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Abstract  27 

Inferring changes in effective population size (Ne) in the recent past is of special interest for 28 

conservation of endangered species and for human historiography. Current methods for 29 

estimating the very recent historical Ne are unable to detect complex demographic 30 

trajectories involving multiple episodes of bottlenecks, drops and expansions. Here we 31 

develop a theoretical and computational framework to infer with high resolution the 32 

demographic history of a population within the past 100 generations from the observed 33 

spectrum of linkage disequilibrium (LD) of pairs of loci over a wide range of 34 

recombination rates in a sample of contemporary individuals. The contributions of all of the 35 

previous generations to the observed LD are individually included in our model, and a 36 

genetic algorithm is used to search for the sequence of historical Ne values that best 37 

explains the observed LD. The method can be applied to samples of fewer than 10 38 

individuals using various types of genotyping and DNA sequencing data: haploid, diploid 39 

with phased or unphased genotypes and pseudo-haploid data from low-coverage 40 

sequencing. The method was tested by computer simulation for sensitivity to genotyping 41 

errors, temporal heterogeneity of samples, population admixture and structural division into 42 

subpopulations, showing a high tolerance to deviations from the assumptions of the model.  43 

Computer simulations also show that the proposed method outperforms other leading 44 

approaches when the inference concerns recent timeframes. Analysis of a variety of human 45 

and animal populations gave results in agreement with previous estimations by other 46 

methods or with records of historical events. 47 

  48 
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Introduction 49 

Several models and sophisticated mathematical tools have been developed to extract 50 

demographic information from the growing amount of genomic data. These models focus 51 

on different aspects of the genetic variability generated by mutation and recombination. 52 

When recombination is not considered, the only free parameter is the mutation rate, which 53 

becomes the metronome of the coalescence process (Hudson 1990). Because mutations 54 

accumulate slowly, these models are suitable for estimating the effective population size 55 

(Ne) from very ancient times (Atkinson et al. 2008) with the limit given by the coalescence 56 

time of all the sequences in the sample. The inclusion of recombination reflects better the 57 

reality of nuclear genomes and improves the estimations of past Ne not only for more recent 58 

times but also for distant times as several genome sequences can be considered in the same 59 

analysis (Li and Durbin 2011; Palacios et al. 2015; Terhorst et al. 2017; Schiffels and 60 

Durbin 2014; Speidel et al. 2019). However, the role of mutation remains central in the 61 

estimation of the lengths of genealogy branches and the impact of recombination is 62 

restricted to a small genomic scale. With fairly accurate estimates of Ne in the ancient past 63 

of several thousands of generations, these methods are not expected to provide good 64 

estimations for very recent timeframes.  65 

Models based exclusively on the theory of linkage disequilibrium (LD) between loci 66 

measure the time by the rate of occurrence of recombination events, which typically can 67 

take values much larger than mutation rates when loci are distant. Thus, the occurrence of 68 

mutations becomes irrelevant and the inference of population sizes from LD concerns 69 

essentially the recent demographic history, which is key to understand the current genetic 70 

composition of small populations. To some extent, the structure of LD of a population can 71 

be described by the distribution of lengths of identity by descent (IBD) segments and, from 72 

it, the recent demography can be inferred by the principle that longer segments shared by 73 

individuals correspond to more recent common ancestors (Hayes et al. 2003; Palamara et 74 

al. 2012; Browning and Browning 2015). However, only long IBD segments, which are 75 

infrequent in small samples from large populations, can be reliably identified. Thus, large 76 

samples of phased genotypes are usually needed in order to reach some resolution for a 77 

general trend.  78 
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A simplified representation of the structure of LD is given by the correlation 79 

between alleles of pairs of loci (Sved and Hill 2018). Two locus statistics provide 80 

additional power over one locus statistics in recovering past demography (Ragsdale and 81 

Gutenkunst 2017). This basic theory has proven to be useful for estimating the current Ne of 82 

small populations from LD between unlinked loci (Waples 2006; Sved et al. 2013; Waples 83 

and Do 2008; Wang et al. 2016) and has also been extended to infer changes in Ne in the 84 

recent past from LD between linked loci (Hayes et al. 2003; Tenesa et al. 2007; Qanbari et 85 

al. 2010; Corbin et al. 2012; Mörseburg et al. 2016). The fundamental idea is that LD 86 

between pairs of SNPs at different genetic distances provides differential information on Ne 87 

at different time points in the past. 88 

Several methods assume that the expected LD between loci at a particular 89 

recombination rate is the result of genetic drift at a particular generation (Barbato et al. 90 

2015; Mezzavilla and Ghirotto 2015; Hollenbeck et al. 2016). By assuming that the 91 

observed LD between loci pairs at a genetic distance 1/(2t) Morgans reflects the Ne value t 92 

generations back in time, they are able to estimate general trends with slow increases or 93 

decreases in population size, which is a remarkable achievement for a rather simplistic 94 

approach. However, although LD for closely linked loci depends more strongly on genetic 95 

drift occurred far in the past than LD for loosely linked loci, the magnitude of LD between 96 

loci at any given genetic distance is the result of the cumulative effects of genetic drift 97 

(determined by Ne
-1, which generates LD) and recombination (determined by genetic 98 

distance, which reduces LD) occurred over all the previous generations. 99 

Here, we derive equations for the expected contributions of each of the past 100 

generations to the LD of pairs of loci separated by a particular genetic distance. We also 101 

develop corrections for the sampling effects (i.e. LD due to finite sample size), covering the 102 

most general types of SNP data from both genotyping and DNA sequencing: diploid 103 

unphased genotypes, diploid phased genotypes and pseudo-haploid genotypes of low-104 

coverage genomes usually resulting from sequencing ancient DNA (Haak et al. 2015). 105 

