable
mode exists and GΓ is calculated excluding the TS wave. The missing values indicate where an exponential unstable mode
also exists as β→ 0.

Reθ = 166 Reθ = 385

γ Wiθ βθ tθ GΓ βθ tθ GΓ

−0.14

−0.10 0.2390 802.03 357.49∗ 0.2347 1629.56 1674.25∗

−0.05 0.2410 856.30 380.72∗ 0.2386 1827.99 1888.35∗

0 0.2432 926.30 408.82∗ 0.2432 2151.88 2202.45∗

0.05 0.2457 1021.51 444.12∗ 0.2494 2856.03 2749.60∗

0.10 0.2485 1165.67 491.16∗ . . . . . . . . .

−0.07

−0.10 0.2452 768.81 283.86∗ 0.2414 1562.67 1332.59∗

−0.05 0.2470 819.99 301.87∗ 0.2448 1750.79 1498.67∗

0 0.2489 885.33 323.59∗ 0.2489 2057.06 1742.94∗

0.05 0.2510 973.27 350.59∗ 0.2542 2693.02 2157.79∗

0.10 0.2533 1100.95 385.74∗ . . . . . . . . .

0

−0.10 0.2475 758.86 247.29 0.2438 1544.18 1162.12∗

−0.05 0.2491 808.67 262.74 0.2470 1730.97 1307.12∗

0 0.2508 872.23 281.42 0.2509 2026.73 1515.60∗

0.05 0.2528 956.55 304.52 0.2557 2617.47 1862.12∗

0.10 0.2550 1075.89 334.05 0.2649 5467.14 2771.06∗

0.5

−0.10 0.2479 765.91 168.13 0.2446 1568.41 792.59
−0.05 0.2495 812.86 178.30 0.2476 1750.22 889.17

0 0.2512 871.08 190.36 0.2513 2024.78 1024.65
0.05 0.2531 945.42 204.99 0.2561 2520.51 1238.61
0.10 0.2552 1045.30 223.25 0.2650 3948.30 1688.11

1

−0.10 0.2471 774.23 147.29 0.2436 1590.90 694.91
−0.05 0.2487 820.22 156.10 0.2467 1769.96 778.84

0 0.2504 876.65 166.49 0.2505 2037.67 895.93
0.05 0.2524 947.52 179.00 0.2556 2504.65 1078.00
0.10 0.2547 1041.05 194.51 0.2651 3701.44 1440.19

1.2

−0.10 0.2469 775.71 142.60 0.2434 1594.62 672.67
−0.05 0.2485 821.55 151.13 0.2465 1773.57 753.97

0 0.2503 877.53 161.17 0.2504 2040.22 867.26
0.05 0.2523 947.83 173.25 0.2556 2501.90 1043.04
0.10 0.2547 1039.94 188.21 0.2654 3662.17 1390.06

Reθ =
Ue(x0)θ0

ν
, Wiθ =

α1Ue(x0)

μθ0
.

Note that the following relations hold:

Re0 = HReθ, Wi0 =
Wiθ
H

,

where H = C/θNewt is the shape factor defined as the ratio between
displacement and momentum thickness, calculated in the Newto-
nian case. In Table II, we present the results obtained for Reynolds
numbers Reθ = 166 and Reθ = 385. These Reynolds numbers have
been chosen to compare the results with the ones obtained by

Corbett and Bottaro.40 Specifically, Reθ = 385 corresponds to the
Reynolds number based on the displacement thickness Re0 ≈ 1000
for the flat plate case.

For all the flows considered, the largest global optimum is
reached for streamwise-independent waves, i.e., αΓ = 0. We can
see that, in the Newtonian case, when scaled with θ0, the spanwise
wavenumber for GΓ appears to be independent of the mean flow
condition characterized by γ and βθ ≈ 1/4. Note that, in the Newto-
nian case, the moment in time at which the largest global optimum
is reached is about the same for all the positive angle parameters
considered, tθ ≈ 880.

For flow past a corner (γ = −0.14), the maximum is reached at
a larger time tθ ≈ 927. We observe how, for all the angle parameters
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considered, the spanwise wavenumber βθ, the time tθ, and the largest
possible amplification GΓ decrease when the model with Wiθ < 0 is
selected and increase when the model with Wiθ > 0 is selected. More-
over, βθ appears to change approximately linearly with the Weis-
senberg number based on the momentum thickness. A Weissenberg
number Wi0 = ±0.05 produces a change in βθ of about 1% and
Wi0 = ±0.1 produces a change of about 2%. This linear dependence
on the Weissenberg number manifests also on the time tθ and on the
largest transient growth GΓ.

B. Optimal perturbations
We can determine the initial condition that reaches the maxi-

mum possible amplification at a given time t0 by using the singular
value decomposition (SVD) of the matrix B = Fe−it0ΩF−1. The initial
condition that reaches the global optimum Gmax at t = tmax defined
by (24) is referred to as optimal disturbance.

Figure 14 shows a comparison between optimal disturbances
in the Newtonian and non-Newtonian cases for the stagnation
point flow (γ = 1) and a Reynolds number Re0 = 500. We choose
a wavenumber vector (α, β) = (0, 0.6), which is close to the
global optima. In Figs. 14(a)–14(c), |u| has been scaled such that

max(|v0,Newt|) = 1, and in Figs. 14(b)–14(d), |u| has been scaled such
that max(|vmax,Newt|) = 1.

We see that the optimal disturbances, in the non-Newtonian
cases, have the same structure of streamwise-oriented vortices as in
the Newtonian case. From Figs. 14(a)–14(c), we observe that the ini-
tial streamwise velocity |u0| is two orders of magnitude smaller than
the cross-flow components, |v0|, |w0|. Figures 14(b)–14(d) show the
evolved state of the optimal disturbances at t = tmax. The shape of the
initial vortex is still present, although it has diffused outward away
from the wall.

