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Summary

A new versa�le magne�c "eld scanning system has been developed; based on a

Micromagne�cs® STJ-020 tunnelling magneto-resistance (TMR) sensor and a 3-axis

posi�oning arm, with a 3D-printed sensor enclosure, precision goniometer and

integrated microscopic sight. Calibra�on of the hardware, quan�fying the

slack/backlash of the three axes, and the capabili�es of the system and its sensors

are recounted. The system is capable of; scanning precisely and repeatably at

1 μm/step with a 4 x 2 μm2 sensing area;  scanning smooth con�nuously dynamic

magne�c "eld changes at a sampling frequency up to 1 MHz; producing scans of

three-dimensional volumes; and resolving the "eld components along mul�ple axes.

The Scanner Control so7ware (available as open access†) has been developed to be

modular, powerful and adaptable, permi9ng large datasets from mul�ple sensors to

be analysed. Studies are made of the domain structure in 3% Grain-Oriented

Electrical Steel, Amorphous Alloy materials, Cubex doubly oriented Si-Fe Alloy and

manufactured Planar coils, both sta�cally and when reac�ng dynamically to

externally applied alterna�ng "elds. Interpreta�on of the resul�ng "eld maps and

comparison of the advantages and disadvantages of the Scanner system over other

domain observa�on methods is given. The ability to scan a three-dimensional

volume above the surface of the sample and to derive the Hz and Hx components

from only a single axis sensor is developed and demonstrated, both sta�cally and

dynamically. The principles are tested against the known geometries of constructed

planar coils, the expected "elds from which are determined using Finite Element

Modelling. The novel developments of the project, and the advantages of the

developed Scanner System, culminate in, and are ul�mately demonstrated by, the

"nal dynamic three-dimensional, component-resolved stray-"eld scan of a volume

above the surface of an unprepared sample of coated 3% grain-oriented electrical

steel under alterna�ng applied magne�c "eld.

† Open Access through the Cardi? Portal Arxive (h@p://doi.org/10.17035/d.2019.0079831572) and on the 

accompanying DVD.
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Collected Chapter Summaries

A collec�on of the Chapter Summaries of each of the Chapters in the Thesis and 

Appendix.

Chapter 1 - Introduc�on

The design and project overview for this research are presented. The mo�va�on for its

undertaking and the constraints within which the design was facilitated. 

Chapter 2 - Background

The physical origins of the magne�sm and material magne�sa�on are discussed. A full

understanding of the Magne�c Flux Density vector-*eld B is derived from the Lorentz

transforma�on of the Coulomb force between two moving charges, developed further to

the origin of the Applied Field H around a current carrying wire. Consequently, material

magne�sa�on M and the magne�c characteris�cs of paramagne�c and ferrimagne�c

elements are discussed, leading to an understanding of magne�c domain forma�on

within crystalline and amorphous ferromagne�c alloys. Throughout, vector quan��es

are indicated by a bold underlined symbol eg. u. The scaler magnitude of u is then u

whilst ux is the magnitude of the x component of u.

Chapter 3 - Review of Literature

A review of the Literature relevant to the detec�on of magne�c *elds and observa�on of

domains and domain dynamics is provided along with exis�ng procedural scanner

systems making use of the magne�c *eld detec�on techniques available.

Chapter 4 - Development of the Scanner Hardware

The Scanner Hardware is built around a 3-axis posi�oning arm, controlled by Parker

Automa�on drivers with a 3D-printed sensor enclosure, precision goniometer and

integrated microscopic sight. Here the system requirements and architecture are

discussed. Calibra�on of the hardware, par�cularly quan�fying the slack/backlash of the

three axis, and progressive improvement in the capabili�es of the system and its sensors
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is recounted. The technical drawings for the developed 3D-printed sensor heads are

provided. Detailed descrip�on and data-sheets for both the manufactured and

purchased components of the Scanner Hardware are provided in Appendix 4.

Chapter 5 - Development of the Scanner So%ware

As the requirements of the Scanner and the understanding of LabVIEW architecture

increased three dis�nct main versions of the Scanner Control So5ware were developed.

The complete structure and func�onal logic of each Scanner Control system is described

in detail in Appendix 1, Appendix 2 and Appendix 3. The per�nent points of the

development of the so5ware and its func�ons are recounted here along with detailed

guidance on the prac�cal opera�on of the *nal Scanner Control 3 system.

Chapter 6 - Two Dimensional Inves�ga�on of Stray Fields

The study of the domain structure in Grain Oriented Electrical Steel, Amorphous Alloy

materials, Cubex doubly oriented Si-Fe Alloy and manufactured Planar coils by the

scanning of stray *elds from the sample surface has been made. Interpreta�on of the

resul�ng *eld maps and comparison of the advantages and disadvantages of the

Scanning System over other domain observa�on methods is given. 

Chapter 7 - Inves�ga�on of Three Dimensional Stray Field Structure

The ability to scan in a three dimensional volume above the surface of the sample and to

derive the Hz and Hx components from only a single axis sensor is developed and

demonstrated. The principles are tested against the known geometries of constructed

planar coils, the expected *elds from which can be determined using FEM.

Chapter 8 - Inves�ga�on of Alterna�ng Domain Dynamics

The Scanner Control 3 so5ware was speci*cally developed with the aim of inves�ga�ng

the dynamics of domains as they change under the in9uence of an alterna�ng external

applied *eld.  Dynamic scans of samples are presented in a *lmstrip fashion within the

thesis, with fully animated versions of each *gure available as animated GIFs in Chapter

8.7z of the Cardi: Portal Arxive (page ix) and on the accompanying DVD.
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Chapter 9 - Conclusions

Overall conclusions of the Thesis, review of the aims achieved and the advantages and

disadvantages of the Scanner System are presented. Future work is proposed including

improvements to the Hardware and So5ware and discussion of alterna�ve sensors and

applica�ons.

Appendix 1 - Scanner Control 1 LabView VI Code

The *nal version of the *rst Scanner Control so5ware, in use from 19/02/16 to 16/06/16.

The so5ware is structured as a main Virtual Instrument (VI), 19 sub-VIs and 10 Global

Variables. The individual Elements of the VI  are iden�*ed by sub-VI (v), Global Variable

(g), While Loop (w), Case (c), Stacked Sequence (s) and Diagram Disable (d) structure.

The func�onality of each element is explained. Per�nent aspects of the development of

this code are discussed in Chapter 5. The LabView code itself is available in the Chapter

5.7z arxive in the Cardi: Portal Arxive and through the included DVD-ROM. Appendix 5

presents a Catalogue of the *les available.

Appendix 2 - Scanner Control 2 LabView VI Code

The *nal version of the second Scanner Control so5ware, in use from 09/06/16 to

23/05/18. The core di:erences between the second and *rst versions of the Scanner

Control so5ware were an en�rely innova�ve implementa�on of Mouse based

interac�on with the data display, and the ability to scan in three dimensions, rather than

just the xy-plane. The core di:erences in LabView VI architecture was greater

modularity, adop�on of event based rather than con�nuous-polling architecture, the use

of shi5 registers rather than global variables and the beginnings of the use of single

itera�on while loops. The so5ware is structured as a main Virtual Instrument (VI), 14

sub-VIs and 1 scratch *le. The individual Elements of the VI are iden�*ed by sub-VI (v),

scratch *le (f), While Loop (w), Event(e), Case (c), Stacked Sequence (s) and Diagram

Disable (d) structures. The func�onality of each element is explained. Per�nent aspects

of the development of this code are discussed in Chapter 5. The LabView code itself is

available in the Chapter 5.7z arxive in the Cardi: Portal Arxive and through the included

DVD-ROM. Appendix 5 presents a Catalogue of the *les available.
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Appendix 3 - Scanner Control 3 LabView VI Code

The third and *nal version of the Scanner Control so5ware, in use from 22/06/18

onwards. The so5ware is structured as a main Virtual Instrument (VI), 22 sub-VIs and

one 7z arxive containing scratch *les. The individual Elements of the VI are iden�*ed by

sub-VI (v), 7z arxive (f), While Loop (w), Event(e), Case (c), Stacked Sequence (s) and

Diagram Disable (d) structures. The func�onality of each element is explained. Per�nent

aspects of the development of this code are discussed in Chapter 5. The LabView code

itself is available in the Chapter 5.7z arxive in the Cardi: Portal Arxive and through the

included DVD-ROM. Appendix 5 presents a Catalogue of the *les available.

Appendix 4 - Scanner Hardware Speci2ca�ons

The Scanner Hardware is built around a 3-axis posi�oning arm, controlled by Parker

Automa�on drivers, a 3D-printed sensor enclosure, precision goniometer and

incorporated microscopic sight. The Scanner Hardware is formed of four electronically

communica�ng groups of components; the Scanner Base components, the Parker

Automa�on modules, the Analogue Data Acquisi�on components, and the PC Control

components with an addi�onal op�cal Microscope and Power Oscillators. The technical

drawings for the developed 3D-printed sensor heads are provided. For purchased

components the manufacturer speci*ca�ons and user guides are provided. Detailed

descrip�on of the development of the Scanner Hardware is provided in Chapter 4.

Appendix 5 - Catalogue of Data

The Data which supports this thesis can be found on the included DVD and through the

Cardi: Portal Arxive at hEp://doi.org/10.17035/d.2019.0079831572. A catalogue of the

data available in the Data Arxive is presented, organised by Chapter. The Data from each

Chapter are compressed in a 7zip archive (.7z). The 7zip unarchiver is available at

hEps://www.7-zip.org/.

Appendix 6 - Publica�ons

During this research three posters have been presented at conference, one conference

proceedings paper, one short journal paper and one long journal paper have been

published, each demonstra�ng novel peer reviewed research. The publica�ons are

available in Publica�ons.7z on the included DVD and through the Cardi: Portal Arxive at

hEp://doi.org/10.17035/d.2019.0079831572. 
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Amorphous Ribbon produced with the STJ-020 sensor at 0.05 mm/cell, the indicated (b)
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 at 0.005 mm/cell. The Stray -eld

strength ranges over ± 88 A/m. Page 143
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Figure 7.9: A stray -eld scan of 24 x 20 mm Coated 3% Si Grain Oriented Electrical Steel

produced by a scan with the STJ-020 sensor at 0.1
3
 mm/cell (i) Before and (ii) AKer

etching the coa�ng with a 10.6 μm wide CO2 laser at 14% of 50 W (Figure 7.8). Measured

(a) Hz and (b) H45 -elds along with calculated (c) Hx -elds are presented. Colour

representa�on of the stray -eld H vector is presented before (a.iii) and aKer (b.iii)
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Page 177
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Figure 8.3(a): Filmstrip representa�on of a dynamic scan of As-cast 2605 Co IPF895

Metglas Alloy Amorphous Ribbon energised at 3kHz with the Large Yoke. The full

animated GIF is provided in Chapter 8.7z of the Cardi� Portal Arxive (page ix). The stray

-eld strength (Hz) is represented in greyscale from -500 to 500 A/m. The border 20 pixels
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Figure 8.3(b): (i) The Mean -eld strength across the en�re surface scanned for each of

336 frames (in black) and the voltage applied to the Large Yoke (in red). (ii) The

percentage area coverage of each greyscale level across the en�re scan for each of 336
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Oriented Steel subjected to a 3kHz oscilla�ng x-axis -eld of ± 1 kA/m from the 20 + 20

coils. The full animated GIF is provided in Chapter 8.7z (page ix). The border 20 pixels of

each frame presents the oscilla�ng Applied -eld (inverted greyscale). Page 182

Figure 8.4(b): (i) The Mean stray -eld strength across the en�re surface for each of 336

frames (in black) and the Applied x-axis -eld strength (in red). (ii) The percentage area

coverage of each greyscale level across the en�re scan for each of 336 frames. (iii) The

Mean Stray -eld strength plo0ed against the Applied x-axis -eld strength. Page 183

Figure 8.5(a): Filmstrip representa�on of a 10 x 10 mm2 (@0.05mm/pixel) dynamic scan

of Coated 3% Si Grain-Oriented Steel subjected to a 3kHz oscilla�ng x-axis -eld of ± 1.95

kA/m from the 50 + 50 coils. The stray -eld strength (Hz) is represented in greyscale ±

300 A/m. The full animated GIF is provided in Chapter 8.7z (page ix). The border 20 pixels

of each frame presents the oscilla�ng Applied -eld (inverted greyscale). Page 186
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frames (in black) and the Applied x-axis -eld strength (in red). (ii) The percentage area

coverage of each greyscale level across the en�re scan for each of 336 frames. (iii) The
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frames (in black) and the Applied x-axis -eld strength (in red). (ii) The percentage area
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coverage of each greyscale level across the en�re scan for each of 336 frames. (iii) The

Mean Stray -eld strength plo0ed against the Applied x-axis -eld strength. Page 191
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Coated 3% Si Grain-Oriented Steel, a subregion of Figure 8.5(a) as indicated in the top
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animated GIF is provided in Chapter 8.7z (page ix). The border 20 pixels of each frame

presents the oscilla�ng Applied -eld (inverted greyscale). Page 192
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Robert Malcolm Gibbs Imaging Stray Magne�c Fields Using 3D Scanning Techniques

Chapter 1

Introduc	on

The design and project overview for this research are presented. The mo�va�on for its 

undertaking and the constraints within which the design was facilitated. 

1.1 The Research Speci�ca	on

“Mapping the magne�c �eld intensity at the surface provides informa�on about a

material’s magne�c character as well as data rela�ng to its physical state. This work

will incorporate a state‐of‐the‐art 3D scanning system to map out magne�c surface

�elds. The data will be used to construct detailed magne�c domain images on various

magne�c samples. The work will involve developing LabView so%ware to operate the

scanner and produce quan�ta�ve surface measurements and magne�c domain

images. This will provide a useful technique for studying magne�c domain processes in

magne�c materials.” – Dr. Turgut Meydan; Dr. Paul Williams

1.2 Aims of the Research

1.2.1 Ini	al Aims based on the Speci�ca	on

The interest and mo�va�on for undertaking this Engineering PhD, stemming from an

MSc background in developing scanning techniques, has been in the

hardware/so/ware co-development of a scanning system, with the applica�on of

mapping, in three dimensions, the otherwise invisible stray magne�c 1elds known to

emanate from the surface of magne�c materials. This aim is coupled with the

opportunity to gain a thorough understanding of the origins of magne�sm and the

magne�c e2ect, and the opportunity to map and elucidate aspects of the stray 1elds,

the three-dimensional shape and even the dynamics, which have not been previously

observed. 

Various magne�c samples have been studied with the scanner such as grain-oriented

electrical steel and constructed planar coils and amorphous materials and those

studies have aided the progressive development of the system over the course of the

work.
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The ini�al basic design speci1ca�on for the Scanner system, based on the Research

Speci1ca�on, were to;

a. Make use of the exis�ng hardware that has been provided.

b. Be controlled manually and automa�cally by an external NI LabView system.

c. Correctly posi�on the scanner head along three independent axis.

d. Permit the user to con1dently posi�on a sensor in a chosen loca�on.

e. Guard against the scanner hardware exceeding its physical limits.

f. Control the ac�ons of the scanner in a systema�c automated scan.

g. Enable the user to de1ne the automated scan in a simple way.

h. Be adaptable, to allow any desired sensor to be physically a;ached.

i. Posi�on any a;ached sensor with a repeatable precision greater than the

footprint of the provided sensor (2 µm x 4 µm).

j. Acquire voltages inputs from sensors a;ached to the scanner head (in the range

±10.000 V) and store those values alongside the corresponding sensor posi�on.

k. Display and permit interroga�on of those data in both raw form and in the form

of a greyscale map, displaying the stored values into adjustable 8-bit levels.

l. Enable the saving and loading of previous scans and the resul�ng data including

the export of data in a form which can be understood and analysed externally.

m. Operate for periods of days at a �me without fault.

As the capabili�es of the system developed, and the nature of the resul�ng data were

be;er de1ned, these basic requirements were greatly augmented. 

1.2.2 Enhanced Aims following the Review of Prior Literature

A/er the review of prior literature, discussed in Chapter 3, it was clear from the outset

that there are plen�ful readily available commercial systems for the basic observa�on

of surface domains in materials, u�lising magneto-op�cal techniques [1] and that the

company which manufacture the provided magne�cs sensor, Micromagne�cs, produce

themselves a commercial scanning system with the TMR-020 sensor, the CS1000, for

which the TMR-020 sensor was itself developed [2]. Other academic scanner systems
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also already make use of the resolu�on available with the sensor [4] for basic two

dimensional domain observa�on.

If the aim of this work was simply to produce the best basic domain observa�on

possible, then that aim would be be;er served by these and other exis�ng systems.

But these systems are not available in the department, and are prohibi�vely expensive,

and so it became a fundamental part of the design speci1ca�on of this project to

produce a useful and simple to use scanner within the boundaries of the exis�ng

equipment available in the department, including mo�on control hardware which is

not servo-motor based.

The major part of this work has focused on how to solve the engineering issues

imposed by the limita�ons of the available equipment (discussed in Chapter 4), and

how to solve the so/ware issues imposed by the increasing size and complexity of data

as the capabili�es of the system developed (discussed in Chapter 5). The so/ware

development of the Scanner Control so/ware follows the evolu�on of the capabili�es

of the scanner.

The basic scanning func�onality was achieved with Scanner Control 1 and results of

this basic func�onality are presented in Chapter 6 and compared against other exis�ng

methods of basic domain observa�on.

As men�oned, in general, obtaining these basic domain observa�ons are be;er served

by exis�ng commercial systems if available. However, these commercial systems do not

allow for inves�ga�on of the three-dimensional shape of the stray 1elds as they

emerge from a sample surface and close on other domains, or interact with external

factors. 

Developing a 3D scanning system is the �tular design criteria of the project. The study

of the three-dimensional shape of domain based stray 1elds, is an important ac�ve

area of research which has not been previously inves�gated using high-resolu�on
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scanner based systems. In addi�on to the gaining of new knowledge about the extent

and shape of stray 1elds, new sensors are being developed in the department [5, 6]

which make use of the interac�on between domains in magne�c materials and

external control elements, which would bene1t from observa�on of the structure of

these stray 1elds.

Three-dimensional magne�c 1eld structure above a sample cannot be studied with

magneto-op�cal methods. Three-axis magne�c sensors are common but are generally

of mm-scale resolu�on [7] . µm-scale three-axis magne�c sensors do exist [8] but are

developmental or prohibi�vely expensive. Again, with the de1ning design principle

being making use of the equipment available, a novel �l�ng single-axis sensor

technique has been developed to resolve the z and x axis components of stray 1elds;

u�lizing the STJ-020 TMR sensor provided. The results of this work required the

development of the Scanner Control 2 system and are discussed in Chapter 7.

The study of how domains change dynamically within a material exposed to an

alterna�ng external magne�c 1eld is an ac�ve 1eld of research with applica�ons in

power electronics and domain theory [9, 10]. Some a;empts to produce dynamic

domain observa�ons with automated scanning systems exist [11]. The success of these

a;empts is limited and debatable, as discussed in Chapter 3. The development of a

scanning system to study the three-dimensional dynamics of the surface stray 1elds

has not been previously undertaken within the available literature.

The development of Scanner Control 3 so/ware was speci1cally to provide the novel

capacity of scanning and observing the three dimensional shape of dynamic stray 1elds

above a sample surface. First, posi�ve observa�on of dynamic domain movement with

the scanner system has been made and presented in Chapter 8.

The thesis and work of the previous development stages culminates in the novel

observa�on and analysis of dynamic three-dimension stray 1elds above a sample

surface, presented in Chapter 8.
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Chapter 2

Background

The physical origins of the magne�sm and material magne�sa�on are discussed. A full

understanding of the Magne�c Flux Density vector-#eld B is derived from the Lorentz

transforma�on of the Coulomb force between two moving charges, developed further to

the origin of the Applied Field H around a current carrying wire. Consequently, material

magne�sa�on M and the magne�c characteris�cs of paramagne�c and ferrimagne�c

elements are discussed, leading to an understanding of magne�c domain forma�on

within crystalline and amorphous ferromagne�c alloys. Throughout, vector quan��es

are indicated by a bold underlined symbol eg. u. The scaler magnitude of u is then u

whilst ux is the magnitude of the x component of u.

2.1 Founda�ons of Electromagne�sm and Magne�za�on

2.1.1 Physical Origins of Magne�c Flux Density B

Electromagne�sm is one of the four fundamental forces of nature against which

energy can be stored; the others being Gravita�on and the Strong and Weak nuclear

Forces. Electromagne�sm and consequently magne�sa�on are both derived

consequences of the rela�vis�c transforma�on of the electrosta�c (Coulomb) force

[12] between electrical charges (most commonly electrons) when both are in mo�on.

The Coulomb force between two sta�c point charges q1 and q2 with separa�on r is;

F=k
q1q2

r2
r̂ Equa�on 2.1

where k=
1

4 πε0

a n d ε0 is the permivity of free space, equal to 8.854×10−12 F/m (to 4sf.),

discussed later (Sec�on 2.1.4, page 23).

The unit vector r̂ becomes the radial vector 
r

r
(r being the magnitude of r) giving;

F=
k q1q2

r3
r Equa�on 2.2

With a sta�onary source charge q1, this law holds true for both a sta�onary and a

moving test charge q2, even if q2 approaches the speed of light.
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In the case of a moving test charge Coulomb's law becomes;

F=
γ k q1 q2
r3

r Equa�on 2.3

with the Lorentz factor γ=
1

√1−v2 /c2
and represents the instantaneous force felt by

the test charge as it moves past the sta�onary source. It is at #rst incongruous that the

test charge q2 should instantaneously react to the source in a manner that recognises

both direc�on and distance (r) without a light-travel-�me delay. However the full

treatment of the case given by A. P. French [13] demonstrates how this does not violate

Special Rela�vity, and is in fact a consequence of it.

The case relevant to magne�sm is where both the source (q1) and test (q2) charges are

in mo�on. “The Coulomb force law is a complete statement of the force exerted on a

charged par�cle, moving or sta�onary, by sta�onary charges. The magne�c force is

associated with moving source charges... What appears as a magne�c #eld in one

coördinate system is nothing else but an electric #eld when viewed in some other

coördinate system.” [13]
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This can be demonstrated with the following two cases.

Figure 2.1: An illustra�on of the situa�on of two charges q1 and q2 travelling parallel to

each other at diAerent speeds. (b) is (a) transformed into the rest frame, S', of q1.

In Figure 2.1(a) frame S is chosen for the velocity of q1 (v) to travel along the x-axis, at

�me t=0 when q1 and q2 are aligned on the y-axis. Thus,

r=[0 , y ,0 ] ,   v= [vx ,0,0 ] and u=[ux ,0,0]

Transforming into the rest frame of q1, S' (Figure 2.1(b)), permits the Coulomb force

(Equa�on 2.2) on q2 by the now sta�onary q1 to be expressed as;

F'=
γk q1q2
r ' 3

r ' Equa�on 2.4

where r '=[0 , y ' ,0 ]  and r '=√ y '2 meaning

Fx '=0 F y '=
k q1q2

y '2
Fz '=0

To transform the Coulomb force back into S the Lorentz transforma�ons needed are;

F=
1

1+v u
x
' c−2 [

Fx '+(v c−2)(F'⋅u' )

Fy ' γ
−1

Fz ' γ
−1 ] Equa�on 2.5

were v is the magnitude of v  and u '=[ ux ' ,0,0 ] with ux '=
ux−v

1−v u
x
c−2

These transforma�ons are well established and a deriva�on is provided in [13].
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The transforma�on of the coulomb force from F' back to F proceeds as;

with
(F'⋅u')=Fx ' ux '+F y ' uy '+Fz ' uz '

=0
;

Fx=
1

1+v ux ' c
−2

[0+0 ]

=0

whilst,

F
y
=F

y
' γ−1(1+vu

x
' c−2)−1

=k q
1
q
2
y '−2 γ−1(1+vu

x
' c−2)−1

then with y '= y and the transforma�ons from Equa�on 2.5;

F y=k q1q2 y
−2 γ−1( 1+v c−2 ux−v

1−vux c
−2)

−1

=k q1q2 y
−2γ−1( 1−vux c

−2+vux c
−2−v2 c−2

1−vux c
−2 )

−1

=k q1q2 y
−2γ−1( 1−v

2
c

−2

1−v ux c
−2)

−1

=k q1q2 y
−2γ−1( 1−v ux c

−2

1−v2c−2 )
and remembering γ=

1

(1−v2/c2)1/2
then γ−1=(1−v2c−2)1/2 so;

F y=k q1q2 y
−2 (1−v

2
c
−2)1/2(1−v uxc

−2)

(1−v2 c−2)

=k q1q2 y
−2 1

(1−v2 c−2)1/2
(1−v ux c

−2)

=k q
1
q
2
y−2γ(1−v u

x
c−2)

with the result;

F y=
γ k q1q2
y2

(1−
vux

c2
)

and

Fz=0 Equa�ons 2.6
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It can be seen that aFer the transforma�on, Fy (Equa�ons 2.6) comprises two

components; 

the normal Coulomb force,

F y1=
γk q1q2
y
2

and what becomes the magne�c eAect,

F y2=
vux

c
2

γ k q1q2
y
2

which can be seen to be propor�onal to the speed of both q1 and q2. 

Signi#cantly in this case, this addi�onal force derived purely from the transforma�on of

the coulomb force between frames, acts parallel to the y-axis; perpendicular to the

velocity of the test charge u.

In the second case the velocity of q2 is set perpendicular to q1, as illustrated in

Figure 2.2. Frame S is chosen for the velocity of q1 (v) to travel along the x-axis with the

test charge q2 some displacement r from the source travelling parallel to the y-axis with

velocity u.

Figure 2.2: An illustra�on of the situa�on of two charges q1 and q2 travelling

perpendicular to each other at diAerent speeds. (b) is (a) transformed into the rest

frame, S', of q1.
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In this case,

r= [ x , y ,0 ] ,   v=[vx ,0,0 ] and u=[0 , uy ,0 ]

Again transforming into the rest frame of q1, S' (Figure 2.2(b)), permits the coulomb

force on q2 by the now sta�onary q1 (Equa�on 2.2) to be expressed, with

r '=[ x ' , y ' ,0 ]  and r '=√ x '2+ y '2 , to give;

Fx '=
k q1q2 x '

r '3
F y '=

k q1 q2 y '

r '3
Fz '=0

Using the previous Lorentz transforma�on for the Coulomb force (Equa�on 2.5) and

the addi�onal transforma�ons [13];

ux '=
ux−v

1−v u
x
c−2

, uy '=
u
y
γ−1

1−vux c
−2 and uz '=

u
z
γ−1

1−v ux c
−2

x '=γ(x−vt ) , y '= y and z '=z

then at t=0 and with ux=0 ,

x '=γ x , y '= y  r '=√ γ2
x

2+ y2

ux '=−v , u y '=uy γ
−1

and uz '=0

and the transforma�on from F' back to F proceeds as;

with (F'⋅u')=Fx ' ux '+F y ' uy '+Fz ' uz '

=
k q1q2 x '

r '3
⋅−v +

k q1q2 y '

r '3
uy γ

−1 + 0

=
k q1q2 x '

r '
3

( yu yγ
−1−γ x v)

then;

Fx=(1+vux ' c
−2)−1 [Fx '+(vc−2)(F'⋅u' )]

=(1+v ux ' c
−2)−1[ k q1q2 γ x

r '
3

+
k q1q2

r '
3 ( yu y γ

−1−γ x v )(vc−2)]
and remembering γ=(1−v2c−2)−1/2

=γ2 k q1q2

r '3
[γ x + y u y γ

−1
v c

−2 − γ x v2
c

−2]

=γ2 k q1q2

r '3
[γ x (1−v2

c
−2) + y uy γ

−1
v c

−2 ]

10
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=γ2
k q1q2

r '3
[γ x γ−2 + γ−1

yu y v c
−2 ]

=γ2
k q1q2

r '
3

γ−1 ( x + yu y vc
−2 )

with the result;

Fx=γ
k q1q2

r '
3 ( x +

vu y

c
2
y)

F y=(1+vux ' c
−2)−1F y ' γ

−1

=(1−v2 c−2)−1
k q1q2 y '

r '
3

γ−1

=γ2
k q1q2

r '
3
y γ−1

=
γk q1q2
r '
3

y

and

Fz=0 Equa�ons 2.7

Once again an addi�onal term, this �me in Fx (Equa�ons 2.7), has formed due to the

transforma�on between frames. Remembering that r '=√γ2 x2+ y2 , then Fx contains

the expected Coulomb force;

Fx1=
γk q1q2

(γ2 x2+ y2)3/2
x

and

Fx2=
γk q1q2

(γ2 x2+ y2)3/2
vu y

c
2
y Equa�on 2.8

This �me the magne�c eAect acts along the x-axis. It is again perpendicular to the

velocity of q2 and propor�onal to the speed of both the source and test charges. These

two cases have been chosen as examples with solvable algebra but it is asserted [13]

and demonstrated by experiment [14, 15] that the conclusions found hold true for all

velocity and displacement vectors. 
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The addi�onal force created by the magne�c eAect, the transforma�on of the sta�c

Coulomb force into the frame in which both source and test charge are in mo�on, is

always;

1. propor�onal to the product of the charges, q1q2.

2. propor�onal to the product of the speeds, uv.

3. perpendicular to the velocity of the test charge, u.

To ensure that the force is always perpendicular to u, in a more generalised expression,

a mathema�cal construct can be used where the force can be expressed as the cross-

product of u with some other vector quan�ty. The cross product, a × b , produces

a vector that is perpendicular to both a and b with a direc�on given by the right-

hand-grip-rule and a magnitude equal to the area of the parallelogram that the vectors

span. If the vector b is chosen to also be perpendicular to a , such that the vectors

span a rectangle, then the magnitude of the cross-product becomes simply the product

of the magnitudes a and b. 

Re-arranging Equa�on 2.8 as;

Fx
2

=q2uy
γ k q1
r '3

v y

c2

the force from the magne�c eAect when generalised becomes;

Fx
2

=q2u × B Equa�on 2.9

where the constructed vector B has the magnitude;

B=
γ k q1
r '3

v y

c2
Equa�on 2.10

and is de�ned as perpendicular to u.

The vector quan�ty B is part of an orthogonal mathema�cal construc�on which

ensures Fx
2

is perpendicular to u. However, it is useful in itself and can be used to

generalise for the behaviour of a test charge where the response is due to the

cumula�ve eAects of many sources.

12



Chapter 2: Background

To do this it is necessary to de#ne B independently of Fx
2

and u. To describe B as a

quan�ty from which an unknown Fx
2

can be determined, rather than as a value

chosen to match what Fx
2

is known to be.

The solu�on is again suggested by the orthogonality of the simple cases chosen in

Figures 2.1 and 2.2 and is asserted [13] and proven experimentally [14, 15] to be true

generally. The product v y in the rearranged Equa�on 2.8 has exactly the magnitude

of the cross-product v × r . Thus, by developing a second set of orthogonal vectors

based on the velocity of the source charge, v, and the displacement from it, r, a correct

descrip�on of B in both magnitude and direc�on is;

B=
1

c
2
v×(γ k q1r '

3
r ) Equa�on 2.11

Combining the components of Equa�ons 2.7 and Equa�on 2.9 the total force on a

moving test charge from a moving source charge can be wriJen as;

F=
γ k q1q2
r '3

r + q2u×B Equa�on 2.12

with B as just described (Equa�on 2.11).

In physics, a force-#eld is a construct that allows discussion of the force felt by a test

par�cle (which accelerates under ac�on of the force) at a par�cular point in space.

Fields are used as an intermediary culmina�on when it is imprac�cal to determine the

individual contribu�ons from many sources and a generalised descrip�on of the overall

eAect on the test par�cle is preferable. 
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For the electrosta�c force the force between two charges can be generalised to the

force on a test charge q2,

F=q2ε where ε=∑
all n

γ k qn rn
r
n
'3

Equa�on 2.13

and is referred to as the electric #eld. ε  is a genuine force-#eld in that the vector

ε represents the direc�on and magnitude of the accelera�on of the test par�cle.

Both Equa�ons 2.11 and 2.12 contain expressions which can be subs�tuted by the

electric #eld ε .

Equa�on 2.11 can be rewriJen as,

B=
1

c
2
v × ε Equa�on 2.14

and consequently Equa�on 2.12 as,

F=q2ε + q2u×B Equa�on 2.15

Equa�on 2.15 is known as the Lorentz force. The force on a test charge q 2 moving in an

electric #eld ε and “magne�c #eld” B. Because B also has the eAect of causing an

accelera�on of the test charge, it is oFen considered as a force-#eld itself, as in the

above de#ni�on of the Lorentz force. However, remembering that B is only a vector-

#eld represen�ng the result of the frame-transforma�on and does not directly

originate from a physical force, B is more correctly called the Magne�c Flux Density.

The term Magne�c Flux is introduced to describe and illustrate the constructed vector-

#eld. Unfortunately, historically the terms Magne�c Flux Density, Magne�c Flux and

Magne�c Field are oFen confused and used interchangeably.
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It has already been seen (Equa�on 2.11) that B has the magnitude,

B=
γ k q1
r '3

v y

c2
î

Given γ is a unit-less factor and the permiLvity of free space ε0 is equal to

8.854×10−12 F/m (to 3dp.) with a Farad (F) de#ned as Coulomb per Volt

 ( C /V=C2 /J=C2 /Nm ) then the units of B can be seen to be;

units=
NmC

C
2
m
3

m s−1m

m
2
s
−2 m

which simplify to,

T=
N⋅s
C⋅m

The units Newton.second per Coulomb.metre are collec�vely called a Tesla (T). A

par�cle carrying a charge of one Coulomb, and moving perpendicularly through a

magne�c #eld of one Tesla, at a speed of one metre per second, experiences a force

from the Lorentz force (Equa�on 2.15) with magnitude of one Newton.
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2.1.2 Physical Origins of Applied Magne�c Field H

If the source electrons are con#ned to move in one direc�on along a current carrying

wire then the eAect on a nega�ve test charge qt- is illustrated in Figure 2.3.

Figure 2.3: An illustra�on of the forces experienced by a test electron qt- from the

electrons and protons in a current carrying wire. The direct Coulomb accelera�on from

the electrons (a) is exactly balanced by that from the protons (a+), the wire being electro-

sta�cally neutral. The only remaining accelera�on is the cumula�ve magne�c eAect from

each moving source electron (aB), in each case perpendicular to the velocity of the test

charge.

A conduc�ng wire, even a current carrying wire, is to a very great approxima�on

electro-sta�cally neutral. The nega�ve test charge qt- is repulsed by all the moving and

sta�c electrons in the wire and aJracted by all the posi�ve protons in the atoms of the

wire. To a very #ne approxima�on the Coulomb force from each source electron is

equally balanced by the Coulomb force from each source proton. Though exaggerated

in Figure 2.3, the distance of the test charge qt- from the wire is very much greater than

the diAerence in rela�ve posi�on of the charges in the wire. The posi�onal diAerences

are negligible. The Coulomb force between the test charge and the moving source

electrons is equal in magnitude to the Coulomb force between the test charge and the

sta�onary atomic protons, but opposite in sign. However, as the electrons in the wire

are a moving source they also produce a magne�c eAect which causes an addi�onal

accelera�on to the test charge. Because the protons in the wire are sta�onary they
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produce no such magne�c eAect to counter it. Whilst the magne�c eAect on the test

charge from only one electron travelling through the wire at the electron driF velocity

is �ny, each of the mul�tude of electrons in the wire produce this eAect. Crucially, the

eAect from each electron, irrespec�ve of its rela�ve posi�on, is always perpendicular

to the direc�on of the test charge velocity. Thus, the accelera�on on the test charge

caused by the magne�c eAect from each and every moving source electron (all moving

in the same direc�on along the wire) accumulate to an appreciable and measurable

force which is not cancelled out by anything from the sta�onary protons.