Based on the principle that the observed LD for different genetic distances provides 106 

differential information of past Ne at different generations, we develop an iterative 107 

optimization approach (GONE; Genetic Optimization for Ne Estimation) to infer the recent 108 

demographic history of a population from SNP data of a small sample of contemporary 109 
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individuals. The method is validated by simulation under different demographic scenarios, 110 

and is compared with the previous leading methods, MSMC (Schiffels and Durbin 2014), 111 

Relate (Speidel et al. 2019) and the algorithms used by previous LD-temporal Ne methods, 112 

such as SNeP (Barbato et al. 2015), NeON (Mezzavilla and Ghirotto 2015) or LinkNe 113 

(Hollenbeck et al. 2016). We next inferred the historic population sizes from a number of 114 

real datasets from animal and human populations. 115 

 116 

Results 117 

Theoretical developments 118 

We derived the expectations for the squared covariance between the alleles of a given pair 119 

of loci (𝐷2) and the product of their two genetic variances (W), such that the linkage 120 

disequilibrium (LD) between the loci is measured by the standardized quantity 𝛿2 =121 

𝐸[𝐷2]/𝐸[𝑊] (Ohta and Kimura 1969) (see Supplementary File). 122 

Constant effective population size: When population size is kept constant over generations, 123 

the expected values 𝐸[𝐷2] and 𝐸[𝑊] in consecutive generations can be obtained by 124 

considering a third statistic E[D(1 – 2p)(1 – 2q)], where p and q are the allele frequencies at 125 

both loci (Hill and Robertson 1968; Hill 1975). This third statistic is equivalent to the 126 

moment of order (2,2)th that we approximate in terms of D2 and W by assuming that most 127 

of the new LD produced at any generation is built by drift acting on old variation (see 128 

Supplementary File). 129 

At equilibrium, after many generations with constant effective population size Ne, 130 

constant mutation rate and recombination rate c, 𝛿2 can be predicted by Ne and c as 131 

𝛿𝑐
2 =

1+𝑐2+𝑁𝑒
−1

2𝑁𝑒(1−(1−𝑐)2)+2.2(1−𝑐)2  .                                                                      (1)                         132 

 133 

Note that 𝛿2 is, in fact, the squared correlation coefficient 𝑟2 = 𝐷2/𝑊 (Hill and Robertson 134 

1968; Rogers 2014) weighted by the product of variances, i.e. 𝛿2 = 𝐸[𝑟2𝑊]/𝐸[𝑊]. Under 135 

simplified assumptions (negligible c2 and Ne
-1), equation (1) is close to the classical Sved´s 136 

(1971) approximation, r2 ≈ 1 / [4Nec + 2], for the case of unknown phase. Equation (1) is 137 

valid for the whole range of c values. For independent loci (c = ½), neglecting the term Ne
–

138 

1, equation (1) is simplified to 5/(6Ne). Likewise, the corresponding equation for haploid 139 

genomes (Eqn. S2 in Supplementary File) reduces to 2/(3Ne). The quantitative difference 140 
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between 𝛿2 and 𝑟2 has been considered typically small, particularly for intermediate allele 141 

frequencies. However, important biases in the estimation of Ne could be found if 𝑟2 instead 142 

of 𝛿2 is used (Supplementary Fig. S1). 143 

In practice, sampling could also generate LD (equivalent to one extra-generation of 144 

recombination and drift) and thus its effects need to be corrected to obtain the population 145 

estimate of 𝛿2. Approximate corrections for several data types (haploids, phased diploids, 146 

unphased diploids and pseudo-haploid genomes) are given in the Supplementary File. 147 

Variable effective population size: When population size changes with time, the 148 

above equation for 𝛿2 does not hold and the historical series of Ne cannot be inferred from a 149 

single 𝛿2 value. For a particular recombination rate (c), the expectation of the current 𝐷𝑐
2 150 

can be expressed as 151 

𝐸[𝐷𝑐
2] ≈ ∑ (𝐶𝑔

∞
𝑔=0 ∙ 2𝑁𝑔𝜇) ,         152 

 153 

where 𝐶𝑔 (Supplementary File) is the contribution to the current squared covariance of a 154 

single mutation occurred at generation g back in time and the term 2𝑁𝑔𝜇 is the number of 155 

new mutations at that generation, 𝑁𝑔 being the effective population size at generation g and 156 

𝜇 the mutation frequency that is assumed to be constant across loci and generations.  157 

In the same way, 𝐸[𝑊𝑐] can be expressed as (Supplementary File): 158 

𝐸[𝑊𝑐] = ∑ (𝑤𝑔
∞
𝑔=0 ∙ 2𝑁𝑔𝜇) ≈ 𝜇 ∑  [𝑉𝑥 ∙ ∏ (1 −

1

𝑁𝑖
)

𝑔−1
𝑖=0 ] ∞

𝑔=0 ,                                               159 

where 𝑤𝑔 is the contribution to the current product of variances from a mutation occurred at 160 

generation g, and Vx is the background neutral variance. The product of the sequence of 161 

terms with negative upper bound equals 1. Note that the expression in the right-hand side 162 

shows the decline in genetic variation by genetic drift. The ratio of expectations 𝐸[𝐷𝑐
2] and 163 

𝐸[𝑊𝑐] for a particular recombination value c becomes independent of 𝜇, 164 

𝛿𝑐
2 =

𝐸[𝐷𝑐
2]

𝐸[𝑊𝑐]
=

∑ (𝐶𝑔
∞
𝑔=0 ∙2𝑁𝑔)

∑  [𝑉𝑥∙∏ (1−
1

𝑁𝑖
)

