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About HubNet 
 

Hubnet is a consortium of researchers from eight universities (Imperial College and the universities 

of Bristol, Cardiff, Manchester, Nottingham, Southampton, Strathclyde and Warwick) tasked with 

coordinating research in energy networks in the UK.  HubNet is funded by the Energy Programme of 

Research Councils UK under grant number EP/I013636/1. 

This Hub will provide research leadership in the field through the publication of in-depth position 

papers written by leaders in the field and the organisation of workshops and other mechanisms for 

the exchange of ideas between researchers and between researchers, industry and the public sector. 

Hubnet also aims to spur the development of innovative solutions by sponsoring speculative 

research.  The activities of the members of the hub will focus on seven areas that have been 

identified as key to the development of future energy networks: 

 Design of smart grids, in particular the application of communication technologies to the 
operation of electricity networks and the harnessing of the demand-side for the control and 
optimisation of the power system. 
 

 Development of a mega-grid that would link the UK's energy network to renewable energy 
sources off shore, across Europe and beyond. 
 

 Research on how new materials (such as nano-composites, ceramic composites and 
graphene-based materials) can be used to design power equipment that are more efficient 
and more compact. 
 

 Progress the use of power electronics in electricity systems though fundamental work on 
semiconductor materials and power converter design. 
 

 Development of new techniques to study the interaction between multiple energy vectors 
and optimally coordinate the planning and operation of energy networks under uncertainty. 
 

 Management of transition assets: while a significant amount of new network equipment will 
need to be installed in the coming decades, this new construction is dwarfed by the existing 
asset base. 
 

 Energy storage: determining how and where storage brings value to operation of an 
electricity grid and determining technology-neutral specification targets for the 
development of grid scale energy storage. 

 

The HubNet Association is a free-to-join grouping of researchers and research users.  Join via the 

“HubNet Registration” tab at www.hubnet.org.uk to obtain access to working document versions of 

positions papers, an archive of workshop and symposium presentations and to receive notification 

of future events.  

  

http://www.hubnet.org.uk/
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Executive summary  

Recent analysis of the UK’s energy supply system shows that many of the strategies to decarbonise 

energy will have significant impacts on existing gas and electricity networks, and will lead to the 

emergence of new energy carrier systems such as district heating and cooling and potentially new 

infrastructure to support the  use of hydrogen. The energy system transition is likely to create a 

more distributed energy system where local energy generation plays a much greater role in energy 

supply. 

Traditionally, the different energy supply systems i.e. electricity, gas, district heating/cooling and 

hydrogen had relatively few interactions and were designed and operated independently of each 

other. However, with increasing interactions between energy systems, there is a significant interest 

to explore complementarities of integrating energy networks (e.g. Power to gas energy storage and 

Thermal stores providing demand response).   

The drivers for integration between various energy systems are discussed in detail in Chapter 2; in 

summary these are to: 

a) Reduce the use of primary energy  

b) Increase the generation and utilisation of renewable energy  

c) Reduce/delay capital expenditure 

d) Provide cost effective flexibility in the electrical power system 

e) Give opportunities for business innovation 

f) Increase reliability of the electrical power system (e.g. security of supply) 

g) Facilitate low carbon sustainable districts and local governance of community projects 

The topic of integrating energy systems has attracted interest from academia, industry and policy 

makers in different parts of the world. Chapter 3 presents the landscape of research activities in this 

area. In the UK, the EPSRC, ETI and Energy Systems Catapult have all taken major initiatives to 

develop expertise in realising the benefits of energy systems integration.  

Chapter 4 presents the approaches being developed in academic literature for analysing integrated 

energy systems. They are categorised and discussed as: 

a) Coupled energy network modelling and simulation 

b) Operation planning and control (e.g. optimization, demand response)  

c) Techno-economic and environmental performance analysis  

d) Design and expansion planning  

e) Reliability analysis of integrated energy systems. 

In spite of the interest and recognized benefits of energy system integration there are significant 

challenges to realising its potential. The fragmented institutional and market structures in the 

different energy sectors, the increased complexity of an integrated energy system, not least the 

multidisciplinary nature of research and development are amongst the numerous barriers.  

A number of research gaps and development opportunities collated from a review of the literature 

and an international stakeholder workshop are listed in Chapter 5. The need to develop robust 

methods and tools for modelling and analysis of integrated energy systems; develop standardized 

test systems for integration solutions and demonstration activities can be highlighted. 
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This position paper follows a workshop that brought together a group of international researchers to 

discuss the potential benefits and research gaps in integrated energy systems. The workshop was 

organised by Cardiff University and held at Imperial College, London on 31st October 2014 as part of 

the HubNet programme. The workshop minutes are appended.   

1. Introduction 

1.1 Energy system transitions in the UK 

Energy supply systems have undergone numerous transitions over time (Pearson, 2012, Rutter and 

Keirstead, 2012). These were stimulated by scientific and technological advances (e.g. discovery of 

electricity) combined with political and socio-economic developments (e.g. urban growth). Some of 

the recurring themes in each transition were identified in (Rutter and Keirstead, 2012) as: 

(a) An increase of per capita energy use (despite increases in efficiency of energy supply 

technology)  

(b) An increase of the energy system’s organizational and technological complexity  

(c) The correlation in energy system transition to wider changes in society and technology     

(e.g. increase in transport speeds and rail networks in facilitating urban growth). 

Today, in the UK, the energy demands of the domestic, commercial and industrial sectors are largely 

met by electricity and natural gas. Britain’s electricity and gas networks span large areas, knitting 

cities together into a national and regional energy system that, in the case of electricity in particular, 

must be balanced on a near-real time basis.  

1.1.1 Coupling of electricity and gas networks  

The coupling of electricity and natural gas systems is a feature in the UK’s energy supply system. The 

physical integration of the electricity and gas networks was first seen with the ‘dash for gas’ in the 

1990’s when newly privatised electric companies were allowed to generate electricity using natural 

gas (Pearson, 2012). The key drivers for the ‘dash for gas’ were:  

(a) political: the privatisation of the UK electric industry in 1990; the regulatory change that 

allowed gas to be used as a fuel for power generation; 

(b) economic: gas turbine power stations were quick to build in comparison to coal and nuclear 

power stations, which were higher in capacity but took longer to construct; the decline in 

wholesale gas prices with the development of North sea gas; the desire of the regional 

electricity companies to diversify their sources of electricity supply; 

(c) Technical: advances in electricity generation technology (CCGT) with higher relative 

efficiencies and lower capital costs. 

The ‘dash for gas’ drive resulted in a significant increase in natural gas fired CCGT power stations in 

UK electricity generation capacity  (5% in 1990 to 36% by 2011). Natural gas currently provides over 

40% of annual electrical energy generation through gas fired CCGT power generation (DECC, 2014b). 

Natural gas impacts the electricity price as electrical power generation from natural gas is used to 

meet the peaks in electricity demand (DECC, 2012c). The electricity and natural gas industries are 

therefore strongly dependent on each other from an economic, technical and regulatory 

perspective. 
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1.2 Multi-energy systems  

The UK’s energy supply systems are undergoing another phase of transition due to raised concerns 

over climate change, an aging energy infrastructure and rising fuel prices.  Improving efficiency in 

the building stock, new energy carrier systems (e.g. district heating, district cooling), electrification 

of heating and transport, increasing use of low carbon/renewable energy and the development of 

smart electrical grids are all parts of concerted efforts to address these concerns.  

Recent modelling from the government (DECC, 2013), academia (Hughes and Strachan, 2010), and 

industry (Nationalgrid, 2013) shows that the transition will have significant impacts on existing gas 

and electricity networks, and will lead to the emergence of new energy carrier systems such as 

district heating and cooling and potentially new infrastructure to support the  use of hydrogen 

(DECC, 2013). The transition is likely to create a more distributed energy system where local energy 

generation plays a much greater role in energy supply (RTP Engine Room, 2015). 

The uptake of new energy supply systems is encouraged by different drivers: these can be classified 

as, 

(a) Policy and regulatory framework: 

Carbon reduction targets and local air quality policy directives have driven local 

authorities to impose strict regulations on cutting down emissions from the new build 

sector.  Combined heat and power (CHP) and district heating systems are used by project 

developers to achieve these regulatory targets.  

(b) Sector specific challenges:  

Decarbonising transport is a significant challenge. Electric vehicles and/or hydrogen 

fuelled vehicles are the only available options to improve local air quality levels and 

reduce the greenhouse gas emissions from this sector.  

(c) Financial: 

CHP offers an opportunity to increase security of energy supply and reduce energy costs 

by generating heat and power simultaneously.  In many instances the absence of a 

suitable heat demand is a barrier for the uptake of CHP units. Heat networks aggregate 

heat demands in a large area and thereby provides a heat sink for distributed CHP 

systems. Government support schemes encourage local authorities to consider district 

heating as a potential energy supply option (DECC, 2015). 

1.3 Integration of energy systems 

Traditionally, the different energy systems i.e. electricity, gas, district heating/cooling and hydrogen 

had relatively few interactions and were designed and operated independently of each other for the 

purpose of handling a single energy carrier. However, today, there is  significant interest in exploring 

the  synergies between energy networks  (e.g. Power to gas energy storage and Thermal stores 

providing demand response) and implementing such projects.  Interactions takes place through the 

conversion of energy between different energy carriers and its storage in order to provide services 

and ensure that each is managed in an optimal way. The numerous possible interactions between 

the various energy systems are shown in Figure 1.1. 
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Figure 1.1: Possible interactions between different energy carrier systems and integration of local renewables. 

The drivers for integration between various energy systems are discussed in detail in Chapter 2; in 

summary these are: 

a) Carbon emissions reduction  

b) Reduction of the use of primary energy  

c) Increase of the generation and utilisation of renewable energy  

d) Reduction/delay capital expenditure 

e) Provision of cost effective  flexibility in the electrical power system 

f) Opportunities for business innovation 

g) Increased reliability of the electrical power system (e.g. security of supply) 

h) Facilitation of low carbon sustainable districts and local governance of community projects 

Two practical examples of integration between different energy systems in real community scale 

energy supply schemes in the UK are shown in Figure 1.2.  