Figure 2.4: (a) The test charge qt- experiences an accelera�on aB radially away from a

current carrying wire it is travelling parallel to. The constructed vector-#eld B is

perpendicular to both u and aB. The accelera�on aB is said to be a response to the local

magne�c Oux density B. (b) The accelera�on of the test par�cle travelling parallel to the

wire at distance r is always radial from the wire, thus the constructed magne�c Oux

density at any point radial to the wire is always tangen�al to a circle of radius r. That

circle can be considered the vector-#eld of the magne�c eAect produced by the current

carrying wire and is termed the Applied Magne�c Field H.

A s Figure 2.4(a) illustrates, the test charge experiences an accelera�on radially away

from a current carrying wire it is travelling parallel to. The constructed B-#eld is

perpendicular to both u and aB. The accelera�on aB is said to be a response of a moving

test charge to the local magne�c Oux density B. The accelera�on of the test par�cle

travelling parallel to the wire at distance r is always radial from the wire, thus the

constructed magne�c Oux density at any point radial to the wire is always tangen�al to
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the circle of radius r (Figure 2.4(b)). That circle can be considered the vector-#eld of the

magne�c eAect produced by the current carrying wire and is termed the Applied

Magne�c Field H. The magnitude of the Applied Magne�c Field is de#ned by the

velocity of the source electrons (related to the current passing through the wire) and

the distance r from the wire, and is thus de#ned in the units of Amps per meter. An

Applied Magne�c Field H of 1/2π Am-1 is produced at a radial distance of 1 metre from

a wire carrying a current of 1 Amp. The direc�on of the #eld is tangen�al to the

1 metre radius circle in the direc�on given by the right-hand-grip-rule.

If the single test electron in Figure 2.4(a) is replaced by an ensemble of electrons

travelling parallel to the source wire and each other, in another current carrying wire,

then the cumula�ve accelera�on on each electron produces a combined accelera�on

on the wire (Figure 2.5).

Figure 2.5: (a) Two parallel wires with electrons travelling in the same direc�on

experience a repulsive accelera�on. (b) Two parallel wires with electrons travelling in

opposite direc�ons experience an aJrac�ve accelera�on. In both cases the accelera�on

is solely the result of the magne�c eAect of the two sets of moving electrons. Both wires

are electro-sta�cally neutral.

The discussion un�l now has concerned the ac�ons and eAects of nega�ve source

charges on nega�ve test charges (the electrons). It is an historic artefact that

conven�onal current, de#ned for the direc�on of posi�vely charged ions in
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electrochemical solu�on before the discovery of electron, is by de#ni�on opposite in

direc�on to the true mo�on of the electrons in a current carrying wire. Henceforth and

by conven�on, the direc�on of the Applied Magne�c #eld H and the Magne�c Flux

density are reversed to correspond to the direc�on of conven�onal current and the

ac�on of a posi�ve charge in a B-#eld. Figure 2.5 becomes Figure 2.6.

Figure 2.6: (a) Two parallel wires with parallel current experience a repulsive

accelera�on. (b) Two parallel wires with an�-parallel current experience an aJrac�ve

accelera�on. In both cases the accelera�on is solely the result of the magne�c eAect.

Both wires are electro-sta�cally neutral.

If the electrons are forced to travel in a loop (by producing loops of wire, or repeatedly

stacking loops to form a coil) then the resultant magne�c force from each electron's

path will sum to produce a combined force perpendicular to the plane of the loop and

parallel to the axis of the loop or coil, as illustrated in Figure 2.7. The applied #eld at

any point within the loop is a culmina�on of applied #elds from every point on the

loop, in propor�on to the distance from the wire (as in Figure 2.4(b)). The centre of the

loop receives equal contribu�on from all parts of the loop. As a test charge is moved

away from the centre the increase in #eld from the edge it approaches is exactly

matched by the decrease in #eld contribu�on from the diametrically opposed edge.

Thus the applied #eld within a loop is uniform. The Magne�c Moment m is de#ned as

the vector perpendicular to the loop, as illustrated in Figure 2.7(a).
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Figure 2.7: (a) The Magne�c Moment m is de#ned as the vector perpendicular to the

current loop, the result of the culmina�on of the Applied Magne�c Field H within the

loop, thus propor�onal to the current and radius of the loop. (b) A test loop whose

Magne�c Moment m2 is misaligned with m1 will feel the accelera�on aB necessary to

rotate and translate un�l m1 and m2 are coincident.

If a second, “test loop” is placed with a Magne�c Moment (m2) in a diAerent direc�on

to the magne�c moment of the original loop (m1) (as illustrated in Figure 2.7(b)) then

the edges of the test loop feel an accelera�on aB from the local resultant B-#eld, a

consequence of the Applied Field H, in a combina�on of direc�ons that rotate the test

loop un�l m2 is coincident with m1. If neither loop is #xed then both will rotate and

translate un�l m1 a n d m2 are coincident. If some physical restric�on prevents

coincidence then the loops will rotate and translate un�l they are as close to

coincidence as possible, which is an energy minimizing phenomenon. As the applied

#eld H is uniform everywhere within the loop then the radius of the loop has no eAect

on the magnitude of H within the loop, and hence the magnitude of the Magne�c

Moment m is dependent only on the current in the loop, the velocity of the electrons

around the loop, or crucially; the Angular Momentum of the electrons as they are

forced around the loop by the electrosta�c boundaries formed by the sta�onary

protons in the wire. The Magne�c Moment m has a magnitude dependent on the

Angular Momentum of the electrons in the current loop and a direc�on perpendicular

to the plane of that Angular Momentum.
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2.1.3 Physical Origins of Material Magne�za�on M

The magne�c moment is inextricably linked to the angular momentum of the

electrons. The vector is perpendicular to the plane of angular rota�on and is of a

magnitude propor�onal to the magnitude of the momentum. This angular momentum

can be macroscopic, as with many electrons travelling through a loop of wire. However,

the electrons also have angular momentum on the atomic (atomic orbital momentum)

and subatomic (electron spin) scales. At the atomic and subatomic quantum

mechanical scales the two electron momenta are discrete harmonic quan��es of the

bound electron wave, related by a spin-orbit coupling factor [16]. It is the interplay of

these two angular momenta which result in the atomic magne�c moment of the

electrons, the protons and thus ul�mately the atoms in a material.

The challenges involved in describing the ensemble eAects of the complex interplay of

electron spin and orbit coupling, coupling to the other atomic electrons, and coupling

to the protons in the nucleus (which themselves have a spin) are extensive. The formal

discussion of the quantum mechanics involved are summarised in van Vleck’s Nobel

lecture ar�cle “Quantum Mechanics: The Key to Understanding Magne�sm” [17]

quo�ng his seminal work [16] and the work of Tyablikov [18]. From this strict quantum

mechanical treatment the smallest discrete quanta of atomic magne�c moment, the

Bohr Magneton β, is de#ned;

β =
eh

4 π mec
= 9.274009994 (57)×10−24J /T Equa�on 2.16

where, e is the charge on an electron, h is the Plank constant, me is the electron rest

mass and c is the speed of light.

By the nature of subatomic physics, the magnitude of the magne�c moment of an

atom will be an integer mul�ple of β . The cumula�ve vector-#eld produced by the

ensemble of atomic magne�c moment magnitudes and direc�ons in a material is

termed the material’s Magne�sa�on M.
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The collec�ve Magne�za�on #eld M of a material is the cumula�ve eAect of the

ensemble of atomic magne�c moments coupled with the molecular (crystalline)

structure of the material, a complex mul�-body problem. Materials made of atoms

with #lled electron shells have a total moment of zero, because the electrons all exist in

pairs with opposite mutually cancelling spins. Only atoms with par�ally #lled shells

(unpaired spins) can have a net magne�c moment. When two nearby atoms have

unpaired electrons, the parallel or an�parallel states of the electron spins aAects

whether the electrons can share the same orbit, as a result of the Pauli exclusion

principle. When the orbitals of unpaired outer valence electrons from adjacent atoms

overlap, the magne�c interac�on due to magne�c moment orienta�on will tend to

align the moments an�parallel. However, the distribu�ons of the electron’s electric

charge in space is farther apart when the electrons have parallel spins than when they

have opposite spins, a diAerence called the exchange energy, so the parallel-spin state

is more stable [19]. In some materials this energy diAerence can be orders of

magnitude larger than the energy diAerences associated with the magne�c moment

interac�on and these are the materials which exhibit the greatest magne�c proper�es

(magne�c materials). For example, in iron the exchange force is about one thousand

�mes stronger than the magne�c moment interac�on [19].

With recent advances in compu�ng power, eAorts at fundamental “micromagne�c”

modelling have been made [20, 21, 22, 23, 24] but more commonly the observable

collec�ve magne�c behaviour of a material has been the subject of empirical

inves�ga�on and experimental measurement (discussed in the review of literature,

Chapter 3) which can be described and tabulated as a set of material proper�es,

discussed further in Sec�on 2.2.1, page 25.

The degree of material Magne�sa�on M occurring for a given applied #eld H is

represented by the dimensionless ra�o χm - the magne�c suscep�bility. 

M=χmH Equa�on 2.17
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If, due to the material proper�es, the atomic magne�c moments align parallel with the

applied #eld and amplify it then χm > 0 and the material is called Paramagne�c. If, due

to the material proper�es, the atomic magne�c moments align in opposi�on to the

applied #eld (an�-parallel) then the applied #eld through the material is suppressed,

χm < 0 and the material is called Diamagne�c.

2.1.4 The rela�onship between B, H and M

The Magne�c Flux density B is a constructed vector-#eld with magnitude measured in

Tesla (Newton.second per Coulomb.metre) to which a moving test charge (or ensemble

of test charges) is said to react, in a direc�on perpendicular to its velocity. The Applied

Magne�c Field H has a magnitude measured in Amps per metre which is said to form a

vector-#eld tangen�al to a circle of chosen radius around a current carrying wire. B is

framed in the form of its eAect on the test charges, whilst H is framed in the form of

what is being produced by the source charges. They are not iden�cal but are related.

In a vacuum they are related by a scaling factor μ0 called the permeability of free space,

thus;

B=μ 0H Equa�on 2.18

where μ 0=4π ×10−7
N / A2 x 1.00000000082(20) 

As of 20th May 2019 [25] this has been determined by measurement, with units that

relate the units of B to H. The units Newton per square Amp relate how the force on

the test charge increases as the speed of the source charges increases.

The previously men�oned permivity of free space, ε0 , which relates the Coulomb

force between two charges (Equa�on 2.1) is related to μ0 by the universally constant

speed of light,

c2=ε
0
μ
0

Equa�on 2.19

c is de#ned equal to 299,792,458 m/s [25].
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The overall magne�c Oux density B within a material is a combina�on of the applied

magne�c #eld H and the material magne�za�on M,

B=μ0(H+M ) Equa�on 2.20

and from Equa�on 2.17 this can be wriJen as,

B=μ0(H+χmH )

B=μ0(1+χm)H

B=μ0μrH Equa�on 2.21

with μr=(1+χm) termed the rela�ve permeability of the material compared with

vacuum, which is some�mes more usefully tabulated than just the magne�c

suscep�bility.

The magne�c Oux density B within the bulk of a material can be measured with a

vibra�ng-sample magnetometer [26] and local assump�ons can be made about the

bulk behaviour based on measurement of #eld at the surface [27], but computer

modelling of the magne�c Oux within a material using Finite Element Analysis proceeds

using the rela�onship in Equa�on 2.21. The rela�onship between the �me-varying

magne�c Oux density B within a material and an alterna�ng external #eld applied to it

H, provides one of the principle magne�c characteris�cs of a material, illustrated by

the material's B-H curve (Figure 2.13). 

Methods of applying a magne�c #eld H include the use of electromagnets [28], c-core

[29] or a close approxima�on to an idealized long solenoid of length l with N turns.

The applied magne�c #eld within the solenoid is along its axis and propor�onal to the

number of turns per unit length of solenoid and the current I in each turn.

H=
N

l
I Equa�on 2.22
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2.2 Magne�c Materials, Magne�c Domains and Stray Fields at the 

Surface

2.2.1 Magne�c Materials

Magne�c materials are those elements, or alloys of elements, which have a magne�c

suscep�bility χm > 0, and are said to be paramagne�c, having atoms with par�ally #lled

shells, with atomic moments which readily align parallel to an externally applied #eld.

All materials exhibit a diamagne�c eAect, which opposes an applied magne�c #eld, but

the paramagne�c eAect in magne�c materials is so much greater than the diamagne�c

eAect that it is hidden. Materials which do not show a paramagne�c eAect are

considered non-magne�c, purely diamagne�c (χm < 0).

Figure 2.8: Illustra�on of the diAerences in atomic magne�c moment alignment, M with

representa�ons of (a) magne�c moments in a disordered state; (b) diamagne�sm; (c)

paramagne�sm; (d) ferromagne�sm; (e) an�-ferromagne�sm and (f) ferrimagne�sm.

Figure 2.8(b) is a representa�on of diamagne�sm where the atomic magne�c moments

align in opposi�on to the applied #eld H. Figure 2.8(c) is a representa�on of

paramagne�sm where the atomic magne�c moments align in support of the applied

#eld H. 
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A periodic table of the elements, indica�ng which are diamagne�c and which are

paramagne�c is presented in Figure 2.9.

Of the paramagne�c elements some also exhibit proper�es of ferromagne�sm,

ferrimagne�sm and an�-ferromagne�sm, which are all manifesta�ons of ordered

magne�sm within the material. Materials with these proper�es maintain their ordered

magne�c state even in the absence of an applied #eld, and exhibit spontaneous

magne�c ordering. 

The atoms of Iron, Cobalt, Nickel and Gadolinium are ferromagne�c at 290 K (17 °C).

Figure 2.8(d) illustrates the alignment of atomic magne�c moment, which in

ferromagne�c atoms is maintained even in the absence of an externally applied #eld.

The magne�c moments align spontaneously bellow their Curie temperature [19].

Above the Curie temperature the thermal excita�on disorders the atomic moments (as

illustrated in Figure 2.8(a)) and the elements loose their magne�sm. Other elements in

the Lanthanides series are also ferromagne�c if cooled bellow their Curie

temperatures.

Figure 2.8(e) illustrates the alignment of atomic magne�c moments in an an�-

ferromagne�c material. The atomic moments spontaneously align in an alterna�ng

an�-parallel state resul�ng in net zero magne�za�on. Above the element's Néel

temperature [27] the thermal excita�on breaks the spontaneous alignment and the

material behaves as a paramagne�c material, free to align to an externally applied

#eld. Chromium is the only element which is an�-ferromagne�c at room temperature

but Manganese and some of the Lanthanide series are an�-ferromagne�c if su[ciently

cooled. Ferrimagne�c compounds were originally classi#ed by Néel, but many naturally

occurring magne�c materials, including the original magne�te (Fe3O4) of an�quity, are

actually ferrimagne�c rather than pure ferromagne�c [19]. Ferrimagne�c materials

have an�-ferromagne�c alignment with an imbalance in strength of atomic moments

resul�ng in a net posi�ve magne�za�on, as illustrated in Figure 2.8(f).

26



Chapter 2: Background



Figure 2.9: The Periodic Table of elements illustra�ng which elements are Diamagne�c,

Paramagne�c, Ferromagne�c and An�-ferromagne�c, including the Néel and Curie

temperatures. Derived from informa�on available in [19].
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2.2.2 Physical Origins of Magne�c Domains

In most ferromagne�c materials there are physical boundaries and restric�ons to the

propaga�on and permiJed orienta�on of spontaneous magne�c ordering. Most

ferromagne�c and ferrimagne�c elements, compounds and alloys form a crystalline

laLce when solid. An excep�on to this are the amorphous metal alloys, forced to form

non-crystalline by rapid cooling and random atomic radii.

The interac�on between the atoms in the crystal laLce physically restricts the

preferred magne�c orienta�ons to only par�cular direc�ons, called the easy axis of the

laLce. Figure 2.10 illustrates the three common metallic crystalline structures;

hexagonal close-packed (hcp), body centred cubic (bcc) and face centred cubic (fcc). 

Figure 2.10: The metallic crystalline structures; body centred cubic (bcc) and face centred

cubic (fcc) and hexagonal close-packed (hcp).

The easy axis of a material (element, compound or alloy) can be in any direc�on within

the laLce and is a par�cular property of the material. The easy axis is normally

perpendicular to one of the repeatable planes permiJed by the laLce structure. Both

the easy axis direc�on and the planes within the laLce are described using Millar

Indices [30].
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Natural imperfec�ons in the crystal laLce lead to grain boundaries which provide

physical disloca�ons and discon�nui�es in the orienta�on of the crystal laLce. This in

turn provides edges and discon�nui�es in the orienta�on of the materials magne�c

ordering. The atomic magne�c orienta�ons self adjust to these large scale crystalline

imperfec�ons; towards a minimal energy con#gura�on for the bulk material, with the

net orienta�on within one grain diAering to its neighbours resul�ng in a net

magne�sa�on.

For a non-magne�sed sample the net magne�sa�on is by de#ni�on zero, though

individual grains may have magne�sa�on in a par�cular direc�on, others have

magne�sa�on in an opposing direc�on. A ferromagne�c sample can become

magne�sed by applica�on of an external magne�c #eld, in which case the net

magne�sa�on of each grain aligns to the external #eld resul�ng in net magne�sa�on

for the bulk material.

For materials with large grains it requires energy input from an externally applied #eld

to maintain the atomic moments in the same orienta�on throughout the en�re grain

(satura�on). Without the external #eld suppor�ng this energy state, the atomic

moments within a grain will spontaneously break into regions which orient alternately

within the grain, to minimise the net magne�sa�on towards zero (or towards the

current level of external #eld). 

These separate regions within an otherwise con�nuous crystal grain are called

Magne�c Domains and are a topic of extensive study. For the atomic moments to be

able to change orienta�on within a physically con�nuous crystal grain, regions of

reorienta�on, called domain walls, form. Two types of domain walls are common Block

and Néel, as illustrated in Figure 2.11, reproduced from [31]. Forma�on of a domain

wall requires energy, and so the number of domain walls which spontaneously form in

a material, and hence the size of individual magne�c domains, depend on the

proper�es and internal energies (including temperature) of the material. If a grain or

par�cle is small enough that the energy needed to create a domain boundary between
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two domains is greater than the energy of the single-domain par�cle, the par�cle will

remain a single domain. There is a single-domain size for each material (Dsd), below

which size it will be a single domain and above which it will be a mul�-domain. The

single-domain sizes for various ferromagne�c materials are illustrated in Figure 2.12,

reproduced from [27]. If the par�cle size gets much smaller, the internal coupling

energy between the atomic magne�c moments can no longer be su[cient to counter

thermal energy. This cri�cal size is known as the super-paramagne�c limit (Dsp) [27].

Figure 2.11: The rota�on of the magne�za�on vector from one domain through a 180°

wall to another domain. The two alterna�ve modes of rota�on are; (a) Bloch wall, the

op�mal mode and (b) a Néel wall, which is less favourable. Reproduced from [31].

Figure 2.12: Single-domain par�cle diameter size (Dsd) and super-paramagne�c transi�on

diameter size (Dsp) of selected ferromagne�c materials. Reproduced from [27].
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2.2.3 Dynamics of Magne�c Domains

As an applied #eld H on a material changes, the orienta�on of individual magne�c

moments will react not only to the external #eld, but also to the internal material

Magne�za�on M caused by the orienta�on of the moments in the atom’s neighbours.

Observa�on of the magne�c domains as a changing externally applied #eld magne�zes

a sample demonstrates how the domain paJern re-arranges to maintain a minimal

energy con#gura�on that equals the new net magne�sa�on of the material.

Barkhausen noise [32, 33 , 27, 34], which was #rst heard as a crackling signal from a

pickup coil connected to a speaker, is seen as evidence of discrete jumps in the atomic

magne�c moments as they align to the required direc�on. In the study of the bulk

magne�c proper�es of a material by the plot of the magne�c Oux density B (as

detected with a pickup coil) against the applied #eld H, applied using a Yoke or

Helmholtz coil [35, 36, 37, 38] the Barkhausen eAect can be observed directly in the

discrete jumps present at small scale on the resul�ng B-H curve, as illustrated in

Figure 2.13, reproduced from [27].

Figure 2.13: Barhausen noise; discon�nuous changes in the Oux density B as the applied

#eld H is changed. Reproduced from [27].

It is stated [27] that the magne�c Barkhausen eAect is “caused mostly by sudden

irreversable mo�on of magne�c domain walls when they break away from pinning

sites”. This is inves�gated further and discussed as part of the domain dynamics work

presented in Chapter 8.
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2.2.4 Stray Fields at the Surface

Study of the eAect of a material's bulk domain structure on its average material

magne�sa�on can be made through B-H curve and Barkhausen noise studies [39, 32,

33, 40]. Inves�ga�on of the speci#c domain structure within the bulk of a material

must be approximated by the study of those domains which are observable at the

material's surface [41, 42, 43, 31].

Study of the domain structure at the surface of a material is possible because

imperfect orienta�on of the domains at the surface leads to a leakage of magne�c Oux

beyond the boundary of the material, par�cularly at domain walls and grain

boundaries. This Oux leakage manifests as measurable “Stray Fields” at the surface of a

sample. Alex Hubert and Rudolf Schäfer [31] provide an extensive account of the

diAerent ways that the complex domain structures within samples can manifest as

paJerns of stray #eld above the surface.

Because the magne�c Oux and magne�c Oux density cannot be sharply discon�nuous

[19], the assump�on that the magne�c Oux above the surface boundary corresponds

to the Oux just bellow the surface is valid. Consequently, by measuring or observing the

stray #elds emana�ng from the surface of a sample it is possible to determine the

structure of the domains just below the surface.

By studying the structure and dynamics of domains at the surface of a magne�c

material it is possible to gain a beJer understanding of the behaviour of the domains

within the bulk of the material, which are beyond direct observa�on, and consequently

a beJer understanding of the mechanisms behind the bulk magne�c behaviour and

proper�es of a material. Those proper�es can then be beJer engineered to #t

par�cular requirements in power electronics [44, 45], actuator [46, 47, 48] and sensor

[49, 50, 51, 52] applica�ons.
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Numerous techniques in the discipline of domain observa�on, the study of the

structure and dynamics of surface magne�c domains, of which this work forms part,

have been developed and are discussed at length in the following review of prior

literature, Chapter 3.

Most of the previous domain observa�on techniques discussed in Chapter 3 provide

only a planar (top down) view of domains just below the surface of the sample. It is an

open topic of research, which is inves�gated in Chapter 7, as to how the stray #elds

behave in the volume of space above the surface of the sample, how far they extend

beyond the surface of the sample and over what range the magne�c Oux lines might

loop back into the surface.

How the stray #elds vary in shape dynamically above a sample in an alterna�ng applied

magne�c #eld is also an open topic of research, which is inves�gated in Chapter 8.

Being able to observe and measure these empirically for the #rst �me will help either

con#rm or improve upon the models of bulk domain forma�on and movement [27],

[31] currently assumed from the planar observa�ons.
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Chapter 3

Review of Literature

A review of the Literature relevant to the detec�on of magne�c �elds and observa�on of
domains and domain dynamics is provided along with exis�ng procedural scanner
systems making use of the magne�c �eld detec�on techniques available.

3.1 Methods of Detec�ng Magne�c Fields and Observing Domains

The topic of domain observa�on is extensive and spans a century of research. For the

purposes of this chapter it is necessary to focus on those areas of the topic most

per�nent to the techniques directly employed in this work.

The techniques for observing domains are discussed extensively in the review work and

authorita�ve publica�ons of Hubert and Schäfer [31]. This older work provides

extensive review and explana�on of domain observa�on using the Bi,er technique and

Magneto-Op�cal techniques but is naturally limited in the discussion of Magne�c Field

Sensor Scanning, men�oning only older Hall and vibra�ng-pickup-coil sensors. They

discuss the prac�cal limita�ons in spa�al and sensi�vity resolu�on which the current

project addresses.

Hubert and Schäfer [31] also give a summary of the principle mo�va�ons for the �eld

of domain observa�on; why they are studied. “The role of magne�c microstructures

varies strongly between di4erent applica�ons of magne�c materials. In some �elds,

such as in the cores of electrical machinery, domains and domain walls are essen�al.

Electrical machines would not work without the easily displaceable domain walls

providing the necessary permeability. The same is true for most induc�ve devices at

medium and high frequencies. Irregulari�es in the magne�c microstructure are also

the origin of losses and noise (electrical and acous�cal) in these devices.”

“In some applica�ons of magne�c materials domains play no role at all, such as

microwave components, nuclea�on-type permanent magnets, and par�culate

recording media. Other devices would ideally work without any non-uniform magne�c

microstructures, but domains are the origin of irregular behaviour if they cannot be
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suppressed. In these cases, mostly in the �eld of small sensor and memory elements,

domain studies are necessary to understand the condi�ons of their occurrence and

their control. Finally there are applica�ons in which domain propaga�on is directly put

to technical use; magne�c memories, domain shi; register devices and magneto-

op�cal display and sensor devices” [31].

There are three main techniques for detec�ng magne�c �elds and consequently

observing magne�c domains in materials; methods related to the Bi,er technique,

methods employing magneto-op�cal e4ects and methods using electronic means of

detec�ng magne�c �elds (magne�c �eld sensors).

3.1.1 The Bi!er Technique

As men�oned in Chapter 2, magne�c =ux is a constructed vector-�eld which describes

the direc�on that a single unconstrained magne�c moment will align itself to (Chapter

2, Figure 2.7). Iron is an easily magne�sed material and a small elongated par�cle of

iron (an iron �ling or the microscopic par�cles in a “ferro=uid” ethyl acetate

suspension), that is free to move, will act like an unconstrained magne�c moment and

align its long axis to the direc�on of the magne�c =ux. Many aligned par�cles will

cluster head-to-tail along a line of =ux. Par�cles following adjacent lines of =ux will

cluster laterally, forming thicker lines. The thickness and number of the lines is a

balance between the density of the magne�c =ux and the physical restric�on-to-

movement on the par�cles, the fric�on of the surface or viscosity of the “ferro=uid”.

The number and thickness of the lines formed thus becomes, against a known or

standard viscosity of “ferro=uid”, an indica�on of the Magne�c Flux Density B. The

work of Bi,er in 1931 on the inhomogenei�es in the magne�za�on of ferromagne�c

materials [53], involved observa�ons on crystals of iron and iron-silicon, having large

grains. The samples had been ground and annealed but the traces from the ferro=uid

did not show any rela�onship to the grain structure. “For [small] magne�za�ons…

various systems of evenly spaced straight parallel lines appear[ed], but varying slightly

in direc�on and spacing from grain to grain.” This led to his work on the nature of
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ferromagne�sm [54] using a “ferro=uid” of magne�c Fe2O3 par�cles about 1 µm in

diameter suspended in ethyl acetate. This is the technique which bears his name. He

studied the pa,erns on iron crystals, nickel crystals and cobalt crystals. The pa,erns

obtained ranged from straight lines on some crystals, and spo,y pa,erns on others.

“The spots arrange themselves in rows when the crystals are magne�zed”. At the �me

“an explana�on of these e4ects [was] not known”, though these are now known to be

the result of domain forma�on and magne�c structure and dynamics within the

samples.

In 1949 Williams, Bozorth and Shockley [55] were using the Bi,er technique to outline

the domains in single crystals of silicon iron and derive understanding of the domains

in the bulk of the material, including energising the sample in alternate direc�ons to

determine the direc�on of the domains observed and provide veri�ca�on of the theory

of Bloch walls [31] between the domains (Chapter 2, Figure 2.11). They also no�ced

that “if a scratch [in the surface] crosses a domain in which the magne�za�on is not

parallel to the scratch, magne�c poles are formed when the =ux emerges into the air

where it crosses the scratch.” A stray-�eld phenomenon discussed in Chapter 7.

Narita [56] also employed the bi,er technique to study the annihila�on of domain

walls under magne�za�on of a sample of silicon-iron in varying direc�ons, making use

of the result that the colloidal par�cles in the ferro=uid, once the ethyl acetate has

evaporated, collect around the stray �elds presumed to emanate from the Bloch walls

at the edges of the domains at the surface of the sample.

The Bi,er technique highlights the loca�ons of the edges of the domains in a sample,

in the theory [31], collec�ng around the points of strongest z-component stray �elds

emana�ng from the surface of the sample. A common method for enhancing the

z-component stray �elds from the Bloch walls is using a coil to supply an emphasising

z-�eld (perpendicular to the sample surface), called a bias �eld. Grechishkin et al. [57]

use a bias �eld of 40 mT to study the domain structures in polycrystalline Ni-Mn-Ga

shape memory alloys. Xu et al. [43] provide an illustra�on of such a “domain viewer”
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setup and compare the magne�c domain pa,erns observed in Grain-Oriented

Electrical Steel using this technique with those obtained using the Magneto-Op�cal

Kerr e4ect (Sec�on 3.1.2).

One advantage of the Bi,er technique is that “the resolu�on of the Bi,er technique

reaches easily 100 nm and is in principle limited only by the colloid par�cle size to

some 10 nm” [31]. Alimohammadi et al. [6] use such a method to highlight the

< 100 nm wide zig-zag �eld pa,erns on AF10 amorphous wire, a result reproduced

with permission in Chapter 6. Hubert and Schäfer [31] men�on development of the

Bi,er method using magnetotac�c bacteria for decora�ng stray �elds.

Bi,er pa,erns do not always require surface prepara�on and even coated samples can

be inves�gated, but resolu�on and sensi�vity are higher for well polished samples [31].

However, because of the se,ling �me of the colloid par�cles, the technique is largely a

sta�c domain observa�on technique. To respond to any altered external �eld, the

se,led par�cles must be re-suspended, or reapplied [56].

3.1.2 The Faraday and Kerr Magneto-op�cal E)ect

In 1846 Faraday discovered that the plane of plane-polarised light, being a polarised

electromagne�c wave, is rotated when passing through a region of magne�c �eld. If

light polarised on a single plane passes through a magne�c �eld then the orienta�on of

that plane is rotated in rela�on to the strength and rela�ve direc�on of the magne�c

�eld  [58]. If a magne�c material is transparent then the plane of the light passing

through it will be rotated in rela�on to the internal magne�za�on �elds of the material.

The rota�on of the polarisa�on is inves�gated using a pair of crossed polarisers. 

Unfortunately most magne�c materials are not transparent to visible light, however, in

1877 Kerr recognised that the same rota�onal result occurred for re=ected polarised

light [59]. If the surface of a sample is suPciently smooth and re=ec�ve as to faithfully

return the plane of the polarised light, rather than sca,er it, then that plane is again
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rotated by interac�on with the magne�c �elds in the material. It is important to

recognise that the e4ect occurs due to interac�on with the �elds in the material itself

(in the surface layer) rather than the stray �elds emana�ng above the surface of the

sample. The e4ects are small so digital contrast enhancement and image di4erence

techniques are o;en employed to enhance the signal.

“The observa�on of magne�c domains by magneto-op�cal microscopy, based on the

Kerr and the Faraday e4ect, is one of the most prominent techniques for the

visualiza�on of distribu�ons of magne�za�on within magne�c materials. The method

has gained increased a,en�on due to the possibility to visualize �eld and current

induced phenomena in nano-structured magne�c materials on fast �me-scales” [60].

The Magneto-Op�cal Kerr E4ect (MOKE) method di4ers in rela�on to the rela�ve

orienta�on of the expected �elds. Polar MOKE is when the magne�za�on vector is

perpendicular to the re=ec�ve surface and parallel to the plane of incidence, in

longitudinal MOKE the magne�za�on vector is parallel to both the re=ec�ve surface

and the plane of incidence, while in transverse MOKE the magne�za�on vector is

perpendicular to the plane of incidence and parallel to the surface. Fowler and Fryer

[61] contrast between the longitudinal and transverse e4ect and in this way some

impression as to the three-dimensional shape of the �elds within the sample can be

obtained. Schäfer and Schinnerling [62] use such comparison to validate “three-

dimensional echelon models” for domain re�nement close to strongly mis-oriented

iron surfaces. Meguro et al. [63] recognise that the rota�on of longitudinal MOKE is

reversed when the illumina�on direc�on is reversed whilst the rota�on of Polar MOKE

remains the same. This can be used to eliminate the polar component of the

magne�sa�on �eld in NiFe thin �lms and, together with sample rota�on, determine

the three dimensional direc�on of the local magne�sa�on �eld. It is again important to

recognise that these previous studies look at the three-dimensional structure of the

magne�sa�on �elds within the material, and not the three-dimension structure of the

stray �elds above the sample, which this work addresses.
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The high op�cal-resolu�on of light microscopy, the rela�ve ease of seQng up a cross-

polariser system compared to the Bi,er technique, and the image enhancement and

temporal resolu�on possible with modern digital photography, has made MOKE

methods common in domain observa�on studies where the nature of the samples

permit it, and the limited available �eld of view is nevertheless suPcient. 

Takezawa et al. [64] built a MOKE system for domain observa�on of Fe-Si-B-Nb

amorphous wires with large diameters for micro-sensor applica�ons, indica�ng that

domain size in the inner core of the wire is important for high sensor output and  [65]

use the same system to observe Nd-Fe-B sintered magnets at elevated temperatures

up to 320 °C. At these temperatures oxida�on would normally prevent the surface

from remaining mirrored, but a 5 nm surface coa�ng of Tantalum (Ta) was found to

prevent the oxida�on without a4ec�ng the MOKE results.

Životský et al. [66] used longitudinal MOKE to inves�gate the surface magne�c

anisotropy and the domain behaviour in as-quenched and strain-annealed Fe-Nb-B

amorphous ribbons.

MOKE is commonly used to analyse the e4ects on the magne�c proper�es of electrical

(Si-Fe) steels of mechanical opera�ons necessary during manufacture in the power

transformer industry, including bending [67], punching [68] and cuQng [44].

The disadvantage of the magneto-op�cal Kerr e4ect is the need for a sample with a

clean smooth re=ec�ve surface which does not introduce its own sca,ering or op�cal

artefacts to the data. This necessitates some�mes diPcult sample prepara�on, which,

even if successfully done, may introduce stresses or altera�on to the material

proper�es which may render the resul�ng domain observa�ons irrelevant to the study

of the raw unaltered material.

Even where sample prepara�on is not an issue, and the surface of the sample can be

appropriately prepared to a perfectly clean mirrored surface, there is an issue of
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limited depth of �eld imposed by the necessary 60° incident angle of the light and

camera, common in longitudinal and transverse MOKE. The area of in-focus data

available is a great limit for domain observa�on over large areas, which is discussed

further in the comparison of the Scanner System with MOKE results in Chapter 6.

One solu�on to the issue of sample prepara�on is by the use of magneto-op�cal

indicator �lms as an intermediary.