𝑔−1
𝑖=0

] ∞
𝑔=0

  .            165 

 166 

An estimate of the temporal series of 𝑁𝑔 values can be obtained from the observed 167 

𝛿𝑐
2 values for pairs of markers with different recombination rates c. Consequently we 168 

developed a genetic algorithm implemented into a computer program (GONE) to search for 169 

the temporal 𝑁𝑔 values that minimize the sum of squares of the difference between the 170 
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expected (calculated above) and observed 𝛿𝑐
2 values (see Methods). Supplementary Fig. S2 171 

shows the close agreement between the observed and optimized values of 𝛿𝑐
2 for different 172 

demographic scenarios.  173 

 174 

Simulation results 175 

Over 108 replicates were simulated for each combination of recombination rate and 176 

population size in order to check the accuracy of the predictions of 𝛿2 for constant 177 

population sizes for diploids (Eqn. 1) and haploids (Eqn. S2 in Supplementary File). 178 

Predictions resulted to be very close to simulations over the whole range of recombination 179 

rates (Supplementary Table S1). They are accurate even at the two boundaries of the range 180 

of recombination rates c = 0.5 and c = 0, where the true 𝛿2 value used to be controversial. 181 

Moreover, 𝛿2 marginally increases when N decreases in both predictions and simulations at 182 

both c bounds. The table also shows predictions by other methods. 183 

We evaluated GONE for the ability to infer the true historic series of 𝑁𝑒 values of 184 

simulated populations. Inferences were carried out from LD data between loci with 185 

recombination frequencies from 0.001 to 0.5. Several profiles of changes in population size 186 

were simulated, and the resulting genetic data were analyzed by GONE in comparisons 187 

with three of the leading methods, MSMC (Schiffels and Durbin 2014), Relate (Speidel et 188 

al. 2019), and the algorithms used by the previous LD-temporal Ne methods (such as SNeP, 189 

NeON or LinkNe). The results are shown in Figure 1 for a representative sample of 190 

demographic scenarios. Within the range of the most recent 200 generations, GONE 191 

outperforms any of the other methods, which are, at most, able to detect a general trend for 192 

both phased and unphased data. The previous LD-temporal Ne approach, which is a simple 193 

method based on bi-locus LD, performs fairly well when compared with Relate and 194 

MSMC, particularly for unphased data. Relate is prone to large deviations in recent 195 

generations, which suggests that coalescence methods are better suited for ancient 𝑁𝑒 196 

estimations. 197 

Figure 2 illustrates different characteristics of the estimations by GONE. First, the 198 

accuracy of the estimations decreases with time: Ancient demographic changes, like a 199 

bottleneck at generation 140 in the figure (panel B), are detected with lower precision than 200 

recent ones (panel A). Second, overlapping generations causes some underestimations in 201 
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the recent generations estimates and a wildly series of estimates in latter generations (Panel 202 

C). Third, the inferences from synthetic populations created by mixing of several 203 

populations in past times do not show distortions in 𝑁𝑒 estimations from the time of mixing 204 

to present (panel D). Fourth, no distortion or bias occurs when the analysis deals with 205 

metapopulations structured according to the standard island model, and the migration rate 206 

between subpopulations is low without extinctions (panel E). The estimates correspond to 207 

the total size of the metapopulation, in agreement with the expected effective population 208 

size from the classical 𝑁𝑒 theory. However, there are substantial biases in the estimates for 209 

recent generations when the migration rate is high (panel F). Fifth, base calling errors do 210 

not affect estimates in a significant way if they are not larger than 1%, which is a 211 

reasonable assumption for data from common commercial genotyping and sequencing 212 

platforms (panel G). Other methods need high quality sequences or the application of a 213 

threshold MAF to eliminate the distortion caused either on genealogies or on correlations 214 

between alleles at different loci. Sixth, the sampling of non-contemporary individuals 215 

causes a bias in the estimations of the most recent generations (panel H). This scenario 216 

assumes that each of the individuals are sampled in each of the last 100 generations. The 217 

distortion in these estimates seems to be significant but affecting a time of inference which 218 

is smaller (about a quarter) than the length of the sampling period. Finally, the random 219 

selection of individuals of a small sample leads to differences in the estimations from 220 

different samples, particularly for the most recent generations (panel I). These differences 221 

are mitigated if data from distant loci (say c > 0.05) are not included in the analysis, leading 222 

to more consistent estimations (panel J). 223 

 224 

Application to real data 225 

We next apply the method to make inferences on the recent demographic changes of 226 

several human and animal populations (Figure 3) with large differences in size. In order to 227 

reduce the effect of sampling in recent generations observed in simulations, LD data for 228 

recombination frequencies larger than 0.05 were excluded from the analysis. Inferences of 229 

Ne from a herd of domestic pigs, which was founded from a population of unknown origin 230 

and then maintained under controlled mating conditions for 26 generations before 231 

sampling, are in agreement with estimates obtained from the observed genealogical 232 
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information of individuals (Saura et al. 2015) except for generations close to the setup of 233 

the population. This deviation is exactly the kind of artifact expected after mixing of 234 

different populations as shown by simulations (Fig. 2D).  235 

The estimated Ne values in pigs contrast with the large recent Ne values inferred 236 

from a sample of 99 individuals from the Finnish population, which has experienced a rapid 237 

growth during the last 15 generations. In this case, the data refers to sequencing analysis 238 

and a large number of SNPs (more than 9 million) were available. Thus, 20 replicates of 239 

estimation were carried out for each of which 50,000 SNPs were randomly sampled per 240 

chromosome. The red thick line is the average over replicates and the shadow area gives the 241 

interval of confidence obtained from the replicates. These estimations show some 242 

differences with a previous study based on the analysis of IBD segments of a much larger 243 

sample of 5,402 individuals (Browning and Browning 2015). While the IBD inference 244 

assumed a monotonic increase of population size, we detect a reduction in the Finnish 245 

population during the middle ages, which could be in fact a result of the admixture of 246 

partially differentiated populations in iron age and medieval times (Översti et al. 2019). Our 247 

estimations for recent times are clearly under the actual numbers of Finns. This deviation 248 

can only be partially explained by the substantial differences between effective sizes (Ne) 249 

and census sizes (N) generally observed in natural populations. In general, large sample 250 

sizes (n) are needed by GONE to infer large population sizes with some precision (see 251 