Figure 1.2a shows the integrated energy supply scheme at the University of Warwick. Four different 

energy carrier networks operate to supply the multi-energy demand i.e. electricity, natural gas, 

district heating and cooling. The different systems are interconnected through, 

(a) natural gas fired CHP units simultaneously supplying  electricity and heat  

(b) gas-fired boilers producing heat to supply the district heating network 

(c) absorption chillers producing chilled water by consuming heat from the district heating 

network 

(d) electric chillers producing chilled water by consuming electricity 

Figure 1.2b shows the renewable electricity-hydrogen combined energy system at Levenmouth, 

Scotland. The proposed project is to demonstrate the operation of renewable energy technologies (a 

wind turbine and solar PV) integrated with an electricity and hydrogen energy system for supplying 

electrical energy to buildings, energy storage using hydrogen and fuel for hydrogen vehicles. The 

electricity and hydrogen energy systems are interconnected through,  
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(a) An electrolyzer that converts electricity from renewable sources to hydrogen in order to 

supply  transport fuel and to store renewable energy   

(b) A fuel cell that converts hydrogen to electricity during periods of high electricity demand  

  

 

(a) Integrated energy supply system at University of Warwick (b) Green electricity-hydrogen combined energy system 

Figure 1.2: Integration between different energy systems (a) An integrated electricity, natural gas, district heating and 
district cooling system at the University of Warwick (b) A renewable electricity supply system combined with hydrogen 
storage, balancing and transport system at Levenmouth, Scotland 

1.4 Scope and objective of the paper 

This position paper reviews potential techno-economic benefits, the landscape of research activities, 

analysis methods, research gaps and opportunities in the planning, design and operation of an 

integrated energy system.  A systems approach to energy systems integration (IET, 2014) can enable 

synergies between energy system to be realised, and conflicts avoided.   

The review takes a UK centric approach, however most of the material is applicable to integrated 

energy systems worldwide.  The energy vectors (and their integration) considered in this review 

study are limited to electricity, natural gas, district heating, district cooling and hydrogen. 
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2. Benefits of integrating energy systems 

The benefits of integrating energy systems were identified from a review of the literature. Figure 2.1 

shows the benefits discussed in this paper.  

1. Carbon emissions reduction by increasing whole system energy efficiency 

2. Increase the generation and utilisation of renewable energy  

3. Reduce capital expenditure by increasing asset utilisation and reduce/delay network reinforcements

4. Cost effective provision of flexibility in the electrical power system

5. Opportunities for business innovation

6. Increased reliability of the electrical power system
 

Figure 2.1: Benefits of integrated energy systems 

2.1 Carbon emissions reduction by increasing whole system energy efficiency  

A primary driver for the integration of different energy carrier networks is to be able to reduce 

emissions (and increase energy efficiency) through,  

a) co-generation of electricity and heat  

b) optimising (in terms of carbon emission and/or costs) the operation of the overall energy 

system. 

  

2.1.1 Increasing energy efficiency through co- generation   

Combined heat and power (CHP) or co-generation systems are widely recognised to have a high 

potential for improving energy and exergy1 efficiency compared to the separate production of 

energy carriers (Horlock, 1987). Figure 2.2 shows an example of energy and carbon emissions savings 

when supplying a specified electricity and heat demand through a co-generation system compared 

to the separate production of electricity in a thermal power plant and heat in a gas fired boiler.   

 

Figure 2.2: Example of energy and carbon emissions saving through cogeneration of electricity and heat  
(natural gas is assumed as the fuel input in all systems).  A carbon intensity of 0.23 kgCO2/kWh for natural gas is 
assumed; electrical efficiency of thermal generator = 55%; thermal efficiency of gas fired boiler = 85%; electrical 
efficiency of CHP = 38%; thermal efficiency of CHP = 45% (Horlock, 1987)) 

                                                           
1
 Exergy is a concept from the 2

nd
 law of thermodynamics used to characterize the quality of different energy 

flows. For example, it gauges that the quality of energy in 1kJ of electricity is greater than 1kJ of energy in a 
waste heat stream (at low temperature). 



6 
 

In thermal power plants for separate electricity generation, a large fraction of the fuel energy is 

released to the natural environment, mainly through the flue gas and condenser cooling systems 

(45% in the example above of a CCGT unit). Co-generation systems capture a large part of the 

otherwise wasted energy in order to supply a local industrial/commercial heat load, or to be used as 

hot water for district heating. The above example shows that if the use of natural gas is assumed 

19% less fuel energy (compared to separate production) is required by a co-generation system to 

meet the same electricity and heat loads. In the example, the same percentage reduction of 

emissions (19%) is achieved. A more general discussion on the relationship between fuels, energy 

savings and emissions reduction through poly-generation systems is available in (Chicco and 

Mancarella, 2008b). A method for evaluating the value of cogeneration considering the dynamic 

interactions between co-generation and the centralized electric system was proposed in (Voorspools 

and Haeseleer, 2003) The co-generation concept is extended as tri-generation or multi-generation 

according to a number of different energy vectors produced from a single source of fuel. For 

example, combined cooling, heat and power systems (CCHP) use the heat recovered from electricity 

generation to supply a heat load and also drive an absorption chiller2 for cooling. A number of 

research studies have shown the potential for increasing the energy efficiency of supplying 

electricity, heat and cooling loads by using CCHP plants (Chicco and Mancarella, 2009, Rezaie and 

Rosen, 2012, Chicco and Mancarella, 2008a, Mancarella and Chicco, 2008).  

In many situations the development of multi-generation systems is hindered by the absence of a 

suitable load (or market) for some of the different energy products. Multi-energy networks allow the 

creation of markets by aggregating various energy demands scattered over a wide geographical 

area. Access to a reliable multi-energy load improves the financial viability and thereby supports the 

increased uptake of co-generation systems.  

2.1.2 Increasing overall energy system efficiency through optimising operation 

An integrated system of multi-energy supply networks can use multiple paths to deliver different 

forms of energy.  

For example, Figure 2.3 illustrates the energy supply system at the University of Warwick which 

comprises electricity, district heating and district cooling networks interconnected through gas fired 

CHP units, gas fired heat only boilers, electric chillers and heat driven absorption chillers.  

 

Figure 2.3: Schematic of the integrated energy supply system at University of Warwick 

                                                           
2
 An absorption chiller is a device that uses heat energy to drive the refrigeration cycle for cooling 

supply.  
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The multiple supply paths to deliver the different forms of energy loads are, 

a) electricity load - through importing electricity from the external grid or from the gas fired 

CHP generation 

b) heat load – through the gas fired CHP generation or gas fired heat only boilers 

c) cooling load – through electric chillers or heat driven absorption chillers (connected to the 

district heating network) 

Carbon emissions depend on the amount of electricity and gas consumed from the external grids 

and the carbon intensity of grid electricity at the time of use. The required amount of electricity and 

gas from external grids depends on the efficiencies of conversion between different energy carriers. 

Due to the variations of the carbon intensity of grid electricity and the time-varying nature of 

different energy loads, multiple supply paths provide an opportunity, to optimise the operation of 

the energy system, with an objective to reduce carbon emissions. Optimal operation can be 

encouraged by suitable market instruments (e.g. a carbon tax) that encourages a system wide 

approach to reducing carbon emissions. 

2.2 Increase the generation and utilisation of renewable energy 

Progress in developing renewable generation systems is hindered by the lack of cost-effective 

energy storage capacity and the technical constraints of the existing electricity network (DECC, 

2012a). For example, an increase in renewable generation connections may violate the voltage and 

thermal limits of the electrical network and its components. As a result, when providing a 

connection, electricity distribution network operators (DNO’s) often put forward conditions in the 

form of:  

a) Limiting the capacity of generation  that can be connected 

b) Contracts that allow tripping/curtailment of the renewable plant in case of network 

congestion 

c) Charging any reinforcement costs of the network to the developer of renewable plant 

These conditions are discouraging for a developer who wishes to maximize the economic potential 

of the investment. They also limit renewable energy generation from sites with the best resource. 

 

There is a potential to increase the generation and utilisation of renewable energy by integrating the 

electricity network with other energy carriers (Niemi et al., 2012). For example consider the simple 

schematic of an integrated electricity and hydrogen energy system shown in Figure 2.4.  

 

Figure 2.4: Schematic of an integrated electricity and hydrogen energy system for increasing installed capacity of 
renewable plant 
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Figure 2.4 shows a renewable generator and an electrolyzer3 connected to a constrained part of the 

electrical grid. The electrolyzer can be operated to avoid or reduce violations of the grid constraint. 

For example the power flow through the congested circuit can be regulated by adjusting the 

electricity consumption of the electrolyzer. The hydrogen generated is then stored and reconverted 

to electrical energy or used to supply an alternative use directly (e.g. for transport). This 

arrangement allows a renewable power plant rated above the grid connection capacity to be 

installed and thereby captures a larger amount of renewable energy over the year (see Figure 2.5). 

 

Figure 2.5: The potential for increased renewable energy capture and converting otherwise curtailed energy to hydrogen 
 (Wind data from 23/04/09 to 26/04/09 at a site in mid-Wales) 

Figure 2.5 shows a 4-day simulation of the electrical power generated by two different wind turbine 

installations at a site in mid-Wales. Assuming the DNO specified export capacity at the grid 

connection point is 600kVA, the maximum capacity of wind turbines in a typical installation is 

600kWp. If no other barriers exist (e.g. space, environmental etc.), a larger capacity of wind turbines 

(900kWp in the example) allows more renewable electricity to be generated (red shaded area in 

Figure 2.5). The 900kWp installation exceeds the grid connection capacity several times during the 4 

day period. The excess energy is then converted to a secondary energy vector (hydrogen) and 

utilised. This allows the electrical grid to absorb a larger quantity of renewable energy while adding 

an economic value to the energy that would otherwise be curtailed.  

A number of research studies have investigated the potential to increase renewable generation by 

integrating energy systems. The use of electrically heated thermal storage is common in Denmark 

(Meibom et al., 2013) and electrolyzers are being trialled in a number of demonstration projects 

across Europe (Gahleitner, 2013). The opportunities for converting excess renewable electricity to a 

different energy vector only exist due to the present high cost of electrical energy storage at grid 

scale. The financial attractiveness of using thermal demand and/or electrolyzers for congestion 

management has yet to be demonstrated as, depending on the costs of equipment and fuel, it may 

remain more cost-effective to constrain the renewable generation.  

                                                           
3
 An electrolyzer produces hydrogen and oxygen from electrical current  and a pure water supply through an 

electrochemical process. 
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2.3 Reduce capital expenditure 

Integration of energy systems can provide additional energy supply capacity (e.g. electricity 

distribution capacity, energy storage capacity). Investments in upgrading energy infrastructure can 

be reduced or deferred by 

a) Increasing existing asset utilization 

b) Reduce/delay network reinforcements 

2.3.1 Increasing asset utilization  

Asset utilization in energy systems is increased by delivering a larger quantity of energy during their 

functional life time. The economic advantages of increased asset utilization are: 

a) The cost to own equipment is distributed across a larger number of units of energy  

b) The payback period of investing in those assets will reduce, which reduces the investment 

risk 

This can be achieved in integrated energy systems through, 

a) Sharing energy storage: accessing low cost energy storage available in different energy 

systems 

b) Sharing power generation assets: co-generation of energy vectors  

c) Sharing energy transport assets: Shifting energy demand between different energy carrier 

networks 

 

(A) Sharing energy storage  

Periods with excess renewable energy are expected to grow as the UK continues to invest 

simultaneously in (inflexible) nuclear power generation and intermittent renewables such as wind 

and solar generation (Strbac et al., 2012). As a result the value of energy storage is expected to 

increase. However, to date, the cost of grid scale electricity storage is significantly higher than that at 

which mass deployment can occur4. Therefore, it remains more cost-effective to curtail renewable 

generation when electricity supply exceeds demand (Qadrdan et al., 2015).  