3.1.3 Magneto-op�cal Indicator Films

Magneto-op�cal Indicator Films (MOIFs) are op�cally transparent thin �lms of bismuth-

subs�tuted y,rium iron garnet (Bi1Y2Fe5O12) [42] which exhibit the Faraday e4ect on

polarised light which passes through them. By mirroring the lower edge of the �lm,

incident plane-polarised light will pass through the body of the �lm twice, the angle of

the plane being rotated as it does so in rela�on to the �lm's internal magne�sa�on. As

the �lm has a low coerci�vity [69], if the �lm is placed next to a magne�c sample with

strong stray �elds emana�ng from the surface then the internal magne�sa�on of the

�lm will alter in rela�on to the stray �elds passing through it, and communicate that by

the induced Faraday-rota�on. Lee et al. [42] produced a thickness of �lm of

approximately 47 nm for a single coa�ng, with Faraday-rota�on angles es�mated as

-2.47 °/µm. Benne, et al. [70] were among the �rst to employ the technique in 1995

for nondestruc�ve characteriza�on of the defect structure of electrochemically

produced CoNiCu/Cu magne�c mul�layers.

Grechishkin et al. [71] use magneto-op�cal imaging �lms to study the magne�c stray

�eld distribu�ons above ar��cially pa,erned permanent magnet �lms and other

miniature elements that could be used in magne�c micro-systems. Richert et al. [10]

use MOIF techniques as a versa�le method to characterize magne�c �eld distribu�ons

in grain-oriented electrical steel without removing the isola�on layer. The combina�on

of MOIF with digital high-speed camera technology enabled temporally resolved
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inves�ga�ons of the magne�za�on processes with op�cal resolu�on of 25 µm and a

temporal resolu�on of 1 ms (in single-shot mode).

Matesy have produced the CMOS-MagView commercial system [72] which uses an

integrated magneto-op�cal indicator �lm to detect stray �elds in the range

0.01 to 160 kA/m placed in direct contact with its 50 x 60 mm sample region. The

CMOS sensor permits a spa�al resolu�on of 25 µm. This device is useful for

observa�on of manufactured magne�c features and even hairline-crack detec�on in

magne�sed samples but lacks the spa�al resolu�on for detailed domain observa�on.

As these studies highlight, MOIF techniques do inves�gate the stray �elds above a

magne�c sample rather than the internal magne�sa�on probed by direct MOKE. They

can provide high-resolu�on observa�on of unprepared samples, although in some

cases the �lms require deposi�on. They can also respond quickly in dynamic studies. 

However, MOIF is only able to probe the stray �eld in the 50 nm layer above the

surface and thus not able to elucidate the three-dimension shape of the stray �elds as

they extend above the surface, which is an aim of this work. As an op�cal technique

again dependent on the 60° incident angle common with MOKE setups, they s�ll

exhibit the issue of limited depth of �eld as discussed in the comparison of the Scanner

System with MOKE results in Chapter 6.
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3.1.4 Magne�c Field Sensors

As an alterna�ve to the mechanical, and op�cal methods discussed previously it is

possible to detect magne�c �elds purely electronically, using magne�c �eld sensors. As

a fundamentally electro-magne�c e4ect (Chapter 2) a magne�c �eld, by de�ni�on, has

a direct e4ect on the electrons present in a system. The exact manifesta�on of that

e4ect is dependent on the nature of the electronic sensor employed, and is itself again

a very extensive topic of research.

As stated in Pipka and Janošek's 2010 review of advances in magne�c �eld sensors [73]

“the most important milestone in the �eld of magne�c sensors was when [anisotropic

magnetoresistance] sensors started to replace Hall sensors in many applica�ons where

the greater sensi�vity...was an advantage and [giant magnetoresistance]..sensors

�nally found applica�ons”. 

Magne�c �eld sensors either; produce their own induced poten�al di4erence or

current in rela�on to the strength of an applied magne�c �eld (Hall-e4ect [74] ,

VSM [26] or =ux-gate sensors [50]) or vary their resistance to the =ow of current in

rela�on to the strength of an applied magne�c �eld (magneto-resistance sensors)

[75, 76]. 

Tumanski provides a thorough review of the modern magne�c �eld sensors in [77] and

[78] with descrip�on of their principles of opera�on.

The sensor provided for this work is the STJ-020 Tunnelling Magneto-Resistance sensor

from Micromagne�cs [79] . The Micromagne�cs STJ-020 TMR sensor is a Tunnelling

Magneto-resistance Sensor with a 2 µm × 4 µm ac�ve area. The sensor die is mounted

on a long-armed probe. The physical principles of the sensor are presented in

Chapter 4 (Sec�on 4.7.1).
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Magne�c �eld sensors detect the �eld in one loca�on. In order to observe stray �elds

over a surface area it is necessary to scan the sensor over the surface and collect

mul�ple measurements across the surface at known posi�ons, to build a picture

digitally. Some e4orts have been made to produce �xed arrays of sensors [80]. The

MagCam MiniCube 3D [81] contains 16,384 3D Hall sensors in a 128 x 128 2D array

with a spa�al resolu�on of 0.1 x 0.1 mm2 per pixel. This has the advantage of being a

solid state device with rapid (< 1 second) sampling �mes but has a �xed resolu�on and

only covers an area of 12.7 x 12.7 mm2 per image. Tumanski and Baranowski [80]

inves�gate various magne�c sensor arrays using Hall-e4ect and Magneto-resistance

sensors and an array is used to sample either a �xed number of points across a steel

strip as it passes beneath the sensor, or as an ampli�ca�on and averaging method, or

as a way of increasing the speed of a scanner system.

For economic reasons it is more common to use just a single sensor and scan the

sensor over the area mechanically. This is slower but permits a higher (variable) spa�al

resolu�on (limited by the size of the sensor) and large (variable) scan area. The STJ-020

TMR sensor provided for this work was created by Micromagne�cs as part of the

development e4ort on their Circuit Scan 1000 system [3], which uses magne�c �elds to

perform diagnos�cs on semiconductor die and packages, speci�cally because the

CS1000 required high spa�al resolu�on to be able to see the �ny current paths which

exist in integrated circuits. The CS1000 is one of several already available, but

expensive, commercial systems.
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3.2 Exis�ng Procedural Scanner Systems

Scanning systems are required to build up an image from a collec�on of single point

magne�c �eld sensor measurements. The method is not unique to magne�c �eld

sensors; Halahovets et al. [82] developed a scanning magneto-op�cal Kerr microscope

with a light detec�on scheme based on a di4eren�al photodetector. The spa�al

resolu�on of the Kerr microscope was demonstrated by mapping an isolated 5 x 5 μm

spin-valve pillar. Though the STJ-020 TMR sensor has been provided for use in this

project, it is part of the development to make the system adaptable to any analogue

sensor for future work, including the possibility of such a Kerr e4ect photo-detector

sensor. 

Although many di4erent magne�c �eld sensors are used in scanning systems [77, 78],

the subsequent review will focus on only those systems which employ Hall-e4ect or

Magneto-resis�ve sensors as these are the most economically viable types of sensor

for use in the current system.

3.2.1 Systems Using Hall-e)ect Magne�c Field Sensors

Kustov et al. [83] use a scanning hall probe microscope to quan�fy the out-of-plane

component of the stray magne�c �elds produced by NdFeB hard magne�c �lms

pa,erned using both topographic and thermo-magne�c methods. The Hall sensor used

had three o4set ac�ve areas of size, 40 x 40 µm
2
, 10 x 10 µm

2
 and 4 x 4 µm

2
 and was

mounted at 5° angle on a quartz tuning fork to enable air-pressure resonance to be

used as a z-displacement measurement technique. The sensor itself was �xed, with a

piezo-actuator controlled sample stage being used to control z-displacement and

perform the scan. The magne�c �eld resolu�on of the sensor accuracy is stated as

± 100 µT  (± 80 A/m). 

Shaw et al. [84] also use the tuning-fork technique (adapted from Atomic Force

Microscopy scanners) to govern the distance of the sensor above the sample, this �me

with the piezo-actuator a,ached to the sensor rather than the sample stage. They
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produce their own bespoke Hall-e4ect sensors with ac�ve areas between 1 and 5 µm2

and magne�c �eld resolu�on of again ± 80 A/m. This is excellent spa�al resolu�on, but

with a bespoke non-commercially available sensor.

Though the spa�al resolu�on of the above Hall-e4ect sensors are comparable with the

Micromagne�cs STJ-020 sensor provided for this project [85] the magne�c �eld

sensi�vity of the hall sensors (at ± 80 A/m) is an order of magnitude lower than the

± 1.6 A/m stated for the Micromagne�cs STJ-020 sensor. For the study of the intrinsic

stray �elds from, for example amorphous magne�cs materials, where �eld strength

range is less than ± 80 A/m (Chapter 6), the Hall-e4ect sensors would not be suPcient.

Both the systems of Kustov et al. and Shaw et al. are sensible systems, but do not have

suPcient �eld sensi�vity for this work and measure only the z-component of the �eld

without capacity to derive the three dimensional components of the stray �eld.

Huber et al. [7] use a commercially available deposi�on 3D printer to both produce and

then 3D-scan poly-lac�c acid (PLA) structures with embedded hard magne�c �ller

par�cles (ferrites or rare-earth materials). A;er prin�ng the structures they a,ach an

In�neon TLV493D-A186 3-axis hall sensor to the head of the printer to map the �elds

emana�ng from the geometry of the structures. These commercial sensors are

commonly used as angle encoders for consumer electronics products like joys�cks and

compasses in mobile phones. The spa�al resolu�on of the sensor is only 0.1 mm for

the x and y-axis, and 0.05 mm for the z-axis. The low and asymmetric spa�al resolu�on

of commercial 3-axis Hall sensors are one of the diPcul�es in using such sensors for

high resolu�on scanning, the �eld sensi�vity is again only in the ± 80 A/m range.

In an e4ort to improve the issue of 3-axis spa�al resolu�on Dede et al. [8] have

produced a 3D scanning Hall probe microscope with 700 nm resolu�on. They

demonstrate a non-standard mode of opera�on of a Hall-cross region where, rather

than having to employ three orthogonal sensing regions, as per the commercial three-

axis sensors, a single Hall-cross region can be forced to respond to non-perpendicular
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�elds in an interpretable manner. Three consecu�ve scans, with rota�on of the sample,

are required to calculate all three components of the �eld, but this method does

increase the possible maximum resolu�on to the ac�ve volume of the Hall-cross. They

demonstrate the method by scanning the surface of a magne�cally encoded hard-disc

drive. Again the �eld sensi�vity is limited and an order of magnitude greater than that

available from the STJ-020 TMR sensor.

Thus, in general, the use of Hall-e4ect sensors are limited to applica�ons with strong

sources of magne�c �elds; permanent magnet materials, strongly magne�sed surfaces

like magne�c recording media, or tracks carrying electric current. Two-dimensional

scanning is commercially possible with a resolu�on of 4 x 4 µm2 but three-axis scanning

is commercially limited to the order of 100 x 100 µm2.

Igna�ev, Orlov and Stankevich [86] use a 3-axis Hall magnetometer with ac�ve area of

250 x 400 µm2, on a motorised posi�oning system with a posi�onal accuracy of 5 µm to

measure current distribu�on on manufactured copper tracks. Their work demonstrates

the diPcul�es encountered when the sensor ac�ve area is orders of magnitude greater

than the precision of the posi�oning system. By working with speci�c reference

geometry it is possible to demonstrate convolu�on of the sensor response to derive

�ner resolu�on than the raw ac�ve area provides, but it is much simpler to work

toward good correspondence between the spa�al resolu�on of the posi�oning system

and the spa�al resolu�on of the sensor (Chapter 4).

Okolo and Meydan [87] use a basic single-axis Allegro Microsystems A1302KUA-T Hall-

e4ect sensor mounted to servo-motor controlled three-axis scanner to analyse the

perpendicular stray �eld emi,ed from hairline cracks in samples of pulse magne�sed

steel pipes as part of the non-destruc�ve tes�ng (NDT) of pipework in the oil and gas

industry, at a resolu�on of 0.1 mm per step and a sample-distance of 0.5 mm.

Araujo et al. [88] have developed a recent “Scanning Hall E4ect Microscope” to

characterise complex mineral structures in geological samples. The samples need
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strong applied magne�za�on in the out-of-plane z-axis to help emphasise the stray

�elds under observa�on, which is achieved by a Yoke of strong electromagnets.

Importantly the system incorporates two aligned Hall-sensors; one at a distance of

142 µm from the sample surface, and the other beneath the sample to measure, and

permit the subtrac�on of, the applied �eld. The system scans at a spa�al resolu�on of

200 µm over an area of 40 mm diameter.

3.2.2 Systems Using Magneto-resistance Sensors

Gontarza, Szulima and Leib [89] use an array of 63 Honeywell HMC5983 AMR magne�c

sensors coupled with the op�cal sensor from a computer mouse to produce a

handheld non-destruc�ve tes�ng instrument for the same purpose as Okolo and

Meydan [87]. Though the millimetre scale spa�al resolu�on and the stated �eld

sensi�vity of ± 0.8 mT (± 636 A/m) is not suPcient for domain observa�on, the hand-

held nature of the equipment is a useful advantage in NDT. Whilst cheaper, low

sensi�vity, AMR sensors were used in development, the use of AMR sensors from the

onset, rather than Hall-e4ect sensors, allows for replacement with greater sensi�vity

AMR sensors in the future. As previously stated, Pipka and Janošek [73] consider it “the

most important milestone in the �eld of magne�c sensors was when [anisotropic

magnetoresistance] sensors started to replace Hall sensors in many applica�ons where

the greater sensi�vity...[is] an advantage”.

The papers and thesis of P.I. Nicholson [41, 90] present the development of a magne�c

domain imaging system for electrical steel using a magnetoresis�ve sensor based stray

�eld scanning technique. The system developed was capable of 2D scanning at 50 µm

per step resolu�on and has an associated US patent [91]. The system is driven by a

68000 microprocessor board with data collected by an ADM 7000 DAS ADC card,

connected to a Windows 95 PC with control so;ware wri,en in Visual Basic. The

current work is seen as a development, modernisa�on and improvement of the

Nicholson scanner. Replica�ng the capabili�es of Nicholson's system with a modern

control system represented the �rst stage of the current project, with results presented
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in Chapter 6. The current work enhances the capabili�es of the Nicholson system by

scanning at 1 µm per step resolu�on, with a 2 x 4 µm2 TMR sensor and enabling the

resolving of the �eld in 3-dimensions. Nicholson inves�gated the e4ect of sta�c applied

�elds on the sample, the current work allows study of samples under dynamic applied

�elds.

Schrag et al. [92] use an unnamed scanning magnetoresis�ve imaging system to isolate

and analyse faults in integrated circuits by detec�ng the stray magne�c �elds at the

surface of the IC, resolving features to a scale of 100 nm. In Liu et al. [93] the same

authors inves�gate the magne�za�on reversal mechanism of narrow sub-micrometer

Co rings with and without thermal annealing. Both publica�ons reference the use of a

magneto-resis�ve scanning system “detailed previously in” [94], but this reference

does not actually provide any details as to the system which was used. This confusion is

not an atypical occurrence in the literature. From the author Schrag's aPlia�on with

the company Micromagne�cs [95] it is reasonable to assume that the system being

used is the Micromagne�cs Circuit Scan 1000 (CS1000) [3, 96] making use of the

STJ-020 TMR sensor which was developed for that system. In [95] Schrag et al. use the

CS1000 to study the current =ow in magne�c tunnel junc�ons themselves. The thinner

the insula�on layer between the two magne�c layers the more sensi�ve the junc�on is

to small applied magne�c �elds, but the  greater the likelihood of pinhole breakdowns

in the insula�on layer and the less reliable the sensor becomes. A diagram of the

structure of the magne�c tunnel junc�on in the STJ-020 sensor itself is provided in

Chapter 4, Figure 4.10(c). In [97] Schrag et al. use the CS1000 system to study current

=ow in ac�ve integrated circuits.

Schen et al. [98] use the sensi�vity of a custom built tunnelling magneto-resistance

sensor with an ac�ve area of 2 x 6 µm to detect single micron-sized magne�c beads as

magne�c labels for biomolecules and in [99], rather than using a scanning technique,

employ an array of 64 such sensors to detect target DNA labeled with 16 nm Fe3O4

nanopar�cles. Such �ne resolu�on is suitable for molecular scale biomedical

applica�ons but would be an expensive solu�on for inves�ga�ng larger scan areas. 
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Lei et al. [100] combine the high resolu�on scanning of magne�c nanopar�cle-labelled

biomolecules (an�bodies) with a larger scanning area by passing a =uid suspension of

the par�cles beneath the sensor at a controlled rate, in e4ect scanning along the

length of the =uid.

Another system, also based on the Micromagne�cs STJ-020 probe, has been developed

at Pon��cal University, Brazil by Lima et al. [4]. Their system di4ers in scanning

approach, moving the sample stage rather than moving the probe. The area of sample

scanned is restricted by a maximum travel distance of 5 mm along the x and y axis.

They use a nonmagne�c sampling stage without any means of magne�zing a sample

for dynamic studies. Addi�onally, they employ con�nuous movement along the x-axis

rather than single cell stepping, relying on the DAQ sampling frequency to derive the

size of the x-axis cells. This further prevents study of the dynamics within each scanner

cell. The system scans only the two dimensional surface, without the capacity to scan a

volume or �lt the sensor. The system has been used to study two polished thin (30 µm)

sec�ons of representa�ve geological samples along with a synthe�c sample containing

magne�c micro-par�cles. The instrument has a range of applica�ons in paleo-

magne�sm and rock magne�sm, nondestruc�ve evalua�on of materials, and biological

assays but has not been used to study the 3-D structure of stray �elds from domains. 
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3.3 Exis�ng Studies of Domain Dynamics

Coey [19] discusses the theory of magne�c domains and domain dynamics but does

not go into detail on how to observe the phenomenon he describes theore�cally.

Whilst some e4orts have been made to study dynamic domain movement using

advanced techniques, a notable example being the use of high-frame-rate neutron

dark-�eld imaging [101], most inves�ga�on of dynamic domain mo�on has been

undertaken with MOKE techniques, either stroboscopically or using high-frame rate

digital photography.

3.2.1 Using Magneto-op�cal techniques

Ini�al a,empts to study �me-resolved movement of magne�c domains were made by

Freeman et al. [102] and Yang et al. [103] using single point electronic op�cal sensors,

enhanced by use of an op�cal �bre, with some element of scanning to study di4erent

points on a sample surface.

Once high-frame-rate CMOS based electronic cameras, with digital image capture and

processing became available much more extensive study of domain movement over

en�re regions of sample surface could be made [104]. The advantages of real-�me

domain observa�on over stroboscopic magneto-op�c studies, or studies where there is

gradual stepped change in an otherwise sta�c applied �eld [105] are that non-

repea�ng dynamics can be observed, which are shown to be important in power loss

issues for transformers [104].

In his topical review on “Progress in magne�c domain observa�on by advanced

magneto-op�cal microscopy” [60] McCord outlines and reviews the progress in the use

of MOKE microscopy to study magne�c domains in samples, including the change of

domain spacing with varying applied magne�c �elds and current induced domain wall

mo�on (sec�on 7.8 of the paper).
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Magini [106] uses a stroboscopic illumina�on technique to inves�gate domain wall

mo�on at frequencies from 20 kHz to 2 MHz. This method permits observa�on at

frequencies much higher than the frame-rate of the camera and avoids issues with low

levels of illumina�on by e4ec�vely integra�ng over several exposures. The method is

very dependent on observing regularly repeatable domain mo�on.

Holländer et al.[107] have developed a MOKE setup which isolates the x and y

components of the samples magne�sa�on. The resolving of the two components mean

the “details of [the dynamic] magne�za�on response in the central domains, the gusset

of the central domains, and the closure domains [become] directly visible in one set of

images [with none] of these features...apparent in the regular non-selec�ve

component images.” They demonstrate the clear advantage in observing the

component resolved dynamics of magne�sa�on. As stated; “the out-of-plane Δmz

component, however, cannot be calibrated from pure MOKE imaging”. This being the

case it becomes necessary to use a magne�c �eld sensor to calibrate the component of

the stray-�eld emana�ng from the surface.

Wells et al. [108] have developed an experimental setup which combines a high-frame-

rate MOKE camera with a one-dimensional scanning hall probe to provide scanned

measurement of the stray-�eld strength at single points on the two-dimensional MOKE

image. This should permit them to obtain a �me-dependent pro�le of the change in

stray-�eld strength at a number of single points on their MOKE image but the

technique is not well applied, rather they prefer to use a few scanned points to

calibrate the intensity scale of the MOKE data, on which they more heavily rely.

With the need to use a magne�c �eld sensor to calibrate the MOKE observa�ons of

stray-�eld strength, together with the limita�ons of MOKE with regards sample

prepara�on and limited depth of �eld and sample area, it is worthwhile inves�ga�ng

and developing the use of only a magne�c �eld sensor, in a procedural scanner system,

to achieve the en�re quan�ta�ve observa�on.
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3.3.2 Using Procedural Scanner Systems

The study of domain dynamics using procedural scanning systems is much less

common and an open area of research in which the current project �nds novel

applica�on.

The study of dynamics with a slow scanning method necessitates a “stroboscopic” [11],

“lock-in” [109] or otherwise synchronised approach to the observa�on of regularly

repea�ng pa,erns. Some a,empt has been made to develop this technique using the

Hall-sensor based system of Abdul, Moses and Williams [11, 110]. Whilst their work

demonstrates some movement of major bar domains within electrical steel, it does not

have the resolu�on or �eld sensi�vity that is available with the STJ-020 sensor. More

importantly, their results exhibit some signi�cant ambiguity in interpreta�on believed

to be the artefacts of a Yoke based energising method that are an issue that is

discussed in detail in Chapter 8.

K`gel et al. [109] use the STJ-020 sensor in the Micromagne�cs CS1000 system to study

not only the sta�c current distribu�on (as in Schrag et al. [92]) but also the dynamic

changes in current due to possible defects within a Power MOSFET. They employ a

“lock-in” method of triggering the externally applied power at the start of each sample

point. Such pulse energising works well for observing current =ow in �xed component

geometries with expected repeatable dynamics.

Pulse magne�sa�on is also e4ec�ve for inves�ga�ng �xed surface topology features

and defects such as hairline fractures [111], where the use of pulse magne�sa�on not

only saves on power consump�on but, the dynamic behaviour of stray-�elds also

reveals more details on the nature of the defect than just a sta�c scan.

However, where the dynamics under inves�ga�on are those of the domains

themselves, and not some topographically �xed feature, it is thought that pulsing the

magne�sa�on, with inconsistent relaxa�on �me between peaks, may itself cause
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unwanted artefacts and non-repeatability in the results. It is considered be,er to

a,empt a smooth con�nuous sinusoidal magne�sa�on and consequently this work

seeks to develop a novel synchronous scanning method for dynamic observa�on of

domain movement with a con�nuous sinusoidal magne�sa�on of the sample.

The combina�on of this novel dynamic observa�on approach with the novel resolving

of both the z and x axis components of stray �eld using only a single-axis sensor

(presented in Chapter 7 and published in [112]), culminates in the results presented in

Chapter 8. Together with the unique user interface design (discussed in Chapter 5),

these elements are where this thesis provides novelty and new understanding for this

area of engineering.
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Chapter 4

Development of the Scanner Hardware

The Scanner Hardware is built around a 3-axis posi�oning arm, controlled by Parker

Automa�on drivers with a 3D-printed sensor enclosure, precision goniometer and

integrated microscopic sight. Here the system requirements and architecture are

discussed. Calibra�on of the hardware, par�cularly quan�fying the slack/backlash of the

three axis, and progressive improvement in the capabili�es of the system and its sensors

is recounted. The technical drawings for the developed 3D-printed sensor heads are

provided. Detailed descrip�on and data-sheets for both the manufactured and

purchased components of the Scanner Hardware are provided in Appendix 4.

4.1 System Overview

The Scanner Hardware is built around a 3-axis posi�oning arm controlled by Parker

Automa�on [113] drivers, originally inherited from a system developed by [11, 110]

discussed in Chapter 3 (Sec�on 3.3.2). A 3D-printed sensor head, precision goniometer

and integrated microscopic sight have been added. A photograph of the completed

system is presented in Figure 4.1 and a schema�c block diagram illustra�ng the

connec�ons between components is presented in Figure 4.2. Detailed photographs of

the sample scanning area (Figure 4.1(c) and (e)) are presented in Figure 4.15 and a

technical schema�c illustra�on is presented in Figure 4.16.

Figure 4.1: Photograph of the Scanner System showing; (a) the 3-axis posi�oning arm, (b)

scanner base, (c) sample pla9orm with energising Yoke, (d) microscopic sight, (e) Sensor

Head version 3 with STJ-020 TMR sensor and (f) Scanner Control 3 PC display.
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Figure 4.2: The Block Schema�c of the connec�ons between the di=erent components of

the Scanner Hardware, illustra�ng the physical rela�onships and the electrical

connec�ons.
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The blue wires indicate direct analogue electrical connec�on, the green wires indicate

USB or RS232 serial communica�ons and the black bars indicate a physical connec�on

between components not already enclosed in groups. 
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4.1.1 System Requirements

At its most basic the hardware must be able to;

a. Make use of the exis�ng hardware that has been provided.

b. Be controlled manually and automa�cally by an external NI LabView system.

c. Correctly posi�on the scanner head along three independent axes (to a

precision of ± 1 µm).

d. Permit the user to conIdently posi�on a sensor in a chosen loca�on (to a

precision of ± 1 µm)..

e. Be adaptable, to allow any desired sensor to be physically aJached.

f. Sensor posi�oning with a repeatable precision greater than the footprint of the

sensor (the provided sensor has a footprint of 2 x 4 µm).

g. Operate unsupervised for periods of days at a �me without fault.

As the capabili�es of the system developed and the nature of the resul�ng data were

beJer deIned, these basic requirements also evolved. In par�cular, the Sensor Head

which aJaches the Sensors to the end of the scanner arms has progressed through

three separate developments (Sec�on 4.9, page 78).

4.1.2 Hardware Architecture

The Scanner Hardware is formed of four electronically communica�ng groups of

components; the Scanner Base components (Sec�on 4.2, page 60), the Parker

Automa�on modules (Sec�on 4.3, p a g e 64), the Analogue Data Acquisi�on

components (Sec�on 4.4, page 68), and the PC Control components (Sec�on 4.5,

page 69) which are illustrated in Figure 4.3, with an addi�onal op�cal Microscope and

Power Oscillator (Sec�on 4.10, page 81). The individual components of the Scanner

Base group of components are illustrated in Figure 4.4. These are physically aJached to

one another, but are communicated with independently. The x-axis, y-axis and z-axis

hardware, collec�vely the 3-axis framework, are discussed in Sec�on 4.2.1 (page 60),

the sample Pla9orm is discussed in Sec�on 4.10 (page 81) and the three versions of the

Sensor Head are discussed in Sec�on 4.9 (page 78).
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Figure 4.3: The four electronically communica�ng groups of components; the Scanner

Base components, the Parker Automa�on modules, the Analogue Data Acquisi�on

components, and the PC Control components.

Figure 4.4: The individual components of the Scanner Base group of components, all

physically aJached but independently wired. Three separate versions of Sensor Head

were developed.
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4.2 Scanner Base

4.2.1 3-axis Framework

The Scanner Base and 3-axis framework hardware had been inherited from a system

developed by [11, 110]. The 3-axis frame work, presented in Figure 4.5, was

manufactured by Time and Precision Industries Ltd. (Basingstoke, Hants, England)

based on Parker SY873 stepper motors controlled using Parker Automa�on [113] L25i

Drives, discussed in Sec�on 4.3 (page 64). The stepper motors are 1.8° per step hybrid

motors and in combina�on with the axis drive threads result in a step to distance ra�o

of 4000 steps to 1 mm of travel. Further details of the individual components of the

3-axis framework are provided in Appendix 4. 

Figure 4.5: Photograph of the 3-axis framework showing; (a) the stepper motors, thread

drives, carriages and arms. Also visible in the photograph are; (b) the Thorlabs

MB3045_M Aluminium Breadboard, (c) the Na�onal Instruments 6351 USB mDAQ and

(d) Sensor Head version 1 with the Micromagne�cs STJ-020 TMR sensor and Philtec D6

sensor 
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It was a requirement of the original PhD speciIca�on to make use of the exis�ng

available hardware.  For this reason the system has been developed with the exis�ng

stepper motor based control system architecture, without posi�on encoders that

would be present in a more modern servo based system [87]. As such it was necessary

to compensate for backlash in the threads by calibra�on rather than using posi�onal

feedback control. Nevertheless the backlash compensa�on developed, described in

Sec�on 4.2.2, provides for 1μm repeatable precision, which is better than the 2 x 4 μm

footprint of the smallest sensor (the Micromagnetics STJ-020).

4.2.2 Slack/Backlash Calibra)on

When a thread based drive shaft changes direction there is a small portion of the

rotation where no physical contact between the thread and the “nut” that travels along it

is made. This is because there must be some slack to the nut, even if only slight, to

avoid too much friction preventing the movement. This results in a lag between when

the rotation of the thread begins and the movement of the carriage that is attached to the

nut which is called the “Slack” or “Backlash” of the system [114]. As there is no

physical compensation for the backlash in the provided 3-axis framework, once the

existence of the backlash was identified a software solution was developed to

compensate for it.

Making use of the D6 displacement sensor discussed in (Section 4.6, page 70) mounted

on Version 1 of the Sensor Head (Section 4.9, page 78) with Scanner Control 2 software

(Section 5.3), the slack constants for each axis Xs(38), Ys(130) and Zs(195) were

determined. The fine 0.01 mm graduated scale and reflective surface of a Graticule

L4079 Stage Micrometer slide were scanned and used as a distinct reference over which

the sensor could repeatedly pass. The offset in apparent position of the Graticule scale

caused by the backlash as the scanner passed back and forth over it, or as the scanner

raised and lowered above the fixed surface, directly represented the amount of backlash

present on each axis. The number of steps compensation for each axis, written as the

slack constants into the (Motion).vi motion control subVI (Section 5.4.2.3), were fine

tuned until the scan in one direction matched that in the other direction. The fine tuning

of each axis is presented in Figure 4.6. 
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Figure 4.6: Fine single-step voltage changes are ploJed as the displacement sensor

passes back and forth over the same loca�on repeatedly. The displacement between the

forward and reverse paths represents the backlash in the thread of the (a) X, (b) Y and (c)

Z axis when the motors change direc�on. The Inely tuned Xs(38), Ys(130) and Zs(195)

constants reduce this displacement in the Scanner Control soPware.
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The constants could be determined to an accuracy of ± 2 steps (± 0.5 µm) which results

in the stated 1 μm repeatable precision of the scanner. The data which supports this

calibration is available in Chapter 4.7z of the Cardiff Portal Arxive (page ix) and on the

accompanying DVD. The effectiveness of this backlash compensation mechanism is

also demonstrated by the fact that there is no “scanner drift” (Figure 4.7) over the

sampling of hundreds of lines of cells and changes of direction for any of the scans

presented in this thesis.

Figure 4.7: Scan with the D6 displacement sensor of a 1p coin (a) at 1mm/pixel resolution

with the backlash compensation disabled, illustrating the distortion from circular due to

“scanner drift”;  (b) at 0.25 mm/pixel with the backlash compensation engaged
illustrating the lack of “scanner drift”; and (c) at 0.025 mm/pixel with 608000 pixels

illustrating the effectiveness of the backlash compensation in preventing any drift.

The slack/backlash compensation calibration has remained constant over the period of

this research. Over time, however, wear on the mechanisms may lead to a need to

recalibrate. This need would be seen in the occurrence of scanner drift in the resulting

scans (Figure 4.7(a)). At that time the system can be recalibrated and the new values

input into the Xs, Ys and Zs constants in the (Motion).vi subVI (Chapter 5, Section

5.4.2.3).
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4.3 Parker Automa)on Hardware

4.3.1 Control Modules

The stepper motors driving each axis are controlled by Parker Automa�on L25i Drive

industrial mo�on control modules (Figure 4.8(b)). These modules are industrial rack

mounted mo�on control units with an internal microprocessor and memory giving

them the capacity to be programmed with a sequence of logic controlled ac�ons and

variables in their own right. The three L25i modules are programmed and

communicated with via character strings sent over an RS232 interface through the

LabView VISA subVIs. The full range of commands and internal variables available to

the module are presented in Figure 4.9, reproduced from [113]. The Scanner Control

soPware uses principally only the D (Distance), G (Go), R (Report), and M (Mode)

commands to specify the distance and direc�on of movement on each axis, trigger the

mo�on and check on the status of the MV (Moving?) system variable. Each axis is

iden�Ied by its individual L25i Drive, which is in turn iden�Ied by a channel number

(Figure 5.13). Other internal parameters, such as the accelera�on and decelera�on

proIles were experimented with during the development of the Scanner Control 1

soPware but not subsequently altered. The internal seSngs are retained aPer power-

loss on internal non-vola�le memory. Most importantly the Tag to state whether the

instruc�on to move to a speciIed posi�on as an “Incremental Move” (rela�ve to the

previous posi�on) or an “Absolute Move” (rela�ve to the controllers internal origin

point) were set as Incremental during the development of Scanner Control 1. It was

decided that the LabView system should store the absolute posi�on of the scanner,

with the Parker Automa�on hardware ac�ng purely as a single command motor control

system. Thus, no programming exists in the control units and they are setup to respond

immediately to a single instruc�on from the LabView system and report once the

motors have Inished that instruc�on. The scan origin is set to the current posi�on of

the hardware whenever the system is restart. More details about the L25i Drive

modules, and the wiring of the D2i Docking Sta�on for the motors and RS232 (Figure

4.8(d-f)) can be found in Appendix 1 and Appendix 4.
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Figure 4.8: Illustra�on of the Parker Automa�on components; (a)P25L DOL, (b)L25i Drive,

(c) D1i DOL, (d) D2i with (e) Motor and (f) RS232 wiring details. The parts are reproduced

from [113]. Further detailed descrip�on of each component are given in Appendix 4.
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Figure 4.9: Table of ASCII commands which can be sent to the L25i Parker Automa�on

Mo�on Control Module via RS232, and the internal system variables, elements

reproduced from [113].
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4.3.2 Power

The L25i Drive modules are powered, and subsequently supply power to the stepper

motors, via a common power rail which is supplied by the P25L DOL power module

(Figure 4.8(a)). The P25L DOL Power supply module provides +24 V DC without

requiring an EMC Ilter from an AC input of 230 V AC RMS. Output power is 200W. The

P25L must be IJed to the leP hand side of the D1i Docking sta�on (Figure 4.8(c)) with

an L25i Drive Module being IJed to the right. The D1i docking sta�on holds the P25L

Power Supply module and one L25i Drive module. Mains AC power supply connec�ons

are made to the leP hand side of the connec�on (the X15 port). Stepper motor

connec�ons are made to the right hand side of the dock (the X25 port). RS232

connec�on should also be made to this docking module. The RS232 does not need to

be terminated on this module because a D2i extension dock is connected to the right.

The D2i Docking Sta�on (Figure 4.8(d)) connects to the right of the D1i Docking sta�on

and provides two extra connec�ons for L25i Drivers and Stepper Motor Connec�ons

(X25 port) (Figure 4.8(e)).