Methods), particularly for very recent generations, which relates to the difference between 252 

the drift signal (proportional to 1/N) and the magnitude of sampling error (proportional to 253 

1/n). Additionally, Figure 3 shows that the alternative use of a map with constant 254 

recombination rate of 1.2 cM/Mb across the genome (thin continuous line) does not make a 255 

big difference in the estimations of demography of the Finnish population.  256 

The analyses of salmon samples composed by individuals born between 1985 and 257 

1992 from two tributaries of River Dee in Scotland highlights the consistency of the 258 

method when applied to replicates. Both estimates are coincident with a drop in population 259 

size about 10 generations before sampling. While fine-scale recombination maps were used 260 

for pigs and humans, this salmon analysis assumes a constant rate of recombination of 1 261 

cM/Mb for the whole genome, which is an approximated average of estimates by several 262 

authors (Philips et al. 2009; Lien et al. 2011; Tsai et al. 2016). Salmon genome underwent a 263 
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recent event of diploidization and several chromosome rearrangements (Lien et al. 2016) 264 

and is still polymorphic for some of them. Consequently, there is a lack of continuity 265 

between the assumed physical and the estimated genetic maps but, by ignoring large 266 

recombination rates (over c = 0.05 in this analysis), we avoid most complications due to 267 

gaps or lacks of continuity. 268 

Analysis of samples of ancient human remains dated between 2,500 and 4,500 years 269 

BCE (Olalde et al. 2018) produces Ne estimates between 2,000 and 6,000 individuals from 270 

two Scottish samples. The “random draw” method of genotyping of these ancient-DNA 271 

samples results in pseudo-haploid genomes (Haak et al. 2015). While other Ne estimators do 272 

not perform adequately with this type of data, our method can be straightforwardly 273 

modified to accommodate it (Supplementary File). Simulation results accounting for an 274 

extended sampling period of 100 generations (Fig. 2H) showed estimation bias for about a 275 

quarter of the time of sampling. Therefore, most recent Ne estimations from these samples 276 

should be disregarded. 277 

Inferences from two samples of Ashkenazi Jews from Eastern and Western Europe 
278 

(Behar et al. 2010) show similar Ne trajectories with increased deviations for the most 279 

distant generations. The strong reduction in Ne inferred around generation 60 is 280 

approximately contemporary with the Jewish-Roman wars of the First Century, which are 281 

commonly considered to have contributed to the expansion of the Jewish diaspora across 282 

Europe, Africa and Asia (Goodman 2004). The large expansion of this ethnic group in 283 

recent times (Slatkin 2004) is not observed in our results, which only show a moderate 284 

increase. This, again, illustrates the difficulties of the method in detecting large increases of 285 

Ne in recent times from very small samples. The analysis of Mizrahim genomes does not 286 

show any decline in Ne at generation 60, which is coincident with the fact that these 287 

communities were included in the Parthian Empire by that time and were not affected by 288 

the Jewish-Roman wars (Goodman 2004). No significant effect of the later expansion of 289 

Islam on Ne is observed but a sharp drop in Ne is detected particularly in Caucasian 290 

Mizhrahims, which is coincident with the repeated invasions of the region between the 13th 291 

and 16th centuries (Singer et al. 1906), and a later decline is observed in Mizhahims from 292 

Iran and Iraq. 293 

 294 
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Discussion 295 

Our method is able to infer demographic histories within a hundred generations in the past 296 

from both phased and unphased genotypes. These short-term inferences appear to be more 297 

accurate than those obtained by current coalescence methods. The mapping of mutations to 298 

estimate the length of branches of genealogical trees makes coalescence theory rather more 299 

suitable for modeling ancient demography because mutations accumulate very slowly in 300 

populations. Consequently, estimations from coalescence methods deviate from the real Ne 301 

for recent generations as can be observed for Relate estimations from simulated data (Fig. 302 

1). On the contrary, MSMC makes use of the observed changes in heterozygosity across the 303 

genome to infer demography, which considers both mutation and recombination events. 304 

Although MSMC performs better than Relate, it lacks enough power to resolve recent 305 

demographic changes. The reason is probably because few recombination events between 306 

consecutive sites are dated in recent times even when eight haplotypes are included in the 307 

sample. The inclusion of more haplotypes could improve the recent Ne estimates but the 308 

method would probably become computationally intractable.  309 

GONE makes use of the information from a wide range of recombination rates, 310 

including distant loci for which at least one crossover event is expected in every meiosis. 311 

Every new mutation generates a small amount of LD between the mutation site and any 312 

other polymorphic site. This LD is expected to increase by genetic drift over consecutive 313 

generations at a rate which depends on Ne. At the same time, LD is constantly removed by 314 

recombination at a rate which depends on the genetic distance between loci. Thus, the 315 

observed LD between distant loci is mainly the result of the recent drift because the effect 316 

of old drift is removed by intense recombination in a few generations, whereas LD between 317 

closely linked loci is the result of drift generated both recently and remotely in the past 318 