On the other hand, energy storage in chemical (natural gas, hydrogen) and thermal energy systems 

are well developed technologies and relatively inexpensive. Through integration of energy systems, 

electricity networks can access the energy storage capacity available in other already built energy 

systems (Vandewalle et al., 2012b). For example, many developed countries have an established gas 

grid and have access to its large energy storage capacity. GB’s natural gas network has a large energy 

storage capacity due to its linepack mechanism5 and existing gas storage  that can be utilised to 

store the energy from of excess electrical generation from renewables.  

As shown in Figure 2.6, the excess electricity from renewables can be converted to hydrogen and/or 

synthetic methane and injected in the natural gas grid for storage (termed power to gas) (Grond et 

al., 2013). Existing gas fired power generators allow the reconversion of gaseous energy to 

electricity, allowing the renewable energy to be time-shifted.  Alternatively, hydrogen and/or 

synthetic methane can be used as a CO2 neutral fuel to substitute natural gas in the gas grid and 

reduce reliance on fuel imports (ITMPower, 2013).  

 

                                                           
4
 Pumped hydro is the only economic form of storing grid scale amounts of excess electricity to date [3] 

5
 Line packing is the process of compressing a larger quantity of gas into a pipeline using an increase in 

pressure 
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Figure 2.6: Schematic of a power to gas energy storage system (Patel, 2012) 

Using spare capacity in the gas network for electricity storage is a potentially attractive solution to 

the problem of storing excess renewable energy. Germany is pioneering the development of power 

to gas energy storage systems through several demonstration and commercial projects (Patel, 2012).  

The main drawback of this type of storage solution is the relatively low round trip efficiency6 (around 

35% for power to gas systems compared to above 90% for battery storage) (Rastetter, 2013).  

 

(B) Sharing generation assets  

Generation assets can be shared between different energy systems through co-generation of 

electricity and useful heat. In the case of tri-generation, the co-generation system can be shared by 

electricity, heat and cooling systems.  

For example an opportunity exists to use co-generation assets to provide balancing capacity to 

multiple energy systems. At present, they are designed with the aim of supplying a specific heat 

load. The electricity generated is used to offset grid imports and any excess is exported to the grid. 

Due to the relatively small capacity as individual units (less than 10MW) and their primarily role in 

heat load supply, CHP plants are typically not considered reliable sources of electrical power to 

provide energy to the grid when needed. However, with the use of thermal storage, aggregators7 

and co-ordinated controls, CHP plants can potentially provide balancing services to the electrical grid 

when required. This can be achieved by, decoupling the time of heat generation from heat demand 

(using heat storage) and engaging CHP plants in the electricity capacity market actively (Kitapbayev 

et al., 2014). 

(C) Increase utilisation of network assets 

The utilisation of network assets can be increased by shifting complementary loads between energy 

carrier networks. For example, the annual space heating and cooling demand profiles (particularly in 

northern climates) display a complementary seasonal variation (Frederiksen and Werner, 2013). The 

assets designed for the supply of heat or cooling demand alone are underutilized. This is a particular 

                                                           
6
 Round-trip efficiency is the amount of energy available when an energy storage system is discharged as a 

fraction of the energy used for charging. It is a measure of inefficiency of the energy storage system.  
7
 In order to meet the minimum volume requirements of providing balancing services to the electricity system 

operator, smaller sites may be aggregated together with other sites  
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challenge when considering the large scale investment required in developing district 

heating/cooling networks.  

Network utilization can be increased by combining complementary demand profiles of space heating 

and cooling to be supplied through a single energy carrier network. This can be achieved by shifting 

the space cooling load to a district heating network by using absorption chillers (see Figure 2.3). The 

use of absorption chillers will increase the district heating network load during summer periods 

(when space heating demand is low). This would increase the average annual energy flow through 

heat network assets and improve its economic viability for investment. 

2.3.2 Reduce/delay electricity network reinforcements  

 

In several parts of GB, the electricity transmission and distribution system is congested due to power 

flows reaching network design capacities. For example, on occasion, wind generation in Scotland 

needs to be constrained (Qadrdan et al., 2015). The development of renewable generation and the 

electrification of heating and transport8 (increasing network load) requires reinforcement of the 

congested areas of the network to allow increased power flows through its circuits.  

Integrating the constrained parts of the electricity system with other established energy systems 

provide an opportunity to manage congestion and an alternative means of transporting electricity. 

For example, Figure 2.7 is a simple schematic of a potential ‘power to gas’ arrangement to manage 

congestion in the electricity circuit and increase energy transport capacity in this route.  

Electrolyzer CCGT

Congested electrical circuit

G

Gas network

Electricity network

 
Figure 2.7: A schematic of the 'power to gas' concept for sharing energy transport capacity 

During periods when the electrical circuit is congested the electrolyzer absorbs the excess power 

and produce hydrogen or synthetic methane. The hydrogen or synthetic methane can then be 

injected in the gas grid to be transported and reconverted to electricity through gas fired power 

generation. This allows the electricity power flow to bypass the congested circuit. The main 

drawback in the above solution is again the low round trip efficiency as discussed in section 2.2. 

Several studies have investigated the feasibility of using the GB natural gas infrastructure for storage 

and transport of electricity in a future high wind scenario (Qadrdan et al., 2015, Clegg and 

Mancarella, 2015, Clegg and Mancarella, 2016). 

2.4 Cost effective provision of flexibility in the electrical power system  

The flexibility of a power system is reflected in its ability to maintain electricity supplies of the 

required quality in the event of sudden and large variations of generation or demand. For example, 

to manage generation and demand variations in the short term, quick response generation plants 

are needed while for longer term variations the ability to store a large quantity of energy is required.  

                                                           
8
 It is expected that the level of electricity consumption will increase due to the expected electrification of heat 

and transport demand  
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Flexibility is required increasingly in electricity networks due to the stochastic nature of renewable 

power that creates discrepancies between generation and demand. Figure 2.7 shows the variation in 

net electrical load which is defined as the difference between total electricity demand and wind 

power generation. This difference needs to be supplied using dispatchable plant. A large share of 

wind generation in the electrical power system causes the following to occur. 

 Steeper ramping up and down of the net load will lead to higher rates of increase or 

decrease in dispatchable power generation.  

 During periods of high wind power generation, the dispatchable generators need to turn 

down their output to low levels but remain available to ramp up quickly when required. 

 The net load profile displays peak demands which are short in duration.  This results in fewer 

operating hours for dispatchable plant, affecting cost recovery. 

 

Figure 2.7: Variation in electricity load and renewable generation (Example from utility in the 
western U.S.)(21st Century Power Partnership, 2014)  

Integration with other energy systems can provide flexibility to the electrical power system by, 

 shifting electrical load between different energy systems  

 providing access to a large pool of smaller sized quick response generation plant  

The following example is used to illustrate flexibility provision in the electrical power system through 

integrated energy systems. Figure 2.8 shows multiple, integrated energy systems connected to the 

main electricity and gas grids. In each sub-system, the electrical load is supplied through the import 

of electricity from the main grid and/or generation from the local gas fired CHP. The heating load is 

met through a heat network supplied by the CHP coupled with a heat storage system. The cooling 

load is met through a chilled water network supplied from electricity driven chillers and/or heat 

driven absorption chillers coupled with a cold storage system. 
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Figure 2.8: Schematic of multiple integrated energy systems connected to electricity and gas grids 

In the event of a sudden increase in renewable generation coinciding with a low electricity load 

(steep ramp down in net load), the gas fired CHP unit reduces its generation output to balance the 

electrical power system. At the same time electric chillers are switched on (if switched off) to 

increase load. The heat and cold storage units allow the CHP unit and chiller operation to be 

decoupled from time of demand. Similarly, during a sudden loss of power generation in the main 

grid (steep ramp up in net load) the small scale  gas fired CHP units increase generation rapidly. 

Simultaneously, the cooling load is shifted to the heat driven absorption chillers so reducing 

electrical load. On both these occasions, provision of flexibility to the electrical power system is 

achieved without any supply disruption to the final consumer.  

The development of these flexibility services depends on an adequate communication and control 

infrastructure which for such small scale units may be expensive.  The role of aggregators will be 

important to manage and provide a sufficiently sized response to the power system operator.  

2.5 Opportunities for business innovation  

Integration of energy systems creates new opportunities for partnerships between traditionally 

separate energy businesses. For example, the integration between electricity and hydrogen energy 

systems through power to gas systems could facilitate partnerships between the electricity and 

transport sectors and the uptake of hydrogen vehicles (Rastetter, 2013, Cipriani et al., 2013). 

Integration of systems would enable better co-ordination and planning of technical and commercial 

processes. For example, a fleet of hydrogen vehicles could plan its re-fuelling strategy in a way that 

complements power system operation. Potentially, this would lead to an overall cost reduction in 

power generation and supply. A large number of demonstration and commercial projects are 

investigating the business opportunities in integrating energy systems processes.  

Integration of energy supply systems creates new opportunities for businesses to diversify products 

and services in the energy sector. Diversification of products/services provides an additional income 

or lowering the average cost for a firm to produce two or more products. For example, consider a 

conventional CHP plant that is heat demand driven. Through better co-ordinated control combined 

with heat storage, the CHP plant can actively participate in electricity load/demand balancing 

(Cardell, 2007). This would provide an additional revenue stream for the CHP owner and flexibility 
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for the power system operator. A business case analysis of flexible multi-generation options was 

investigated in (Capuder and Mancarella, 2014b). 

Integration of energy systems can also assist developing new markets in the energy sector. For 

example, the market for hydrogen can benefit from the numerous opportunities for hydrogen 

generation and consumption in an integrated energy system (Rastetter, 2013). New business models 

and innovative processes can be introduced to take advantage of the emerging markets. This would 

potentially increase market competition across different energy sectors bringing value to the final 

consumer (Good et al., 2016). 

2.6 Increase reliability of the electrical power system 

Typically, energy supply systems are built with a certain level of redundancy (both generation and 

transport) to ensure reliable supply of energy. The interconnection of different energy systems 

makes it possible to supply a load from several different paths. For example, gas fired power 

generation establishes a connection between the electricity and gas network and when managed 

properly can improve the reliability and availability of electricity supply. However, the loads from the 

electrical network will migrate to the gas network, resulting in a more intensively used gas network. 

Reliability considerations in integrated energy systems were investigated in (Koeppel, 2007).  

Another method to increase reliability is to enable parts of the electrical system to operate in 

islanded mode during events like faults and voltage fluctuations in the main grid. These sections of 

the network are able to increase the penetration of renewable resources and improve reliability 

through distributed local control in connection with the main grid or in an intentional islanded mode 

during supply interruptions. Multi-energy microgrids are gaining research interest due to the 

number of ways to balance multi energy supply and demand (Kyriakarakos et al., 2011, Kyriakarakos 

et al., 2013).  