The RS232 connec�ons must be terminated on the end of the D2i docking sta�on. Only

three L25i drive modules are used in total, one for each axis. The wiring and

termina�on of the RS232 connec�ons illustrated in Figure 4.8(f) are described in detail

in Appendix 4.
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4.4 Analogue Data Acquisi)on

The sensors in the system all produce an analogue DC Voltage signal which is passed

through a 10 Hz low-pass Ilter circuit (to remove background 50 Hz electrical

interference) before being read by a Na�onal Instruments 6351 USB mDAQ unit and

consequently interpreted by the Scanner Control SoPware.

4.4.1 NI USB-6351 Mul)func)on Data Acquisi)on

The Na�onal Instruments 6351 USB mDAQ is part of a family of Analogue samplers

which can sample numerous simultaneous analogue voltage inputs sampled at 16-bit

at a maximum of 1 Mhz against an internal clock, with an internal bu=er, and transfer

the resul�ng values to the accompanying LabView mDAQ subVI's over a USB interface. 

4.4.2 Low Pass Filters

Ini�ally a simple ohmic poten�al divider was used to limit the range of the sensor

inputs (± 12 V) to the input range of the NI USB-6351 (± 10 V). However, following

analysis of the noise in the STJ-020 sensor in par�cular (Sec�on 4.7, page 72), it was

discovered that a strong mains 50 Hz signal was present, coming from the electronics

and control lines surrounding the Scanner system, that are diYcult to shield prac�cally.

Thus a 10 Hz low-pass Ilter circuit was used. The Low Pass Filter consists of a Resistor-

Capacitor circuit with values of R = 160 kΏ and C = 100 nF, to Ilter out AC frequencies

above 9.95 Hz as determined by;

f c=
1

2π RC
Equa�on 4.1

The use of analogue voltage inputs with simultaneous �ming facilitates generality and

adaptability in the sensors which can be used. Although code could be added to the

Scanner Control system (Chapter 5) to make use of sensors with digital outputs (such as

I2C) simultaneity may be broken between the di=erent inputs.

The manufacturer speciIca�ons for the NI USB-6351 and circuit diagram of the Low

Pass Ilter are both presented in Appendix 4.
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4.5 Controlling PC System

The scanner hardware is controlled by a newly developed LabView Scanner Control

system which is discussed in detail in Chapter 5.

4.5.1 32-bit Drivers for VISA serial control and RS232 connec)ons

It is important that the controlling PC be based on 32-bit Windows 7 and 32-bit

LabView 15, rather than the 64-bit versions, as the VISA driver soPware does not

func�on properly on the 64-bit system. Many days of frustra�ng and complex

diagnos�c work on the integrity of the hardware connec�ons, because of sudden

intermiJent and irregular communica�on failures, were wasted due to installing the

64-bit system. The communica�on errors were solved by re-installing the 32-bit

system. The resul�ng restric�on to only 32-bit memory addressing does limit the

amount of RAM available to the LabView system. This is one contribu�on to the out-of-

memory issues encountered for large scans with Scanner Control 2 (Sec�on 5.3) that

necessitated that the development of Scanner Control 3 (Sec�on 5.4) be based from

the outset on temporary Ile storage.
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4.6 Philtec Displacement Sensors

4.6.1 D6 Displacement Sensor

The Philtec D6 Displacement Sensor was the Irst op�cal displacement sensor provided

for use in the system. The sensor was inherited from [11]. A photograph of the D6

sensor mounted in Sensor Head 1 is presented in Figure 4.10(a), reproduced from

[114].  The D6 is designed to work by measuring the strength of reTec�on o= a surface

of known uniform reTec�vity (a mirror for example), which is calibrated against known

distance away from that surface. The sensor is consequently highly sensi�ve to the

di=ering reTec�vity of a sample which limits its use as a general displacement sensor.

The manufacturers speciIca�ons are provided in Appendix 4.

4.6.2 RC20 Displacement Sensor

In contrast to the D6, the Philtec RC20 Displacement Sensor (presented in

Figure 4.10(b),  reproduced from [116]), is designed to op�cally measure displacement

whilst compensa�ng for the di=erent reTec�vity of a surface. The sensor works by

having two op�cal Ibre channels of di=erent known intensity. The rela�on of reTected

intensity to reTec�vity of surface is linear for both channels whilst the rela�on of

reTected intensity to distance from surface is an inverse-squared rela�onship. Thus,

the measured intensity of each channel varies di=erently and that di=erence provides a

reTec�on-compensated measurement of displacement. The manufacturers

speciIca�ons are provided in Appendix 4. A plot of the sensor voltage output against

the distance away from a mirrored surface is presented in Figure 4.10(c). Both the

height determined by the automa�c z-axis control of the scanner (S) and a manual

adjustment of the ver�cal micrometer stage the mirror is mounted on (M) are

presented. The Philtec RC20 Displacement sensor has an addi�onal voltage output

which is indica�ve of the Signal to Noise ra�o (SNR) and, as instructed by the

manufacturer, should remain beneath 3 V to ensure linearity. It can be seen in Figure

4.10(c) that the displacement to voltage response is linear in the range 0.2 mm to

0.6 mm. The data which supports this calibra�on is available in Chapter 4.7z of the

Cardi= Portal Arxive (page ix) and on the accompanying DVD.

70



Chapter 4: Development of the Scanner Hardware

Figure 4.10: (a) Photograph of Philtec D6 displacement sensor reproduced from [115],

(b) Photograph of Philtec RC20 displacement sensor reproduced from [116],

(c) calibra�on curves of Philtec RC20 reTec�on compensated displacement sensor,

determined as Voltage output against the ver�cal displacement from a mirrored surface

obtained using the Scanner systems z-axis control. The “M” crosses represent

displacements achieved manually using the sample stage micrometer adjustment, the S

lines represent con�nuous single stepping displacements achieved with the z-axis

stepper motor. Both the sensor voltage (RC20) and a signal-to-noise (SNR) levels are

presented.

4.6.3 Con)nued Applica)on of the Displacement Sensors

Although the RC20 sensor has a beam diameter of 0.5 mm there was great diYculty in

aJemp�ng to concurrently measure the same point of a sample surface as the STJ-020

magne�c sensor (Sec�on 4.7, page 72), with a footprint of only 2 x 4 μm
2
. The design of

Sensor Head 2 aJempted to achieve this proximity of sensors, but resulted in collision

of the two sensors during development and damage to the Irst STJ-020 sensor.
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4.7 Micromagne)cs STJ-020 TMR Magne)c Field Sensor

The Micromagne�cs STJ-020 TMR sensor is a Tunnelling Magneto-resistance Sensor

with a 2 µm × 4 µm ac�ve area. The sensor die is mounted on a long armed probe, an

illustra�on of the dimensions of the probe are presented in Figure 4.11(a). Over the

course of this research three versions of the sensor have been used. The Irst sensor

had a corner on the die which added approximately 75 µm ± 0.5 µm to the distance to

the ac�ve area [79], the second and third versions of the sensor die have the corner

lapped to be a distance of 7.0 µm ± 0.5 µm from the �p edge, a photograph of the two

versions of sensor die are presented in Figure 4.11(b). The full manufacturers

speciIca�ons are provided in Appendix 4.

4.7.1 Physical principles of the sensor

Magne�c tunnel junc�ons (MTJs) are a class of thin Ilm device Irst successfully

fabricated in the mid-1990s. In their simplest form MTJs are a tri-layer “sandwich”

consis�ng of two layers of magne�c material separated by an ultra-thin insula�ng Ilm,

this sandwich is illustrated in Figure 4.11(c). If a voltage is applied to the top and

boJom of the sandwich, classical physics does not permit a current to Tow; however, if

the insula�ng or “barrier layer” is suYciently thin, electrons can Tow by quantum

mechanical tunnelling through the barrier layer. For tunnelling between two

magne�zed materials, the tunnelling current is maximum if the magne�za�on

direc�ons of the two electrodes are parallel, and minimum when they are aligned an�-

parallel. The tunnelling current, and therefore the resistance of the device, will change

as external magne�c Ields alter the magne�c orienta�on of the two electrodes. The

two electrodes are fabricated from CoFeB, while the insula�ng barrier is composed of

Al2O3. The remaining layers in the structure are chosen to enhance the material and

magne�c characteris�cs of the device. Typically, in order to achieve a linear, bipolar

opera�on, one of the two magne�c electrodes has its magne�za�on Ixed by an

exchange energy biasing phenomenon with the adjacent IrMn layer, while the

remaining electrode is leP free to respond to external Ields. The resul�ng structure has

an electrical resistance which varies linearly as a func�on of the magne�c Ield strength
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Figure 4.11: (a) Illustra�on of the TMR-020 sensor, (b) Photograph of microscopic view of

the Irst and second STJ-020 sensor, illustra�ng the original and corner lapped dies, (c)

Schema�c of the STJ-020 ac�ve sensor area, (d) Photograph of the AL-05 pre-ampliIer

and power adapter, reproduced from [2].
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over a substan�al Ield range. Like the older anisotropic (AMR) and giant

magnetoresis�ve (GMR) technologies, the magne�c tunnel junc�on is a

magnetoresis�ve device. The SpinTJ product line was created by Micromagne�cs as

part of the development e=ort on their Circuit Scan 1000 system [3], which uses

magne�c Ields to perform diagnos�cs on semiconductor die and packages because the

CS1000 required very high spa�al resolu�on to be able to see the �ny current paths

which exist in integrated circuits.

The STJ-020 sensor requires a power and pre-ampliIca�on unit, an AL-05

(Figure 4.11(d)). The pre-ampliIca�on circuitry ampliIes and Ilters the voltage across

the sensor and outputs an analog voltage propor�onal to the magne�c Ield. The

design of the preampliIers allow power supply noise and other common-mode noise

across the sensor to be aJenuated by over 100 dB. However, the Micromagne�cs AL-

05 power and preampliIer unit (Appendix 4) for the STJ-020 sensor remains electrically

noisy which is a limita�on discussed in [4]. The merits of this are discussed further in

Chapter 6.3. The AL-05 unit permits the tuning of the DC o=set voltage for the sensor

which has the e=ect of adjus�ng the zero point of the sensor. This is done by tuning an

adjustment dial, which is a light mechanical poten�ometer that has a slight issue of

driP evident in some of the results in Chapters 6 and 7.

4.7.2 Calibra)on of the STJ-020 TMR Sensor

The STJ-020 TMR sensor output poten�al di=erence (Volts) has been calibrated to the

stray Ield strength (A/m) by comparison with a factory calibrated Lakeshore 475 DSP

Gaussmeter probe placed alongside within a long solenoid of varied energizing current.

Photographs of this are presented in Figure 4.12(a-c) along with calibra�on plots. The

coil was of Length 58.5 cm with 364 turns and a resistance of 0.5 Ώ. Calibra�on was

performed for both the basic ohmic poten�al divider connec�on to the NI USB 6351

mDAQ (Figure 4.12(d)) and the Low Pass Ilter connec�on (Figure 4.12(e)). 
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Figure 4.12: (a) The Long solenoid used to produce a varying magne�c Ield for both the

STJ-020 TMR and Lakeshore 475 DSP sensors. (b) and (c) the two sensors mounted

alongside on the carrier to be posi�oned in the centre of the coil. The Calibra�on of the

STJ-020 voltage the Field Strength as measured by the Lakeshore 475 DSP as connected

with the Poten�al Divider (d) and Low Pass Filter (e). For (d), blue crosses are the mean

of 10 surrounding samples. Error bands indicated with doJed lines.
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The Poten�al Divider (PD) linear calibra�on factor has been determined as

4.63 mV/Am-1 ± 90 µV/Am-1. The sensor exhibits a good linear response in the range

-300 to +600 A/m, with the zero-point o=set being a result of the seSng of the zero

point of the DC bias voltage on the AL05. The noise present in the sensor is very

evident in Figure 4.12(d), by taking the mean of 10 samples (the blue points) some of

this noise can be improved to give a calibra�on factor of 4.63 mV/Am-1 ± 20 µV/Am-1.

This results in an inverted calibra�on factor of 216.0 ± 0.92 Am-1/Volt. FFT analysis of

the noise indicated a strong peak of 50 Hz background electrical interference leading to

the introduc�on of the 10 Hz Low Pass Ilter (Sec�on 4.4.2, page 68). 

The Low Pass Ilter (LP) linear calibra�on factor (illustrated in Figure 4.12(e)) has been

determined as 3.36 mV/Am-1 ± 10 µV/Am-1. The noise levels are greatly reduced. The

resul�ng inverted calibra�on factor is 296.7 ± 0.89 Am-1/Volt. The broader ± 1000 A/m

range of Ield presented to the sensor indicates its divergence from linearity at higher

Ield strengths, but the sensor s�ll provides a useful linear response in the ± 500 A/m

range. 

The manufacturers stated sensi�vity of the STJ-020 [3] is “0.01 ± 0.005 Oersteds”

(0.80 Am-1 ± 0.40 Am-1) which is in correspondence with the measured 0.89 Am-1 error.

The measured calibra�on also incorporates the errors introduced by all the other

elements of the system.

All the results presented in Chapters 6, 7 and 8 have been presented in A/m using

these calibra�ons.
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4.8 Lakeshore Hall-E:ect Magne)c Field Sensor

The Lakeshore 475 DSP Gaussmeter and probe is a Hall-e=ect based magne�c sensor

that is factory calibrated to provide an accurate measure of absolute Ield strength. At

0.51 mm diameter the ac�ve area of the sensor is signiIcantly bigger than the STJ-020

TMR sensor and thus has much lower spa�al resolu�on as a scanning sensor. The

Lakeshore was originally intended to be used just to calibrate the STJ-020 TMR sensor

(Sec�on 4.7.2, p a ge 74) but aPer damage to the second sensor (recounted in

Sec�on 5.4.2.1) the sensor was used directly for ini�al inves�ga�on of dynamic Ields

(Chapter 8). Figure 4.13 presents both the sensor schema�c and a photograph of the

sensor in use during scanning. The Gaussmeter unit itself outputs a voltage on Pin 21

of the rear port which corresponds directly to the number displayed on the front

(incorpora�ng the scale and units selected). Whilst the front display is averaged and

updated periodically, the rear voltage output is the unprocessed con�nuous response

of the sensor. The full manufacturers speciIca�ons are provided in Appendix 4.

Figure 4.13: (a) Schema�c of Lakeshore 475 DSP Axial probe, with an ac�ve area

diameter (D) of 0.51mm, reproduced from [117]. (b) Photograph of the axial probe

aJached to Sensor Head 3. (c) Photograph of the Gaussmeter unit itself.
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4.9 Sensor Head Development

The Sensor Head is mounted to the z-axis carriage, part of the 3-axis framework

(Sec�on 4.2.1, page 60). The Sensor Head holds the sensors correctly in posi�on. Over

the development of the system three dis�nct Sensor Heads have been developed, each

with di=erent func�onality. Each Sensor Head was developed in AutoDesk TinkerCAD

and exported as .stl Iles for 3D prin�ng on an Ul�maker2 Fused Deposi�on 3D printer

with 0.4mm Polylac�te Acid and a layer height of 100µm. The .stl Iles are available in

Chapter 4.7z of the Cardiff Portal Arxive (page ix). The technical projec�ons presented

in Figure 4.14 were produced with AutoDesk Fusion 360 soPware.

4.9.1 Sensor Head Version 1 – Fixed Block

The Irst Sensor Head (Figure 4.14(a)) was developed for use with the D6 and RC20

displacement and STJ-020 TMR sensors. The simple design holds both the sensors in a

suitable posi�on in front of an extension bar aJached to the z-carriage and

approximately equal distance above the sample. The two part construc�on allows both

installa�on of the delicate STJ-020 TMR sensor and simpliIed prin�ng of the

orthogonal holes for the screw bolts and the D6 sensor.

4.9.2 Sensor Head Version 2 – 3D printed Sensor Pivot

The second Sensor Head (Figure 4.14(b)) was developed for use with the RC20

displacement and STJ-020 TMR sensors, in addi�on to a pencil USB camera to observe

the area being scanned. The complex design allows for �l�ng of the STJ-020 TMR

sensor by 5° in either direc�on. The design inten�on was to also enable the RC20 and

STJ-020 TMR sensors to sample a congruent area. Unfortunately this extreme proximity

and diYculty in construc�on resulted in the damage to the original STJ-020 TMR sensor

(Sec�on 4.6.3, page 71). APer ini�al inves�ga�on, published in [118], the limited �lt

(which dispropor�onately measures Hz more than Hx) and imprecision of the �l�ng

mechanism (which reduced the conIdence in sensor posi�on to ± 50 μm) led to the

development of Sensor Head 3, u�lising a precision �l�ng mechanism.
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Figure 4.14: (a) Sensor Head Version 1 illustra�on and photograph, (b) Sensor Head

Version 2 illustra�on and photograph, (c) Sensor Head Version 3 illustra�on and

photograph. Dimensions in mm.
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4.9.3 Sensor Head Version 3 – Micrometer Rota)on Stage Sensor Pivot

The complete Sensor Head 3 assembly (Figure 4.14(c)) is constructed of purchased

precision components and a minimal 3D printed STJ-020 TMR container. It was

developed using a precision Thorlabs CR1/M 360° Con�nuous Rotator goniometer to

�lt the STJ-020 TMR sensor at any angle. Other components purchased to construct the

assembly are; a Thorlabs MS101 MS-series baseplate, a Thorlabs AP90/M metric angle

plate, Thorlabs AB90E/M right angle bracket, 4x Thorlabs TR75/M 75mm Long Metric

TR-series Post and importantly 2x Thorlabs MS1S/MS 6.5mm Travel, side-actuated

transla�on stages which enable the centre of rota�on of the sensor to be aligned

precisely with the ac�ve area of the sensor. The manufacturers data-sheets for these

components can be found in Appendix 4.

Using the integrated microscopic sight and the adjustable micrometers the �p of the

sensor can be posi�oned at the exact centre of rota�on. The basic TMR container,

presented in Figure 4.14(c), is designed to hold the STJ-020 TMR sensor, but also

mounts the Lakeshore 475 DSP Gaussmeter probe (Figure 4.13(b)). An addi�onal

bracket contains the RC20 displacement sensor independently of the �l�ng

mechanism. 

The ability to simply design and print suitable Sensor Heads to It any new sensor to

the scanner hardware makes the system very adaptable to the requirements of future

projects.
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4.10 Sample Stage Development

A Thorlabs MB3045_M Aluminium Breadboard with rubber feet is added to permit

various sample pla9orms to be aJached (see Appendix 4).

4.10.1 Integrated Microscopic Sight

The incorporated microscopic sight (Figure 4.15(a)) is built from an exis�ng microscope

barrel mounted at an angle on a x-axis and z-axis micrometer stage. The microscopic

sight allows for accurate calibra�on of the �p of the sensor at the centre of �l�ng

rota�on (Figure 4.16), accurate posi�oning of the sensor �p above the sample, and

accurate levelling of the sample using the micrometer controlled levelling pla9orm.

4.10.2 Micrometer Controlled Levelling Pla=orm

The Thorlabs AMA027/M levelling pla9orm (Figure 4.15(c)), in conjunc�on with the

incorporated microscopic sight allows the sample to be levelled over the scan area.

Given the impossibility in achieving coincident scanning of the magne�c and

displacement sensors within the 2 x 4 µm2 footprint of the TMR sensor recounted in

Sec�on 4.6.3 (page 71) it was judged the simplest solu�on was to use manual levelling

with a precision levelling pla9orm.  The corners of the scan region are registered to a

chosen �p height using the micrometer adjustments and the incorporated microscopic

sight prior to a scan.

4.10.3 Energising Yoke and Coils

The samples can be magne�cally energised using either a Yoke or Coils wrapped

around the sample. The smaller Yoke (Figure 4.15(d)) comprises a laminated C-core

with 110 windings, resistance 0.5 Ώ, the larger Yoke (Figure 4.15(e)) a laminated C-core

with 240 windings, resistance 3 Ώ. The Irst set of Coils (Figure 4.15(e)) comprise two

parallel 20 turn windings wrapped directly on the sample, resistance 0.3 Ώ. The second

set of Coils (Figure 4.15(b)) comprise two parallel 50 turn windings on sleeves which It

either end of any sample, with a resistance of 1 Ώ.
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Figure 4.15: (a) Photograph of Microscopic Sight with view through it. (b) Set of 50 + 50

coils in use on a sample of coated Electrical Steel. (c) Thorlabs AMA027/M levelling

pla9orm, illustra�on reproduced from [119]. (d) Photograph of Smaller Yoke.

(e) Photograph of both the Larger Yoke and 20 + 20 coils on a polished Electrical Steel

Sample.
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Figure 4.16: Schema�c illustra�on of the sample scanning area featuring the (a)

MB3045_M Aluminium Breadboard and the (b) AMA027/M levelling pla9orm from

Thorlabs with the (c) Small Yoke and a (d) coated Electrical Steel Sample with 50 x 50

coils aJached (Sec�on 4.10.3). The (e) Micromagne�cs TMR-020 sensor is encased in the

(f) 3rd 3D printed sensor head, aJached to (g) two MS1S/M transla�ons stages and

(h) the CR1/M precision goniometer from Thorlabs (Sec�on 4.9.3).

4.10.4 Energising the Samples for Dynamic Studies

Ini�ally a TPO 25 Power Oscillator provided a sinusoidal voltage oscilla�on of frequency

between 0.5 Hz and 25000 Hz and amplitude up to a maximum voltage of 2.5 volts for

energising the Yokes or Coils. Due to the age of this unit an irreparable fault developed
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aPer extended opera�on and it was replaced with a BK Precision 4054 signal generator

and Amcron DC 300A power ampliIer. Further details of these units are provided in

Appendix 4. Figure 4.17 presents the calibra�on between the voltage provided to the

50 + 50 Coils (Figure 4.15(b)) and the Ield strength applied by the two coils. This was

measured by doubling the result of the Ield measured inside one of the 50 turn coils

by the Lakeshore 475 DSP gaussmeter. The combined coils apply a Ield of 2.164 kA/m

for every volt energising them.
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Figure 4.17: Calibra�on of the Ield strength of the second set of Coils, two parallel 50

turn windings on sleeves which It wither end of any sample. The coils have a total

resistance of 1Ώ. When energised by a power oscillator the combined Ield strength

amplitude of the two coils has been measured as 2.164 kAm-1/V with the Lakeshore 475

DSP gaussmeter.

Together with the Scanner Control SoPware described in detail in Chapter 5 the

hardware of this system successfully fulIls the system requirements described in

Sec�on 4.1.1 and allows the study of not only the sta�c domain paJerns in magne�c

materials, as presented in Chapter 6, but also the novel study of the three dimensional

structure of the stray Ields presented in Chapter 7 and the study domain wall

movement in dynamically energised magne�c samples, the results of which are

presented in Chapter 8.
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Chapter 5

Development of the Scanner Control So�ware

As the requirements of the Scanner and the understanding of LabVIEW architecture

increased three dis#nct main versions of the Scanner Control So�ware were developed.

The complete structure and func#onal logic of each Scanner Control system is described

in detail in Appendix 1, Appendix 2 and Appendix 3. The per#nent points of the

development of the so�ware and its func#ons are recounted here along with detailed

guidance on the prac#cal opera#on of the ,nal Scanner Control 3 system.

5.1 System Overview

From the original PhD speci,ca#on the development of a novel, versa#le opera#ng

system for the scanner, using the Na#onal Instruments LabVIEW programming

language was speci,ed. A capable system has been developed; which can scan and

present #me-varying data from up to four sensors, over three axis of movement using a

user-friendly mouse-based interac#on interface. 

Three dis#nct main versions of the Scanner Control So�ware have been developed.

The complete structure and func#onal logic of each Scanner Control system is

described in detail in Appendix 1, Appendix 2 and Appendix 3. The per#nent points of

the development of the so�ware and its func#ons are recounted here along with

detailed guidance on the prac#cal opera#on of the ,nal Scanner Control 3 system. The

LabVIEW code for all three systems is provided in Chapter 5.7z of the Cardi2 Portal

Arxive and through the included DVD-ROM (page ix). Appendix 5 presents a Catalogue

of the ,les available.

5.1.1 System Requirements

At its most basic the system must be able to;

a. Correctly communicate with the Parker Automa#on hardware to accurately

control the posi#on of the scanner head.

b. Guard against the scanner hardware exceeding its physical limits.

c. Provide direct user control of the posi#on of the scanner head to ± 1 µm

precision.

d. Control the ac#ons of the scanner in a systema#c automated scan.
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e. Enable the user to de,ne the automated scan in a simple way.

f. Acquire voltages inputs from sensors a=ached to the scanner head and store

those values to 3 d.p. alongside the corresponding sensor posi#on.

g. Display and permit interroga#on of those data in both raw form and in the form

of a greyscale map at 8-bit resolu#on whilst storing values at 16-bit.

h. Enable the saving and loading of previous scans and the resul#ng data including

the export of data in a form which can be understood and analysed externally.

As the capabili#es of the system developed and the nature of the resul#ng data were

be=er de,ned these basic requirements were greatly augmented. The two main

drivers for the con#nual development of the system were the increase in quan#ty of

data as the system capabili#es improved from being able to scan only two axis, to three

axis, then to three axis over #me; and the increase in understanding [120, 121, 122] of

the LabVIEW programming architecture, star#ng with a con#nuous-polling model, to

an event-driven model, to a hybrid event-driven state-machine based model.

5.1.2 Na onal Instruments LabVIEW 15 Programming Language

The Scanner Control system has been developed in Na#onal Instruments LabVIEW 15

(32-bit) [123], a graphical data-Bow programming language based on the original 1986

G language developed for the Apple Macintosh. The development of the system follows

the evolu#on of both the expanding requirements of the scanner and the authors

improving understanding of best programming prac#ces in the LabVIEW language,

from zero ini#al experience. 
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5.2 Scanner Control System 1 – Basic 2D scanning

The ,rst version of the Scanner Control so�ware was in development and use from the

19th February 2016 to the 16th June 2016. The LabVIEW code itself is available in

Chapter 5.7z of the Cardi2 Portal Arxive (page ix) and through the included DVD-ROM.

5.2.1 SC1 User Interface

The front panel of Scanner Control 1 (Figure 5.1) combines elements which were

ini#ally separated into Hardware Control (on the le�) and Scanning and Data Display

(on the right). LabVIEW provides no simple way of merging elements from di2erent VIs

developed in isola#on, and so it is necessary to design the front panel outright from

the start. This lack of built in modularity in LabVIEW is something which had to be

overcome in future development. 

Figure 5.1: The Front Panel interface of Scanner Control 1, separated into dis#nct

func#onal groups, a merger of Hardware Control and Scanning and Data Display.
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The interface is separated into dis#nct func#onal groups and this version contains

many of the low level hardware parameters, which were useful to understand how the

hardware was behaving to begin with, but are not needed in later versions. The basic

design elements of arrow based scanner movement controls (linked to the keyboard

arrow keys), de,ni#on of a scan as a grid of cells of variable size, display of the data as

a 500 x 500 pixel greyscale bitmap and control and monitoring of the scan as it occurs

were all originated in this version. Scanner Control 1 also included calibra#on of the

displacement probe as a separate ac#vity, which is not something carried forward to

the future versions.

5.2.2 SC1 LabVIEW Code

The so�ware is structured as a main Virtual Instrument (VI), 19 subVIs and 10 Global

Variables. The main Block Diagram is presented in Figure 5.2, the func#onality of each

element of code is explained in detail in Appendix 1. The main VI employs a con#nuous

polling structure for all of the controls on the front panel; before it was learnt that such

a model is CPU resource intensive and how an Event based structure could be used

instead. The main block diagram is divided into six parallel While loops. The ,rst loop

controls the termina#on of the system by polling the STOP bu=on. The second updates

and maintains the “Ac#ve” Bag in order to disable direct user control of the scanner

when an automated scan is occurring. The “Axis Control Front Panel” While loop

handles mo#on control and hardware parameters. The “Raster Scan Front Panel” While

loop handles the seLng of the Scan Area, movement of the scanner to the corners of

the scan area and ,le management for saving and loading the data. The “Update Live

Front Panel Elements” while loop handles the constant upda#ng of Front Panel

elements including the Bitmap display (updated live during a scan), the “Scan

Progress”, current posi#on and the calibrated probe values display. Scanner Control 1

originates the use of boolean arrays throughout the system to enumerate which case is

needed for di2erent ac#ons.
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Figure 5.2: The Block Diagram of Scanner Control 1. The main block diagram is divided

into 6 parallel While loops.
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5.3 Scanner Control System 2 – 3D Volume scanning

The second version of the Scanner Control so�ware was in development and use from

the 9th June 2016 to the 23rd May 2018. The core user di2erences between the second

and ,rst versions of the Scanner Control so�ware were an innova#ve implementa#on

of mouse-based interac#on with the data display, and the ability to scan in three

dimensions, rather than just the xy-plane. The core di2erences in LabVIEW architecture

were greater modularity, adop#on of event-based rather than con#nuous-polling

architecture, the use of shi�-registers rather than global variables with the beginnings

of the use of single itera#on While loops. This version was the ,rst to incorporated the

slack/backlash compensa#on discussed in Sec#on 4.2.2 and Sec#on 5.4.2.3 (page 106).

The LabVIEW code itself is available in Chapter 5.7z of the Cardi2 Portal Arxive.

5.3.1 SC2 User Interface

The main front panel (Figure 5.3) is divided into three tab groups. Each group manages

a speci,c func#on of the system. The ,rst tab group manages control of the mo#on,

posi#on and parameters of the hardware. The “Y+”, “X-”, “Y-” and “X+” bu=ons are

used to move the scanner by the Step amount set and can also be controlled by the

corresponding keyboard arrow keys, with PgUp and PgDn for the “Z+” and “Z-” bu=ons.

The Z-lock bu=on sets a Boor value for the scanner. The second tab group manages

display of the collected data and selec#on of the region to be scanned. The Bitmap

Display tab is an innova#ve interface where, uncommon in LabVIEW, mouse-based

interac#on on a Bitmap display has been achieved. Along the le� and bo=om edges of

the display are inputs de,ning the coordinates of the scan region and the Cell size (in

steps), which when combined with the corresponding Max and Min z-axis values on the

right hand side allow a volume to be de,ned and scanned. The two “Greyscale” sliders

de,ne which voltage levels represent Black and White on the 256 greyscale range, to

permit di2erent contrast levels to be set. “Magnify” indicates the magni,ca#on factor

being applied to the display, which can also be changed using the Mouse Scroll-Wheel.

Further Mouse-interac#on with the display area includes: Le�-click-and-drag to move

the data around inside the window, Le�-single-click to select a single cell for
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Figure 5.3: The Front Panel interface of Scanner Control 2 with Tab elements separa#ng

dis#nct func#onal groups.

inves#ga#on, Right-single-click to de,ne the sample area and Middle click to move the

scanner to that cell. The lower tab group manages inves#ga#on, acquisi#on and long

term storage and retrieval of the data. The Inves#gate tab presents the numerical

values for the Cells in the data, the current posi#on of the scanner and the current cell

over which the mouse pointer is hovering. The Scan tab permits ini#a#on and control

of a scan. The Scan Mode can be selected and is a modular element of the code so new

methods of scanning could be developed. The current input/displayed source is

selected in the menu on the top right corner. The Datastore tab permits the resul#ng

data from a scan to be saved to a ,le and retrieved and redisplayed. Further details on

the interface of Scanner Control 2 are provided in Appendix 2.
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5.3.2 SC2 LabVIEW Code

The so�ware block diagram for Scanner Control 2 (Figure 5.4) is structured as a main

Virtual Instrument (VI), 14 subVIs and 1 scratch ,le. The func#onality of each element

of code is explained in detail in Appendix 2.

Figure 5.4: The Block Diagram of Scanner Control 2. The main block diagram is divided

into 3 parallel While loops.
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The main block diagram is divided into three parallel While loops which govern

“Mo#on Control”, “Data Acquisi#on” and “Data Presenta#on”. The “Mo#on Control”

loop handles the movement of the Scanner Hardware, input from the Axis Control and

Axis Limits tabs, and communica#on with the scanner hardware. The current posi#on

of the Scanner is maintained in three shi� registers. The Axis limits which prevent the

scanner moving beyond the physical extent of the hardware are maintained by the

Front Panel control values. An Event structure handles the control input. The “Data

Acquisi#on” loop handles the acquisi#on of data during a scan. It is contained within its

own parallel while loop to enable the opera#on of collec#ng data to be #med in

isola#on from the #mings of user-interface interac#on. This while loop also handles the

saving and loading of data from a ,le. The third “Data Presenta#on” while loop

contains an event structure of 24 events that handles the display of the data, de,ning

the scan area and the innova#ve mouse-based interac#on. Shi� registers are used to

store all the variables not represented by Front Panel controls and are ini#ated on ,rst

execu#on. “DATA<>”, “DATA slice”, “Selected[Abs&Rel]”, “256greyscale table”

and “white greyscale volume” are collec#vely the inputs needed by the

(Select and Display Data).vi subVI to produce a Bitmap of the data. Many of the

repeated and complex data processing ac#vi#es are undertaken by subVIs called by the

main Virtual Instrument. In this way some modularity was introduced into the code.

Di2erent modes of performing a scan, from a basic single sample, to a mean of twenty

samples, to the sampling of more than one source at a #me could be independently

developed and included in the ...\[Scan Modes]\ directory for use during Scanner

Control 2's period of opera#on. Each of the input sources could be given its own

...\{Data Arrays}\ subVI for storing of the data. These subVIs were single-itera#on while

loops which used unini#ated shi�-registers to store the data in RAM, rather than the

disc storage used by the Global Variables of Scanner Control 1. This architecture is

formally called a Func+onal Global Variable by Na#onal Instruments [124]. It has good

speed bene,ts over accessing the disc, but issues were encountered when the number

of cells being collected (for a large three-dimensional scan) exceeded the available

RAM allocated to the shi�-registers. Further details are given in Appendix 2.
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5.4 Scanner Control System 3 – Dynamic 3D Volume Scanning

The third and ,nal version of the Scanner Control so�ware has been in development

and use from 22
nd

 June 2018. The LabVIEW code itself is available in Chapter 5.7z of the

Cardi2 Portal Arxive (page ix) and through the included DVD-ROM. The core user

di2erence between the third and second versions of the Scanner Control so�ware are

the ability to acquire, store and present #me-series data for each of the cells of a three-

dimensional scan, to be able to study domain dynamics. The quan#ty of data collected

for these types of scan prohibited the use of shi�-register based storage in RAM.

Instead a hybrid between shi�-registers, where possible for speed, and .csv scratch ,les

for quan#ty had to be developed from the outset. The use of LabVIEW “clusters” is

more prevalent for the storage of the di2erent front panel controls, those which are

part of the same func#onal group (Figure 5.5). System variables and user front panel

controls are stored in Func+onal Global Variables (subVIs with shi� registers on single-

itera#on while loops) which are called as needed, rather than all being kept on the

while loop of the main VI, to greatly simplify the wiring without the performance

penalty of using disc based Global Variables. The use of Tabs on the main Front Panel is

reduced, to clarify the display, but the use of Front Panels in subVIs, which appear in

de,ned posi#ons when called, enables extra features to be presented when needed.