(Hayes et al. 2003). 319 

Relevant aspects of GONE allow the detection of demographic changes in scenarios 320 

where previous LD methods fail. One of them is the use of 𝛿2 (Ohta and Kimura 1969) to 321 

measure LD instead of the generally used Pearson’s 𝑟. The use of r2 to infer temporal 322 

changes of Ne is problematic, as there are not analytic solutions for its sampling error. This 323 

makes difficult to reach accurate predictions of the cumulative effects of drift on LD over 324 

generations, particularly when the recombination rate is small. The general approximation 325 
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by Fisher (1915) for the normal distribution and some related variations (Tenesa et al. 2007) 326 

are inaccurate for a bivariate binomial distribution, for which 𝑟2 depends on gene 327 

frequencies in an intricate way. On the contrary, 𝛿2 is the ratio of two statistics whose 328 

expectations in consecutive generations can be established . In addition, because 𝛿2 is a 329 

measure of LD weighted by the genetic variances of the involved loci (Rogers 2014), it is 330 

much less affected than 𝑟2 by sampling of low frequency variants and by genotyping 331 

errors, which usually generate singleton variants in samples. Methods using 𝑟2 (Tenesa et 332 

al. 2007; Saura et al. 2015; Mörseburg et al. 2016; etc.) are prone to overestimations of Ne 333 

under those circumstances, which are only partially corrected by applying an arbitrary 334 

MAF threshold to data (Supplementary Fig. S1). For our method, however, MAF should 335 

not be applied a priori. In fact, the application of MAF thresholds results in slightly biased 336 

estimates of Ne. However, there is one scenario in which MAF thresholds clearly results in 337 

improved estimations: when there are sequencing errors. The application of MAF results in 338 

acceptable estimates of Ne except when the rate of errors is extremely high (say 10%) 339 

(Figure 2G). We have derived accurate and computationally efficient equations to predict 340 

the change of 𝛿2 over consecutive generations. This accuracy is critical because the 341 

inference of Ne across time is the result of the comparison of the accumulated contributions 342 

of all previous generations to the observed 𝛿2 values for pairs of loci with different 343 

recombination rates. We also derived appropriate corrections for sampling, some of them 344 

similar but more accurate than previous developments, and extended them to new sampling 345 

methods. 346 

Several authors reached solutions for the expected value of  𝛿2 (Ohta and Kimura 347 

1971; Hill 1975; McVean 2002; Weir and Hill 1980). Recently Ragsdale and Gravel (2020) 348 

developed a combinatorial method to find estimators of several statistics related with 𝛿2, 349 

which were combined with the predictive theory by Hill and Robertson (1968) in order to 350 

consider sampling-without-replacement in the genetic transition of a population from one 351 

generation to the next one. The resulting predictions of LD at equilibrium when c = 0.5 and 352 

population size is constant over time, were 𝛿2 = 1/(6N) and 𝛿2 = 1/(3N) for haploid and 353 

diploid populations, respectively. Simulations show that our predictions of 𝛿2 with constant 354 

population size are generally more accurate for the whole range of recombination rates than 355 
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those predicted by previous theory (Supplementary Table S1). Particularly for c = 0.5, our 356 

result is 𝛿2 ≈ 2/(3N) and 5/(6N) for diploids and haploids, respectively. 357 

As we have explained above, the expected LD for a particular recombination rate is 358 

not only a consequence of the Ne at a particular generation. Previous two-loci LD-based 359 

methods (Hayes et al. 2003; Tenesa et al. 2007; Barbato et al 2015; Mezzavilla and 360 

Ghirotto 2015; Hollenbeck et al. 2016) assume a univocal correspondence between Ne at a 361 

particular generation g in the past and the observed LD between pairs of loci with a 362 

particular recombination rate c = 1/(2g). This relationship was deduced by Hayes et al. 363 

(2003) in the context of the probability that two chromosome segments, which are flanked 364 

by two markers with recombination rate c, come from a common ancestor without 365 

intervening recombination. As stated by Hayes et al. (2003), this approach would be only 366 

valid for constant Ne or a linear increment or decrement of Ne across generations (Hayes et 367 

al. 2003). Our method, however, provides a solution for the inference of the historical Ne 368 

without any previous assumption on the magnitude or the trend of changes. In addition, the 369 

method is quite robust for base-calling errors, deviations for the genetic map and deviations 370 

from the assumption of a single unstructured population. Overlapping generations tend to 371 

produce underestimations of the recent Ne, as has been reported for the estimations of the 372 

current Ne (Waples et al. 2014). Also, while the admixture of differentiated populations 373 

distorts the structure of LD, inferences are valid for the derived population up to nearly the 374 

generation of admixture. 375 

Although all bins for pairs of SNPs at different distances can be used in the 376 

estimation procedure, it is advised in practice to ignore those corresponding to the largest 377 

recombination frequencies. In fact, the default largest value of c used in our application is 378 

0.05. The reason for this is tripled. First, random sampling of few individuals can lead to 379 

deviations from the average coancestry of the population (Fig. 2I). The consequences of 380 

these deviations on the inference of temporal Ne are larger for large c values than for small 381 

ones because genealogies of a finite sample of individuals mix progressively with the 382 

population backwards in time. That is, inferences of recent Ne are more affected by 383 

sampling than inferences of ancient Ne. These biases are partially corrected by disregarding 384 

large values of c (cf. Fig. 2I and 2J). Second, the observed LD for any particular c value 385 

does not depend exclusively on the Ne at a particular generation back in time. However, 386 
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while LD of SNP pairs with c = 0.5 depends on the Ne of a few recent generations (say a 387 

couple generations back in time), LD of bins with smaller c values depends on the historical 388 