However, increased interdependency between energy systems can create a system that is more 

susceptible to cascaded failures (Rinaldi et al., 2001, Almassalkhi and Hiskens, 2012). Detailed 

modelling and analysis is required to identify the advantages and disadvantages of certain 

interconnections between networks.  
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3. Landscape of research activities 

The benefits of integrating energy systems have attracted interest from academia, industry and 

policy makers in different parts of the world. For example, the European Commission’s Strategic 

Energy Technology plan (SET plan) (European Commission, 2015b) highlights the importance of 

interoperability between different energy networks and a holistic approach to energy system 

optimisation. In 2013, the US Department of Energy’s National Renewable Energy Laboratory (NREL) 

opened an Energy Systems Integration Facility (ESIF) at a cost of US$135 million (Kroposki et al., 

2012). In 2013, IEEE Power and Energy Magazine published a special issue in energy systems 

integration (IEEE, 2013). The Journal of Applied Energy has recently commissioned two special issues 

titled ‘Integrated Energy Systems’ dedicated to this particular area of research (Applied Energy, 

2015).   

A number of titles are used to describe the area such as ‘energy systems integration, ‘multi-energy -

carrier networks’, ‘multi-vector energy systems’ and the ‘energy internet’.  

3.1 UK research landscape 

In the UK, early interest in studying interdependencies of different energy systems was due to its 

interconnected electricity and natural gas systems. However, the challenges of decarbonising heat, 

cooling and transport have recently fuelled an interest in the interactions between different energy 

systems (DECC, 2013).  

Contrary to its earlier emphasis on the electrification of heat (DECC, 2012b), recent UK Government 

strategy promotes heat networks, particularly in urban areas. The Department of Energy and Climate 

Change (DECC) published the policy papers ‘Future of heating’ (DECC, 2013) and the ‘Community 

energy strategy’ (DECC, 2014a) which emphasise support for district heating.  It is now expected that 

the gas network will continue to play an important role during the transition to a low carbon energy 

system with an increased use of renewable gas (e.g. biogas, synthetic methane). The use of 

hydrogen as an energy vector for industrial heating and transport has also been highlighted. 

The UK has a number of funding mechanisms supporting RD&D in integrated multi-energy systems 

from an early stage through to demonstration. Figure 3.1 shows the main funding organisations and 

their stages of engagement. 
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Figure 2: UK Integrated energy systems research funding programmes from academic research through to 
demonstration 
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3.1.1 Academic research in the UK 

The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding 

academic research in engineering and physical sciences. Details of EPSRC funded research projects 

that investigate interactions and interdependencies between different energy systems are provided 

in Appendix 1. Several of the main projects are listed below. 

The UK Energy Research Centre (UKERC) funded by the Research Councils UK (RCUK) Energy 

programme carried out pioneering work on analysing the interdependencies between GB’s 

electricity and gas systems (UKERC, 2014b). A modelling tool for the optimisation of GB’s combined 

gas and electricity network operation (CGEN) was developed through UKERC funding (Chaudry et al., 

2008). Ongoing research programmes at UKERC investigates the interactions, synergies and potential 

conflicts between electricity, hydrogen and heat vectors at multiple scales of the energy system (i.e. 

local, national and European). 

The HubNet research programme funded by the EPSRC (HubNET, 2015) includes a dedicated 

research theme for multi-energy systems. The theme aims at developing new modelling and analysis 

techniques for optimal coordination and planning of integrated energy systems.  

The EPSRC Grand Challenge programme Transforming the Top and Tail investigates interactions 

between different energy vectors at multiple scales of the energy system. For example, the role of 

European gas supplies in the UK’s energy security is being investigated. HubNet and Transforming 

the Top and Tail projects are collaborations between multiple UK universities and industrial partners. 

EPSRC recently funded a research programme titled MY-STORE (Multi-energy storage-social, techno-

economic, regulatory and environmental assessment under uncertainty) to investigate the technical, 

economic, regulatory and environmental performance of multiple forms of energy storage. The 

project expects to examine opportunities in integrated energy systems to provide multi-energy 

storage options. 

Several EPSRC funded whole energy system research consortiums such as ITRC (ITRC, 2015) and 

WholeSEM (wholeSEM, 2015) are investigating the interaction and interdependencies of national 

infrastructure such as electricity, gas, transport, water, waste and ICT using detailed models. 

3.1.2 Applied Research in the UK 

In the UK, the Energy Technologies Institute (ETI) and InnovateUK (previously the Technology 

Strategy Board) bring together academia, industry and the Government to accelerate the 

development of low carbon technologies through investment and targeted innovation calls. 

Integrated energy systems are emerging as a strategic area of interest in both these organizations. 

Energy Technologies Institute (ETI) 

ETI is a public-private partnership between global energy and engineering companies9 and the UK 

Government (ETI, 2015). Several technology programmes in ETI (Distributed Energy, Smart Systems 

and Heat, Energy Storage and Distribution) have investigated the role of the electricity, gas and heat 

sectors in the low carbon transition.   

                                                           
9
 The companies part funding ETI are BP, Caterpillar, EDF, Rolls Royce and Shell 
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The Smart Systems and Heat programme (SSH) investigates the interactions between different 

energy vectors and system components in the optimal generation and distribution of heat (ETI, 

2014). The SSH programme has recently transitioned to the Innovate UK’s Energy Systems Catapult 

(discussed below). A project under the Energy Storage and Distributed Energy programme titled ‘Gas 

vector pathways development’ investigates implications and challenges of transporting novel gases 

(e.g. hydrogen and synthetic natural gas) through the gas grid. 

The Energy System Modelling Environment (ESME) program developed at ETI is a powerful energy 

system model for the UK (Heaton, 2014).  Its whole system scope includes all major flows of energy 

and interactions between different energy sectors. ESME has been used in a number of research 

projects including UKERC’s ‘Energy strategies under uncertainty’(UKERC, 2014a, Pye et al., 2015). 

InnovateUK 

InnovateUK brings together academia and industry to realise opportunities in science and 

technology through targeted funding competitions. It is sponsored by the Department for Business, 

Innovation and Skills.  

The Energy Systems Catapult was set up by InnovateUK to develop a network of specialist 

companies, and serve as an independent source of specialist knowledge on the transformation of 

heat, gas and electricity networks (InnovateUK, 2015a). The scope of the Energy Systems Catapult 

includes system design, interoperability, and integration of ICT, data analytics and storage as well as 

the integration of electricity, gas and heat networks. The Energy Systems Catapult is to deliver Phase 

one of the ETI’s SSH programme as its first major project for the energy industry. Phase one of the 

project is to work with three local authorities in the UK (Bridgend, Manchester and Newcastle) to 

realise local area energy plans.   

The following are some of the InnovateUK funding competitions that considered innovation in 

integrated energy systems within its scope.  

 Localised energy systems – a cross sector approach (2014): The competition promoted the 

integration of different energy systems, at a scale from clusters of buildings up to whole 

districts. The details of projects funded are available at (InnovateUK, 2014) 

 Integrated supply chains for energy systems (2015): The competition invested in innovative 

projects that addressed the challenges in integration of new energy supply and demand side 

technologies. The details of projects funded are available at (InnovateUK, 2015b) 

 Cities integrated by design – (2015/16): The competition intends to invest in technical 

feasibility studies that examine integrating new or retrofit infrastructure projects into other 

urban systems in a beneficial way. 

 Energy catalyst – (2015/16): The competition funds projects from early concept stage 

through to pre-commercial technology validation that incorporates integrated whole-system 

approaches. The scope of the competition includes electricity and heat networks and their 

systems integration as a specific theme. 

3.1.3 Demonstration projects in the UK 

In the UK, demonstration projects traditionally demonstrate the benefits of innovation to an 

individual energy sector (i.e. electricity, heat or transport). This is largely due to the existing 

regulatory and market structure that defines clear boundaries between each energy sector. For 
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example, Ofgem’s10 Network Innovation Competitions (NIC) (Ofgem, 2015) fund electricity and gas 

network companies independently to deliver innovative projects that can demonstrate benefits to 

its customers. DECC’s Heat Network Delivery Unit (DECC, 2015) provides grant funding and guidance 

to local authorities to realise heat network schemes.  

Nevertheless, a number of demonstration projects that consider multiple energy systems and their 

interactions have been developed through community initiatives. Support from European regional 

funding programmes and the Devolved Administrations is evident in the development of 

demonstration projects. 

3.2 European research  

The European Commissions’ (EC) research and innovation programme Horizon 2020, includes a 

number of funding calls related to the integration of energy systems. Details of the Horizon 2020 

work programme for 2016-2017 is available at (European Commission, 2015a). For example, the call 

for low carbon energy includes a competition to promote technologies, tools and/or services that 

demonstrate synergies between energy networks (LCE-01-2016-2017).  

INSIGHT_E, an energy think tank which informs the EC, published a policy briefing paper in 2014 on 

the synergies of integrating energy networks for electricity, gas, heating and cooling (Brodecki et al., 

2014).  

The European Energy Research Alliance (EERA) has initiated the development of a Joint Programme11 

focused on energy systems integration (EERA, 2015). The Programme once operational will bring 

together research organisations in European countries for shared priority setting and collaboration 

on research projects.   

The research programme ‘Vision of future energy networks (VoFEN)’ led by ETH-Zurich was a 

pioneering project in developing frameworks and analysis methods in integrated multi-carrier 

energy systems (Favre-Perrod et al., 2005). The concept of an energy hub was developed and used in 

methods for economic dispatch, optimal power flow and reliability analysis in integrated energy 

systems.  

Scandinavian countries such as Sweden and Denmark have advanced RD&D in integrated energy 

systems. They are extensive users of co-generation systems coupled to district heating networks. 

Denmark for example, has approximately 60% of its heat supplied through district heating systems, a 

high proportion of wind power (over 30% wind energy on an annual energy balance) and a 

nationwide natural gas system. The status of RD&D in Denmark is discussed in (Meibom et al., 2013). 

Germany is undertaking research and development of power-to-gas energy systems. They are driven 

by the need for balancing high levels of renewable generation and a demand for electricity storage 

media. A number of power-to-gas demonstration plants are being developed across Germany for 

various applications as shown in (European Power to Gas, 2015).  

                                                           
10

 Office of gas and electricity markets 
11 There are 15 EERA Joint Programmes (JP’s) established in a wide range of energy research fields. 

Joint Programmes are aligned with the priorities defined in the SET-Plan for low carbon technology 

development.  
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3.3 Other activities 

The International Institute for Energy Systems Integration (iiESI) was established as a global institute 

aimed at supporting education, internships and collaboration opportunities in this research area. 