The mouse-based interac#on on the bitmap display has been greatly re,ned and is

explained here in detail alongside the process of producing the bitmaps and saving the

data. Two ,le formats have been created for “Sta#c” and “Dynamic” (#me-series) scans

with formats which can be readily interpreted externally to the system and are

described here. Scanner Control 3 is also capable of reading the “Legacy” ,le format

from Scanner Control 2. All the data which supports the results presented in this thesis,

available in the Cardi2 Portal Arxive (page ix) and through the included DVD-ROM, are

saved in Scanner Control 3 format as a “Sta#c” [S].csv or “Dynamic” [D].zip ,les. The

system is designed for four independent sources to be sampled during scanning and

these can be changed by simply rede,ning the list and DAQ Assistant parameters in the

(Input).vi subVI, providing great versa#lity and modularity. Any addi#onal processing of

the data from scans, such as synchronising the frames of a “Dynamic” scan or the
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combina#on of mul#ple scans into one output, can be added as extra modules to the

...\subVIs\(Processing)\ directory and the PROCESS.vi subVI shell – facilita#ng future

expansion of the system.

5.4.1 SC3 User Interface

The Front Panel of Scanner Control 3 (Figure 5.5) presents all of the controls necessary

to operate the scanner and visualise and process the resul#ng data. The controls are

grouped into di2erent func#onal groups using Clusters. A detailed descrip#on of the

opera#on of the system is provided in Sec#on 5.5 Prac+cal Considera+ons when Using

the So2ware (page 123). A Tab selec#on is used to switch between views of the data.

Figure 5.5: The Front Panel interface of Scanner Control 3 
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5.4.2 SC3 LabVIEW Code

The so�ware is structured as a main Virtual Instrument (VI) with 22 subVIs and a

number of scratch ,les stored in the D:\scanner_scratch\ directory. The func#onality of

each element of code is explained in detail in Appendix 3. The main block diagram

(Figure 5.6) is divided into an Ini+alisa+on sequence and two parallel While loops

which manage the User Interface and Data Acquisi+on. The hard-coded “OZine” Bag

should be set true if the code is run without being connected to the Scanner hardware

and set false if the Scanner hardware is a=ached and ac#ve. Unlike Scanner Control 2,

Scanner Control 3 makes extensive use of Func+onal Global Variables [124] rather than

numerous shi�-registers on the main user interface. 

Figure 5.6: The Block Diagram of Scanner Control 3 divided into an ini#alisa#on

sequence and 2 parallel while loops which manage the user interface and data

acquisi#on.
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Two shi�-registers remain; the “Mousedown and Selec#on” cluster and the “Graphical

Bitmap Tab” state. The Data Acquisi#on while loop executes immediately but does

nothing unless “SCAN” is true. The remaining groups of controls are stored and

managed by one of the 22 subVIs presented in Figure 5.12. 

The Ini+alisa+on sequence executes before the two While loops begin and ini#alises

the front panel controls, internal registers and subVIs when the system is ,rst run. The

User Interface Manager is an Event structure controlled While loop with a #meout

state of 100 ms. Termina#on of the while loop is Event controlled. The Data Acquisi+on

while loop allows for parallel #ming of the collec#on of data from the sensors during a

scan.

5.4.2.1 Axis Limits, a cri�cal error during development

Event 12 of the User Interface Manager (Figure 5.7) handles a change in the set values

of the physical maximum extents of each axis, the Axis Limits group (Figure 5.5). These

values are stored in the (Mo+on).vi subVI discussed in Sec#on 5.4.2.3 (page 106) which

is called by the event and passed the new values. When this call is made the two green

boolean Bags (SC3v2, Figure 5.12) “adjust Axis Limits” and “adjust PA without move”

must be set to true, to enable the Axis limits to change and, cri#cally, to prevent the

scanner moving during this change. At some point during development an error was

made which resulted in a missing wire to the “adjust PA without move” Bag. During the

,rst use of Scanner Control 3 a change to the minimum z-axis limit was made to allow

the second of the STJ-020 sensors (Sec#on 4.7) to approach the sample. Unfortunately

the error in wiring meant that (Mo+on).vi responded by trying to posi#on the sensor at

that lower limit, crashing the sensor through the sample. The third of the STJ-020

sensors was acquired as a replacement, but an important lesson was learnt about the

dangers of and care needed over apparently minor errors in code.
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Figure 5.7: Case 2 of the 12
th

 Event of the 1
st

 While loop of Scanner Control 3

(SC3w1e12c2 in Appendix 3) enables the User Interface Manager to handle an “Axis Limit

Change” to the “Axis Limits” group. Failure of a wire of True to the ,rst boolean terminal

of (Mo#on).vi was a cri#cal error during development. Case 1 in this event (SC3w1e12c1),

seLng “AL_Defaults”, contained the same error.

5.4.2.2 The mouse-based interac�on on the bitmap display

The mouse-based interac#on on the bitmap display is managed by Events 8 through 11

of the User Interface Manager. On clicking on the Bitmap display area a Mouse Down

event occurs (Figure 5.8) and the coordinates of the click (rela#ve to the top le�

corner) and the bu=on pressed are provided by the opera#ng system. The coördinates

rela#ve to the bo=om le� corner are calculated and stored in the “Mousedown and

Selec#on” cluster register. A cluster is used rather than an array to ease with labelling

and iden#fying the elements, and extrac#ng only the required elements. The mouse

bu=on which was pressed is stored and the four coördinates which de,ne the

“Selec#on Rectangle” are set to zero.
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Figure 5.8: The 8th Event of the 1st While loop of Scanner Control 3 (SC3w1e8 in

Appendix 3). Mouse Down on the “Bitmap Display”.

The “Mousedown” Bag of Bitmap_Corner.vi (SC3v12, Figure 5.12) is triggered to store

the current Bitmap corner, which represents the loca#on of the 500 x 500 pixel window

over the data. Any movement of the mouse over the Bitmap display triggers a Mouse

Move event (Figure 5.9) with di2erent cases (Figure 5.10) to execute di2erent ac#ons

depending on the bu=on pressed. The “Mousedown and Selec#on” cluster provides

the bu=on that was pressed and the original click posi#on rela#ve to the bo=om le�

corner. Each case is passed;

• the original click posi#on

• the current di2erence in posi#on (Δx,Δy) rela#ve to the original posi#on with a

boolean check as to if there is a di2erence

• calcula#on of the current mouse posi#on rela#ve to the bo=om le� corner

• the registers of {Scan_Region}.vi, {Data_Display}.vi and Bitmap_Corner.vi
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Figure 5.9: Case 0 of the 9th Event of the 1st While loop of Scanner Control 3 (SC3w1e9c0

in Appendix 3). Mouse Move over the “Bitmap Display” with no bu=on pressed. A red

rectangle outlines the cell currently hovered over.

If the mouse moves over the Bitmap display without a bu=on being pressed

(Figure 5.9) then a red bounding rectangle highlights the current cell over which the

mouse is “hovering”. The current mouse posi#on rela#ve to the bo=om le� corner is

used. The number of Cells on each axis (“# Cells”) and the Cell size (“XY cell”, “Z cell”)

are provided by the registers of {Scan_Region}.vi. The magni,ca#on factor and current

Z layer are provided by the registers of {Data_Display}.vi. The bo=om-le�-most cell of

data within the display window is provided by Bitmap_Corner.vi (Figure 5.12). These

are used to calculate which rela#ve cell the mouse is currently over, in terms of the

number of cells along each axis of the Bitmap display. The absolute cell index (X#,Y#,Z#)

and cell number (Cell#) of that cell are then determined, con,ned within the available

data, performing a check to see if the mouse is currently hovering over an area outside

of the available data. The X#,Y#,Z# cell index array is passed to the Mo#on
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Figure 5.10: Case 1 and 2 of the 9th Event of the 1st While loop of Scanner Control 3

(SC3w1e9c1 and SC3w1e9c2 in Appendix 3). Mouse Move over the “Bitmap Display”

with le� or right bu=on pressed. Dragging the greyscale image of the data or drawing a

green selec#on rectangle.
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Control “Cell#” indicator and Cell# is passed to [DATA_#xyz].vi to retrieve the

coördinates of the centre of that cell and display them in the Mo#on Control “Posi#on”

and Data Display “Cell#” indicators (Figure 5.5).

Moving over the “Bitmap Display” with a mouse bu=on pressed is handled by Case 1

and 2 of Event 9 (Figure 5.10). Momentarily le�-clicking on a cell in the Bitmap display

selects that cell, placing a red rectangle around it and registering its number in the

Cell# indicator in the Data Display group. Le�-clicking and dragging the Bitmap display,

moves the data window around permiLng scans bigger than 500 x 500 cells (or smaller

with magni,ca#on) to be viewed. If click and drag takes place then the image must be

dragged live, changed on each itera#on of the User Interface Manager While loop. The

calculated Δx and Δy values are used, scaled by the magni,ca#on factor, to adjust the

values of the Bitmap_Corner.vi cluster which de,ne which cell forms the bo=om-le�-

most cell displayed. This change is then passed to the “Register” retrieval of Bitmap.vi

(discussed in Sec#on 5.4.2.5) to obtain the correct por#on of the data to display. The

update is real #me because the display is being retrieved from the Bitmap.vi shi�-

register, which already contains all the data for the current Frame, Source and Layer,

rather than from disc. Right clicking and moving on the bitmap display adds a green

rectangle to the display, which updates in real #me. The le�, top, right and bo=om

coördinates of the LabVIEW Draw Rectangle.vi func#on are determined from the

original click posi#on and the current posi#on and added to the “Mousedown and

Selec#on” cluster. The rectangle is updated live, changed on each itera#on of the User

Interface Manager While loop as the mouse moves over the bitmap display. The

Selec#on rectangle is not made permanent and added to {Scan_Region}.vi un#l the

Mouse Up event occurs (Figure 5.11). The Mouse Up event captures the end of the

mouse interac#on. The “Mousedown and Selec#on” cluster provides the bu=on that

was pressed and the original click posi#on rela#ve to the bo=om le� corner. The cases

are passed the same inputs as during the Mouse Move event (page 99). If the Le�

mouse bu=on was pressed then either; the Mouse has changed posi#on between

Mouse Down and Mouse Up and the data window has been dragged or the mouse is in

the same posi#on on Mouse Down and Mouse Up and a cell has been selected.
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Figure 5.11: Case 1 and 2 of the 10th Event of the 1st While loop of Scanner Control 3

(SC3w1e10c1 and SC3w1e10c2 in Appendix 3). Mouse Up on the “Bitmap Display” of the

le� or right bu=on. End of dragging the greyscale image of the data or drawing a green

selec#on rectangle.
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If click and drag has taken place then the calculated Δx and Δy values are used, scaled

by the magni,ca#on factor, to adjust the values of the Bitmap_Corner.vi cluster which

de,ne which cell forms the bo=om-le�-most cell displayed, as during the Mouse Move

event (page 100) . Right clicking and moving on the Bitmap display adds a green

rectangle to the display, which updates in real #me. On Mouse Up then either; the

Mouse has changed posi#on between Mouse Down and Mouse Up and the selec#on

rectangle is permanent; or the mouse is in the same posi#on on Mouse Down and

Mouse Up, and the new selec#on is cancelled and undone to the previous values. The

le�, top, right and bo=om coördinates of the LabVIEW Draw Rectangle.vi func#on are

determined from the original click posi#on and the current posi#on. Consequently the

selected Xmax, Xmin, Ymax, Ymin are determined using these values and the Xmin,

XYcell and Ymin values in combina#on with the magni,ca#on factor and the bo=om-

le�-most cell. If the Bitmap display is Right-clicked at a single point then the new

selec#on is cancelled and the Front Panel “Undo” control in the Scan Region group is

triggered to return the scan region back to its previous values. An addi#onal Mouse

Wheel event (Event 11) completes the mouse interac#on of the Bitmap display by

using the Delta value to alter the magni,ca#on factor of the display. Thus rolling the

mouse wheel above the Bitmap display zooms in and out of the data. Further

explana#on of all the Events in the main Scanner Control 3 Virtual Instrument can be

found in Appendix 3. 

The 22 subVIs which support Scanner Control 3 are presented in Figure 5.12, and are

discussed in detail in Appendix 3. (Input).vi manages the acquisi#on from and the

names of the four sensors a=ached to the scanner and provides a single place to

modify those details. (Mo+on).vi communicates with the Scanner Hardware and is

discussed further in Sec#on 5.4.2.3 (page 106) . [DATA_#xyz].vi, [DATA_stream].vi and

[FrameSync].vi store and manage the data from a scan. [DATA_stream].vi is discussed in

Sec#on 5.4.2.4 (page 108). The subVIs with { }.vi names (SC3v6 to SC3v10) are

Func+onal Global Variables which store and manage the Front Panel groups

(Figure 5.5). Bitmap.vi and Graph.vi manage the display of the scan data. Bitmap.vi is

discussed in Sec#on 5.4.2.5 (page 112).
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Figure 5.12: The 22 subVIs (labelled SC3v) which handle the storage of front panel

controls, the storage and display of the data and communica#on with the Parker

Automa#on hardware. Detail of the func#oning of each of these VIs is provided in

Appendix 3.
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LOAD.vi, PNG.vi, SAVE.vi and PROCESS.vi manage the response to pressing their

corresponding front panel bu=ons (Figure 5.5) . SAVE.vi is discussed in Sec#on 5.4.2.6

(page 116) The subVIs numbered SC3v18 to SC3v21 are stored in the ...\subVIs\Parker

Automa+on\ directory and are inherited directly from Scanner Control 2. They send the

low level VISA commands to the hardware (Figure 4.9). The ,nal Synchronise.vi is a data

processing subVI stored in the ...\subVIs\(Processing)\ directory that is called by the

shell PROCESS.vi and is discussed in Sec#on 5.4.2.7 (page 118).

5.4.2.3 (Mo�on).vi - communica�on with the Scanner Hardware

(Mo+on).vi works with {Mo+on_Control}.vi and the ...\Parker Automa+on\ subVIs to

communicate the desired posi#on of the Sensor head to the Scanner Hardware and

also guard against the scanner moving beyond the axis limits. (Mo+on).vi also manages

the Slack/Backlash compensa#on to maintain posi#onal accuracy during changes in

direc#on (as discussed in Sec#on 4.2.2). The Block Diagram of (Mo+on).vi is presented

in Figure 5.13. If the “adjust Axis Limits” Bag is set then the new Axis Limit inputs are

passed into the shi� registers storing those values rather than their exis#ng values. The

current Posi#on Absolute (PA) of the scanner is stored in three shi� registers of a

single-itera#on While loop. The “adjust PA without move” Bag forces the passing of the

new inputs into the registers without any ac#on to move the scanner hardware.

Otherwise, boolean enumerated Cases use COM1_Write[Echo].vi (Figure 5.12) to

communicate with the scanner hardware to move to the desired posi#on.  When a new

posi#on is requested the change is checked against the current posi#on and only the

required axis are instructed. Importantly, the subVI executes the absorp#on of the axis

slack/backlash when the mo#on of each axis changes direc#on. 

The inputs for each axis are;

• m, the distance required to move (the di2erence between (PA) and move to)

• s, step: the distance the motors are actually set to move

• d, direc#on: 1 or -1, a register storing the previous direc#on of the axis

• xs, slack: the calibrated distance to absorb when direc#on changes.
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Figure 5.13: The Block Diagram of (Mo#on).vi which works with {Mo+on_Control}.vi and

the ...\Parker Automa+on\ subVIs to communicate the desired posi#on of the Sensor

head to the Scanner Hardware.
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s=m+(xs× m

|m|
×(12 (1−(d× m

|m|)))) Equa#on 5.1

Equa#on 5.1 determines if the calibrated slack/backlash should be added to the

distance to move. In essence, if the new posi#on means the axis moves in the same

direc#on as its immediately preceding movement then the slack does not need to be

added. If the axis is asked to move in the opposite direc#on to its preceding movement

then an addi#onal calibrated distance must be included to absorb the slack/backlash.

The constant values xs(38), ys(130) and zs(195) were calibrated as part of Hardware

Development (Sec#on 4.2.2). The slack/backlash constant is added to the movement

requested of the scanner, but is not added to the ,nal value of “(PA)” stored in the

shi�-register, it is an invisible e2ect which accommodates the Hardware. The

e2ec#veness of this system is demonstrated in Sec#on 4.2.2 where the posi#onal

accuracy of the scanner under this system has been calibrated to ± 1 μm.

5.4.2.4 [DATA_stream].vi - storing the scan data

[DATA_stream].vi manages the storage of the data in four parallel .csv ,les in

D:\scanner_scratch\, one for each Source. The raw data (the graph data for all four

sources)  for the current cell is stored in a shi�-register on the single-itera#on while

loop along with an array storing the Minimum and Maximum values of each source and

an output of the four values of the current cell of the current frame. Inputs into each

case are; DATA in, # of Cells in, Cell #, Frame, Sample/Frequency in and Source. Shi�-

registers store the values of; a Zero array, MaxMin Array, Current DATA out, Number of

Cells, Number of Samples, ref num for the four .csv ,les and the error cluster. The

“Ini#alize” mode presented within Figure 5.14 “replace or create”[s] each of the .csv

,les for storing the sources and populates them with the correct number of lines for

the number of cells needed. The length of each line is four #mes the number of

samples and each four byte hexadecimal string represents the real data value of zero

(2710). 
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Figure 5.14: The Block Diagram of [DATA_stream].vi, which manages the storage of the

scan data in the system.
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Figure 5.15: The “Read” and “Write” Cases of [DATA_stream].vi (SC3v4c2 and SC3v4c3 in

Appendix 3), which manage the scan data in the system.
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As this can take #me for large scans a progress bar is provided for the subVI

(Figure 5.25). Using .csv ,les to store the data is slow, but is necessary because of the

quan#ty of data for even a basic scan, 1000 samples of 4 sources and 200x200 cells

produces 640 MB. The scanner scratch exists on the D: drive and contains the four ,les;

D:\scanner_scratch\{Source 1}.csv

D:\scanner_scratch\{Source 2}.csv

D:\scanner_scratch\{Source 3}.csv

D:\scanner_scratch\{Source 4}.csv

The {Source}.csv ,les contain the sample data for every cell in the data, one for each of

the four sources. Each Sample point is stored as a 4 byte hexadecimal number so each

line is a string of length four #mes the number of samples. Every cell in the data has its

own line. To retrieve the real data value; for each 4 byte hexadecimal number convert

to an integer, subtract 10000 and divide by 1000, the frame number as counted from

the start of the line and cell number is equal to the line number.

Figure 5.15 presents the “Read” and “Write” cases of [DATA_stream].vi. The “Read”

mode retrieves all the data for the requested Cell from the four parallel .csv ,les. The

requested Cell# is con,ned to the total number of cells and converted to a line number

for each of the .csv ,les. The line required is read into memory and the string of 4 byte

hexadecimal numbers is converted into single-precision arrays of data, one array for

each source. The eight part “Max & Min” LabVIEW func#ons grid checks the Maximum

and Minimum values of the currently read cell against the MaxMinArray register and

replaces any appropriate values to ensure the MaxMinArray contains the maximum

and minimum of the en#re data. The LabVIEW “Convert to Dynamic Data” converts the

arrays to graph data output for DATA output. The cell requested is ,rst passed through

[FrameSync].vi which stores the o2sets to the actual frame for each cell as determined

by the Synchronise.vi process described in Sec#on 5.4.2.8 (page 118) . The “Write”

mode uses the “Convert from Dynamic Data” LabVIEW func#on to isolate each of the

four channel data and convert them into single-precision arrays for the current cell.

Each value in the array is mul#plied by 1000, rounded to the nearest integer and
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summed with 10000 to change the data from the range -10.000 to 10.000 to the range

00000 to 20000. Auto-indexed For loops are used to convert each value into a 4 byte

hexadecimal number from 0000 to 4E20 and concatenate them into a single string of

length four #mes the number of samples. The en#re string overwrites the already

exis#ng line in the {Source}.csv ,le using the “Set File Posi#on” func#on and “Write to

Text File”. The line overwri=en is de,ned by the Cell# input.

5.4.2.5 Bitmap.vi - crea�ng the greyscale Bitmap display

The Bitmap.vi subVI handles selec#on of the correct por#on of the overall data and the

crea#on of a 498 x 498 greyscale image of that por#on. It handles the magni,ca#on of

the data if necessary and the addi#on of the red selected-cell rectangle to the correct

cell and the green permanent “Selec#on” rectangle to the display. The por#on of data

needing displaying is de,ned by the “Data Display” cluster, which is an input fed by

{Data_Display}.vi when Bitmap.vi is called. Bitmap.vi handles whether the XY or XZ

plane is being displayed and stores the en#re data for the current source and layer in a

shi�-register for fast retrieval. The “Ini#alisa#on” case presented within Figure 5.16 ,lls

the DATA array with Zero, builds the greyscale table and stores the grey bitmap

background. The “File” case (Figure 5.17) is used to retrieve a new por#on of data from

{DATA_stream}.vi (page 108) and feed that data into the XY Array register. Whenever

Bitmap.vi is called in “File” mode it is then called again in “Register” mode (Figure 5.17

and 5.18). In “Register” mode the Layer (Z), Max, Min, Mag and Cell# values are used

to produce a greyscale representa#on of the XY Array, scaled appropriately by Mag

with the selected cell highlighted by a red rectangle. The LabVIEW “Replace Array

Subset” func#on simple overwrites as much of the 498 x 498 grey background with

values from the “greyscaled DATA” array as it has available. If the array is larger than

498 in either direc#on, LabVIEW automa#cally takes only as much as will ,t. If Mag > 1

then a set of nested for-loops repeats the occurrence of each cell (up to 498 #mes) to

create a new array that is “Mag” #mes bigger. Bitmap_Corner.vi is used to de,ne which

of the cells in the XY Array register is the bo=om-le�-most cell displayed.

{Scan_Region}.vi provides the informa#on for the permanent green “Selec#on
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Rectangle” overlaid on the display. The added green rectangle represents the boundary

of the currently de,ned scan region. If the scan region extends beyond the current

data, then so does the green rectangle. The rectangle is permi=ed to exist over

frac#ons of cells as it is based on the hardware coördinates. From {Scan_Region}.vi the

frac#onal propor#on of the scan region in comparison to the DATA region is calculated.

The frac#onal o2set of the currently displayed bo=om-le�-most cell compared with

the number of cells in the data is calculated and applied to the frac#onal propor#on.

The “display scale” (current number of pixels per cell) is calculated and applied to the

frac#onal propor#on. This produces a rectangle with edges de,ned as a propor#onal

distance from the edges of the Bitmap display. The edges may extend beyond the

boundary of the display and so are con,ned between 0 and 1 which has the e2ect of

neatly locking the edge of the green rectangle to the edge of the bitmap if it does

extend beyond. The propor#onal distances are converted to true pixel coördinates by

mul#plying by 498, and the LabVIEW Draw Rectangle.vi func#on applies the rectangle

to the Bitmap. The LabVIEW FlaFen Pixmap.vi and Draw FlaFened Pixmap.vi func#ons

treat the ,rst pixel as the top-le�-most element, indexed column then row, so the

“Data Array” must have each row inverted and then be transposed.

Figure 5.16: The Block Diagram of Bitmap.vi showing the “Ini#alise” case.
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Figure 5.17: The “File” case (SC3v11c3 in Appendix 3) and “Register” case, sequence

frames 0 - 1 (SC3v11c4s0 and SC3v11c4s1 in Appendix 3), of Bitmap.vi.
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Figure 5.18: The “Register” case, sequence frames 2 - 5 (SC3v11c4s2 to SC3v11c4s5 in

Appendix 3),  of Bitmap.vi.
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5.4.2.6 SAVE.vi - saving the scans to 0le

Scans can be saved as either “Sta#c” [S].csv or “Dynamic” [D].zip ,les depending on

whether the change between frames needs to be recorded (Sec#on 5.5.4, page 128).

Each ,letype contains Header informa#on which describes the scan which produced

the data. The cluster which contains this informa#on is produced in the ini#alisa#on

sequence before being passed to the “Dynamic” or “Sta#c” cases (Figure 5.19). The

Source names are retrieved from (Input).vi. Examples of the structure of a Blank [S].csv

and [D].zip ,le, produced with the ini#alisa#on data, are provided in in Chapter 5.7z of

the Cardi2 Portal Arxive (page ix) and through the included DVD-ROM. The Header

informa#on is structured as;

Filename

Creation Date:

Number of Cells [X.Y.Z.Total]:

Number of Samples.Frequency:

Xmax.Xmin.XYCellSize.Ymax.Ymin.Zmax.Zmin.ZCellSize: 

Display[S1(Max.Min).S2(Max.Min).S3(Max.Min).S4(Max.Min)]:
Z layer.Magnification.Source.Frame.Cell:

DATA[S1(Max.Min).S2(Max.Min).S3(Max.Min).S4(Max.Min)]:

The “File Dialog” func#on is used to ask for the ,lename with the default ,le name

being the system date. In the “Dynamic” case the LabVIEW New Zip File.vi func#on

creates and opens the speci,ed zip ,le. The {Header} array is created from a

combina#on of each element of the Header cluster, and comma delimited text array

versions of the scan parameters stored in the front panel {}.vi Func+onal Global

Variables (Figure 5.12), using the LabVIEW Array to Spreadsheet String func#ons. The

{Header} array is wri=en to the temporary D:\scanner_scratch\{Header}.csv ,le which

is then added to the .zip before being deleted. The four scanner_scratch\{Source}.csv

,les are sequen#ally added to the .zip using the names of the sources. In the “Sta#c”

case the LabVIEW Create File func#on creates and opens a new .csv ,le. The {Header}

array, created in the same way as for the “Dynamic” case, forms the ,rst 9 rows of the

.csv. For each Cell a minor sequence determines the Maximum, Mean and Minimum

values of each Source retrieved from [DATA_Stream].vi and adds a new line/row to the

.csv ,le. LOAD.vi, described in detail in Appendix 3, e2ec#vely performs these

opera#ons in reverse to load the header informa#on into the correct {}.vi subVIs, build

[DATA_#xyz].vi and then load the scan data into [DATA_stream].vi.
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Figure 5.19: The Block Diagram of SAVE.v i showing the “Dynamic” and “Sta#c” cases

(SC3v17c1 and SC3v17c2 in Appendix 3).
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5.4.2.7 PNG.vi - expor�ng PNG and Histograms of the Scans

PNG.vi is a state based system in its own right, though called by the 17th Event of

Scanner Control 3 it executes as an independent system. The “Ini#alise” state

(Figure 5.20) is set when PNG.vi is ,rst executed. The current scan parameters are

passed from the {}.vi Global Func+onal Variables to the ini#al front panel of PNG.vi

(Figure 5.29(c)). A “Parameters” state provides an Event Structure controlled While

loop to handle the front panel user interface and any changes to these the ini#al values

(described in detail in Appendix 3) before one of three processing states are executed.

The “Current Display” state writes the current display of Scanner Control 3 as a .png

,le. The output display includes the current green selec#on-rectangle and red selected-

cell. The “Current Frame” state (Figure 5.21) writes a single clean .png ,le of the

current Source/Layer/Frame along with an appropriate {Histogram}.csv and

{FrameStats}.csv ,le. The {Histogram}.csv ,le provides histogram counts for each frame

(or series of frames), a count of the number of pixels of each greyscale value. The

{FrameStats}.csv ,le provides the Maximum, Minimum and Mean value of the en#re

frame, for each frame. The “PNG Stack” state (Figure 5.22) writes a [P].zip arxive of all

t h e .png ,les of the selected Sources, Layers, and Frames along with appropriate

{Histogram}.csv and {FrameStats}.csv ,les. An addi#onal {Header}.csv is created for

PNG.vi by SAVE.vi. An example of the structure of a Blank [P].zip ,le, produced with the

ini#aliza#on data, is provided in in Chapter 5.7z of the Cardi2 Portal Arxive (page ix).

The Bitmap processing for PNG.vi exists within a For loop using the itera#on number as

a state marker for which case to execute. This architecture acts like a Stacked Sequence

with the advantage of shi�-registers and the ability to dynamically specify the number

of itera#ons and condi#onally terminate the sequence. This processing is developed as

a compacted form of Bitmap.vi (page 112). The .png ,les are temporarily stored in

D:\scanner_scratch\PNG\ before being added to the [P].zip archive with an internal

folder structure named for the Source names in (Input).vi. The {FrameStats}.csv and

{Histogram}.csv ,les are also added to the .zip ,le before it is closed when all the For

loops are completed. A detailed descrip#on of the full logic of PNG.vi is provided in

Appendix 3.
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Figure 5.20: The Block Diagram of PNG.vi showing the “Ini#alise” case (SC3v15c1 in

Appendix 3).
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Figure 5.21: The “Current Frame” case (SC3v15c4 in Appendix 3) of PNG.vi showing the

2nd frame of the “Register” state sequence (SC3v15c4c(3)2s2 in Appendix 3) and the

“Source 1” case of the “Write to PNG” case structure (SC3v15c4c(4)1 in Appendix 3).
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Figure 5.22: The “PNG stack” case (SC3v15c5 in Appendix 3) of PNG.vi showing the 2nd

frame of the “Register” state sequence (SC3v15c5c(4)2s2 in Appendix 3) and the “All

Sources” case of the “Write to PNG” case structure (SC3v15c5c(5)15 in Appendix 3).
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5.4.2.8 Synchronise.vi - processing �me-series scans

A #me-series “Dynamic” scan of a sample with, for example, an AC applied magne#c

,eld does not make sense unless each cell is synchronised to the same points on the

AC cycle. Synchronise.vi performs the task of ,nding which frame for each cell

represents the ,rst peak of the AC cycle and recording that o2set in [FrameSync].vi so

that “Frame 1” of every cell represents the maximum of the ,rst peak. A small state

based system in its own right (Figure 2.23), it is an addi#onal data processing subVI

which is stored in the ...\subVIs\(Processing)\ folder and is called from the PROCESS.vi

shell subVI. The LabVIEW Peak Detector.vi func#on is used to iden#fy and generate an

array of all the peaks in the chosen source greater than half the maximum value of the

whole data. A peak width of 10 correctly singles out the three peaks of the signal. The

frame number of the ,rst peak is extracted and recorded in [FrameSync].vi for each cell

as an o2set to be applied to the current frame in [DATA_stream].vi (page 108).

Figure 5.23: The Block Diagram of Synchronise.vi illustra#ng the ini#alisa#on sequence,

event-controlled while loop and ,nal processing For loop.
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5.5 Prac cal Considera ons when Using the So�ware

An Instruc#onal Video for the use of the so�ware is available in Chapter 5.7z of the

Cardi2 Portal Arxive (page ix) and on the accompanying DVD. Assump#on is made that

the Scanner Hardware and PC system have been set up correctly from the technical

details provided in Chapter 4 and the Appendices, LabVIEW 15 32-bit is installed, the

Scanner Control 3 folder is expanded to the desired loca#on from the Chapter 5.7z

arxive and the scanner_scratch.7z archive is expanded on the D:\ drive. 

Launching SCANNER_CONTROL.vi presents the main Front Panel (Figure 5.5) . Ctrl-e

brings up the Block Diagram (Figure 5.6) where the “OZine” True/False Bag can be set

appropriately. It is assumed that ...\subVIs\(Input).vi has been con,gured correctly for

the Sensors being used by the system, in accordance with Appendix 3. Pressing “Run”

ini#ates the user interface.

5.5.1 Ini al User Interface

The ini#al User Interface is presented in Figure 5.5.  The posi#on of the scanner can be

manually de,ned using the Mo+on Control group (Figure 5.24(a)). The arrow bu=ons

can be used to move the scanner in either direc#on along each axis by a distance

de,ned by the numerical “Step” indicator which can have the values 100000, 40000,

4000, 400, 40, 10 or 1 in units of motor steps. 4000 steps are equal to 1 mm distance.

The arrow bu=ons are also mapped by the keyboard arrow keys with the PageUp and

PageDown keys mapped to the Z+ and Z- bu=ons and the Home and End keys mapped

to the increment and decrement of the Step indicator. An exact Posi+on can also be

entered numerically or the posi#on of a par#cular Cell# by Cell Index number. If a

change is made the Reset bu=on [ ] returns to the previous posi#on. When ini#ally

run the Z-lock bu=on [ ] will be ac#ve and it will be found that the scanner head will

not lower beneath z=0. This is an important safety func#on which prevents the scanner

driving the sensors through a sample or “Floor” level. On ini#a#on the “z-Boor” is set

to zero and ac#ve. In order to lower the sensor to the surface of a sample, when the

#me comes, it is necessary to deac#vate the z-lock.
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(a) (b) (c)

Figure 5.24: The Mo+on Control (a), Axis Limits (b) and Scan Region (c) groups of the

front panel of Scanner Control 3 (presented in Figure 5.5).

Extreme Cau+on should be exercised when Z-lock is deac#vated, especially when using

the Z- bu=on, PageDown key and the Value of the Step Size. In par#cular it is suggested

the Step Size be low (400, 40) to avoid the sensors colliding with the sample by a

mistaken bu=on press. As soon as the sensor is the desired distance from the sample

surface, as determined with help of the microscopic sight (Sec#on 4.10.1) the Z-lock

should be re-engaged. This sets the “z-Boor” value to the current z-posi#on and

prevents the scanner head lowering further. Further restric#ons to the posi#on of the

scanner head are provided by the Axis Limits group (Figure 5.24(b)). The defaults

represent the edges of each axis to prevent collision with the frame, but can be set by

the user if required. The origin (0,0,0) of the scanner is the current posi#on of the

scanner whenever Scanner Control 3 is run. It is advised to return the scanner to the

origin (0,0,0) before Stoping the system. The origin can be reset by manually

posi#oning the scanner head centrally and restar#ng the user interface. 

5.5.2 De0ning a Scan

A scan is de,ned by the seLng of the Scan Region group (Figure 5.24(c)). The extent of

the scan on all three axis can be entered numerically but by right-clicking on each of

the numerical controls the value is set to the current posi#on of the sensor. This is the

most common way of de,ning the scan, by posi#oning the sensors to a desired

loca#on on the sample and right-clicking on the relevant controls to set the edges of

the scan region. It is suggested to set the x and y corners of the scan with the sensors a

safe distance from the sample and then ,nd the lowest z posi#on by careful

incremental reduc#on of the z posi#on at each of these corners, using the micrometer
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levelling stage (Sec#on 4.10.2) to adjust the horizontal level of the sample to ensure

the sensor passes at a safe and even distance above the en#re scan area. The corners

can be easily found by middle-clicking on each of the Scan Region numerical controls,

which moves the scanner to that posi#on. Once a safe distance from the sample is

determined the Z-lock bu=on should be pressed to prevent any further lowering of the

sensors and the Z min control should be right-clicked to set to the new z-Boor. The XY

size and Z size of each cell (in steps) can be set, the le�most edge of each cell match

the minimal edge on each axis, the maximal edges of the scan region are adjusted to

be always an integer mul#ple of the cell size from the minimal edge. During the scan

the sensors take measurements at the centre of each cell. The total number of cells on

each axis, and overall, are presented. The more cells, the longer the scan. The number

of samples and sampling frequency can also be set. For a “Dynamic” scan 1000 samples

at 1000Hz is suggested, though be=er temporal resolu#on can be obtained with higher

sampling frequency. For a non-dynamic “Sta#c” scan it is suggested 20 samples are

collected at 1000Hz, as a good compromise between noise-reduc#on and scan #me.