Ne values of a wider span of time from past to present, including the recent generations. As 389 

the inferences of Ne at different generations are interconnected in this way, biases in the 390 

measure of LD of bins with large c values affect more the inference of the whole series of 391 

temporal Ne than biases of LD of small c values do. Finally, when populations are strongly 392 

geographically structured, the distortion in LD can be very large (Fig. 2F). This effect is 393 

relatively similar to the random sampling of a few individuals in a panmictic population. 394 

By ignoring bins of large c values, the distortion in the inference of past Ne is mitigated (see 395 

Fig. 2F). Nevertheless, our recommendation of considering the largest value c as 0.05 is a 396 

compromise solution which can be changed by the user by setting the switch of this option 397 

to any other value between 0 and 0.5. For example, for simulation results, where the 398 

sampling of individuals is a random sample of the population, the use of the largest c values 399 

is justified unless the sample size is very small. 400 

Inferences by GONE are restricted to recent changes in Ne, with the highest 401 

resolution within a hundred generations before sampling. Drastic demographic changes 402 

partially erase the linkage disequilibrium footprint of older events. Therefore, if older 403 

changes are relatively small or there are many demographic changes involved in the time 404 

period considered, the method will fail to detect them accurately or will only detect the 405 

most recent ones. The lack of precision of Ne estimates of ancient events (Fig. 2A vs. 2B) 406 

could be a consequence of the fact that ancient Ne estimates rely on a large number of 407 

measures of LD of different recombination-rate bins. Thus, cumulative errors are expected 408 

to be larger for ancient estimates than for recent ones. 409 

To a good approximation, the accuracy of the estimations is proportional to the 410 

sample size, to the squared root of the number of pairs of SNPs included in the analysis and 411 

to the inverse of the effective population size (see Methods and Supplementary File). That 412 

is, halving the sample size can be approximately compensated by doubling the number of 413 

SNPs included in the analysis. This is consistent with previous findings related to Ne 414 

estimation by the temporal method (Waples 1989). Note, however, that this approximation 415 

relies on the assumption that the individuals analysed are a truly random sample from the 416 

population. Even so, if the sample size is very small, the accuracy of population parameter 417 
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estimates cannot be compensated by a larger number of SNPs. As noted by King et al. 418 

(2018), with more and more loci the estimates converge on the true parameter values for the 419 

pedigree of the sampled individuals, but not necessarily on the pedigree of the population 420 

as a whole. For deep coalescent evaluations this is not such a big problem, as all recent 421 

pedigrees coalesce to the same ancestral lineages as one moves back in time. However, this 422 

is an important issue for recent generations.  423 

 Here we have introduced a method to infer very recent changes in effective 424 

population size from the distribution of LD between pairs of SNPs from chip genotyping or 425 

sequencing data. Its temporal space of inference is of particular interest in the survey and 426 

assessment of perspectives of endangered populations and could also be a useful 427 

historiographic tool to study human demography. It is computationally efficient, accurate 428 

and fairly stable against deviations from the assumptions of the model such as genotyping 429 

errors, non-random mating, admixture of populations, overlapping generations, and 430 

alterations of the genetic map. It is applicable to populations with a wide range of 431 

demographic changes and different types of genomic data. In summary, this method 432 

facilitates the immediate use of a large amount of genomic information to study the recent 433 

demography of populations. 434 

 435 

Methods 436 

Estimation of the historical Ne 437 

In a first step, SNP data files with map and ped formats are processed by a custom program 438 

to calculate linkage disequilibrium (sample 𝑑𝑐
2) for bins of pairs of SNPs with different 439 

genetic distances (c). The analysis is made for individual chromosomes, which can be run 440 

in parallel on several processors. It has a number of options: (a) the number and length of 441 

bins assumed; (b) the use of the observed genetic distances between SNPs, if available in 442 

the map file, or the use of genetic distances calculated under the assumption of a given 443 

number of cM per Mb of sequence; (c) the use of Haldane´s or Kosambi´s corrections for 444 

genetic distances, or none of them; (d) the exclusion or inclusion of SNPs with missing 445 

data; (e) the use of phased diploid data, unphased diploid data, or pseudo-haploid data; (f) a 446 

predefined maximum number of SNPs to be analyzed per chromosome, taken at random 447 

among all available SNPs, and excluding loci with more than two alleles; and (g) the 448 
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application of a threshold MAF if desired. Values of 𝑑𝑐
2 from all chromosomes are then 449 

combined in a single file for estimation of historical series of Ne, although estimates from 450 

individual chromosomes can also be performed. 451 

A second program (GONE) implements a genetic algorithm (Mitchell 1998) to 452 

search for the global optimal solution of the historical Ne series that best fits the observed 453 

𝛿𝑐
2 values, which are obtained from the 𝑑𝑐

2 values previously calculated by the first 454 

program, after correction for sample size. The function to be minimized is the sum of the 455 

squared differences between observed and predicted 𝛿𝑐
2 values for the whole range of 456 

recombination rates c considered in the analysis. An output of the program is the series of 457 

observed and predicted 𝑑𝑐
2 values over the range of recombination rates and the sum of 458 

squares of their differences. In this genetic algorithm, an “individual” is a particular 459 

sequence of temporal Ne values for all the previous generations. In order to reduce the 460 

complexity of the optimization procedure, the entire time space from 0 (i.e. at the sampling 461 

point) to an infinite number of generations in the past is split into consecutive blocks, with 462 

the same Ne value for all the generations within each block. In order to generate each initial 463 