This was an initiative sponsored by a group of US and European entities including NREL, Pacific 

Northwest National Laboratory, the Electric Power Research Institute, University College Dublin and 

Technical University of Denmark. Several educational workshops have been held in the USA and 

Europe to address concepts of energy systems integration from technical, market and regulatory 

perspectives. The workshop programmes and presentations from speakers are available at (iiESI, 

2015a). The iiESI also organized a workshop on the key research challenges of energy systems 

integration in March 2015. The workshop brought together an experienced group of international 

researchers with a diverse range of expertise. Minutes from the workshop are available at (iiESI, 

2015b).  

NREL’s Energy Systems Integration Facility is pursuing research and development that considers 

interactions between electricity, thermal, fuel, data and information networks (NREL, 2015a).  A 

white paper was published by NREL in 2012 (Kroposki et al., 2012). The Energy Systems Integration 

Facility (ESIF) at NREL houses a hardware-in-the-loop system, electrical power system simulator, a 

thermal distribution system, fuel distribution system, SCADA system and facilities for 

interconnection and systems integration testing. Details of the facilities at ESIF are available at 

(NREL, 2015b). 

The International Energy Agency (IEA) published a report on the benefits of linking heat and 

electricity systems through co-generation and district heating and cooling systems. The report is 

available at (IEA, 2014). 

A presentation delivered at the HubNet Smart Grids Symposium 2015, provided an overview of the 

ongoing research programmes, their objectives and the demonstration activities in integrated 

energy systems in China. The presentation is available at (HubNET). Integrated energy systems have 

attracted significant interest in the Chinese government’s urban development drive with over 

£600million R&D funding in 2013.   
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4: Analysis of integrated energy systems 

The literature on the analysis of integrated energy systems can be categorised as the following 

types: 

f) coupled energy network modelling and simulation 

g) operation planning and control (e.g. optimization, demand response) 

h) techno-economic and environmental performance analysis  

i) design and expansion planning  

j) reliability analysis  

Table 4.1, provides examples of research questions in each of the areas of study. 

Table 4.1: Research questions in the analysis of integrated energy systems 

Problem type Example research questions Example studies 

Network modelling and 
simulation 

What is the steady state and dynamic behaviour of an 
integrated energy system under different operating 
conditions?  

(Liu, 2013, Xu et al., 
2015a) 

O
P

ER
A

TI
O

N
 &

 C
O

N
TR

O
L 

Operation 
optimization 

What is the optimal way to operate integrated 
energy systems to meet a particular objective of the 
overall energy system (e.g. cost minimization, CO2 
minimization)? 

(Geidl and Andersson, 
2007) 

Control 
How can the optimal control of integrated energy 
systems be achieved? 

(Xu et al., 2015c) 

Real time demand 
response and 
ancillary services 
provision 

What are the potential opportunities to participate in 
real-time demand response and ancillary service 
markets through integrating energy systems? 

(Mancarella and 
Chicco, 2013a) 

Interdependencies 
(Synergies/Conflicts) 

What are the operational interdependencies that 
may occur from the integration of energy systems? 

(Qadrdan et al., 2013) 
 

Performance  analysis 
What is the energy, economic and emissions 
performance of an integrated energy system? 

(Capuder and 
Mancarella, 2014a) 

D
ES

IG
N

 Green field design  
What is the most cost effective structure and sizing of 
the system components to meet the multi-energy 
demand? 

(Geidl and Andersson, 
2006) 

Expansion planning 
What is the optimal way to invest in the expansion of 
energy infrastructure considering the future multi-
energy demands? 

(Chaudry et al., 2014, 
Martinez Cesena et al., 
2015) 

Reliability of supply 
What is the expected reliability of supply in the event 
of a failure in an integrated energy system? 

(Koeppel and 
Andersson, 2009) 
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4.1 Integrated energy system modelling and simulation  

Traditionally, the modelling of energy networks and simulation is carried out for each energy carrier 

system independently. To understand the interactions between various energy systems and to 

design effective control strategies, integration of the different models of each energy system and 

simulations performed as a combined system are required.  

Integrated energy network modelling and simulation studies can be undertaken to investigate the 

steady-state and/or dynamic behaviour of the combined system.  

4.1.1 Steady state modelling and simulation of coupled energy systems 

Steady state modelling is undertaken to analyse a system when it is in a state of equilibrium (i.e. the 

operational parameters do not vary with time). For example, when the volume flow rate of gas 

through a gas pipe or electrical power flow through a circuit is in steady state the properties of gas 

flow (pressure) and electricity (voltage magnitude and angle) do not change in time.  

Several studies have investigated the integrated modelling and simulation of the electrical network 

coupled with other energy systems in steady-state. Integrated modelling and analysis of coupled 

electricity and gas networks in steady state was investigated in (Martinez-Mares and Fuerte-

Esquivel, 2012) . Combined modelling and analysis of coupled electricity and heat networks with CHP 

units and heat pumps was studied in (Liu, 2013). The simultaneous analysis of coupled electricity, 

gas and heat networks was investigated in (Abeysekera and Wu, 2015, Liu and Mancarella, 2015).   

4.1.2 Dynamic modelling and simulation of coupled energy systems 

The steady state assumption neglects the significant distinction to be made in the dynamic 

behaviour of coupling components and different energy carrier types. For example, gas and thermal 

energy systems have much slower travelling speeds of energy and a larger storage capacity within 

the transport infrastructure compared to electricity. Dynamic models are important to understand 

the interactions between different systems and to characterise the propagation of transients from 

one system to another during normal and abnormal operation. 

The integrated modelling and simulation of coupled energy systems considering their transient 

characteristics is an underdeveloped area of research. Pioneering work was carried out in (Xu et al., 

2015a) where dynamic models of coupling components (microturbines and electricity/heat storage) 

and energy carriers were used to analyse the interactions between electricity and natural gas 

networks in a microgrid.  

4.2 Operation and control of the integrated energy system 

Similar to network modelling and simulation, operation analyses are normally carried out 

independently for each energy carrier system. Increasing interactions and interdependencies 

between different energy systems require new methods of analyses to ensure reliable and efficient 

operation of the integrated energy system. The different types of operation analyses undertaken in 

integrated energy systems literature can be categorised as, 

 operation scheduling/optimization  

 control of integrated energy systems 

 flexibility provision (real time demand response and ancillary services) 

 interdependencies analyses 
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4.2.1 Operation scheduling/optimization  

Operation scheduling practices, planning timeframes and modelling tools used for operation 

optimization vary in different energy systems. For example, the electricity sector uses a half hour 

balancing period while the gas transmission system typically uses a 24 hour balancing period 

(Nationalgrid, 2008).    

A number of studies examine the extension of traditional concepts used in the electrical power 

system to the operation scheduling of interconnected energy systems, such as, 

 Economic dispatch  

 Optimal power flow analysis  

 Unit commitment  

 

a) Economic dispatch in integrated energy systems 

A method for optimal power generation and energy conversion in a coupled multi-energy carrier 

system that uses the energy hub concept (see Figure 4.1) was introduced in (Geidl and Andersson, 

2008). It is a modification of the classical economic dispatch method in electrical power systems 

(Wood and Wollenberg, 1984) to account for the different energy demands (i.e. electricity, gas, heat 

and cooling) and energy conversion between different energy carrier systems. The method is widely 

used in research related to the operation and design optimization and control of integrated energy 

systems (Geidl and Andersson, 2006, Xu et al., 2015c). 

 

Figure 4.1: Example of an energy hub that contains a transformer, a microturbine, a heat exchanger, a furnace, an 
absorption chiller, a battery and a hot water storage (Geidl, 2007)  

b) Unit commitment in integrated energy systems 

The unit commitment problem in electrical power systems is to obtain the optimal start up and shut 

down schedule for electricity generation plant to satisfy the forecasted demand profile considering 

cost and constraints such as ramp rates and part load efficiencies (Wood and Wollenberg, 1984). In 

integrated energy systems context it refers to the optimal start-up and shut down of each plant 

component to supply multi-energy demand. The role of energy storage is an important 

consideration for unit commitment in integrated energy systems. 

A framework for the unit commitment problem that uses the energy hub concept was proposed in 

(Ramirez-Elizondo and Paap, 2009). The electricity and heat storage scheduling was investigated as 

part of the unit commitment problem in (Ramirez-Elizondo et al., 2010). A comparison of using an 
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energy or exergy based approach for unit commitment was undertaken in (Ramirez-Elizondo et al., 

2013).  

c) Optimal power flow in integrated energy systems 

In electrical power system studies, the optimal power flow (OPF) considers the generation dispatch 

that satisfies the constraints of the transmission system (e.g. operational voltage range, thermal 

limits of circuits and transformers) while minimising costs (Wood and Wollenberg, 1984). It 

combines the economic dispatch calculation with the steady state power flow equations and solves 

them simultaneously. OPF in an integrated energy system considers the supply of multi-energy 

demands using multiple energy sources and energy conversion units while complying with 

transmission system constraints in each energy carrier system (see Figure 4.2). 

 
 

 
Figure 4.2: System setup of three interconnected energy hubs (Arnold et al., 2010) 

The optimal power flow of coupled electricity and natural gas systems was investigated in 

(Seungwon et al., 2003). The mathematical model of this problem is an optimization problem where 

the objective function is to find operational set points of the different components that minimize the 

electricity and gas system operation cost and does not violate the electricity and gas transmission 

system constraints. A method for optimal power flow computation in coupled electricity, gas and 

heat systems was developed in (Geidl and Andersson, 2007) where they extend the power system 

OPF formulation and the Kuhn Tucket optimality conditions to the multi-carrier case.  

Multi time period optimal power flow investigates operation planning for a specified time horizon. A 

modelling framework for ‘time co-ordinated optimal power flow’ in the operation of natural gas and 

electrical infrastructures under the presence of distributed energy resources was presented in (Acha, 

2013),Due to the slow travel speeds and inherent storage characteristics in gas and thermal energy 

systems it is important to account for the dynamic behaviour of these energy systems in multi time 

period operation and planning. A method for optimal power flow and scheduling of combined 

electricity and natural gas systems with a transient model for natural gas flow was investigated in 

(Liu et al., 2011). Numerical examples were used to compare the solutions for steady-state and 

transient models of natural gas transmission systems. A multi-time period optimal power flow model 

was developed for the combined GB electricity and gas networks in (Chaudry et al., 2008) and (Clegg 

and Mancarella, 2014).  

Electricity Natural gas Heat flow
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4.2.2 Control of integrated energy systems 

The control of integrated energy systems can be categorised into centralized or distributed 

architectures. 

 

Figure 4.2: Illustration of a centralized and distributed control architecture (The solid arrows refer to communication of 
measurements/control actions between the physical system and the control unit(s). Information exchange between 
control units is indicated by dashed arrows) 

a) Centralized control  

A centralized controller measures variables in the multiple energy networks and determine actions 

for all actuators in the integrated energy system. In a centralized controller (see Figure 4.2) the 

optimization and control problems are solved by a single control agent.  

A centralized controller that uses a model predictive approach to control (MPC) integrated energy 

systems was investigated in (Arnold et al., 2009). The controller determines actions for each energy 

hub that gives the best performance based on steady state behaviour of the transmission system, 

the dynamics of storage devices and the load and price predictions.  