The es#mated scan #me, based on the total number of cells, the number of samples

and the sampling frequency is presented in the SCAN group (Figure 5.26). Whilst a scan

is being set up, the message “[DATA_stream] not equal to Scan Region” is displayed

beneath the SCAN group. This indicates that the scan data in memory, which may

be a previous scan or the ini#al Blank data, does not correspond with the

current scan seLngs. The reset bu=on [ ] returns to these previous seLngs.

To prepare for a scan the Set Scan Region [ ] bu=on must be pressed, a blank

[DATA_#xyz].vi, [DATA_stream].vi and Bitmap.vi arrays are prepared (Figure 5.25).

The message “[DATA_stream] ready” is displayed when a scan is possible.

     (a)              (b)

Figure 5.25: The progress bars displayed during the ini#alisa#on of the [DATA_#xyz].vi,

[DATA_stream].vi (a) and Bitmap.vi (b) arrays.
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5.5.3 Scanning

(a) (b) (c)

(d) (e) (f)

Figure 5.26: The SCAN group; (a) in prepara#on for a scan showing system #me and

es#mated scan #me, (b) when reques#ng a single sample, (c) when scanning showing

elapsed and es#mated #me, (d) paused during a scan, (e) scanning con#nuing, (f)

scanning complete showing system #me and total scan #me.

Once the Scan Region has been set the SCAN group (Figure 5.26) becomes ac#ve.

Before beginning a scan it is advisable to use the Single-Sample bu=on [ ] several

#mes to test the input from the sensors (Figure 5.26(b)). To facilitate this the Graphical

Display (Figure 5.27(b)) should be selected and the Source: menu on the Data Display

group (Figure 5.27(a)) should be set to “All” to display all four sources. Right-clicking on

the Min and Max controls of the Data Display group auto-scales the Graphical Display

to the extents of the input data. When sa#s,ed, the Scan can be begun by pressing the

SCAN bu=on [ ]. Scanning begins (Figure 5.26(c)). During a scan the Bitmap Display

(Figure 5.27(c)) highlights the current cell and ac#vely displays the build up of data as it

arrives. Any Source:, Layer (Z:) or Frame: can be displayed during as scan and Mag: can

be used to zoom in on the data (Figure 5.27(a)). The mouse can be used to move the

data window around. The progress of the Scan can be paused at any #me by pressing

the ac#ve Scanning bu=on [ ] (Figure 5.26(d)) and re-con#nued [ ] (Figure 5.26(e)).

When paused the scan can be reset by rebuilding the scan with the Set Scan Region

bu=on [ ] (Figure 5.24(c)). During the scan the Min and Max controls can be ac#vely

set to adjust the contrast of the greyscale as data arrives. Right-clicking on each control

sets them to the extents of the en#re set of data. Middle-clicking on each control sets

them to the extents of the current frame. When the scan is complete the total #me is

displayed in the Remaining: indicator (Figure 5.26(f)). The input of the sensors for each

cell can also be viewed with the Graphical Display (Figure 5.27(b)) during a scan. 
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     (b)

          (a)      (c)

Figure 5.27: The Data Display groups (a) and the Data Display tab; the Graphical Display

(b) showing a plot of Amplitude (Voltage) against Time for each of the four Sources and

the Bitmap Display (c) showing a greyscale map of the scan data.

The XY>>XZ switch in the top-right corner of the front panel (Figure 5.5) controls if the

Bitmap Display shows the XY layers or XZ slices of a three-dimension volume of cells.
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5.5.4 Saving and Loading a Scan

Once a scan is complete the scan should be saved to ,le for future use. Pressing the

“SAVE” bu=on on the File group (Figure 5.28(a)) presents a dialogue box (Figure 5.28(b))

which asks if the scan should be saved as “Sta#c” or “Dynamic”. The “Sta#c” [S].csv

format stores only the minimum, mean and maximum value of each source for each

cell, losing data for individual frames, but produces a much smaller ,le which is easy to

read interpret in an external spreadsheet program. When the scan is not of a #me-

series “Dynamic” nature this is the most suitable form of storing the scan. To retain all

the Data from a scan the “Dynamic” [D].zip ,le format should be used, par#cularly if

the scan changes over #me and each frame is di2erent. A standard Windows ,le

dialogue window opens to ask for the name and the loca#on of the saved ,le, by

default the ,les is given a name based on the system date. Once named the

Saving File... dialogue (Figure 5.28(c) and (d)) shows the status of the ,le save process.

Examples of the structure of a Blank [S].csv and [D].zip ,le, produced with the

ini#aliza#on data, are provided in in Chapter 5.7z of the Cardi2 Portal Arxive (page ix).

To load a previously saved scan the “LOAD” bu=on on the File group (Figure 5.28(a))

presents a dialogue box (Figure 5.28(e)) which asks which type of ,le is about to be

loaded; a Legacy, Sta+c or Dynamic ,le. The Scanner Control 3 system has the capacity

to load “Legacy” scans saved by the Scanner Control 2 system, however the data which

supports the results presented in this thesis, available in the Cardi2 Portal Arxive

(page ix), has been upgraded to Scanner Control 3 “Sta#c” [S].csv ,les. The header

informa#on for both ,letypes saves the seLng for the Data Display group including the

Min and Max values for each Source (Figure 5.27(a)), so it is useful to set these to

reasonable contrast levels before saving the scan. Time-series “Dynamic” scans will

ini#ally be asynchronous, with the frames of each cell represen#ng a di2erent por#on

of the AC cycle. To make sense of these data is is necessary to synchronise the ,rst

frame of each cell so that it corresponds with the same point of the AC cycle. The

synchronisa#on o2set is saved in the “Dynamic” [D].zip {Header}.csv ,le. The

synchronisa#on of the data is performed by ...\subVIs\(Processing)\Synchronise.vi

which is accessed by pressing the “PROCESS” bu=on on the File group (Figure 5.28(a)).
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(a)

(b)

 

   (c)         (d)

(e)

(f)

Figure 5.28: (a) The User interface File group, (b) the “Save as a Sta#c or Dynamic File?”

dialogue box, (c) and (d) the “Saving File...” progress display, (e) the “Which type of

DataFile is being loaded?” dialogue box and (f) the “Loading File...” progress display.

5.5.5 Processing and Analysis of Data

Pressing the “PROCESS” bu=on on the File group (Figure 5.28(a)) presents a dialogue

o2ering a menu to choose how to process the data (Figure 5.29(a)). Future

enhancements to the analysis of data can be added to this menu and to the

...\subVIs\(Processing)\ directory. The Synchronise process synchronises the ,rst frame

of each cell so that it corresponds with the same point of the AC cycle as described in
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Sec#on 5.4.2.8 (page 122). The Synchronise.vi User interface (Figure 5.29(a)) displays

the data for the current Cell (though a di2erent Current Cell can be selected to work

from). Synchronise.vi ,nds the ,rst peak in one of the sources and sets the ,rst frame

of each cell to the frame of that peak. By default the system looks for the ,rst peak of

the 3rd source, though any source can be selected. If desired the ,rst n frames of data

can be ignored. Pressing the Sync bu=on begins the process. The resul#ng o2sets are

stored in the [FrameSync].vi array. Once synchronised the scan should be re-saved to

retain the informa#on, where it is stored in the {Header}.csv ,le of the “Dynamic”

[D].zip arxive. The zxCombine process can combine either two sta#c scans, or two

dynamic scans. The zxCombine.vi User interface (Figure 5.29(c)) can combine either

two scans of equal clockwise and counterclockwise #lt (of any angle), or two scans one

ver#cal,  and the other at 45° counterclockwise from ver#cal (discussed in Chapter 7).

The process defaults to combining the third source of each scan, but can be set to

combine any one of the sources. The ,rst scan and then the second scan are imported

using the ,le-browse bu=ons. A�er the ,rst ,le is selected the parameters of the scan

are displayed and the Sources list populated. If the second ,le selected does not match

the number of cells, samples and frequency parameters then a warning is given. Only if

the two ,les correspond then the process is permi=ed to proceed. The output of the

process is stored in the system memory using a new Source list which present the

original selected source of the clockwise (or 0°) and counterclockwise (or 45°

counterclockwise) scans, with the resul#ng calculated z-component and calculated

x-component, then the results can be saved using the Save op#on (Figure 5.28(a)). 

To produce a .png image of a frame of data for presenta#on or external study, or to

produce a series or “stack” of .png ,les for a series of frames to produce an anima#on

of a #me-series scan the “PNG” bu=on on the File group (Figure 5.28(a)) can be

pressed, launching the PNG.vi (page 118) user interface (Figure 5.30). An exact replica

of the Scanner Control 3 Bitmap display, including the green selec#on-rectangle and

the red highlighted cell if present, can be exported using the “Export Current Display as

PNG” bu=on. The current Data Display group is imported into PNG.vi from the main

user interface and informs the ini#al seLngs. 
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  (a)             (b)

(c)

Figure 5.29: (a) The “Process DATA” menu and selec#on, (b) the “Process DATA”

Synchronise.vi User Interface and (c) the “Process DATA” zxCombine.vi User Interface.

The “Export Current Source/Layer/Frame as PNG” bu=on exports a single selected

frame including an accompanying {FrameStats}.csv and {Histogram}.csv Nle. The

{Histogram}.csv ,le provides histogram counts for the frame; a count of the number of

pixels of each greyscale value.
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Figure 5.30: The “Expor#ng Bitmap as PNG” PNG.vi User Interface.

The {FrameStats}.csv ,le provides the Maximum, Minimum and Mean value of the

en#re frame. The “Export PNG Stack” exports a [P].zip archive which contains a series

or “stack” of .png ,les for the selected range of Layers and Frames. The ini#al range of

Layers and Frames can be adjusted. The “Current Layer”, “Current Frame”, “All Layers”

and “All frames” bu=ons set the range appropriately. The “Every _ layers” and “Every _

frames” controls allow skipping. The data contrast values are ini#ally imported from

the Data Display group but can be changed. A boolean array allows selec#on of which

Sources to process. The total number of .png ,les created are calculated. The XY>>XZ

switch controls if the XY layers or XZ slices of a three-dimension volume of cells are

considered. An example of the structure of a Blank [P].zip ,le, produced with the

ini#aliza#on data, is provided in in Chapter 5.7z of the Cardi2 Portal Arxive (page ix)

and on the accompanying DVD-ROM.
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Chapter 6

Two Dimensional Inves�ga�on of Stray Fields

The study of the domain structure in Grain Oriented Electrical Steel, Amorphous Alloy

materials, Cubex doubly oriented Si-Fe Alloy and manufactured Planar coils by the

scanning of stray 'elds from the sample surface has been made. Interpreta�on of the

resul�ng 'eld maps and comparison of the advantages and disadvantages of the

Scanning System over other domain observa�on methods is given. 

The scanner system has been developed to horizontally scan samples at resolu�ons up

to 0.001 mm per cell. The scanner can scan any sample which will physically 't beneath

the 3-axis arm but the default axis limits focus on a central area of 50 x 50 mm. The

greater the number of cells, the longer each scan takes. A normal sta�c scan using a

mean of 20 samples per cell takes 0.02 seconds per cell, but the number of samples

and sampling frequency can be altered. When scanning a sample a compromise must

be made between the area of sample scanned, the resolu�on and the length of �me

the scan will take. This compromise must account for the expected size of the features

present in the sample. The data produced by scans with the Scanner Control 2 so4ware

has been converted into the format for the Scanner Control 3, which contains useful

header informa�on about each scan and the suppor�ng data for each 'gure presented

in this chapter are provided in Chapter 6.7z of the Cardi5 Portal Arxive (page ix) and on

the accompanying DVD.

6.1 Domain Observa�on of 3% Si Grain-Oriented Electrical Steel

6.1.1 Compara�ve Scans with Di&erent Sensors

The system has the capacity to use any sensor with an analogue voltage output for

which a 3d-printed head can be designed. Three 3d-printed heads have been

developed which hold the three sensors; the Philtec RC20 displacement sensor, the

Micromagne�cs STJ-020 TMR sensor or the Lakeshore 475 DSP Hall-e5ect probe

(Chapter 4) . Figure 6.1 presents corresponding resul�ng scans from each of these

sensors.
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Figure 6.1: Scans of 25 x 25 mm2 of polished 3% Si Grain Oriented Electrical Steel with;

(a) Philtec RC20 displacement sensor and (b) Micromagne�cs STJ-020 TMR sensor at

0.05mm/cell resolu�on. A higher resolu�on scan of the green highlighted region and

indicated domains is presented in Figure 6.2. Scans of 10 x 10 mm2 of coated 3% Si Grain

Oriented Electrical Steel with; (c) Lakeshore 475 DSP Gaussmeter Hall-e5ect sensor and

(d) Micromagne�cs STJ-020 TMR sensor at 0.05mm/cell resolu�on. The corresponding

region of the sample is indicated. The Hz stray 'eld strength (A/m) is indicated by a

greyscale with posi�ve 'eld out of the page.
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The topology map of a sample of polished 3% Si Grain-Oriented Electrical Steel,

produced with the Philtec DC20 sensor, is presented in Figure 6.1(a). Even with a

cleaned and polished sample some corrosion and micro-piBng is evident on the

surface. Four pinholes are present with another two in the process of forming. These

pinholes produce dis�nct magne�c features when the same area is scanned with

the 'rst
 Micromagne�cs STJ-020 TMR sensor perpendicular to the surface

(Figure 6.1(b)), which allows the correspondence of the two scans to be demonstrated.

Both scans are at a resolu�on of 0.05 mm/cell. At this resolu�on the boundaries

between di5erent grains in the sample, of the order of 5 - 10 mm wide, are evident

with the main magne�c domains largely aligned between each grain (the �tular

property of Grain-Oriented electrical steel). Even at this resolu�on, some evidence of

internal structure and Lancet domains [125] within the main magne�c domains is

evident. The 'rst
 
STJ-020 TMR sensor was not lapped to remove the corner of the

silicon die and so the ac�ve area of the sample was at least 50 µm above the surface,

resul�ng in a stray-'eld strength ranging over ± 170 A/m. Figure 6.1(a) and (b) indicate

the o5set between the two sensors and the diIculty of concurrently scanning the

same region of sample to the accuracy of the 2 x 4 µm
2
 footprint, discussed in

Chapter 4.

Figure 6.1(d) presents a 0.05 mm/cell scan of coated 3% Si Grain-Oriented Electrical

Steel with the third STJ-020 TMR sensor, which has been lapped to an ac�ve area to

sensor �p distance of 7 µm. Lapping the sensor allows a closer sample surface distance

which increases the measurable range of the stray 'eld to ± 215 A/m and improves the

sharpness of the image. A scan of approximately the same area of coated 3% Si Grain-

Oriented Electrical Steel with the Hall-sensor based Lakeshore 475 DSP probe

(Figure 6.1(c)) indicates the di5erence in clarity between the two magne�c sensors.

The 457 DSP probe has an ac�ve area of diameter 0.51 mm, much larger than the

0.004 mm width of the STJ-020 sensor, and scans at a greater distance from the sample

surface. This results in the evident blurred resolu�on and a stray 'eld strength in the

range ± 110 A/m.
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6.1.2 Comparison Between Domain Observa�ons Using the Scanner and MOKE

A higher resolu�on scan of the region indicated in Figure 6.1(b) is presented in

Figure 6.2(a), scanned at 0.01 mm/cell; alongside a Magneto-Op�cal Kerr E5ect

(MOKE) image of the same area of sample. The Large bar domains and internal Lancet

domains [125] of size 50-150 µm are clear. The pinhole used to iden�fy the common

area and corresponding magne�c domain features are indicated with blue doKed lines.

The MOKE setup used was that developed for [126, 127] and is described and used

extensively by [128]. The 'nal result of the MOKE setup has greater resolu�on and

clarity than the scanner system, however the produc�on of Figure 6.2(b) requires a

number of processing steps. Figure 6.3 indicates the immediate quality of images

produced by a MOKE apparatus. In reality samples have to be carefully prepared by

polishing and cleaning to be able to see the Kerr e5ect on the sample. An uncleaned

and scratched surface produces results presented in Figure 6.3(a). Because of the

depth of 'eld of the magni'er and the necessity of the ≈ 60° angle of observa�on, the

actual region of the sample which presents in-focus domain paKerns is very narrow,

even when cleaned (Figure 6.3(b)). In order to produce the coherent image of the

region presented in Figure 6.2(b) several tens of narrow in-focus strips, made from

manually reposi�oning the sample, must be digitally merged (Figure 6.2(c)). The

contrast of the image must be improved by digital level adjustment and it must be

correc�vely distorted to adjust for the perspec�ve. These sample requirements and

post processing to produce a domain map equivalent to the region of the scan in

Figure 6.2(a) are great disadvantages in the MOKE technique.

In contrast, though the scanning takes a long �me, the results of the scanner system

requires no sample prepara�on (and indeed can produce domain images through the

coa�ng) and, a4er the scan, produce an immediate, correctly planar, quan��ve map of

domains within the sample. Results which are also readily repeatable, and require no

manual adjustments.
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Figure 6.2: Domain observa�on of the 7.5 x 7.5 mm
2
 region of polished 3% Si Grain

Oriented Electrical Steel from Figure 6.1(b) produced by; (a) Scan with STJ-020 and (b)

MOKE imaging of the same area of sample. The pinhole used to iden�fy the common

area and corresponding magne�c domain features are indicated with blue doKed lines.

The regions of the scans of Figure 6.4 and Figure 7.5 are highlighted in green.
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Figure 6.3: Raw Images from the MOKE system; (a) uncleaned sample, (b) cleaned

sample, indica�ng the very narrow depth of 'eld. The indicated narrow bands of in-focus

image need to be manually combined to produce a coherent image of a large area (c),

which retains perspec�ve distor�on.

Figure 6.4: Domain observa�on of the 3.5 x 2.14 mm2 region of polished 3% Si Grain

Oriented Electrical Steel from Figure 6.2(a) produced by a scan with the STJ-020 sensor

at 0.005 mm/cell. The Stray 'eld strength ranges over ± 220 A/m. The loca�on of the zx

Transect presented in Figure 7.5 is illustrated.
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Figure 6.4, a further scan of the region indicated in Figure 6.2(a) at a resolu�on of

0.005 mm/cell, whilst at the limit of resolu�on of the 2 x 4 µm2 footprint of the STJ-020

TMR sensor, indicates the clarity of Lancet domains visible within the bar domains that

are possible with suIcient scanning �me. These results have been published in [129]

presented at 23rd So, Magne�c Materials conference Seville, 2017.

The appearance of these ini�al scans of 3% Si Grain-Oriented Electrical Steel were at

'rst unexpected, in that there is greater similarity in appearance between the scan and

MOKE imaging than with domain observa�on with the BiKer technique [31]. 

Measuring the Hz stray 'eld emana�ng perpendicularly from the sample surface might

at 'rst be expected to highlight the domain walls, where the rota�on of the

magne�za�on vector at a Bloch-wall theore�cally causes a component of directly

perpendicular 'eld. This should be similar to the theory in which BiKer based par�cles

are drawn to the stray 'eld gradients from the Bloch-walls (Chapter 3). However, the

results from the scanner strongly indicate the body of the domains rather than the

edges, showing the di5erence in orienta�on between domains with magne�za�on

purportedly parallel to the surface of the sample, more similar to the results of the

MOKE method.

This is an incongruous result perhaps indica�ng that the stray 'elds from domains at

the surface of the sample, or even the domains themselves, are not perfectly parallel

to the surface but have some perpendicular component that is being measured by the

sensor.

This mo�vated the further development of the system to the novel study of the three-

dimensional structure of the stray-'elds that is discussed in Chapter 7.
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6.1.3 Domains in Coated 3% Si Grain-Oriented Electrical Steel A-er Laser 

Etching the Surface

In Power transformer applica�ons the eIciency with which the magne�za�on of the

3% Si Grain-Oriented Electrical Steel can switch direc�on at 50 or 60 Hz is important for

the eIciency of the transformer as a whole [45]. One technique employed is to etch a

linear defect, perpendicular to the rolling (grain-orienta�on) direc�on of the steel,

during manufacture using a laser. In theory this has the e5ect of ar�'cially restric�ng

the size of bar domains, which reduces the extent of material which must undergo the

energy minimisa�on process at each oscilla�on [130, 45].

A sample of coated 3% Si Grain-Oriented Electrical Steel was etched with a 10.6 μm

wide CO2 laser at 14% of its 50 W total power and scanned at both 0.1 mm/cell and

0.01 mm/cell resolu�ons. The results of the scans are presented in Figure 6.5, with the

loca�on of the Laser etched defect lines indicated.

The restric�on of the domains by the ar�'cially created boundaries are clearly

indicated. The 10.6 μm width of the Laser line itself causes a band of 'ne domain

closure structures with sharp discon�nui�es either side. Natural grain boundaries are

s�ll present and may interfere with the intended ar�'cial boundaries.

The scans are performed with the second STJ-020 TMR sensor which is lapped to

approach the surface to within 7 μm. Even with the addi�onal thickness of the coa�ng

the strength of the measured stray 'elds range over ± 350 A/m, which is approximately

three-quarters greater than the 'eld strength measured from un-etched samples,

indica�ng that in introducing a defect to the surface of the sample the strength of

'elds which stray from that surface increases. This is the principle of many non-

destruc�ve tes�ng techniques [87] but can cause undesirable e5ects in Power

transformer applica�ons [130, 45].
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Figure 6.5: Domain observa�on of (a) 23 x 18 mm
2
 region of Laser Etched Coated 3% Si

Grain Oriented Electrical Steel produced by a scan with the STJ-020 sensor at 0.1

mm/cell with the 19.5 x 5 mm
2
 region (b) indicated, scanned at 0.01 mm/cell. The Stray

'eld strength ranges over ± 350 A/m. The coa�ng is etched with a 10.6 μm wide CO2

laser at 14% of 50 W power along the lines indicated. (c) Photograph of the scanning

through the incorporated microscopic sight.

The comparison of the stray 'eld structure before and a4er laser etching of a sample is

made in Chapter 7 and the e5ects of laser etching with a dynamic AC applied magne�c

'eld are further inves�gated in Chapter 8.
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6.2 Observa�on of Stray Fields from Amorphous Alloy Materials

6.2.1 Mapping Stray Fields from As-cast Metglas Amorphous Ribbon

To test the capacity of the system the stray 'elds from as-cast amorphous ribbon are

inves�gated. Figure 6.6 presents inves�ga�on of the Hz stray 'elds emana�ng from a

19 x 12 mm2 region of as-cast 2605 Co IPF895 Metglas Alloy Amorphous Ribbon at

progressively higher resolu�ons. These results have been published in [129] presented

at 23rd So, Magne�c Materials conference Seville, 2017. Because of the lack of grains

within amorphous materials it is expected that any observable domains will be of very

'ne-scale resolu�on [131, 49, 132]. Whilst stray-'eld features can be observed, a

number of diIcul�es in the study of domains in this material using the scanner are

apparent.

Firstly, the intrinsic domains from Amorphous materials prove themselves to be of a

strength ranging over only ± 88 A/m which is a third of the strength from Grain-

Oriented Electrical steel and just above the background Earth 'eld of approximately

50 A/m. This leaves liKle scope for gaining contrast above the background noise. The

common “domain viewer” method of applying a perpendicular external 'eld to the

sample to enhance the intrinsic 'elds [6] does not help with the scanning method; the

externally applied 'eld tends to enhance the measurement of stray 'elds from surface

topology features more than the internal domains. This e5ect is used bene'cially in

MOKE observa�ons [49] but causes diIcul�es in studying the domains within samples.

Applied 'elds must be used when studying domain dynamics, the discussion of the

diIcul�es encountered then are made in Chapter 8.

The second diIculty in the study of as-cast amorphous ribbon is that, due to the

cooling process of manufacture, the surface of the ribbon as-cast is not smooth and

features undula�ons and ripples. The stray 'eld features observed in Figure 6.6 are

more indica�ve of the stray 'elds interac�ng with the surface undula�ons of the

sample than with the intrinsic domain structure. 
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Figure 6.6: Scan of of (a) 19 x 12 mm2 region of as-cast 2605 Co IPF895 Metglas Alloy

Amorphous Ribbon produced with the STJ-020 sensor at 0.05 mm/cell, the indicated (b)

6.85 x 6.4 mm2 at 0.01 mm/cell and (c) 0.5 x 0.5 mm2 at 0.005 mm/cell. The Stray 'eld

strength ranges over ± 88 A/m.
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6.2.2 Mapping Stray Fields from AF10 Amorphous Wire and Comparison with 

the Bi3er Technique

AF10 Amorphous wire is a diIcult material to scan with the system because of the

cylindrical topology of the sample. Nevertheless, by targe�ng a progressively smaller

area of the very top of the wire at progressively higher resolu�on (Figure 6.7(a) and (b))

a scan of the top surface of AF10 Amorphous wire was achieved at a resolu�on of

0.001 mm/cell, presented in Figure 6.7(c).

As with Metglas Amorphous Ribbon the intrinsic stray-'eld strength from the wire only

ranges over ± 80 A/m, close to the background Earth 'eld of approximately 50 A/m,

which makes dis�nguishing any features diIcult. This diIculty is compounded by the

size of domain features present in the material, which necessitated the 0.001 mm/cell

resolu�on.

Three dis�nct lines are apparent on the 0.001 mm/cell scan which are 30 µm apart.

Two of the features indicate stray-'elds into the sample and one indicated stray-'elds

out of the sample.

Figure 6.8 presents a comparison of the same sample of AF10 material observed with a

ferro-Uuid BiKer technique, performed by and reproduced with permission from [6],

which employed an energizing coil to also enhance the stray-'elds. Helical domain

boundaries can be seen, which at zero twist angle can be seen to cross the wire. The

distance between each of the loops is 30 µm with the zig-zag width of each loop

concurrent with the width of the features in Figure 6.7(c). The di5erence in direc�on of

the stray 'elds detected by the scan could be a selec�on artefact of which side of the

zig-zag is contribu�ng most to the mean strength in each cell.

It is indica�ve of the power of the developed scanner system that it is able to detect

such weak and small features.
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Figure 6.7: Progressively higher resolu�on scans of the top of AF-10 Amorphous wire

(running le4 to right); (a) at 0.005 mm/cell, (b) at 0.002 mm/cell and

(c) at 0.001 mm/cell. The Stray 'eld strength in the 'nal 0.001 mm/cell scan ranges over

± 80 A/m, with dis�nct features 30 μm apart.

Figure 6.8: Domain structure of a 50 mm length AF-10 Amorphous wire with an applied

perpendicular magne�c 'eld of 1.1 kA/m and twist angles of (a) zero, (b) 1/2π, (c) π and

(d) 2π rad. Reproduced from [6]. A red scale line indicates a distance of 30μm between

domain lines.
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6.3 Comparison Between the Modelled and Measured Hz Fields from 

Di&erent Topologies of Planar Coils

Planar coils are generally Uat spirals of conduc�ve track mounted on PCB or Uexible

polymer substrate. The shape, number of turns, width and thickness of track can be

varied. Other classes of planar coil are the meander and mesh coils, which do not spiral

but alternate direc�on across the substrate with varying track thickness and

displacement (Figure 6.9(i)). Planar coils have found use in wireless power

transfer [133], wireless communica�on [134] and sensing applica�ons [135]; including

non-destruc�ve tes�ng [136] and health monitoring [137] where their low pro'le and

robust construc�on are an advantage [138]. 

6.3.1 Finite Element Modelling of Stray Fields from Planar Coils

The topologies of planar coil selected for inves�ga�on from [138] are, by conven�on,

called Circular, Mesh, Meander and Square coils [139]. The coils were fabricated by

CNC milling from a 54 mm x 30 mm FR4 PC board with 35 µm copper thickness and a

track width of 0.5 mm. The dimensions and shape of each coil have been replicated as

three-dimensional models within the ANSYS® Maxwell 3D FEM so4ware, given the

material proper�es of copper and enclosed in an invisible cuboid with the material

proper�es of vacuum; permiBng the magne�c 'elds surrounding the coils to be

calculated. Photographs of the manufactured coils and the corresponding ANSYS®

models are presented in Figure 6.9(i) and (ii). Within the ANSYS 'nite element

modelling, xy-plane slices through the vacuum cuboid are made at distances above the

model consistent with the prac�cal scanning heights used for each coil. This provides a

virtual surface above the modelled coil on which can be projected the magnitude of

the Hz component of the calculated 'elds surrounding the coil, simula�ng the results of

a perpendicular scan at each height, and presented in Figure 6.9(iv). An automa�cally

op�mized mesh (maximum length 2 mm) is applied to the cuboid and slice which

provides a resul�ng 'eld resolu�on consistent with the measured data without

excessive compu�ng �me. 
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6.3.2 Scanning of Stray Fields from Planar Coils

The four manufactured planar coils were mounted on the sample stage and energized

to draw 0.40 Amp ± 0.01 Amp of direct current using a Powerline Electronics power

supply. This rela�vely low current ensured the sensi�ve STJ-020 sensor was not

saturated, whilst providing enough 'eld strength to be measured. Scans of

250 cells × 250 cells were performed with a resolu�on of 0.1 mm/cell at the lowest

scanning height suIcient to clear the solder points of the energizing connec�ons. The

Circular coil was scanned at a height of 0.50 mm ± 0.01 mm, the Mesh and Meander

coils were scanned at a height of 0.25 mm ± 0.01 mm and the Square coil was scanned

at a height of 0.15 mm ± 0.01 mm. The full scan of the Circular planar coil was

necessarily high due to the size of the solder points and thus at a height where

di5erences in the 'eld from each track could not be easily dis�nguished, consequently

an addi�onal lower scan at 0.15 mm ± 0.01 mm was made of a region between the two

solder points. The results of this lower scan and the corresponding ANSYS simula�on

are presented in Figure 6.9(a.iii) and (a.iv'). The scans of the four coils were performed

with the sensor perpendicular to the sample surface. Photographs of the scan being

performed above the Square planar coil are presented in Figure 7.6.

The scan heights were governed by the size of the solder points, but were standardized

to discrete heights to permit beKer comparisons to be drawn. The Circular and Square

planar coils, as spiral topologies, produce much greater 'eld strengths than the Mesh

and Meander. The central loops of spiral topologies receive reinforcing 'eld

contribu�ons from each successive concentric outer loop. 
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Figure 6.9: Comparison of ANSYS FEM and Scans of Planar Coils. (a) Circular, (b) Mesh, (c)

Meander, (d) and Square planar coils.  (i) Photographs of the manufactured coils, (ii)

ANSYS models, (iii) Hz stray 'eld scans with the TMR-020 sensor at 0.1 mm/pxl, (iv) FEM

of the Hz 'elds above the coils.(iii') and (iv') are scans of the Circular coil at a closer scan

height. The transect marked by red single-chevrons indicates the path of Hz amplitude

plots (Figure 6.10). The blue double-chevrons indicate the path of the zx Transect

presented in (Figure 7.7(ii)).
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In Figure 6.9 the results of the scans of the Circular, Mesh, Meander and Square planar

coils are presented alongside the expected results from the 'nite element modelling.

There is a strong similarity between the measured and the modelled 'eld shape and

strength for all four topologies.

There is signi'cant noise present in the scans, the Micromagne�cs AL-05 power and

preampli'er unit (Appendix 4) for the STJ-020 sensor is electrically noisy. This limita�on

has been discussed in [4] and the solu�on presented was to develop an alterna�ve

preampli'er. There is risk of damage to the expensive sensor if the bias voltage, if

independent of the AL-05, is not governed correctly. The exis�ng signal is judged

suIciently above the background noise not to warrant this risk. The evident varia�on

in horizontal scan lines is a greater issue in all the scans. This is caused by slight dri4 in

the resistance of the poten�ometer used by the AL-05 to set the bias over the length of

the scan, perhaps due to slight thermal varia�on or mechanical disturbance. The

granularity within the 'nite element modelling maps, par�cularly Figure 6.9(a.iv), are

an artefact of the mesh size. An op�mized mesh size with a maximum length of 2 mm

obtained this level of detail. A greater maximum mesh size led to a reduc�on in detail

whilst a 'ner maximum mesh size did not improve the detail, which seemed to be a

property of modelling the gradual gradients. At a scan height of 0.5 mm ± 0.01 mm

neither the scan nor the modelling dis�nguish clearly the individual tracks of the

Circular planar coil, leading to a conical overall 'eld amplitude (Figure 6.9(a.iii)

and (a.iv)). The closer 0.15 mm ± 0.01 mm scan ((Figure 6.9(a.iii') and (a.iv'))) illustrates

how each concentric ring reinforces sequen�ally the 'elds within it. The central peak of

the scan is more de'ned than that of the model, aKributed to the central solder spike

of the manufactured coil when compared with the wide Uat centre of the 'nite-

element model. The Meander and Mesh topologies produce weaker 'elds due to the

lack of a reinforcing spiral. The checkerboard paKern of the Mesh topology is the result

of some 'eld reinforcement within each minor three-sided loop of the mesh. The

Meander coil gains no reinforcement; the 'elds of each leg are counter to each other,

resul�ng in a very weak overall 'eld, only just discernible above the background noise.

The increase in 'eld strength in the lower right corner of Figure 6.9(c.iii) is aKributed

149



Chapter 6: Two Dimensional Inves�ga�on of Stray Fields

either to an increase in current and 'eld at the solder point in that corner, or to a

di5erence in copper thickness or rela�ve li4ing of the copper track in the

manufactured coil. 

The greyscale maps represent well the shape of the Hz 'elds and give an approximate

indica�on of similarity in strength. To beKer compare the strength of the 'elds for the

Circular and Square planar coil, plots of Hz amplitude along a path marked by red

single-chevrons in Figure 6.9 are presented in Figure 6.10.

A path of 've cells width was used between the points marked by the red single

chevrons in Figure 6.9(a.iii) and (d.iii). The measured 'eld values ploKed in Figure 6.10

are the mean of each group of 've cells, with the maximum and minimum values

ploKed as the error range. The 'nite element model values are taken directly from the

mesh at the xy-plane height  z0, with an error range produced by also calcula�ng the

planes at z0 ± 0.1 mm. In general, the measured 'eld strengths are slightly lower than

expected from modelling. This can be aKributed to a combina�on of the ± 0.01 Amp

error in prac�cal current drawn and the ± 0.01 mm error in prac�cal scan height; in

addi�on to the sta�s�cal error from the background noise level. There is also the

possibility of unaccounted power losses within the manufactured planar coils through

factors [140] which are not adequately modelled. There is some spa�al discrepancy

between the modelled track posi�ons and the milled tracks on the manufactured coils,

due to the manufacturing tolerances of the CNC milling. The overall 'eld strength is

lower the greater the scan height. Though the individual tracks in the Circular coil are

not easily dis�nguished at the greater scan height (z0 = 0.5 mm ± 0.01 mm) the plot in

Figure 6.10(b) indicates that they are s�ll present. 

Further comparison between the di5erent components of modelled and measured

'elds from Planar Coils is inves�gated in Chapter 7.

This compara�ve work has been published published in [112], a copy of which is

available in Appendix 6.
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Figure 6.10: Hz amplitude plots of the (a) and (b) Circular and (c) Square planar coils

along the paths indicated by red single-chevrons in Figure 6.9 at a scan height of

(a) 0.50 mm ± 0.01 mm, (b) and (c) 0.15 mm ± 0.01 mm. The ± errors are indicated by

dashed lines above and below for both the Scan and ANSYS plots.
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6.4 Observa�on of Stray Fields from Cubex Doubly Oriented Si-Fe Alloy

Doubly oriented silicon-iron is manufactured so that a propor�on of the material grains

have their magne�sa�on easy-axis in the rolling direc�on, as with normal 3% Si Grain-

Oriented Electrical Steel, with the remaining propor�on perpendicular.