“individual”, the time space is randomly split into four blocks with a boundary set at 464 

generation 1/𝑐𝑚𝑖𝑛, where 𝑐𝑚𝑖𝑛 is the minimum c value among all pairs of SNPs included in 465 

the analysis, and random Ne values are assigned to each block. Thus, 1,000 “individuals” 466 

are randomly generated and fitness values are assigned as the inverse of the sum of the 467 

squared differences between observed and predicted 𝛿𝑐
2 values calculated from the set of Ne 468 

values of the “individual”. Then, the fittest 100 “individuals” are selected to be parents of 469 

the next generation. In order to produce each “individual” of the next generation, two 470 

“parents” are randomly selected, “crossovers” (interchange of sections of temporal Ne 471 

series) between both “parents” are carried out and “mutations” (changes in the boundaries 472 

of blocks and the Ne values of blocks) occur randomly. Each “crossover” introduces a new 473 

boundary, but the number of blocks can also be reduced by random “mutations” that merge 474 

two consecutive blocks. In this way, a new set of 1,000 “individuals” is generated and 475 

selection of parents starts again to produce the next generation. The block from generation 476 

1/𝑐𝑚𝑖𝑛 up to infinity will remain without further divisions during the whole optimization. 477 

The selective process is repeated for 750 generations and the average Ne series of the best 478 

10 “individuals” is considered to be the solution of the optimization process. As this 479 
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solution could be an “adaptive peak”, that is a local optimal solution, the selective process 480 

is repeated a desired number of times (say 40) and the final solution is calculated as the 481 

average value of the available solutions, e.g. 40 × 10 = 400 “individuals”. The replicated 482 

estimations can also be run in parallel using several processors. Thus, GONE provides a 483 

solution of consensus or general trend for the demographic history of a population. We 484 

have found that this solution is more consistent and repeatable than any particular optimal 485 

solution. An example of the fit between optimized values of 𝛿𝑐
2 and the observed simulated 486 

values is given in Supplementary Figure S2. 487 

The method does not generate parametric confidence intervals for the estimate. 488 

However, if the number of SNPs per chromosome is large, such as occurs with sequencing 489 

data or with some large chips, it is possible to make estimation replicates by choosing 490 

different sets of SNPs per chromosome with a functionality implemented in the scripts, as 491 

mentioned above. This would allow empirical confidence limits to be obtained. An example 492 

of this application is shown in Figure 3 for the Finnish population. 493 

 494 

Simulation programs 495 

To check the accuracy and statistical properties of the new LD based Ne estimation method, 496 

simulations were performed with the software SLiM (Messer 2013; Haller et al. 2019), a 497 

forward simulator of SNPs, as well as with in-house programs. For most cases, sequences 498 

of 250Mb of length were run for 10,000 generations assuming absence of selection under 499 

different demographic scenarios (changes in N over generations), such as bottlenecks, drops 500 

or expansions of the population within the last 200 generations. Mutation and 501 

recombination rates per nucleotide were assumed to be m = c = 10–8, which implies 1 Mb = 502 

1 cM. At the last generation, a sample of n diploid individuals (20 or 100) without 503 

replacement was taken for analysis. We also considered sampling with replacement in some 504 

cases to check the corresponding estimations under this sampling scenario. In general, no 505 

pruning was made regarding MAF, but some simulations were run by applying MAF < 506 

0.05 and 0.1 to check the effects of rare alleles. Simulation results were based on 10-100 507 

replicates for each scenario. A custom program was used to obtain the map and ped files 508 

needed to start the estimation procedure. 509 

 510 
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Estimation of temporal Ne with other methods  511 

The map and ped files of a number of simulated scenarios were transformed into the 512 

necessary file formats for MSMC (Schiffels and Durbin 2014) and Relate (Speidel et al. 513 

2019) and parameters were set to the default options. Analyses of unphased genotypes were 514 

implemented by indicating all the possible phasing modes in MSMC and by randomization 515 

of pairs of allele copies of the same individual in Relate. Likewise, the 𝑑𝑐
2 values obtained 516 

in the simulations were analysed by assuming the approach of previous estimator of 517 

temporal Ne with LD (Tenesa et al. 2007; Barbato et al 2015; Mezzavilla and Ghirotto 518 

2015; Hollenbeck et al. 2016) with the corresponding corrections for phased and unphased 519 

genotypes.  520 

 521 

Sample size estimation  522 

By assuming some simplifications (Supplementary File), it can be shown that the power of 523 

detecting fluctuations in Ne is roughly proportional to: 524 

𝐺 =
𝑛 ∙ √𝜗

𝑁𝑒
, 525 

where n is the sample size and 𝜗 is the number of loci pairs included in the analysis. As a 526 

general rule for experiments in which the range of c values varies from 0.5 to 0.001, good 527 

estimations of effective population sizes are obtained when 𝐺 > 100 and very poor 528 

estimations are obtained when 𝐺 < 10. 529 

 530 

Generation time 531 

In order to compare inferences of Ne with references to historical events, generation time 532 

was set to 30 years for humans (Fenner 2005). 533 

 534 

Relationship between physical and recombination maps 535 

A genetic map in centi-Morgans (cM) and a map function are needed to estimate the 536 

recombination frequency c between any pair of loci from their physical positions in the 537 

genome. A fine-scale recombination map was used for humans (Myers et al. 2005) and an 538 

inferred map from data by Tortereau et al. (2012) was used for pigs. 539 
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There is not a consensus on physical and genetic maps to date for salmon, probably 540 

due to the complexity of the chromosome rearrangements in this species. We used the 541 

salmon reference genome assembly ICSASG_v2 (Lien et al. 2011) to assign locations to 542 

SNPs and considered a constant ratio of 1 cM/Mb between genetic and physical maps, 543 

which is an approximate average over several studies (Philips et al. 2009; Lien et al. 2011; 544 