A hierarchical centralized control for an integrated energy microgrid was proposed in (Xu et al., 

2015b). The controller incorporates transient characteristics of natural gas flow and the dynamics of 

energy converters. In order to accommodate the dynamic characteristics of different systems the 

controller was decomposed into three sub-layers: slow, medium and fast. The control of actuators 

during fluctuations of renewable power, start-up of an air-conditioner and a microturbine, demand 

response and energy storage saturation was investigated. The study was extended to the control of 

an integrated community energy system in (Xu et al., 2015c). 

A strategy for the real time control of a coupled electricity and heat system was proposed in (Velez 

et al., 2011). The control strategy has a hierarchical, centralized architecture and aims to maintain 

the electricity system frequency at 50Hz and the temperature of district heating water supply at 

100oC. A scheduling framework was also presented in (Ramírez-Elizondo and Paap, 2015) where 

optimization is carried out for a period of 24 hours and the real-time control strategy compensates 

for the mismatches between the scheduled load and the real load by means of control actions. 

b) Distributed control  

Even though a centralized control architecture may give the best overall performance, practical and 

computational difficulties restricts it from being applied in practice. Distributed control architectures 

decompose the overall optimization and control problem in to sub-problems that are solved using 
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part-models of the system. However, a local control action to be taken depends on the actions of the 

surrounding controllers and needs to be managed in a coordinated way (see Figure 4.2) 

A distributed control system for integrated electricity and natural gas systems was proposed in 

(Arnold et al., 2008b). A system consisting of several interconnected energy hubs was controlled by 

their respective control agents. In (Arnold et al., 2010) the study was extended to investigate a 

distributed MPC scheme and the dynamics of storage devices in natural gas systems.  

Mean-variance portfolio theory and distributed control applied to a system of energy hubs 

interconnecting electricity and natural gas systems was investigated in (Arnold et al., 2008a). 

4.2.3 Analysis of the potential to provide flexibility to the electrical power system 

A framework to assess real-time demand response provision from the integration of energy systems 

was investigated in (Mancarella and Chicco, 2013b).  The concept of ‘electricity shifting potential’ 

was introduced as an indicator of the possible reduction of electricity flowing from the external grid 

to the integrated energy system (without interrupting user’s load). Demand response profitability 

maps were also introduced to visualize the benefits of electrical load shifting in the presence of 

incentives.  

In (Kitapbayev et al., 2014, Kitapbayev et al., 2013) a method for the optimal control of thermal 

storage coupled to CHP units in the presence of uncertain market prices and the value of thermal 

storage as a demand response enabler was investigated. 

The work on dynamic response provision in (Mancarella and Chicco, 2013b) was extended to analyse 

and quantify the benefits of providing ancillary services to the electricity network operator in 

(Mancarella and Chicco, 2013a). The concept of ‘ancillary services profitability maps’ were 

introduced to visualize how internal energy shifting potential in integrated energy systems can 

provide value through the provision of ancillary services.  

4.2.4 Interdependency analysis 

The operational interdependencies investigated in literature can be categorised as between the 

following energy systems, 

 electricity and gas  

 electricity and heat 

 electricity, gas and heat 

 

(a) Operational interdependencies between electricity and gas systems 

Today, the interdependencies between electricity and gas systems are primarily due to the 

increasing number of gas fired power generation units (e.g. CCGT). The impact of natural gas prices 

on electricity generation scheduling and the impact of natural gas infrastructure constraints on the 

operation of electrical power systems were investigated in (Shahidehpour et al., 2005).  The impact 

of wind variability on the GB gas and electricity supply was investigated in (Qadrdan et al., 2010) 

using a combined electricity and gas network OPF model. In (Qadrdan et al., 2014), novel operating 

strategies were recommended for the combined electricity and gas network in GB considering the 

uncertainty in wind power forecasts. Several studies have also investigated the impact of small scale 

gas fired power generation and electric vehicles on combined electric and gas distribution networks 

(Acha et al., 2010, Acha and Hernandez-Aramburo, 2008). Modelling of flexibility in the integrated 



26 
 

electricity and gas network in the presence of large scale penetration of renewable energy and 

different heating supply scenarios was investigated in (Clegg et al., 2016) 

Power to gas or the conversion of electricity to hydrogen (subsequently to synthetic methane if 

required) and using the gas infrastructure for the storage and transport of energy has gained 

significant interest in the recent years. A number of studies (Qadrdan et al., 2015, Clegg and 

Mancarella, 2015) have investigated the interdependencies introduced by power-to-gas units on the 

combined electricity and gas network operation in GB.  The application of power-to-gas for seasonal 

storage in gas networks was investigated in (Clegg, 2016b). 

(b) Operational interdependencies between electricity and heating systems 

The interdependencies between electricity and heating systems primarily occur at 

district/community level and are due to  

 combined production of electricity and heat in cogeneration systems 

 use of thermal storage to increase CHP flexibility and ancillary services provision 

 use of electric heating technologies (e.g. electric boilers) coupled with heating systems and 

thermal storage to provide demand response 

The operation and planning of co-generation considering the interactions between electricity and 

heat systems has been investigated extensively (Salgado and Pedrero, 2008). The potential 

interactions between electricity and heating systems due to the provision of demand response have 

been examined in (Houwing et al., 2011, Arteconi et al., 2012). Comparison of different electricity 

and heat supply options for community energy schemes with operation and planning from techno-

economic and local emissions perspectives was carried out in (Capuder et al., 2014). 

(c) Interdependencies between electricity, gas and district heating systems 

Combined heat and power units couple electricity, gas and district heating infrastructure. In (Liu and 

Mancarella, 2015), Sankey diagrams were used to illustrate the energy flows through the electricity, 

gas and district heating systems under several scenarios of CHP and heat pump penetration. The 

study also investigated the impact of different technologies on the steady state operational 

parameters of each network. The impact on district heating and natural gas grids when aiming 

towards electricity grid decarbonisation were investigated in (Kusch et al., 2012, Vandewalle et al., 

2012a). 

4.3 Energy performance assessment  

The main approaches used in literature to assess the energy and environmental performance of 

integrated energy systems can be categorised as energy or exergy based. Energy performance 

indicators (e.g. energy efficiency, primary energy saving) are commonly used in the overall 

performance assessment of integrated energy systems (Mancarella, 2012). The performance is 

typically assessed compared to a benchmark system which, in most studies, is the separate 

production of each energy-carrier in reference production technologies.  

Exergy performance indicators (e.g. exergetic efficiency, exergy destruction) which account for 

variations in the quality of different energy carriers have also been used for performance analysis in 

integrated energy systems (Krause et al., 2010, Bagdanavicius et al., 2012, Ramirez-Elizondo et al., 

2013). An assessment of different community energy supply systems (CHP using natural gas or 

biomass gasification) using energy based and exergy based approaches was undertaken in 
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(Bagdanavicius et al., 2012). A comparison of using energy and exergy indicators in promoting 

cogeneration was investigated in (Nesheim and Ertesvåg, 2007) and the conflicts were highlighted. 

Exergy based approaches are widely used in thermal engineering research, however its application 

to real world engineering and power systems is limited.  

A review of methods and performance criteria used to assess the energy and environmental 

performance of integrated energy systems was carried out in (Mancarella, 2013). 

4.4 Design and expansion planning  

The problem of the design and expansion planning of integrated energy systems is to identify the 

optimal combination of energy supply, conversion and storage technologies as well as the network 

infrastructure required to meet the estimated energy demand and its future evolution. Recent 

analyses argue that integrated design and expansion planning of multi-energy systems is beneficial 

compared to the independent development practiced today (Saldarriaga et al., 2013). 

Literature on the design of integrated energy systems can be categorised as using deterministic or 

probabilistic methods of analyses.  

(a) Deterministic models 

Deterministic methods are used when variables that affect the investment are assumed to be known 

with a degree of certainty.  Traditionally, the discounted cash flow method using NPV (net present 

value), IRR (internal rate of return) and payback time indicators are used to assess the profitability of 

an investment. The design of CHP coupled district heating systems using the NPV and IRR indicator 

for their economic assessment was investigated in (Horlock, 1987). 

A method for expansion planning of an integrated electricity and gas system at the distribution level 

that has a high penetration of gas fired power generators was investigated in (Saldarriaga et al., 

2013). The study claims lower investment costs compared to methods that consider expansion of 

each energy system independently. A method for the expansion planning of combined gas and 

electricity networks at the transmission level was investigated in (Chaudry et al., 2014). The model 

was used to analyse the GB gas and electricity system expansion for several scenarios of the low 

carbon transition. 

The design of multi-energy supply infrastructure for new build schemes with carbon emissions 

constraints was investigated in (Rees et al., 2014). The objective of the study was to find the optimal 

mix of on-site and building level energy supply technologies that meets the energy service demand 

and targets of greenhouse gas emissions at a minimum cost to the developer.  

A method for identifying the optimal coupling between networks in an integrated energy system 

that includes electricity, natural gas and district heating infrastructure was investigated in (Geidl and 

Andersson, 2006).  

(b) Probabilistic models 

Stochastic (or probabilistic) models are being used in design studies due to the uncertainties in the 

energy sector introduced by energy markets (e.g. natural gas price) and large volumes of 

intermittent generation. A method for computing probabilistic NPV and IRR indicators for 

cogeneration planning under uncertainty using Monte Carlo simulations was investigated in 

(Carpaneto et al., 2011a, Carpaneto et al., 2011b). 
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A method for valuing investments in multi-energy conversion, storage and demand side 

management under uncertainty was examined in (Kienzle and Andersson, 2011). The potential to 

provide demand side management to uncertain and volatile market prices was valued together with 

the efficiency gains of integrating energy systems. The study was extended for location dependent 

valuation of energy hubs with storage in (Kienzle and Andersson, 2010). 

A method for assessing the optimal design of integrated energy systems considering their potential 

for providing response to forecasted marker prices was investigated in (Kitapbayev et al., 2013). The 

proposed approach uses real options valuation methods12 as used in finance to capture long term 

uncertainties and investment flexibility (defer or accelerate investments). A method for infrastrcture 

expansion planning under uncertainty based on the real options theory can also be found in 

(Martinez-Cesena et al, 2015) 

The mean-variance portfolio theory was used to investigate the different solutions for the design of 

integrated energy systems in (Favre-Perrod et al., 2010). 

4.5 Reliability analysis 

Assessing the reliability of the electrical power system is a mature field. However, limited work has 

been carried out investigating the reliability of other energy carrier systems (Helseth and Holen, 

2006). A methodology for reliability analysis of the natural gas system based on the method used in 

electrical systems has been investigated in (Helseth and Holen, 2006). An assessment of the 

European natural gas system reliability was undertaken in (Olanrewaju et al., 2015). 

The reliability analysis of combined electricity and natural gas systems has gained significant interest 

due to the increasing number of CCGTs in electrical power systems. Modelling of the natural gas 

system suitable for electrical power system reliability studies was proposed in (Munoz et al., 2003). 