The double orienta�on leads to unique magne�c proper�es which were inves�gated by

N.A.S.A. in the 1960's for use in compact transformer cores and motor stators [141]. 

The manufacturing process to produce such alloys was developed by the Cubex

company, USA [141] but later patents for similar techniques were also awarded to

research by the Nisshin Steel Co., Japan in 1986.

The interac�ng stray-'elds at the sample surface form interes�ng checkerboard

domain paKerns which can be used to demonstrate the scanner system.

The results of two 0.05 mm/cell and 0.01 mm/cell scans of the perpendicular Hz 'eld

from a sample of Cubex Doubly Oriented Si-Fe Alloy are presented in Figure 6.11.

With such a complex stray-'eld paKern emerging from the sample it would be useful to

see how the stray 'elds are structured in the thin three dimensional volume above the

surface rather than just a planar view.

The capacity to do this is the unique advantage of the scanning system over the solely

two dimensional MOKE and BiKer planar surface domain observa�on techniques, and

mo�vated the development of the Scanner Control 2 system so4ware (Chapter 5).

Inves�ga�on of the three dimensional stray 'eld structure above the surface of a

sample follows in Chapter 7.
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Figure 6.11: Scan of (a) 20 x 20 mm2 region of Cubex doubly oriented Silicon-iron alloy.

produced with the STJ-020 sensor at 0.05 mm/cell, with an indicated (b) 7 x 7 mm2

region at 0.01 mm/cell. The Stray 'eld strength ranges from -135 to 216 A/m. The

indicated further 2 x 2 mm2 region is presented in Figure 7.1.
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Chapter 7

Inves�ga�on of Three Dimensional Stray Field Structure

The ability to scan in a three dimensional volume above the surface of the sample and to

derive the Hz and Hx components from only a single axis sensor is developed and

demonstrated. The principles are tested against the known geometries of constructed

planar coils, the expected &elds from which can be determined using FEM.

7.1 Scans of Hz Stray Fields within a Volume above a Sample Surface

With the development of Scanner Control 2 and later Scanner Control 3 it became

possible to scan not only in the xy plane, but also di,erent layers of xy planes in steps

along the z axis. Thus forming a cuboid of three dimensional cells, or a scan of the

volume above the surface of a sample. With the development of the second, and then

ul�mately the third sensor head the TMR Sensor could addi�onally scan not only the

&eld component perpendicular to the surface, but at any intermediate angle. By

scanning twice, ver�cally and at 45° counterclockwise from ver�cal it becomes possible

to calculate both the Hz and Hx components from only a single axis sensor. The purpose

is to allow the novel inves�ga�on of the shape and extent of the stray &elds as they

extend beyond the sample surface, to permit a be2er understanding of the di,erences

between domain images obtained by stray &eld imaging and those obtained by other

techniques including the standard stray &eld dependent Bi2er method. 
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7.1.1 Hz Stray Fields Volume Scans of Cubex Doubly Oriented Si-Fe Alloy

The &rst ques�on to ask when considering the structure and shape of stray &elds in the

thin volume above the surface of a sample is how far the &elds extend into the air

above the sample.

Figure 7.1 presents a Scan of Hz stray &elds within a volume of 2 x 2 x 0.2 mm3 above

the sample of Cubex doubly-oriented Silicon-iron alloy. The area over which the scans

occur is highlighted in Figure 6.11. Animated sweeps through each xy Plane and each

zx Slice are available in the Chapter 7.7z Cardi, Portal Arxive (page ix). The Hz Stray &eld

strength ranges over ± 200 A/m.

It can be seen that even these rela�vely strong Hz &elds reduce to levels less than the

Earth's &eld at distances greater than 0.05 mm from the surface.

Figure 7.1: Scan of Hz stray &elds within a volume of 2 x 2 x 0.2 mm3 above the sample of

Cubex doubly oriented Silicon-iron alloy produced with the STJ-020 sensor at 0.02 x 0.02

x 0.002 mm/cell resolu�on. The area scanned is highlighted in Figure 6.11. The lowest xy

Plane is presented along with ten di,erent zx Slices at the indicated loca�ons along the

y-axis. Animated sweeps through each xy Plane and each zx Slice are available in the

Chapter 7.7z  arxive (page ix). The Hz Stray &eld strength ranges over ± 200 A/m.
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7.1.2 Hz Stray Field Volume Scans of Metglas Amorphous Ribbon

Figure 7.2 presents a Scan of Hz stray &elds within a volume of 0.5 x 0.5 x 0.1 mm3

above the sample of as-cast 2605 Co IPF895 Metglas Alloy Amorphous Ribbon

produced with the STJ-020 sensor at 0.01 x 0.01 x 0.002 mm/cell resolu�on. The area

over which the scans occur is highlighted in Figure 6.6.  Animated sweeps through each

xy Plane and each zx Slice are available in the Chapter 7.7z Cardi, Portal Arxive

(page ix). The Hz Stray &eld strength ranges over ± 88 A/m.

It can be seen that yet again these weaker Hz &elds reduce to levels less than the

Earth's &eld at distances greater than 0.05mm from the surface.

To be2er understand the shape of the stray &eld above the surface and why it does not

seem to extend beyond this distance it would be advantageous to be able to resolve

the H vector, or the individual components of the H vector, in each cell. 

Figure 7.2: Scan of Hz stray &elds within a volume of 0.5 x 0.5 x 0.1 mm3 above the

sample of as-cast 2605 Co IPF895 Metglas Alloy Amorphous Ribbon produced with the

STJ-020 sensor at 0.01 x 0.01 x 0.002 mm/cell resolu�on. The area scanned is highlighted

in Figure 6.6. The lowest xy Plane is presented along with &ve di,erent zx Slices at the

indicated loca�ons along the y-axis. Animated sweeps through each xy Plane and each zx

Slice are available in the Chapter 7.7z arxive (page ix). The Hz Stray &eld strength ranges

over ± 88 A/m.
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7.2 Resolving Hz and Hx Components with a Single-axis Sensor

ABer inves�ga�ng the possibility of the use of three-axis sensors to measure all three

Hz, Hx and Hy stray-&eld components [142, 143, 144], most employ the same Hall-e,ect

method as the Lakeshore 475 DSP Gaussmeter, and as such provide a low spa�al

resolu�on of 0.1 mm2 compared to the 2 x 4 µm2 footprint of the STJ-020 TMR sensor

(see Figure 6.1 for compara�ve scan results). To achieve the same resolu�on as the

STJ-020, three-axis TMR sensor arrays are available but are prohibi�vely expensive.

Some theore�cal work has been done to mathema�cally derive the three individual

&eld components from one measurement, based on assump�ons about the geometry

[145], but for the &rst �me a prac�cal solu�on of two consecu�ve scans with the

sensor axis �lted is proposed to trigonometrically resolve the Hz and Hx components of

the &eld using only the exis�ng single-axis STJ-020 sensor. This capacity mo�vated the

development of the second, and then ul�mately the third sensor head and the concept

was &rst presented in [118], available in Appendix 6.

Figure 7.3: The geometry of the Micromagne�cs STJ-020 TMR sensor die; (a) When

perpendicular the minimum height of the sensor's ac�ve area z0 = 12 μm ± 3 μm. Two

simple cases exist where; (b) the clockwise rota�on and counterclockwise rota�on are

equal, or (c) the counterclockwise rota�on is 45°, where t h e z-axis and x-axis

components of the stray &eld can be easily resolved (d).
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The geometry of the �l�ng of the STJ-020 TMR sensor is provided in Figure 7.3(d).

The stray-&eld measured at angle ϑ counterclockwise to the perpendicular is formed of

the Hz and Hx stray-&eld components by;

H θ=H z
cos(θ)−H

x
sin (θ) Equa�on 7.1

The stray-&eld measured at angle ϕ clockwise to the perpendicular is formed of the Hz

and Hx stray-&eld components by;

H φ=Hz
cos (φ )+H

x
sin(φ ) Equa�on 7.2

Two simple cases exist for determining Hz and Hx from Hϑ and Hϕ;

If ϑ = ϕ;

H θ=H z
cos(θ)−H

x
sin (θ) , H φ=Hz

cos (θ)+H
x
sin(θ)

H φ +H θ=2Hz
cos(θ) , H φ−Hθ=2Hx

sin (θ)

H
z
=
H φ+Hθ

2cos(θ)
, H

x
=
H φ−Hθ

2sin(θ)
Equa�ons 7.3

If ϑ = 45°, ϕ = 0°;

H θ=H z
cos(45)−H

x
sin (45) , H φ=Hz

remembering that sin (45)=cos(45) ,

H θ=H z
cos(45)−H

x
cos (45)

H θ=(H
z
−H

x
)cos(45)

H θ

cos(45)
=H

z
−H

x

H
z
=H φ , H

x
=H

z
−

H θ

cos (45)
Equa�ons 7.4

Equa�ons 7.3 and 7.4 have been incorporated into the \Processing\ subVI zxCombine.vi

(Sec�on 5.5.5) to automate the combina�on of data from two consecu�ve scans.
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7.2.1 Tilted Sensor Scanning with Sensor Head 2

Sensor Head 2, detailed in Chapter 4, was developed to enable consecu�ve scans of

samples with the STJ-020 TMR sensor �lted either 5° clockwise or counterclockwise

from the perpendicular whilst all other sensors remain perpendicular. A scan of a small

2 mm region of the polished 3% Si Grain Oriented Electrical Steel was made to test the

concept of resolving the Hz and Hx components. Equa�ons 7.3 had not at the �me been

incorporated into an automated process so, with each of the 4000 cells being manually

combined, a small scan of only 20 x 20 x 5 cells was performed at a resolu�on of

0.1 mm3/cell. The manual results were originally published in [118], available in

Appendix 6, but the data has since passed through the automated zxCombine.vi

process of Scanner Control 3 and combined to produce the colour image presented in

Figure 7.4.

The colour representa�on of the H stray &eld vector (Figure 7.4(d)) is produced by the

channel mixing of the two Hz and Hx component greyscale maps produced by

zxCombine.vi. The Hx greyscale map has its Red channel removed and its Green channel

inverted so Black to White is remapped as Green to Blue. The Hz greyscale map has the

Green and Blue channels removed to remap from Black to Red, with the original

Greyscale Overlayed to range Hz from Black through Red to White. This has the

advantage of isola�ng and highligh�ng directly perpendicular posi�ve and nega�ve Hz

&elds. Figure 7.4 presents only the lowest of the xy Planes and one zx Slice of the

cuboid of scan data. Animated sweeps through the xy Planes and through the zx Slices

are available in Chapter 7.7z of the Cardi, Portal Arxive (page ix) and on the

accompanying DVD.

The zx Slice presented in Figure 7.4 (c) is illustrated with an indica�on of how the H

stray &eld vector is rota�ng at the edge of the feature. This is the &rst indica�on that it

may be possible to see the rota�on of the magne�sa�on vector through the Bloch-wall

using this resolving method.
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Figure 7.4: A scan of a volume of  of 2 x 2 x 0.5 mm3 above the sample of polished 3% Si

Grain Oriented Electrical Steel produced with the STJ-020 sensor at 0.13 mm/cell

resolu�on mounted in Sensor Head 2. Two consecu�ve scans with a sensor �lt of 5°  (a)

counterclockwise and (b) clockwise are combined to produce a (c) colour representa�on

of the stray &eld H vector. Only one zx Slice is presented at the indicated loca�on on the

lowest xy Plane. (d) The colour representa�on of the H stray &eld vector. The Hz stray

&eld strength ranges over ± 139 A/m and the Hx stray &eld strength ranges over ± 38

A/m. Some indica�on of the rota�on of the H vector is illustrated in (c). Animated

sweeps through each xy Plane and each zx Slice are available in the Chapter 7.7z arxive

(page ix). 

The calculated Hz &eld ranges over ± 139 A/m whilst the calculated Hx &eld ranges over

only ± 38 A/m. This unevenness indicates that, as might be expected with only a 5° �lt,

the Hx component is being measured dispropor�onately less than Hz.

This, together with the inaccuracies of a 3d-printed �l�ng mechanism and the

diNcul�es encountered in combining the magne�c and displacement sensors

discussed in Chapter 4, mo�vated the development of Sensor Head 3; incorpora�ng a

ThorLabs CR1/M precision goniometer.
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7.2.2 Variable Angle Scans with Sensor Head 3

The ThorLabs CR1/M precision goniometer permits a scan to be made with the sensor

at any chosen angle ϑ to the ver�cal, measuring the strength of stray &eld Hϑ at that

angle. Figure 7.5 presents the results of zx Transect scan, along the transect indicated

in Figure 6.4, at &ve di,erent angles ϑ to the ver�cal. These results were &rst reported

in [146] and [147] and presented at the IEEE Sensors Conference 2017, Glasgow. An

animated sweep though each angle is available in the Chapter 7.7z Cardi, Portal Arxive

(page ix). These results illustrate the promise of inves�ga�ng the structure of the stray-

&eld above the surface of the sample using an angle sensor. However, because of the

non-regular and unknown true structure of stray &elds from the 3% Si Grain Oriented

Electrical Steel sample, it is diNcult to isolate if the change in the &eld map results from

the angle �lt alone, or from the increase in minimal sample distance forced by the

geometry of the sensor �p (δz in Figure 7.3). Hence the need for the consequent study

of known planar coil geometries.

Figure 7.5: (a) Illustra�on of the three-dimensional rela�onship between zx Transect

scans of polished 3% Si Grain Oriented Electrical Steel above the surface of the sample at

the loca�on indicated in Figure 6.4. (b) Scans of the stray &eld strength at 0°, 5°, 10°, 15°,

20° counterclockwise to perpendicular above the sample forming 2.35 x 0.1 mm

zx Transects at 0.005 x 0.005 x 0.002 mm/cell resolu�on. The Hϑ Stray &eld strength

ranges from -116 to 270 A/m. An animated sweep through each angle is available in the

Chapter 7.7z arxive (page ix).
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7.3 Comparison between the Modelled and Measured Hz and Hx 

Components of the Fields from Planar Coils

To validate and add con&dence to the capacity of the system to measure the three-

dimensional structure of the magne�c &elds by isola�ng the Hz and Hx components two

addi�onal consecu�ve scans were made of the manufactured square planar coil

discussed in Sec�on 6.3 along the transect marked by blue double-chevrons in

Figure 6.9(d.iii). Making use of Equa�ons 7.4, one scan was made with the sensor

perpendicular and a further corresponding scan made with the sensor at

45° counterclockwise. Only the &rst half of the coil was scanned to avoid possible

collision of the sensor with the central solder point at the lower minimum scan height

of z0 = 12 µm ± 3 µm. The spa�al conforma�on between the two scans is maintained by

the ± 1 µm precision of the posi�oning arm (Sec�on 4.2.2) and by the precision

goniometer and micrometers used in the system (Figure 4.16). The axis of rota�on was

aligned with the centre of the ac�ve area of the STJ-020 TMR sensor using the

microscope incorporated into the system (Sec�on 4.10.1). Photographs of the ver�cal

and angled scans underway are presented in Figure 7.6.

Figure 7.6: Photographs of the system scanning the square planar coil; (a,b) with the

STJ-020 sensor perpendicular and (c,d) with the STJ-020 sensor at 45° supported by the

precision goniometer of Sensor Head 3. The centre of rota�on is precisely aligned to the

centre of the sensor's ac�ve area.
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A sensor angle of 45° allows for a maximum sampling of Hx, and also for the lowest

ac�ve area to sample surface distance (z0) possible due to the shape of the sensor.

There remains a di,erence in minimum possible sensor to surface distance between

when the sensor is perpendicular and when it is �lted (z0). Whilst both scans shared

the same maximum z-axis coördinate the minimal height (z0) of the 45° scan was

necessarily 12.5 µm above the minimal height of the perpendicular scan. Thus,

allowing for a 2.5 µm error in z0 due to surface unevenness the es�mate for z0 can be

determined more precisely as 12.5 µm ± 2.5 µm. The transect scan extended 10 mm

above the surface of the coil. To maintain consistency with the resolu�on of the other

scans the x-axis resolu�on was 0.1 mm/cell, but to gain detail to the extent of the &elds

above the surface the z-axis resolu�on was 0.01 mm/cell. The resul�ng

0.1 mm × 0.01 mm cell is presented as rectangular to maintain the correct aspect ra�o

between horizontal and ver�cal distances. 

T h e ANSYS Maxwell 3D FEM soBware allows for simple determina�on of the

magnitudes of Hz and Hx from the modelling, but to provide comparison of the

measured results for the scan with the sensor at 45° Equa�on 7.1 is used with ϑ = 45°

to determine H45. The expected results calculated from the &nite element modelling of

the coil were determined by de&ning an xz plane slice in the modelled vacuum cuboid

at a y-axis posi�on matching the transect. Naturally, the &nite element modelling is

able to represent the &eld beneath the coil which is inaccessible to the physical sensor;

but, in the case of the thin planar coils, mirrors the &eld above the sample. 

The results of scans of the Square planar coil and the analysis to isolate the Hz and H45

and Hx components are presented in Figure 7.7, alongside the expected results from

the &nite element modelling. There is strong similarity between the measured and the

modelled &eld shape for both the planar and the cross-sec�on scans. 

The colours used in Figure 7.7 make use of the colour representa�on of the H vector

described on page 160. and presented in Figure 7.7(c.v).
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Figure 7.7: Comparison of scans of the Square planar coil with the STJ-020 sensor

compared with ANSYS FEM of the corresponding topology. (i) xy Scans of the Square

planar coil (ii) FEM of the &elds from xy plane, (iii) zx Transect scan of the Square planar

coil (iv) FEM of the &elds from the zx plane; (a) Hz, (b) H45, (c) Hx. Colour representa�on

of the stray &eld H vector are presented as scanned (a.v) and (b.v) and from FEM (a.vi)

and (b.vi).  (c.v)  The colour representa�on of the H stray &eld vector.
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Again, there is signi&cant noise in the scans, par�cularly in the cross-sec�onal scans

where strong horizontal bands from background are present. Nevertheless, the &eld

distribu�ons expected from the &nite element modelling can be seen clearly in the

measured cross-sec�ons. The curved “&eld boundary” lines evident in Figure 7.7(iv) are

an artefact of the discrete shading boundaries, but serve to highlight the shape of the

&eld distribu�on. The modelled &elds below the coil are not accessible by prac�cal

measurement, but form a mirror of the &elds above the coil. The scans of the Hz and

H45 components have been e,ec�vely combined to calculate the Hx component,

presented in Figure 7.7(c). The Hx component corresponds well with that expected

from the ANSYS modelling. The lower tracks of the Square planar coil are not quite

parallel with the scanning path and so some Hx signal is present, but a strong

Hx component away from the centre of the coil on both sides is demonstrated on both

the planar xy plane and the cross-sec�onal xz slice.

This comparison work, in combina�on with that in Chapter 6, was originally published

in [112], available in Appendix 6.

Full colour representa�ons of the H vector are provided in Figure 7.7(a.v),(b.v), (a.vi)

and (a.vi). Figure 7.7(c.vi) illustrates a closeup of the &elds around one of the tracks

indicated on Figure 7.7(b.vi) which demonstrates the rota�on of the H vector

counterclockwise and how the full colour representa�on process described on

page 160  indicates this correctly.
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7.4 Resolved Stray Field H Vectors from Coated 3% Si Grain-Oriented 

Electrical Steel

With con&rma�on of the systems capacity to resolve the H vector of the stray-&eld in

the volume above the surface of a sample, inves�ga�ons into the three-dimension

structure, and the change in three-dimensional structure aBer some perturba�on, can

begin.

7.4.1 Resolved Stray Field H Vectors from Laser Etched Coated 3% Si Grain-

Oriented Electrical Steel Before and A3er Etching

A de&ned region of coated 3% Si Grain-Oriented Electrical Steel, presented in

Figure 7.8(b), was scanned both perpendicularly and at 45° counterclockwise

Figure 7.8(c) to determine the resolved H vector of the domains in the sample. The

results of these scans are presented in Figure 7.9(i) and in Figure 7.9(a.iii) with the

colour H vector representa�on described on page 160.

The sample was then etched diagonally across the scan region using a 10.6 μm wide

CO2 laser at 14% of its 50 W total power (Figure 7.8(a)) and the two scans repeated.

The results of the scans aBer laser etching are presented in Figure 7.9(ii) and in

Figure 7.9(b.iii) with the colour H vector representa�on.

Figure 7.8: (a) Etching lines in Coated 3% Si Grain Oriented Electrical Steel with a 10.6 μm

wide CO2 laser at 14% of 50 W. (b) the indicated Etched lines are present in the coa�ng

made diagonally through the central scanned region. (c) the sample is scanned

perpendicularly and at 45° counterclockwise.
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Figure 7.9: A stray &eld scan of 24 x 20 mm Coated 3% Si Grain Oriented Electrical Steel

produced by a scan with the STJ-020 sensor at 0.13 mm/cell (i) Before and (ii) ABer

etching the coa�ng with a 10.6 μm wide CO2 laser at 14% of 50 W (Figure 7.8). Measured

(a) Hz and (b) H45 &elds along with calculated (c) Hx &elds are presented. Colour

representa�on of the stray &eld H vector is presented before (a.iii) and aBer (b.iii)

etching. The colour representa�on of the H stray &eld vector is presented in (c.iii).

The laser etching causes a clear di,erence in the distribu�on of domains within the

coated 3% Si Grain-Oriented Electrical Steel. The laser etching produces an ar�&cial

boundary and the domains rearrange to minimise the energy within each of the two

newly de&ned regions [148, 149]. It can be seen from the H vector colour

representa�on how a narrow region of magne�sa�on vector rota�on forms across the

width of the laser etch. The stray-&eld orienta�on rotates to ensure that opposite

magne�sa�on direc�ons occur either side of the boundary to ensure net zero

magne�sa�on across the boundary. Although only scanned in an xy Plane evidence of

the rota�on of the H vector at the edge of each domain is indicated.
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7.4.2 Resolved Stray 4eld H Vector in a Volume Above Coated 3% Si Grain-

Oriented Electrical Steel

Figure 7.10: A stray &eld scan of &elds within a volume of 10 x 10 x 0.5 mm above a

sample of Coated 3% Si Grain Oriented Electrical Steel produced by a scan with the

STJ-020 sensor at 0.5 x 0.5 x 0.05 mm/cell. Measured (a) Hz and (b) H45 &elds along with

calculated (c) Hx &elds are presented (i). Colour representa�on of the stray &eld H vector

is presented (ii) with 10 di,erent zx Slices at the indicated loca�ons along the y-axis. The

colour representa�on of the H stray &eld vector is presented in (c.ii). Animated sweeps

through each xy Plane and each zx Slice are available in the Chapter 7.7z arxive (page ix).

For the &rst �me, using the colour H vector representa�on, the rota�on of the H stray

&eld vector can be seen at the domain wall. Figure 7.10 presents component resolved

scans of the &elds within a volume of 10 x 10 x 0.5 mm above a sample of Coated 3% Si

Grain Oriented Electrical Steel. The lowest xy Plane is presented in Figure 7.10(ii) along

with 10 di,erent zx Slices at the indicated loca�ons along the y-axis which demonstrate

the rota�on of the H vector. Animated sweeps through each xy Plane and each zx Slice

are available in the Chapter 7.7z Arxive (page ix). The Hz Stray &eld strength ranges

over ± 200 A/m. Chapter 8 will inves�gate how these domain walls move in response to

an alterna�ng applied magne�c &eld.
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Chapter 8

Inves�ga�on of Alterna�ng Domain Dynamics

The Scanner Control 3 so�ware was speci�cally developed with the aim of inves�ga�ng

the dynamics of domains as they change under the in"uence of an alterna�ng externally

applied �eld.  Dynamic scans of samples are presented here as a �lmstrip within the

thesis, with fully animated versions of each �gure available as animated GIFs in Chapter

8.7z of the Cardi) Portal Arxive (page ix) and on the accompanying DVD. Presenta�ons

with the animated GIFs embedded are also provided for each of the �gures in the

/Figures Presenta�ons/ folder of the Arxive.

8.1 Inves�ga�ng Dynamics with the Scanner System

Due to the damage caused to the Second STJ-020 TMR sensor described in Chapter 4

and Chapter 5 the �rst studies of dynamic systems were made with the Lakeshore DSP

Gaussmeter. This had the disadvantage of much lower spa�al resolu�on, as

described in Chapter 6 (Figure 6.1), but s�ll provides meaningful results, and in

par�cular provided the �rst posi�ve observa�on of domain dynamics with the system.

Producing high frequency dynamic data from the slow process of procedural scanning

relies principally on the assump�on that the domains follow repeatable oscillatory

mo�on. At the beginning of this phase of the inves�ga�on it was not clear if the

domain wall mo�on within a sample would be su;ciently repeatable to produce

meaningful results, and it was part of this inves�ga�on to determine what propor�on

of the sample surface, if any, exhibited domains with repeatable mo�on.

It is important to remember that, though only one cycle of excita�on is presented in

the results, for a 10,000 cell scan of a sample excited at 3 Hz this single cycle represents

the se>led repeatable mo�on of at least 30,000 cycles of excita�on.

8.1.1 The Process of Frame Synchronisa�on

Other studies [109, 11] have used the “locked-in” technique of triggering the AC signal

generator to pulse at the start of each set of samples. This method requires a trigger-

able AC signal generator. It is thought such triggering of the start of each waveform

provides discon�nuous excitement to the sample which may e)ect the dynamics of the
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domains, as they are given uneven relaxa�on �me between excita�ons. Rather than

employing the “lock-in” method, a passive con�nuous sampling technique (where the

oscillator runs con�nuously) has been developed to sample each cell at whatever the

phase of a smooth con�nuous excita�on; whilst ensuring the sample rate and

frequency capture enough samples for at least two full cycles. So�ware post-

processing (Synchronise.vi, Chapter 5.4.2.8) is then used to synchronise each cell to the

�rst peak of the applied �eld. 

8.1.2 Dynamic Oscilla�on of the Fields from the Square Planar coil

Once again the known geometry of the Square planar coil (Figure 6.9(d.i)) has been

used to test and con�rm the e)ec�veness of the scanning, synchronisa�on process and

resul�ng output of the system.

The planar coil was energised at 3 Hz and scanned using the Lakeshore sensor at 1000

samples/cell with 1 kHz sampling rate. A�er synchronisa�on the �rst 333 frames

provide one complete cycle. The spa�al resolu�on of the scan was 0.1mm/pixel. An

animated GIF of the complete cycle is provided in Chapter 8.7z of the Cardi) Portal

Arxive (page ix) and on the accompanying DVD. A �lmstrip of every fourth frame is

presented in Figure 8.1(a). The pyramidal oscilla�on of �eld strength and direc�on

from the coil is clear, with the centre of the coil the strongest, and the expected

emphasis of �eld at the corners. Importantly these results demonstrate the

e)ec�veness and coherence of the scanning and synchronisa�on systems and validate

the technique that has been developed. 

The PNG.vi subVi (Sec�on 5.4.2.7) provides the capacity to calculate the mean value of

the en�re scan for each frame and also provides histograms coun�ng the number of

pixels of each greyscale value of each frame in the scan. The mean �eld produced by

the en�re coil (Figure 8.1(b.i)) corresponds directly to the voltage applied to the coil,

but does not dis�nguish the topology of the coil in that the �eld is assumed even over

the surface. 
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Figure 8.1(a): Filmstrip representa�on of a dynamic scan of the Square Planar coil

(Figure 6.9(d.i)) energised at 3 Hz with ± 0.2 V. Scan made with the Lakeshore 476 DSP

Gaussmeter at 1kHz sampling rate. 336 frames represent 1 cycle. The full animated GIF is

provided in Chapter 8.7z of the Cardi) Portal Arxive (page ix) and on the accompanying

DVD. The stray �eld strength (Hz) is represented in greyscale from -300 to 300 A/m.

173

336 samples
@ 1kHz
every 
4 samples

Frames: 1....21
25......53

........
305......333

-300 300A/m

 22mm

Stray Field Strength



Chapter 8: Inves�ga�on of Alterna�ng Domain Dynamics

Figure 8.1(b): (i) The Mean �eld strength across the en�re surface scanned for each of

336 frames (in black) and the voltage applied to the Square Planar Coil (in red). (ii) The

percentage area coverage of each greyscale level across the en�re scan for each of 336

frames. The stray �eld (Hz) strength is represented in greyscale from -300 to 300 A/m.

The histogram in Figure 8.1(b.ii) presents the percentage coverage of each level of

�eld. Consequently the histogram encodes some of the detail of the topology of the

coil, with evidence of both the posi�ve and nega�ve z-axis �elds in every frame. The

greater prevalence of mid-grey pixels over extreme white or black indicates the

concentric nature of the �eld reinforcement and the slight asymmetry over �me is

indica�ve of the spiral. With the square planar coil the physical posi�on of the �eld

sources do not move, unlike the sources of stray �eld from domains.
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8.2 Inves�ga�ng Stray Field and Domain Dynamics

8.2.1 Laser Etched Coated 3% Si Grain-Oriented Steel subjected to alterna�ng 

applied -eld from a Yoke

The sample of Laser Etched coated 3% Si Grain-Oriented steel from Sec�on 6.1.3 has

been energised with the Large C-Yoke (Sec�on 4.10.3) at 3 Hz. This is a common

method of providing an applied �eld to a sample [9, 10]. The MOKE techniques used in

these studies observe the direc�on of magne�sa�on within the sample, parallel to the

surface of the sample, and so are not a)ected by stray Hz �elds from any other source. 

An area of 27 mm x 25 mm of the sample has been scanned @ 0.1 mm/pixel at a

sampling rate of 1 kHz. 336 frames represent one full cycle. The results, presented in

Figure 8.2(a), indicate the extent to which stray Hz �eld from the Yoke itself, and from

topological defects in the sample, mask any observa�on of the stray �elds origina�ng

from the domain pa>erns present. Stray �eld from the domains in an unenergised

sample of Grain-Oriented steel range over ± 215 A/m (Figure 6.1(d)). The Large C-Yoke

has been used to help distance the �ps of the Yoke from the region of scanning,

nevertheless the Hz �eld measured by the system when energised with the Yoke ranges

over ± 500 A/m (Figure 8.2(a)). This extra �eld originates not only from the Yoke itself

[36], but also from stray �elds from the topology of the sample and the defects in it. As

the applied magne�c �eld oscillates the defects caused by the Laser Etching are

highlighted, including an emergent spike of �eld between two of the Etching lines.

These e)ects are useful in their own right for the non-destruc�ve tes�ng of defects

[87, 111] but cause great di;culty in studying the dynamics of the domains in the

sample, leading to the ambiguous results of previous a>empts at dynamic studies

using scanner systems [11].
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Figure 8.2(a): Filmstrip representa�on of a dynamic scan of Laser Etched Coated 3% Si

Grain-Oriented Steel energised at 3 Hz with the Large Yoke. The full animated GIF is

provided in Chapter 8.7z of the Cardi) Portal Arxive (page ix). The stray �eld strength (Hz)

is represented in greyscale from -500 to 500 A/m. The border 20 pixels of each frame

presents the oscilla�ng voltage driving the C-Yoke (± 0.15 V).
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Figure 8.2(b): (i) The Mean �eld strength across the en�re surface scanned for each of

336 frames (in black) and the voltage applied to the Large Yoke (in red). (ii) The

percentage area coverage of each greyscale level across the en�re scan for each of 336

frames. The stray �eld (Hz) strength is represented in greyscale from -500 to 500 A/m.

Figure 8.2(b) demonstrates how the topology and defects of the Laser Etched Coated

3% Si Grain-Oriented Steel are indicated in the Mean and Histogram plots. The

dominant e)ects are the creep of �eld from the Yoke at the edge of the scan and the

emergent �eld spike between the two etchings, which results in the three peaks in

Figure 8.2(b.i) and in the dominance of black pixels at frame 50 and white pixels at

frame 210 in Figure 8.2(b.ii).
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8.2.2 As-cast 2605 Co IPF895 Metglas Alloy Amorphous Ribbon subjected to 

alterna�ng applied -eld from a Yoke

To again demonstrate the issue of the stray �elds from surface topology masking any

observa�on of domain dynamics when using a C-Yoke; the results of a scan of as-cast

2605 Co IPF895 Metglas Alloy Amorphous Ribbon, with 3 Hz oscilla�ng applied

magne�c �eld from the Small C-Yoke (Sec�on 4.10.3), are presented in Figure 8.3(a).

The scan is of area 20 mm x 20 mm at a spa�al resolu�on of 0.1 mm/pixel with a 1 kHz

sampling rate. 336 frames represent one full cycle and every 4th frame is presented in

the �lmstrip in Figure 8.3(a) with the full animated GIF provided in Chapter 8.7z of the

Cardi) Portal Arxive (page ix). The border 20 pixels of each frame presents the

energising voltage (± 0.2 V), which is provided with its own animated GIF in the arxive

and in the /Figures Presenta�ons/ folder on the DVD.

Again the stray �eld strength (Hz), ranging from -500 to 500 A/m, mostly emanates

from the undula�ng topology of the as-cast ribbon surface and the �eld from the Yoke

at the edge of the scan. The ripples on the surface are seen to remain largely sta�c,

although careful observa�on of the full animated GIF (Chapter 8.7z (page ix)) indicates

some rippling of the surface as the thin sample distorts slightly under the alterna�ng

applied �eld.

The Mean stray �eld plot (Figure 8.3(b.ii)) shows evidence of the e)ects of the two

dominant bump defects in the surface of the sample. The evenness and symmetry of

the Histogram plot (Figure 8.3(b.ii)), with some varia�on coincident with the features

of the Mean �eld plot, indicates the general con�nuity and evenness of the

undula�ons on the surface of the ribbon.

The strength of the stray �elds from the surface topology of as-cast amorphous ribbon

are much greater than the intrinsic strength (± 80 A/m) of the domains previously

measured in amorphous materials (Sec�on 6.2) which again makes the observa�on of

domain dynamics in amorphous materials [126, 150] di;cult with a scanner system.
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Figure 8.3(a): Filmstrip representa�on of a dynamic scan of As-cast 2605 Co IPF895

Metglas Alloy Amorphous Ribbon energised at 3 Hz with the Large Yoke. The full

animated GIF is provided in Chapter 8.7z of the Cardi) Portal Arxive (page ix). The stray

�eld strength (Hz) is represented in greyscale from -500 to 500 A/m. The border 20 pixels

of each frame presents the oscilla�ng voltage driving the C-Yoke (± 0.2 V).
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Figure 8.3(b): (i) The Mean �eld strength across the en�re surface scanned for each of

336 frames (in black) and the voltage applied to the Large Yoke (in red). (ii) The

percentage area coverage of each greyscale level across the en�re scan for each of 336

frames. The stray �eld (Hz) strength is represented in greyscale from -500 to 500 A/m.