Tsai et al. 2016). Tsai et al. (2016) showed the lack of continuity between the assumed 545 

physical and the estimated genetic maps, particularly for some chromosomes, with gaps of 546 

up to 150 cM. However, by ignoring recombination rates over 0.05 (with the option -hc 547 

0.05) we avoided most complications due to gaps or lacks of continuity in the genome. 548 

Note that, at 1cM/Mb, a recombination rate of 0.05 corresponds to 5.3Mb assuming 549 

Haldane´s function. Using SNPs closer than this distance makes improbable to have a 550 

significant representation of SNP pairs at different sides of a gap. 551 

 552 

Samples 553 

The different sample sizes of individuals analyzed (n) and the number of SNPs (NSNP) 554 

analyzed in the estimations are as follows. Guadyerbas population of Iberian pig (Saura et 555 

al. 2015) (n = 219; NSNP = 19,144), Finnish population (1000 Genomes Project Consortium) 556 

(n = 99; NSNP = 1,100,000), Salmon from River Dee (n = 16 for each population; NSNP = 557 

104,354), Neolithic West Scotland (Olalde et al. 2018) (n = 17 [10.8], where the number in 558 

brackets refers to the actual sample size disregarding missing genotyping data; NSNP = 559 

552,191), Neolithic North Scotland (Olalde et al. 2018) (n = 21 [14.8]; NSNP = 594,385), 560 

Ashkenazi East (Behar et al. 2010) (n = 9; NSNP = 478,394), Ashkenazi West (Behar et al. 561 

2010) (n = 9; NSNP = 477,884), Mizhrahi caucasus (Behar et al. 2010) (n = 12; NSNP = 562 

486,075), Mizhrahi Iran & Iraq (Behar et al. 2010) (n = 15; NSNP = 485,199). 563 

 564 

Supplementary Material 565 

Supplementary data are available at Molecular Biology and Evolution online. 566 

Program codes, binaries for Linux and Mac, and the scripts necessary to apply the method 567 

are available at github address XXXXXXXXX. 568 

(Only for reviewing purposes temporarily at Dropbox address:  569 

https://www.dropbox.com/sh/pyvhfjxkia06qz2/AADUH2nwNFk3RtavjWzI4QVRa?dl=0). 570 

https://www.dropbox.com/sh/pyvhfjxkia06qz2/AADUH2nwNFk3RtavjWzI4QVRa?dl=0
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Figure 1.   725 

Estimates of temporal Ne of simulated populations from phased (left) and unphased (right) 726 

data under different demographic scenarios from present (generation 0) to 220 generations 727 

in the past. The green area is the true (simulated) population size. The black, red, blue and 728 

purple lines are respectively estimations by GONE, MSMC, Relate and LinkNe software. 729 

Samples were composed of 4 diploid individuals (8 haplotypes) for MSMC and 20 diploid 730 

individuals for the other methods. The total number of SNPs involved in the estimations 731 

ranged between 255,000 and 450,000 depending on the scenarios. No MAF threshold was 732 

applied to the data. 733 

 734 
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Figure 2.  740 

Estimates of temporal Ne by GONE (red line) under different simulated demographic 741 

scenarios from present (generation 0) to 220 generations in the past. The true population 742 

size is the green shadowed area and n is the sample size of individuals for analysis. For all 743 

panels, the black lines refer to an analysis where all recombination bins from c = 0.001 up 744 

to c = 0.5 are considered (option hc = 0.5), whereas the red lines refer to analyses with rate 745 

bins from c = 0.001 up to only 0.05 (hc = 0.05). (A) and (B): Detection of bottlenecks 746 

occurring at different times. (C): Scenario with overlapping generations with three cohorts 747 

per generation and mixed-cohort sampling. (D): A population Ne = 1000 was divided into 748 

two populations Ne = 1000 each, which were isolated for 100 generations and then mixed 749 

50 generations ago into a single population with Ne = 1000. (E) and (F): Metapopulation 750 

composed of two subpopulations Ne = 1000 each with 2% and 0.2% of migration, 751 

respectively, between them. (G): Estimations under different base-calling error rates. From 752 

top to bottom, 10%, 1%, 0.1% and 0%, the latter two being indistinguishable. (H): A 753 

hundred individuals were sampled from the population over a period of 100 consecutive 754 

generations at a rate of one sampled individual per generation. (I) and (J): Eight small 755 

samples (n = 10 each) were taken from the same population at the same time. 756 
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 758 
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Figure 3.  760 

Estimates of temporal Ne of real populations with different sample sizes (n). PIGS: 761 

Guadyerbas population of Iberian pigs. The thin blue line is the estimate of Ne using the 762 

individual contributions from genealogical data (Saura et al. 2015). FINNISH: Estimates 763 

of Finnish human population. The shadow area gives the confidence interval of the 764 

estimates obtained by running 20 replicates, each one corresponding to a random sample of 765 

50,000 SNPs for each chromosome. The thin broken blue line is the estimation obtained by 766 

Browning and Browning (2015) for a Northern Finnish NFBC sample of 5,402 individuals. 767 

The thin green line is the estimate of Ne assuming a constant recombination rate of 1.2 cM 768 

per Mb.  SALMON DEE: Atlantic salmons of two tributaries of River Dee in Scotland. 769 

NEOLITHIC: Two neolithic samples from West and North Scotland, where the sampling 770 

period accounts for about 60 generations. ASHKENAZI JEWS: Samples of eastern and 771 

western European populations. MIZHRAHI JEWS: Samples from a Caucasus population 772 

and from Iran and Iraq. All estimations assume no MAF threshold and unphased genomes 773 

except for the NEOLITHIC, which involves pseudo-haploid genomes.  774 
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