A method for reliability analysis of the combined electricity and gas network was investigated in 

(Chaudry et al., 2013). A case study demonstrated the reliability analysis of GB’s integrated gas and 

electricity network given uncertainty in wind variability, gas supply availability and outages to 

network assets. 

A framework for reliability analysis in integrated energy systems, based on the energy hub modelling 

concept was developed in (Koeppel, 2007, Koeppel and Andersson, 2009). The model computes 

expected reliability of supply and Expected Energy Not Supplied (EENS). The model is used for 

systems with and without energy storage devices. The study claims that interconnections between 

different energy carriers are beneficial particularly for reducing expected energy not supplied in all 

energy carrier systems13. 

4.6 Modelling tools 

A number of modelling tools are available to analyse different aspects of integrated energy systems. 

Reviews of the models and software tools available were under taken in several studies as outlined 

below,  

                                                           
12

 Real options theory captures the value from exercising the option, that is investing in the plant at a later 
stage and in a modular basis. Classical engineering economics assume the investment is carried out at the 
beginning of the analysis window, with no room for instance postponing the investment. On the other hand, in 
the presence of uncertainty there may be value in waiting. 
13

 This is true for integrated electricity, natural gas and district heating systems as long as the ratings of the 
loads and installed components are similar [83] 
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 A review of modelling approaches and software tools available for the analyses of district-

scale interactions in energy systems was undertaken in (Allegrini et al., 2015).  

 A review of urban energy system models  was carried out in (Keirstead et al., 2012). The 

models and tools were grouped according to their use in technology design, building design, 

urban climate, systems design and policy assessment. 

 A review of a number of tools able to model multi-energy systems applicable to a city scale 

was undertaken in (Beuzekom et. al, 2015) 

 A review of software tools available for analysing the integration of renewable energy into 

various energy systems was undertaken in (Connolly et al., 2010). The study reviewed 37 

tools in collaboration with the tool developers or recommended points of contact.  

 A review and survey of available tools for planning and analysis of community energy 

systems was undertaken in (Mendes et al., 2011). 

An overview of some of the commonly used modelling tools collated from the review studies is 

shown in Table 4.2 (Mancarella, 2013). 

Table 4.2: An overview of models and software tools used for integrated energy system analysis  

 Analysis type    

 Network 
studies 

Operation Design 
Time 

Resolution/Horizon 
Accessibility Link 

EnergyPLAN No Yes No Hourly/Annual Free http://www.energyplan.eu/ 

RET Screen 
No No Yes 

Monthly/up to 50 
years 

Free http://www.retscreen.net/ 

H2RES 
No Yes No Hourly/Annual 

Internal 
research 

http://h2res.fsb.hr/index.ht
ml 

DER-CAM 
No Yes Yes Variable 

Internal 
research and 

collaborations 

https://building-
microgrid.lbl.gov/projects/d

er-cam 

eTransport 
Yes Yes Yes Hourly/Lifetime 

Internal 
research 

(Bakken et al., 2007) 

SynCity 
Yes No Yes - 

Internal 
research 

(James Kierstead et al.) 

 

 

 

 

 

 

 

 

 

http://h2res.fsb.hr/index.html
http://h2res.fsb.hr/index.html
https://building-microgrid.lbl.gov/projects/der-cam
https://building-microgrid.lbl.gov/projects/der-cam
https://building-microgrid.lbl.gov/projects/der-cam
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5: Challenges and Research Gaps  

Realisation of the potential benefits of integrating energy systems faces significant challenges. Some 

of the key challenges and research gaps are highlighted below. 

5.1 Challenges 

1. The fragmented institutional and market structures of different energy sectors  

In the UK in particular, the energy supply systems, their markets and regulatory frameworks have 

traditionally been separated depending on the type of energy carrier. For example the markets and 

regulatory frameworks for electricity, natural gas and fuel oils are independent. The restructuring 

and privatisation of the energy supply businesses resulted in a fragmented institutional framework 

of individual energy systems where no single party was responsible for the seamless technical 

functioning and performance enhancement of the overall system. In a report by the IET (IET, 2014), 

the challenges faced by the electricity sector due to the multi-party institutional structure were 

highlighted. It is recognized that the effective decarbonisation of energy relies on a whole systems 

approach. 

The existing detached institutional and market structure is a barrier to realising the benefits of 

integrating energy systems. The potential benefits need to be shared between multiple stakeholders 

that operate in independent markets. For example, the value of a CHP system is shared between the 

electricity and heat sector (low cost heat supply). 

The success of integrated energy systems in Denmark (Meibom et al., 2013) and Sweden can in part 

be attributed to the role of municipal utilities that own and operate multiple energy carrier systems 

and are responsible for the entire local energy system. 

2. The increased complexity of the overall energy system 

Integration of multiple energy systems would result in a more complex energy system to manage 

and operate.  The interdependencies between different energy systems and the ICT infrastructure 

that facilitates interoperability are complicated and require powerful models and software tools to 

analyse. It is argued that the integration of multiple energy systems can result in an energy supply 

system that is more susceptible to cascaded failures affecting reliability of supply. 

3. Multidisciplinary nature of research and development in integrated energy systems 

The integration of energy systems requires co-ordination and collaboration between traditionally 

detached stakeholders in the energy sector. Research and project development would be multi-

disciplinary by nature and requires knowledge of the dissimilar technical, economic and market 

arrangements. It was mentioned at a HubNet workshop (minutes appended) that the lack of multi-

disciplinary skills in the UK workforce is a challenge to progress in this area. 
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5.2 Research gaps 

A number of research gaps in integrated energy systems research identified by a review of the 

literature and the stakeholder workshop are highlighted below. 

1. Methods and tools for modelling and simulation of integrated energy systems need to be 

developed 

Although there are an increasing number of studies investigating the integrated energy systems, the 

modelling and simulation of integrated energy systems is still an underdeveloped area of research. 

In particular studies should extend beyond single node and steady state energy flow regime to 

modelling dynamic behaviour of coupled energy networks and systems. Validation of models with 

actual data is required to build confidence in the simulations. This is essential for the design of 

integrated control algorithms and operation strategies to realise the benefits of synergies between 

networks. 

2. Methods and software tools for integrated design, operation, expansion planning and reliability 

analysis need to be developed 

There is a need for methods and tools to aid the co-ordinated design, operation and expansion 

planning of integrated energy systems. The models/tools need to consider interactions between 

different energy systems at different scales (community, district, regional, national, European) in 

sufficient detail. Otherwise there is a potential risk of conflicting results when the system boundary 

is altered. 

3. Standard test networks to perform case studies and validate models are required 

There is a need of standard test networks (similar to IEEE standard electricity networks) for natural 

gas, district heating and district cooling systems. The current practice is to develop case study 

networks or use data from an actual system for research purposes. This creates a challenge to 

compare and validate results from different research studies and hinders progress.  

4. Assessment criteria for the quantification of interdependencies and the overall performance of 

the integrated energy system are required 

The overall techno-economic performance and interdependencies between coupled energy systems 

need to be quantified. The independent energy systems have established their own performance 

assessment methods and evaluation criteria. There is a gap in literature of relevant indicators and 

assessment methods to characterize the overall performance and interdependencies between 

energy systems. 

5. Quantitative evidence of the benefits of integrating energy systems needs to be demonstrated  

There is a need to quantify the multi-party benefits (as discussed in Chapter 2) of co-ordinated 

design, operation and planning of the coupled energy system. Models and software tools will be 

required to analyse this complex energy system. 

6. New opportunities for business innovation needs to be investigated 

New business models that aggregate the multiple benefits of integrating energy systems need to be 

investigated. A comprehensive value proposition that can be realised within the current regulatory 

and market framework needs to be presented.  
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7. Demonstration projects are required to show evidence of the practical application and 

validation of research  

Real projects that demonstrate the interoperability of integrated energy networks are required to 

validate the application of theoretical results.  

8. Market design, policy drivers and regulation that promotes integration of energy systems needs 

to be investigated 

There is a clear need for innovation in market design to promote co-ordination between multi-

energy systems and realise the potential benefits. Similarly, policy instruments and regulation that 

can promote the realisation of benefits of energy system integration need to be investigated. 
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Appendix I 
Table I: EPSRC funded research programmes investigating integration of energy systems 

 Project Title Lead Organization Start  End Grant value14 Energy Vectors 

  

    

El
ec

 

G
as

 

Th
er

m
al

 

H
yd

ro
ge

n
 

1 PLATFORM: Decentralized polygeneration of energy University of Surrey Nov 05 Aug 10 £710,606 √ √ √  

2 Centre for Integrated Renewable Energy Generation and Supply Cardiff University Jan 08 Dec12 £1,512,962 √ √ √ √ 

3 SUPERGEN FLEXNET University of Strathclyde Oct07 Mar12 £6,876,795 √ √ √  

4 SUPERGEN HDPS, HiDEF (Highly decentralized energy futures) University of Strathclyde Oct09 Sept12 £4,177,322 √ √ √  

5 HubNET: Research leadership and networking for energy networks  Imperial College Jan11 Dec15 £4,723,735 √ √ √ √ 

6 Grand challenge Top and Tail Imperial College May11 Apr15 £4,108,875 √ √ √  

7 
Multi-Vector Energy Distribution System Modelling and Optimisation 
with Integrated Demand Side Response 

University of Bath Sep 14 Aug 17 £241,601 √ √   

8 ITRC: Infrastructure transitions research consortium-Long term dynamics 

of interdependent infrastructure systems 

University of Oxford Feb11 Jan16 £4,780,610 √ √   

9 WholeSEM: Whole systems energy modelling consortium UCL Jul13 Jul17 £4,607,765 √ √ √ √ 

10 UKERC Imperial College May14 Apr19 £13,531,962 √ √ √ √ 

11 Adaptation and resilience in energy systems (ARIES) University of Edinburgh Nov11 Oct15 £771,708 √ √   

12 Adaptation and resilience in energy systems (ARIES) Heriot Watt University Feb12 Oct15 £388,079 √ √   

13 Hydrogen's value in the energy system (HYVE) UCL  Jun 14 May17 £700,396 √ √  √ 

14 MY-STORE : Multi-energy storage-Social, techno-economic, regulatory 

and environmental assessment under uncertainty 

University of Manchester Oct 15 Mar19 £1,268,170 √ √ √ √ 

                                                             
14

 refers to the total grant value and not the amount specifically awarded to integrated energy systems research 
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Appendix II 

Minutes of Workshop on Multi-Vector Energy Systems 

Room 611, Electronic and Electrical Engineering Department 

Imperial College London 

10:00 – 15:00 hrs, Friday 31st October 2014 

 
1. The workshop presentations and discussions were organized under the following topics.  

a) The current state of multi-vector energy systems in UK and Europe. 

o Presentation by Prof. J Yan on the research landscape in multi-energy network 

integration/Future energy transitions (Slides attached) 

o Presentation by DELTA EE on the heat decarbonising pathways for the UK (Slides attached) 

b) Identify current research and future research needs 

o Presentation by Dr. Thilo Kruse on the project “Vision of Future Energy Networks” and the 

Energy hub concept (Slides attached) 

c) Identify arguments for an integrated approach to energy supply 

o Presentation by John Marsh on the Kings Cross development (Slides attached) 

d) What are the benefits and costs of multi-vector energy systems? 