To be able to inves�gate the domains in any samples it is necessary to remove the

dominant Hz component from the C-Yoke method by applying the �eld parallel to the

surface of the sample using coils wrapped around the sample itself. The applied �eld is

thus directly along the x-axis rather than relying on the �eld from the Yoke being drawn

into the sample [36].
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8.2.3 Uncoated 3% Si Grain-Oriented Steel subjected to alterna�ng applied 

-eld from 20 + 20 Coils

To inves�gate the method of applying an external �eld parallel to the surface of the

sample (in the x-axis) using coils wrapped around the sample itself, ini�ally 20 turns

were wrapped around each end of the sample. This made a 40 turn coil with

magne�sa�on in the x-axis of the sample of Uncoated 3% Si Grain-Oriented Steel, with

an area between the two halves of the coil which could be scanned (Figure 4.15(e)).

Because these 20 + 20 coils were applied directly to the sample it was not possible to

directly calibrate the �eld produced by the coils in rela�on to the voltage supplied to

them, however it can be assumed that the 40 turns of this coil produce a �eld 40% the

strength of the 100 turn coil calibrated in Sec�on 4.10.4 (Figure 4.17), resul�ng in a

�eld calibra�on of 866 Am-1/Volt. This permits the results of the scan to be presented

in A/m for both the Stray and Applied �eld strengths in Figure 8.4(a) and Figure 8.4(b).

The sample was subjected to an oscilla�ng applied �eld ± 1039 A/m at 3 Hz.

Due to the damage caused to the Second STJ-020 TMR sensor described in Chapter 4

this scan was made with the Lakeshore DSP Gaussmeter, nevertheless this is the �rst

�me a successful observa�on of de�ni�ve dynamic domain mo�on has been observed

with a two dimensional scanner system [151]. 

The scan of 28 x 20 mm2 at a spa�al resolu�on of 0.1 mm/pixel took 2000 samples per

cell at a 1 kHz sampling rate. A�er synchronisa�on 336 frames represent 1 complete

cycle. A �lmstrip of every 5 of these frames with a 20 pixel border represen�ng the

state of the Applied �eld from the coils is presented in Figure 8.4(a). The dynamics of

the domain walls are visible in the �lmstrip but are best observed through the

animated GIF provided in Chapter 8.7z of the Cardi) Portal Arxive (page ix) and on the

accompanying DVD. Both the animated GIF of the Stray �elds and Applied Field

Strength are provided embedded in the Chapter 8[.odp/.ppt] presenta�on available in

the /Figures Presenta�ons/ folder of the Arxive and the DVD.
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Figure 8.4(a): Filmstrip representa�on of a dynamic scan of Uncoated 3% Si Grain-

Oriented Steel subjected to a 3 Hz oscilla�ng x-axis �eld of ± 1 kA/m from the 20 + 20

coils. The full animated GIF is provided in Chapter 8.7z (page ix). The border 20 pixels of

each frame presents the oscilla�ng Applied �eld (inverted greyscale).
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Figure 8.4(b): (i) The Mean stray �eld strength across the en�re surface for each of 336

frames (in black) and the Applied x-axis �eld strength (in red). (ii) The percentage area

coverage of each greyscale level across the en�re scan for each of 336 frames. (iii) The

Mean Stray �eld strength plo>ed against the Applied x-axis �eld strength.
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The rela�ve direc�on of the applied x-axis �eld produced by the coils happens to be

the inverse of the polarity of the voltage applied to the coils (due to the direc�on of

winding). This has the e)ect of inver�ng the greyscale on the Applied �eld scale in

Figure 8.4(a). This has been le� as it provides a be>er contrast for the frames, but the

plots in Figure 8.4(b) have the posi�ve direc�ons of the Stray �elds and the Applied

�eld aligned.

The expansion and contrac�on of the domains as they respond to the oscilla�ng

applied �eld can be clearly seen, with slight varia�on dependent on the rela�ve

orienta�on of the grain, and grain boundary e)ects present. The varia�on in this

sample is slight, even across the grain boundary, with only small varia�ons due to some

sub-surface magne�c anomalies [31]. This uniformity can be seen in the smoothness

and regularity of Figure 8.4(b.i) and Figure 8.4(b.ii). The par�cular area of the sample

scanned does not exhibit any non-uniform grain orienta�on.

In Chapter 6 it was, unexpectedly, discovered that the images produced by the scanner

system bore a closer resemblance to images from MOKE observa�on than from Bi>er

techniques. This was unexpected because MOKE analysis responds to the in-plane

magne�sa�on vector of the domains and not, as with the Bi>er technique and as

expected from a z-axis sensor, the perpendicular �elds straying from the domain

boundaries. Consequently, it was suggested that the �elds being measured by the

sensor were perhaps largely composed of the perpendicular component of the domain

magne�sa�on that is angled slightly out-of-plane. 

This concept is further supported by the strong correspondence between the mean

stray �eld measured for the sample and the applied �eld seen in Figure 8.4(b.i).  The

mean of stray �elds from the domain walls are not necessarily expected to have any

correspondence with the overall magne�sa�on of the sample, whilst the mean of the

in-plane magne�sa�on vectors of the domains is very much expected to be governed

by the externally applied magne�c �eld (Chapter 2).

184



Chapter 8: Inves�ga�on of Alterna�ng Domain Dynamics

There is a very slight delay between the change in applied �eld and the change in

domain rearrangement, related to the magne�c coercivity of the sample, and ploTng

the Mean Stray �eld strength against the Applied x-axis �eld strength Figure 8.4(b.iii)

permits this delay to be observed.

The Lakeshore sensor has been successful in observing the overall domain mo�on, but

with the purchase of the third Micromagne�cs STJ-020 sensor it became possible to

observe the domain dynamics in an uncoated Coated 3% Si Grain-Oriented Steel sheet

at 0.01 mm/pixel resolu�on and ul�mately to resolve the dynamics into Hz and Hx

components.

8.2.4 Coated 3% Si Grain-Oriented Steel subjected to alterna�ng applied -eld 

from 50 + 50 Coils

To enhance the oscilla�ng �eld applied to a sample the two parallel 20 turn coils were

replaced by two parallel 50 turn coils which are wrapped around thin sleeves to permit

them to be removed from the sample and a new sample inserted (Sec�on 4.10.3,

Figure 4.15(b)). The resul�ng 100 turn coil has been calibrated (Sec�on 4.10.4,

Figure 4.17) and is known to produce a �eld of 2.164 kA/m per Volt applied to it.

A strip of Coated 3% Si Grain-Oriented Steel was inserted into the coil, with a scan area

between the coils (Figure 4.15(b)). Ini�ally just the perpendicular Hz stray �eld

component was measured with the sample subjected to a 3 Hz oscilla�ng Applied

x-axis �eld of ± 1.95 kA/m and scanned at a sampling rate of 1 kHz. Once synchronised

336 frames represent one full cycle.

The ini�al scan was of an area of 10 x 10 mm2 at a resolu�on of 0.05 mm/pixel. A

�lmstrip of every 4 frames with a 20 pixel border represen�ng the state of the Applied

�eld from the coils is presented in Figure 8.5(a). The dynamic expansion and

contrac�on of the domain walls are visible in the �lmstrip but are best observed

through the animated GIF provided in Chapter 8.7z of the Cardi) Portal Arxive (page ix)
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Figure 8.5(a): Filmstrip representa�on of a 10 x 10 mm2 (@ 0.05mm/pixel) dynamic scan

of Coated 3% Si Grain-Oriented Steel subjected to a 3 Hz oscilla�ng x-axis �eld of ± 1.95

kA/m from the 50 + 50 coils. The stray �eld strength (Hz) is represented in greyscale ±

300 A/m. The full animated GIF is provided in Chapter 8.7z (page ix). The border 20 pixels

of each frame presents the oscilla�ng Applied �eld (inverted greyscale).
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Figure 8.5(b): (i) The Mean stray �eld strength across the en�re surface for each of 336

frames (in black) and the Applied x-axis �eld strength (in red). (ii) The percentage area

coverage of each greyscale level across the en�re scan for each of 336 frames. (iii) The

Mean Stray �eld strength plo>ed against the Applied x-axis �eld strength.
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Both the animated GIF of the Stray �elds and Applied Field Strength are also provided

embedded in the Chapter 8.ppt presenta�on available in the /Figures Presenta�ons/

folder of the Cardi) Portal Arxive (page ix) and the accompanying DVD. 

Importantly, the higher resolu�on of the STJ-020 sensor permits the dynamics of the

internal Lancet domains [125] to be observed within the main bar domains. Whilst the

edges of the main bar domains expand and contract, the internal Lancet domains do

not appear to change physical loca�on, but instead increase and decrease in intensity

in correspondence with the polarity of the domain body around them. The rela�ve

direc�on of the applied x-axis �eld produced by the coils happens to be the inverse of

the polarity of the voltage applied to the coils (due to the direc�on of winding).

Inver�ng the greyscale on the Applied �eld scale in Figure 8.5(a), Figure 8.6(a) and

Figure 8.7(a) provides a be>er contrast for the frames. The plots in Figure 8.5(b), Figure

8.6(b) and Figure 8.7(b) have the posi�ve direc�ons of the Stray �elds and the Applied

�eld aligned.

There is a grain boundary to the top of the scan, with the dominant domain direc�on

di)erent to the rest of the sample. The resul�ng non-uniformity is also apparent in the

plots presen�ng the comparison of the Mean stray �eld strength against the Applied

�eld strength, presented in Figure 8.5(b). 

For a large part of the cycle the domains in the sample adjust to match the mean stray

�eld strength of the sample to the externally applied �eld (Figure 8.5(b.i)), but when

the posi�ve applied �eld strength exceeds approximately 1.5 kA/m the grain at the top

of the sample dominates and the mean stray �eld direc�on reverses. This dynamic

pa>ern is also apparent in the Histogram plot (Figure 8.5(b.ii)) and causes a distor�on

to the �ps of the Mean stray �eld against Applied �eld plot (Figure 8.5(b.iii)). To

understand this non-uniformity be>er, two higher resolu�on scans of sub-regions

within the ini�al scan area were made. Both these addi�onal scans were made of

2 x 2 mm2 regions at a resolu�on of 0.01 mm/pixel. The loca�on of the sub-region and
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the results of these two higher resolu�on scans are presented in Figure 8.6 and

Figure 8.7 respec�vely alongside the Mean and Histogram analysis.

The 0.01 mm/pixel resolu�on also permits the Lancet domains to be studied in more

detail and again they appear not to move as the edge of the bar domains pass through

them. This re-enforces the concept of the Lancet domains as the result of magne�c

features origina�ng from internal physical structures [31]. Figure 8.6(a) also illustrates a

clear example of a sub-surface magne�c anomaly [31] which acts in opposi�on to the

dominant magne�sa�on direc�on. This opposing magne�c anomaly explains the

"a>ening of the mean stray �eld strength at applied �eld strength greater than 1 kA/m

illustrated in Figure 8.6(b.i) and visible in the histogram plot Figure 8.6(b.ii). The plot of

stray �eld against applied �eld (Figure 8.6(b.ii)) is more linear but s�ll shows distor�on

above 1 kA/m. The e)ect of the magne�c anomaly in Figure 8.6(a) is not itself great

enough to cause the distor�on in the mean applied �eld plot of the 10 x 10 mm2 scan

(Figure 8.5(b.i)). 

The second sub-region scan is presented in Figure 8.7(a) demonstrates the region with

dominant domain direc�on in opposi�on to the domains in the rest of the sample.

Some of the domains orient with the applied �eld, which cause a levelling e)ect

Figure 8.7(b.i) when the applied �eld is ± 1 kA/m, but the majority of the sub-region

acts in opposi�on to the applied �eld Figure 8.7(b.iii). The superposi�on of the top

region of the sample presented in Figure 8.7( a ) , and the sub-surface magne�c

anomalies exempli�ed in Figure 8.6(a), result in the distor�on to uniform

corespondence between the mean stray �eld and the applied �eld observed in the

10 x 10 mm2 scan. 

The distor�on of the Mean stray �eld plot and deforma�on of the Mean Stray �eld

against Applied �eld plot caused by non-uniform grain orienta�on and sub-surface

magne�c anomalies [31, 152], points to the future applica�ons in non-destruc�ve

tes�ng and quan�fying of the quality and consistency of grain orienta�on during

manufacture of Grain-Oriented Electrical Steel.
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Figure 8.6(a): Filmstrip representa�on of a 2 x 2 mm2 (@ 0.01mm/pixel) dynamic scan of

Coated 3% Si Grain-Oriented Steel, a subregion of Figure 8.5(a) as indicated in the top

le� frame. The stray �eld strength (Hz) is represented in greyscale ± 300 A/m. The full

animated GIF is provided in Chapter 8.7z (page ix). The border 20 pixels of each frame

presents the oscilla�ng Applied �eld (inverted greyscale).
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Figure 8.6(b): (i) The Mean stray �eld strength across the en�re surface for each of 336

frames (in black) and the Applied x-axis �eld strength (in red). (ii) The percentage area

coverage of each greyscale level across the en�re scan for each of 336 frames. (iii) The

Mean Stray �eld strength plo>ed against the Applied x-axis �eld strength.
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Figure 8.7(a): Filmstrip representa�on of a 2 x 2 mm2 (@ 0.01mm/pixel) dynamic scan of

Coated 3% Si Grain-Oriented Steel, a subregion of Figure 8.5(a) as indicated in the top

le� frame. The stray �eld strength (Hz) is represented in greyscale ± 300 A/m. The full

animated GIF is provided in Chapter 8.7z (page ix). The border 20 pixels of each frame

presents the oscilla�ng Applied �eld (inverted greyscale).
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Figure 8.7(b): (i) The Mean stray �eld strength across the en�re surface for each of 336

frames (in black) and the Applied x-axis �eld strength (in red). (ii) The percentage area

coverage of each greyscale level across the en�re scan for each of 336 frames. (iii) The

Mean Stray �eld strength plo>ed against the Applied x-axis �eld strength.
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Chapter 8: Inves�ga�on of Alterna�ng Domain Dynamics

8.3 Inves�ga�ng Three Dimensional Stray Field Dynamics

Employing the volume scanning technique described in Sec�on 7.1 it is possible to

inves�gate the decay of the stray �elds in the thin volume just above the surface of the

sample of Coated 3% Si Grain-Oriented Steel.

Employing the �l�ng STJ-020 TMR sensor technique described in Sec�on 7.2 it is

possible to determine the Hz and Hx components of the stray �elds and hence the

shape of the stray �elds within the thin volume just above the surface of the sample of

Coated 3% Si Grain-Oriented Steel.

Combining these techniques with the development of the dynamic scanning process

culminates in the inves�ga�on of the change in shape of the stray �elds in the thin

volume above the surface of the Coated 3% Si Grain-Oriented Steel as it is subjected to

a 3 Hz oscilla�ng Applied x-axis �eld of ± 1.95 kA/m using the 50 + 50 coils.

Using the same area of the sample studied in Sec�on 8.2.4 (page 185) two dynamic

volume scans above the sample were performed, �rst with the sensor perpendicular to

the surface and then with the sensor at 45° counter-clockwise (see Figure 7.6). 

The two scans were of a volume of 10 x 10 x 0.1 mm
3
 at a spa�al resolu�on of

0.1 x 0.1 x 0.05 mm
3
 per cell with a sampling frequency of 1kHz. Both scans were

synchronised independently using the Synchronise.vi subVI (Sec�on 5.4.2.8), the

resul�ng �rst 336 frames represen�ng one full cycle. The zxCombine.vi subVI described

in Sec�on 5.5.5 (and detailed in Appendix 3) is designed to handle any sized dynamic

volume scan and a�er combina�on the derived Hz and Hx component greyscale PNG

stacks were exported with the PNG.vi subVI (Sec�on 5.4.2.7); both the xy-planes and

the zx-slices.  The greyscale images were then combined using the technique described

in Sec�on 7.2.1 to produce the colour representa�on of the H stray �eld vector. The

336 frames of the lowest xy-plane and 10 evenly spaced zx-slices were then combined

to produce the 336 frame colour anima�on provided in Chapter 8.7z (page ix).
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Figure 8.8: Filmstrip representa�on of the 10 x 10 x 0.1 mm3 dynamic scan of Coated 3%

Si Grain-Oriented Steel subjected to a 3 Hz oscilla�ng x-axis �eld(@ 0.1 x 0.1 x 0.05

mm3/pixel). The full anima�on is provided in Chapter 8.7z (page ix). The colour

representa�on of the H stray �eld vector is provided. The Hz component ranges in

magnitude ±350 A/m. The Hx component ranges in magnitude ±530 A/m. The

background of each frame represents the Applied �eld (±1.95 kA/m, inverted greyscale).
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Chapter 8: Inves�ga�on of Alterna�ng Domain Dynamics

The background of the anima�on represents the Applied �eld strength (inverted

greyscale). A �lmstrip of every 8 frames is presented in Figure 8.8. The animated

version is available as an animated .gif but also as .mov and .mp4 movie �les because

the 256 colour pale>e of the animated .gif format limits the representa�on of the H

stray �eld vector. The anima�ons are also available in the Chapter 8.ppt presenta�on

available in the /Figures Presenta�ons/ folder of the Arxive (page ix) and the DVD.

The presenta�on of the colourized xy-planes demonstrate again the expansion and

contrac�on of the bar domains and unmoving magne�c anomalies. With the direc�on

of the H vector illustrated it is possible to see how the direc�on of the �elds change,

par�cularly at the edge of the domain, where the H vector changes through 180°

within a thin Bloch wall [31].

With the presenta�on of the zx-slices it is possible for the �rst �me to watch the

rota�on of the H vector as the edge of each domain wall passes through the slice.

The dynamic rota�on of the H vector from the passage of a Neél or Bloch wall at the

edge of an expanding domain has been seen previously on the single axis of

micro-wires  [151, 153, 154, 155], studied for applica�ons in Magnetostric�ve delay

lines [156], but has not previously been seen in two or three dimensions and this

represents the culmina�on of all of the techniques and processing developed for this

thesis.
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Chapter 9

Conclusions

Overall conclusions of the Thesis, review of the aims achieved and the advantages and

disadvantages of the Scanner System are presented. Future work is proposed including

improvements to the Hardware and So(ware and discussion of alterna�ve sensors and

applica�ons.

9.1 Review of the Original Scanner Speci�ca�ons and Enhancements

From the original project speci*ca�on the hardware and so(ware had to meet a

number of basic speci*ca�ons. As the capabili�es of the system developed and the

nature of the resul�ng data and applica�on of the scanner were be,er de*ned, these

basic requirements evolved, with enhancements to the capacity to resolve the

components of stray-*elds and scan dynamic stray-*elds.

9.1.1 Review of Scanner Hardware Speci�ca�ons

The original project speci*ca�on requires the scanner hardware to be able to;

a.  Make use of the exis�ng hardware that has been provided.        

The scanner system is based on the exis�ng 3-axis posi�oning arm originally inherited

from a system developed by [11, 110]. The exis�ng hardware u�lises stepper motors

controlled by Parker Automa�on [113] drivers without posi�on encoders. The Parker

Automa�on [113] L25i Drives receive ASCII commands through a serial RS232

connec�on via the legacy LabVIEW VISA libraries. Driver compa�bility issues with this

older hardware meant that the overall system was limited to 32-bit memory addressing

rather than being able to u�lise 64-bit addressing. This in turn meant the Scanner

Control 3 system had to be developed with *le based data storage, rather than faster

RAM based storage.

The lack of func�onal posi�on encoders on the system meant no PID-control

posi�oning system could be employed. The slack/backlash compensa�on system

(Sec�on 4.2.2) was, successfully, developed because of this. For the cost and eAort in

adding func�onal posi�on encoders to the exis�ng system it would be more eBcient to
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replace the exis�ng hardware with modern USB servo-motor control units such as

those used in [87].

c.  Correctly posi�on the scanner head along three independent axes.

d.  Permit the user to con!dently posi�on a sensor in a chosen loca�on.

f.  Sensor posi�oning with a repeatable precision greater than the footprint of the sensor.

Nevertheless, the scanner system developed, using the exis�ng hardware, provides for

± 1 μm repeatable posi�onal precision on all three axes, smaller than the 4 x 2 μm2 area

of the provided STJ-020 TMR sensor.

b.  Be controlled manually and automa�cally by an external NI LabView system.

e.  Be adaptable, to allow any desired sensor to be physically a)ached.

A modern, powerful and versa�le user interface has been developed using Na�onal

Instruments LabVIEW 15, through three itera�ons. The so(ware architecture is

modular, permiLng easy adap�on to future altera�ons in the system including

diAerent sensors and diAerent 3-axis posi�oning hardware. The sensors are a,ached to

the 3-axis arm using bespoke 3D-printed enclosures, which are quick to redesign,

reprint and adapt to alterna�ve sensor op�ons.

g.  Operate unsupervised for periods of days at a �me without fault.

The system has successfully operated fault free con�nuously for over a week,

performing repeated long scans. An a,ached USB pencil camera and use of Microso(

Remote Desktop has permi,ed the scanner system to be monitored and operated

remotely without the need for presence of the operator once the scan is set up.

Presence of the operator and cau�on should be taken when ini�ally seLng up a scan

(Sec�on 5.5) to avoid damage to the sensor or sample.
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9.1.2 Review of Scanner So!ware Speci�ca�ons

A modern, powerful and versa�le user interface has been developed using Na�onal

Instruments LabVIEW 15. As the capabili�es of the system developed and the nature of

the resul�ng data were be,er de*ned, these basic requirements were greatly

augmented. The original project speci*ca�on required the scanner so(ware must be

able to;

a. Correctly communicate with the Parker Automa�on hardware to accurately control 

the posi�on of the scanner head.

The Scanner Control so(ware is based on 32-bit LabVIEW 15, which permits use of the

legacy LabVIEW VISA communica�on libraries to send ASCII commands to the Parker

Automa�on [113] L25i Drives. The L25i Drives are setup to respond to one command at

a �me and return status informa�on back to the system.

b. Guard against the scanner hardware exceeding its physical limits.

The absolute posi�on of the sensor head is stored by the Scanner Control system,

rather than the internal registers of the Parker Automa�on [113] L25i Drives; to avoid

discon�nuity between the hardware and so(ware and allow the physical axis limits to

be de*ned and guarded against directly within the (Mo�on).vi subVI (Sec�on 5.4.2.3).

c. Provide direct user control of the posi�on of the scanner head.

d. Control the ac�ons of the scanner in a systema�c automated scan.

e. Enable the user to de*ne the automated scan in a simple way.

Full control of the system, from manual opera�on through de*ning and execu�ng an

automated scan, is the speci*c purpose of the design of the Scanner Control system

and such opera�ons are detailed in Sec�on 5.5.
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f. Acquire voltage inputs from sensors a,ached to the scanner head and store those 

values alongside the corresponding sensor posi�on.

The system is designed to sample analogue voltage levels from up to four independent

sources through the Na�onal Instruments 6351 USB mDAQ Analogue sampler

(Sec�on 4.4.1). The acceptable voltage levels can range ± 10 V and a sampling rate of

up to 1 MHz can be achieved for dynamic studies. The origin of the voltage levels (the

names of the sources/sensors) can be de*ned modularly within the (Input).vi subVI

(Sec�on 5.4). At present the system has been designed to accept the analogue voltage

inputs of the current suit of sensors, which aids with synchronicity between inputs, but

in future the (Input).vi subVI could be adapted to accept inputs from sensors with

digital outputs.

g. Display and permit interroga�on of those data in both raw form and in the form of a 

greyscale map.

h. Enable the saving and loading of previous scans and the resul�ng data including the 

export of data in a form which can be understood and analysed externally.

The Scanner Control so(ware is designed to handle the large datasets from 32-bit

Ooa�ng point acquisi�on of readings in mul�-sensor, 3-axis volume, mul�-component,

dynamic scans and present it as a greyscale map with a specially developed mouse-

based interac�on that is unique to a LabVIEW system. The system can also process,

save and export the data to standard comma-separated formats which can be studied

with external programmes. The two main drivers for the con�nual development of the

system were the increase in quan�ty of data as the system capabili�es improved from

being able to scan only two axes, to three axes, then to three axes over �me; and the

increase in understanding of the LabVIEW programming architecture [122], star�ng

with a con�nuous-polling model, to an event-driven model, to a hybrid event-driven

state-machine based model. The so(ware architecture is modular permiLng the

so(ware to be easily adapted to future altera�ons in the system, including diAerent

sensors and diAerent 3-axis posi�on hardware.
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9.2 General Conclusions of the Domain Observa�on Studies

The system has the capacity to use any sensor with an analogue voltage output ± 10 V

for which a 3D-printed head can be designed. 

In contrast with MOKE and Bi,er observa�ons of domains, though the scanning takes a

long �me, the results of the scanner system require no par�cular sample prepara�on

or post-processing enhancement. A(er the scan the resul�ng image is an immediate,

correctly planar, quan��ve map of domains within the sample. The results are also

readily repeatable, and require no manual adjustments.

Perpendicular Stray-*eld Domain observa�ons of 3% Grain Oriented Electrical Steel show

an unexpected similarity with the in-plane magne�sa�on observa�ons performed with

MOKE techniques. This similarity is further evidenced by dynamic observa�ons of the

domain movement with the scanner by which the total mean stray *eld from the surface is

demonstrated to closely correspond with the alterna�ng applied *eld. In Chapter 6 it was,

unexpectedly, discovered that the images produced by the scanner system bore a

closer resemblance to images from MOKE observa�on than from Bi,er techniques.

This was unexpected because MOKE analysis responds to the in-plane magne�sa�on

vector of the domains and not, as with the Bi,er technique and as expected from a z-

axis sensor, the perpendicular *elds straying from the domain boundaries. From this it

is suggested that the *elds being measured by the sensor are perhaps largely

composed of the perpendicular component of the domain magne�sa�on that is angled

slightly out-of-plane. This concept is further supported by the strong correspondence

between the mean stray-*eld measured for the sample and the applied *eld seen in

Chapter 8. The mean of stray-*elds from the domain walls are not necessarily expected

to have any correspondence with the overall magne�za�on of the sample, whilst the

mean of the in-plane magne�za�on vectors of the domains is very much expected to

be governed by the externally applied magne�c *eld (Chapter 2).

When observing Amorphous materials a number of diBcul�es in the study of domains

using the scanner are apparent. Firstly, the intrinsic domains from Amorphous
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materials prove themselves to be of a strength ranging over only ± 88 A/m which is a

third of the strength from Grain-Oriented Electrical steel and just above the

background Earth *eld of approximately 50 A/m. This leaves li,le scope for gaining

contrast above the background noise level. The common “domain viewer” method of

applying a perpendicular external *eld to the sample to enhance the intrinsic *elds [6]

does not help with the scanning method; the externally applied *eld tends to enhance

the measurement of stray-*elds from surface topology features rather than the

internal domains. “Domain viewer” type perpendicular *eld enhancement is used

bene*cially in MOKE observa�ons [49] but masks the study of the domains when using

a scanner. The second diBculty in the study of as-cast amorphous ribbon is that, due to

the cooling process of manufacture, the surface of the ribbon as-cast is not smooth

and features undula�ons and ripples which cause stray *eld eAects that dominate over

the domain observa�ons. Nevertheless, some success has been achieved at the very

limit of the scanner resolu�on in observing the annular domain boundaries present on

Amorphous wire (Sec�on 6.2.2). It is indica�ve of the power of the developed scanner

system that it is able to detect such weak and small features.

The validity of the results from the Scanner system have been successfully tested

against the known, and Finite Element Modelled, geometries of manufactured Planar

coils. The results of planar, three-dimensional component-resolved and dynamic scans

have all been validated against the modelled planar coils. This detailed compara�ve

work, undertaken in Chapters 6, 7 and 8, has been successfully published in [112], a

copy of which is available in Appendix 6.

The ability to scan in a three-dimensional volume above the surface of the sample and

to derive the Hz and Hx components from only a single-axis sensor has been developed

and demonstrated. It is found that the Hz Stray *eld strength from a sample of

3% Grain-Oriented Electrical Steel (which near the surface ranges over ± 200 A/m)

reduces to levels less than the Earth's *eld at distances greater than 0.05 mm from the

surface. The Hz Stray *eld strength from Amorphous ribbon ranges over only ± 88 A/m
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but, yet again, these weaker Hz *elds reduce to levels less than the Earth's *eld at

distances greater than 0.05 mm from the surface.

Three-axis TMR sensor arrays with the high resolu�on of the STJ-020 sensor are

available from Micromagne�cs [85] but are prohibi�vely expensive. For the *rst �me a

prac�cal solu�on, of two consecu�ve scans with the sensor axis �lted, has been

developed to trigonometrically resolve the Hz and Hx components of the *eld using

only the exis�ng single-axis STJ-020 sensor. The concept, successfully demonstrated in

Chapter 7, was *rst presented in [118], available in Appendix 6. A sensor angle of 45°

allows for a maximum sampling of Hx and also for the lowest ac�ve area to sample

surface distance (z0) possible, due to the shape of the sensor.

With the component resolved study of laser-etched electrical steel a clear diAerence in

the distribu�on of domains within the coated 3% Si Grain-Oriented Electrical Steel can

be observed before and a(er etching. The laser etching produces an ar�*cial boundary

and the domains rearrange to minimise the energy within each of the two newly

de*ned regions [148, 149]. It can be seen from the developed H vector colour

representa�on how a narrow band of magne�za�on-vector-rota�on forms across the

width of the laser etch. The stray-*eld orienta�on rotates to ensure that opposite

magne�za�on direc�ons occur either side of the boundary leading to net-zero

magne�za�on across the boundary. For the *rst �me the rota�on of the

H stray-*eld vector can be seen at the domain wall. In Chapter 8 it is possible to see

how the H vector at the domain walls rotates in response to an alterna�ng applied

magne�c *eld. 

Producing high frequency dynamic data from the slow process of procedural scanning

relies principally on the assump�on that the domains follow repeatable oscillatory

mo�on. At the beginning the inves�ga�on it was not clear if the domain wall mo�on

within a sample would be suBciently repeatable to produce meaningful results; but it

has been shown that over a 10,000 cell scan of a sample excited at 3 Hz; the se,led

mo�on of at least 30,000 cycles of excita�on is very repeatable.
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It is found that if excited by a tradi�onal C-Yoke system the perpendicular magne�c

*eld from the Yoke itself over-saturates the sensor and prevents the stray-*elds from

the domains from being seen, par�cularly when there are strong topological features.

Using parallel excita�on with coils wrapped around the sample overcomes this issue.

In the observa�on of the dynamics of bar domains in 3% grain-oriented electrical steel

it can be seen that whilst the edges of the main bar domains expand and contract, the

internal Lancet domains do not appear to change physical loca�on, but instead

increase and decrease in intensity in correspondence with the polarity of the domain

body around them. 

The mean of all the stray-*elds from the surface of the sample is very dependent on

the uniformity of grain magne�za�on within the sample. The distor�on of the Mean

stray-*eld plot and deforma�on of the Mean Stray-*eld against Applied *eld plot,

caused by non-uniform grain orienta�on and sub-surface magne�c anomalies

(Chapter 8), points to future applica�ons in non-destruc�ve tes�ng and quan�fying of

the quality and consistency of grain orienta�on during manufacture of Grain-Oriented

Electrical Steel.

With the direc�on of the H vector illustrated, it is possible to see how the direc�on of

the *elds change, par�cularly at the edge of domains, where the H vector changes

through 180° within a thin Bloch wall [31]. With the presenta�on of zx-slices it is

possible, for the *rst �me, to watch the rota�on of the H vector as the edge of each

domain wall passes through the slice. The dynamic rota�on of the H vector from the

passage of a NeWl or Bloch wall at the edge of an expanding domain has been seen

previously on the single axis of micro-wires studied for applica�ons in Magnetostric�ve

delay lines [156], but has not previously been seen in two or three dimensions and this

represents the culmina�on of all of the techniques and processing developed for this

thesis. ￼￼￼￼￼
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9.3 Future Enhancements to the Scanner System

The Scanner system hardware and so(ware have been designed to be modular and

easily adapted to new applica�on requirements.

The system can make immediate use of any analogue voltage sensor by designing and

prin�ng an appropriate Sensor-head, a,aching the sensor to a free channel on the

Na�onal Instruments 6351 USB mDAQ Analogue sampler and changing the name and

channel parameters in (Input).vi.

Such alterna�ve sensors could include more advanced TMR-array magne�c sensors,

with mul�-axis op�ons [85] or a micro-MOKE sensor such as that developed for [82],

with the prospect of producing a scanning MOKE microscope.

The disadvantage of analogue sensors are the electrical noise involved. IC Sensors with

built-in calibrated analogue-to-digital converters, such as the Xtrinsic MAG3110 Three-

axis digital magnetometer [144] communicate a digital output by I2C and would provide

a cleaner input source. The modular nature of the so(ware means the (Input).vi subVI

(Sec�on 5.4) could be modi*ed to accept data from I2C sources without any change to

the rest of the system. To maintain synchronicity between sensors it would be

advisable for them all to be analogue, or all to be digital. At present there are no

commercial digital magnetometers of comparable resolu�on to the analogue TMR

sensors.

The greatest performance restric�on of the system is caused by the need to store the

data in temporary *les on the PC hard disk, rather than in RAM. This is due to the

32-bit memory address limit imposed by the 64-bit compa�bility issue with the older

Parker Automa�on LabVIEW VISA drivers. If the Parker Automa�on hardware could be

replaced with Thorlabs Servo-motor drives, such as those in use in [87, 111], then the

whole system could be upgraded to 64-bit memory addressing and the
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[DATA_stream].vi subVI (Sec�on 5.4.2.4) could be modi*ed to store en�rely into

shi(-registers rather than the scanner_scratch *les. 

Again, due to the modular design of the system, only the (Mo�on).vi subVI (Sec�on

5.4.2.3) needs to be altered to work with en�rely diAerent 3-axis posi�onal hardware.

The dynamic studies here use an excita�on frequency of 3 Hz to test that the system

worked during development, and produce eAec�ve results within a reasonable

�mescale and data volume. With the NI 6351 mDAQ capable of a 1 MHz sampling rate,

future work can look at higher excita�on frequencies (including the standard 50 Hz AC

power supply frequency). Considera�on would have to be given to the con�nued use

of the 10 Hz low pass *lter and alterna�ve noise reduc�on.

9.4 Final Remarks

The original project engineering design brief has been met and exceeded. A magne�c

scanner has been built u�lising the exis�ng mo�on control hardware and

3-axis framework and an extensive, versa�le, powerful and easy-to-use interface has

been developed in NI LabVIEW which extends the capacity of the scanner beyond the

original design brief.

The new novel capabili�es of the system are the ability to scan and resolve the

components of stray-*elds in the three-dimensional volume above the surface of a

magne�c sample, and to image the dynamics of those *elds as the domains expand

and contract due to an externally applied alterna�ng magne�c *eld parallel to the

surface. 

Such scans, and resul�ng observa�ons, have been performed on grain-oriented silicon

iron and amorphous samples. For the *rst �me; a dynamic three-dimensional

component-resolved stray-*eld scan of a volume above the surface of an unprepared

sample of coated 3% grain-oriented electrical steel, under alterna�ng applied magne�c

*eld, has been achieved.
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involved it is made available electronically through the Cardi' Portal Archive Cardi' Portal Arxive at

h)p://doi.org/10.17035/d.2019.0079831572 and through the included DVD-ROM rather than

printed. The Appendices contain the NI LabView code lis�ngs and descrip�ons of the three versions

of the Scanner Control so8ware, the technical design of the Scanner Hardware, a catalogue of the
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and also by the unique Element codes printed on the top right of each page.
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