At t = tmax, the streamwise velocity |umax| is one order of mag-
nitude larger than the cross-flow velocities, which indicates the pres-
ence of streaks. From Figs. 14(a) and 14(b), we see that when K > 0,
the vortices are more diffused away from the wall, whereas when
K < 0, the vortices are closer to the wall. Figures 14(c) and 14(d)
show that, for the non-Newtonian fluid with K = −0.0001, the initial
optimal streamwise velocity is larger than in the Newtonian case and
at tmax, it grows more than in the Newtonian case. The behavior is
the opposite when K = 0.0001. This is in agreement with the results
obtained in Sec. VI A.

In Fig. 15, we plotted the streamwise vortices for K = −0.0001
and Re0 = 1000. The solutions plotted are such that ∥q0∥E = 1 and

FIG. 14. Comparison between Newto-
nian and non-Newtonian optimal distur-
bances for the stagnation point flow with
γ = 1, Re0 = 500, α = 0.6, and β = 0.
(a) Wall-normal, |v0|, and spanwise, |w0|,
initial velocities; (b) wall-normal, |vmax|,
and spanwise, |wmax|, velocities at t
= tmax; (c) streamwise, |u0|, initial veloci-
ties; and (d) streamwise, |umax|, stream-
wise velocity at t = tmax.
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FIG. 15. Optimal disturbance for the
stagnation point flow with γ = 1, Re0
= 1000, α = 0.6, and β = 0 and a non-
Newtonian parameter K = −0.0001. [(a)
and (b)] disturbance at t = 0 and [(c) and
(d)] disturbance at t = tmax.

∥q(tmax)∥E = Gmax. In Figs. 15(a) and 15(c), we can see the stream-
wise vortices at t = 0 and t = tmax, respectively. From Figs. 15(b)
and 15(d), we can see the lift-up effect in action, which transforms
streamwise vortices into streamwise streaks.

VII. CONCLUSIONS
The linear stability analysis of the boundary layer flow of a vis-

coelastic fluid has been investigated. We applied a boundary layer
theory to second order fluids in order to determine the mean flow.
As for Newtonian fluids, this approach allowed us to simplify the
governing equations. There is no similarity solution to the boundary
layer equations with the exception of stagnation point flow. There-
fore, a local similarity transformation was applied that yielded a local
ODE depending on the streamwise position.9 We reformulated this
equation in order to represent the dependency on the location only
through the non-Newtonian parameter K based on the displacement
thickness at a fixed streamwise position. The equation obtained is
then solved numerically and employed in the linear stability analy-
sis. This approach is consistent with the fact that traditional linear
stability analysis is a local analysis.

First, we considered two-dimensional disturbances, namely,
disturbances that vary only in the streamwise and wall-normal
directions. We solved numerically, using a Chebyshev collocation

method, the modified Orr–Sommerfeld equation that governs the
evolution of two-dimensional disturbances. The results were pre-
sented in terms of growth rates and neutral curves. For all values
of the angle parameter γ, the non-Newtonian terms in the second
order model with K > 0 stabilize the flow with respect to the New-
tonian case, while they have the opposite effect for K < 0. Moreover,
we determined the critical Reynolds number, which is the smallest
Reynolds number for which there exists an exponentially unstable
mode. For K > 0, there is a stabilizing effect in terms of an increase
of the critical Reynolds numbers. The effect is the opposite for K < 0,
where the instability is enhanced. The linear stability results for
K < 0, which is the one that predicts the correct sign of the non-zero
normal stress differences, are in qualitative agreement with those
obtained by Sureshkumar and Beris26 and Zhang27 for the Poiseuille
flow of other viscoelastic fluids.

When extending the analysis to three-dimensional distur-
bances, which can also vary in the spanwise direction, the non-
Newtonian effects prove to be different. This differing behavior
has not been observed before for other viscoelastic models. We
showed that a positive elasticity number K destabilizes spanwise
disturbances while it stabilizes the two-dimensional Tollmien–
Schlichting waves. The opposite happens for a negative K, which
decreases the growth rates of mainly streamwise independent waves
and increases the growth rates of mainly spanwise independent
waves.
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In order to give a complete idea of the linear stability charac-
teristics, the potential transient growth of energy cannot be ignored.
To the best of our knowledge, the transient growth of viscoelastic flu-
ids in boundary layers has not been investigated in the past. In this
paper, the initial-value problem that drives the development of dis-
turbances is derived for second order fluids. In the Newtonian case,
our results are validated against those obtained by Schmid41 for Bla-
sius flow and by Corbett and Bottaro40 for Falkner–Skan flows. We
showed that, for the second order model with K > 0, an increase
in the non-Newtonian parameter K provokes an increase in the
maximum transient growth, G, while the second order model with
K < 0 has the opposite behavior. The results are qualitatively simi-
lar for all values of the angle parameter, γ. The largest amplification
of energy is still reached for streamwise independent disturbances
(zero streamwise wavenumber), as in the Newtonian case.

Non-Newtonian terms mostly affect streamwise independent
disturbances. For K > 0, the global optimum, Gmax, is reached for
larger times and shorter waves (larger spanwise wavenumber) than
in the Newtonian case. On the contrary, for K < 0, the global
optimum is reached for shorter times and longer waves (smaller
spanwise wavenumber).

The second order models are not used in industrial applica-
tions, where other constitutive equations are preferred. However,
they can represent non-zero normal stress differences, and they give
an idea of the stability characteristics of viscoelastic fluids in bound-
ary layers. The natural progression of this work is the investigation of
the linear stability properties of rheologically more complex models
in boundary layers.
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