What is a multi-vector energy system (MES)? 

2. The different views on the definitions of ‘multi-vector energy system’ were discussed. Following are the 

views expressed, 

a) When one energy-vector system interacts with another  

b) When competition exists between energy vectors to meet the same energy service 

c) When one energy-vector relies on other energy vectors 

3. The difficulty in setting a boundary for MES due to interactions between scales (building, city etc.) was 

discussed. MES concepts can be applied to a domestic dwelling as well as to national level energy balance. 

The choice of system boundary needs to be considered carefully to capture interactions between scales in 

sufficient detail. 

4. The three dimensionality in the problem of whole energy system modeling  i.e. the space, time and human 

dimensions should be considered. The geographical nature of the multi-vector energy system problem should 

also be considered. 

5. The argument for energy network integration need to be set out more convincingly backed by quantitative 

evidence. 

 

What are the challenges? 

6. Evidence on future energy scenarios show that all energy networks will play an essential role in achieving the 

2050 emissions target. 

7. The challenges in realizing co-ordinated design and operation of multi-energy networks were discussed. 

Following are the views expressed. 

a) Complexity that arises from the integration of different energy carrier networks 

b) Difficulty in optimizing at different levels in the energy system i.e systems, subsystems and 

components 

c) The interactions and interdependencies among systems and the environment  

d) Uncertainty in the robustness of an integrated system 

e) Uncertainty whether the system and services are implementable 

f) Harmonising the way/time scales different energy markets work is a challenge (Gas on a daily 

basis while electricity networks markets balanced half hourly) 
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8. The existing fragmented market structure was discussed as a significant barrier to realise the benefits of 

integrated design and planning of MES. The un-regulated market for heat was also seen as a barrier. However, 

there is a belief that this particular issue will be resolved soon. 

9. The challenge to set up collaboration between stakeholders operating in dissimilar markets was seen as a 

significant barrier. 

10. The challenges of convincing multi party benefits of energy network integration were discussed. 

11. The lack of multi-disciplinary skills in the UK workforce was discussed as a challenge moving forward. 

12. It remains a challenge to realise the economies of scale that would be possible from multi-energy networks 

integration. 

13.  The predominant market penetration of natural gas boilers was seen as a major challenge.  

 

What are the drivers for energy networks integration? 

Regulation 

14.  Regulation was mentioned as a main driver in the Kings Cross case study to consider a CHP coupled district 

heating system. The following were discussed 

- There was a regulatory requirement to achieve a 50% reduction in emissions in energy supply across the 

development and the use of a CHP driven district heating system was considered the best option. 

- It was also mentioned that without regulatory requirements stated in the ‘London Plan’, the developer 

would not have considered district heating as a possible energy solution. 

- Contractual agreements obligate all buildings in the development area to connect to the DH network. 

- Another driver was the requirement that all new homes have to be zero carbon by 2016. 

15. Ofgem is considering regulation on heat utility businesses in the near future. 

 

Market drivers 

16. Heat is increasingly seen as a new utility business.  

17. The opportunity to own all energy infrastructure on site and make money on the use of the system was seen as 

driver in the Kings Cross case (By forming an ESCo) 

18. Future energy scenario modelling suggests that 20% of all residential heat demand will be supplied by heat 

networks by 2050. 

19. There is also a big opportunity for hybrid heat pumps and micro CHP to enter the UK domestic market as a 

transitional technology from the gas boiler. 

20. Denmark is focused on a significant growth in heat pumps both at a domestic and network level due to the 

high wind energy penetration in the country. 

21. Insight into the evolution of Europe’s heating and gas markets gives clear driver for energy networks 

integration. 

22. Innovative financing models will create new markets for energy network integration. 

 

Techno-economic drivers 

23. There is a clear opportunity in the new built sector to provide an integrated multi-vector energy system. 

24. There is a driver to future proof the energy supply systems from the uncertainties in power/heat generation 

technology uptake going in to the future. In the Kings Cross case it was mentioned as the grid electricity 

decarbonises (emissions saving from CHP drops), they would consider replacing the current gas fired CHP 

engines with biomass CHP units. 

25. There are opportunities for design and operational optimisation by a system owned and operated by a single 

commercial entity. 

26. The challenge of a heat electrification only scenario was seen as another driver for heat network uptake and 

the subsequent coupling of networks (40GW of additional generation capacity required) 

27. Economies of scale  

28. Diminishing technology costs were seen as an economic driver. 

29. A classic problem of not having an integrated approach was evident in the Swedish and Denmark case where 

zero marginal cost electricity was due to high CHP and Nuclear/Coal mix. 

 

What are the anticipated benefits? 

30. The  recent interest in energy network integration and smart management of distributed local energy systems 

is due to the need to support balancing  of the electricity network at the transmission level. 
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31. The flexibility offered by an integrated multi-vector energy system will be valued when a large amount of 

intermittent renewable power is utilized. 

32. The main benefits of energy networks integration were discussed as 

a) Possibility to reduce primary fuel consumption and thereby reduce carbon emissions 

b) Economies of scale 

c) Enhanced energy storage capabilities 

d) Cost reductions in operation (This has not yet been quantified) 

e) Future proofing network infrastructure for technology advances by leaving room for fuel flexibility 

f) Possibility for spatial and temporal optimization of fuel use  

33. In addition, the Kings Cross case study showed clear benefits in construction costs where design and 

construction of the system was done by a single party. There were clear cost reductions in both capital and 

maintenance expenditure due to single excavations for electricity cables, gas, water and heat pipelines and 

fibre optic cables. 

34. Opportunities for new market and business models were also discussed as a potential benefit. 

 

Current and previous research 

35. Prof. J Yan’s presented multiple projects on multi-energy vectors (demonstration and research) initiated under 

the ‘Future energy’ programme (Slides attached). 

36. Thilo Krause presented the project ‘Vision of future energy networks’ and the ‘Energy hubs’ concept 

developed within the project  

- Sponsors of the project were – Swiss Federal Office of Energy, AREVA, ABB, Siements,Swiss Institute 

- The motivation for the project was to optimise the energy supply chain from production over 

transmission/distribution to final consumption of multi-energy carriers 

- Both current and future technologies were modelled 

- The development of the so-called energy hub was to create the interface between energy producers, 

consumers and the transportation infrastructure 

- The motivation of the project was to model complex interactions between different energy carriers and 

coupling technologies and exploit synergies between them to meet the final demand 

- The following was accomplished 

o Sound mathematical foundation of energy hubs 

o Multi-energy carrier optimal power flow 

o Reliability assessment of multi-energy carrier networks 

o Risk assessment and investment strategies in multi-energy carrier networks 

o Energy hubs – system dynamics and control (model predictive control – project with Zurich-EV) 

o Integration of plug-in hybrid vehicles to the energy hub modelling framework 

- Energy hubs was presented as a scalable and versatile modelling approach for multi-vector energy system 

research 

- Several case studies of national, European level and a plug-in hybrid vehicle was presented 

37. Several European projects researching multi-vector energy system were mentioned 

- Epi-CUP/Ideas for cities/Ten-E and Power nodes concepts 

38. Denmark and Germany’s interest in converting excess electricity to hydrogen and storing in the gas 

infrastructure was discussed. 

Understanding complexities in the research area 

39. General feeling of the complexity of analysing interactions and interdependencies between different energy-

vector networks was resounding. 

40. Thilo Krause mentioned the optimization problem was very complex and had to use additional measures to 

find starting values for the numerical model. In some occasions ‘Particle swarm optimization’ was used. 

41. Validation of the simulations were considered an important part of the research work done. 

42. It was discussed whether the problems can be generalised, or whether its location specific by nature. 

- Thilo Krause mentioned this was the main barrier to commercialize a software developed on the energy 

hubs concept. 

43. The question was raised to what extent uncertainties were considered in the Energy Hub model. It was 

mentioned due to the large dimensionality of the problem, studies were deterministic even though several 

other research have carried out Monte Carlo simulations. 
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44. The question of the time constant differences in balancing networks were not studied in detail in any research 

discussed. 

- Energy storage was considered in some studies, however the time scales of balancing were the same. 

45. Big data was mentioned as a concern on increasing complexity, however was argued to be a different problem 

to the one being considered. 

46. The complexity of understanding and combining different physics between interacting systems was discussed. 

47. The problem of how to find a good balance in granularity of time and spacial representation of different 

systems was mentioned. 

48. Co-ordination of research activities between different stakeholders is crucial but is a difficult challenge. 

-This might require a policy change on how energy networks are managed and operated. 

49. There are trade-offs between computational complexity of models and level of detail (number of energy 

vectors) in the problem considered. However, this depends on the research question to be answered. 

Research and modelling needs 

50. Modelling of integrated energy systems is required when the interactions between energy-vectors become 

significant e.g. electricity and gas in the UK wind case. 

51. Time scales for modelling are an important area to be considered due to different time scales in balancing 

different networks. 

52. Energy storage is a key area to consider when integrating multi-energy networks. 

- The main advantage of flexibility comes from the possibility for energy storage. 

53. Modelling tools need to consider interactions between energy vectors at different scales (building level, city, 

national) in the energy system. Otherwise there is a risk of converging in suboptimal solutions. Looking at 

options at a single scale/system needs to be complemented with studies at other levels.  

54. There are no tools available that take into account market behaviour. This will be an important feature moving 

forward. 

55. There is a very clear need for generic networks (similar to IEEE standards) to be developed for 

analysis/research to be carried out. 

56. Whole supply-chain research needs to be developed. 

- Other sectors such as water and transport can also be included. 

57. A clear distinction between the new built sector and the retrofit sector needs to be made when conclusions are 

drawn. 

58. Therefore not a single but a set of modelling tools will be required. 

59. There is certainly an argument to be made to consider electricity, gas and heat in the IET whole electricity 

systems initiative. 

60. It is important to understand who will be interested in this research. Therefore, it is important to identify 

international research programmes and industrial initiatives (manufacturers/technology developers). 

61. Economies of scale needs to be shown. 

62. Innovative business models/cases need to be shown. 

 

Where are the research opportunities? 

63. Energy storage, ESCo’s and community energy systems are current topics in the European energy research 

landscape. 

64. Community energy systems and ESCo’s were discussed as an ideal test bed to trial integrated design and co-

ordinated operation of multi-vector energy networks. 

65. It was argued that ESCo’s and community energy programmes are more of a social and commercial problem 

rather than a technical issue. 

Other discussion points 

66. The multi-disciplinary nature of the area is a big challenge due to the lack of skilled professionals.  

67. A role titled energy engineer can be intended for the future. 
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