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A numerical investigation is undertaken on the effect of small-scale surface rough-

ness on the local absolute and global stability of the flow due to a rotating disc.

Surface roughness is modeled via the imposition of the partial-slip wall boundary

condition, with radial and concentric anisotropic roughnesses and isotropic rough-

ness considered. The effect of the partial-slip parameters on the neutral characteris-

tics for absolute instability is presented, while the azimuthal mode numbers required

for global linear instability to occur are determined for the genuine inhomogeneous

base flow. Predictions for the threshold values for the azimuthal mode numbers

needed for globally unstable behavior are also computed by coupling solutions of the

Ginzburg-Landau equation with the local linear stability properties obtained using

the homogeneous flow approximation. These are found to be in excellent agreement

with the exact values realised from the numerical simulations. In general, surface

roughness is demonstrated to stabilise the absolute instability as well as the global

linear instabilities.

a)christian.thomas@mq.edu.au
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I. INTRODUCTION

The effect of small-scale roughness on rotating boundary layer flows, as a means of de-

laying transition to turbulence, has been the focus of several recent numerical studies1–3.

In general, an increase in the critical Reynolds number for turbulent flow leads to drag re-

duction. Thus, this passive flow control strategy could lead to practical applications in the

aero industry. The infinite rotating disc boundary layer is of interest to gain insight into the

stability mechanisms in three-dimensional boundary layers.

Previous studies concerning roughness on the rotating disc have focused on local convec-

tive instabilities, including crossflow4 and the viscous Coriolis mode5,6. The numerical study

of Cooper et al. 1 modeled small-scale surface roughness by imposing partial-slip boundary

conditions at the wall for the flow due to a rotating disc7. Both anisotropic and isotropic

roughnesses are able to be accounted for in this way. For the rotating disc, anisotropic

roughness corresponds to radial grooves or concentric grooves. The results of the local lin-

ear stability analysis for the crossflow instability revealed that, generally, roughness led to

higher critical Reynolds numbers and hence had a stabilising effect on the flow. The excep-

tion was for viscous instability modes which were destabilised by concentric grooves. These

initial studies have been extended to other rotating boundary layers2. The asymptotic struc-

ture of the inviscid convective modes has been described by Stephen 8 . A further study by

Garrett et al. 3 investigated the effect of an alternative formulation for surface roughness,

corresponding to concentric grooves (radially-anisotropic), for the linear stability of the flow

due to a rotating disc9. Results were comparable with the case of partial-slip considered

by Cooper et al. 1 for the inviscid crossflow modes, with differences found for the viscous

instability modes. More recently, these studies have been extended to consider the effect

of surface roughness on the non-Newtonian flow due to a rotating disc10. Here partial-slip

boundary conditions appropriate for the non-Newtonian viscosity model were imposed with

the results revealing a stabilisation of local convective instabilities for isotropic roughness

and also for radial grooves (azimuthally anisotropic roughness). The effect of roughness on

the rotating disc flow has also been the subject of experimental investigations11, however

the authors could not discern between the effects of the roughness and the confinement of

the rotating disc.

Lingwood 12 was the first to consider absolute instability for the rotating disc flow. Poten-
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tially more dangerous than convective instabilities, absolute instabilities have been the sub-

ject of many investigations of rotating flows to establish a link with the onset of transition to

turbulence. Lingwood 12 showed that absolute instability first appears for Reynolds numbers

near that associated with transition and suggested that the absolutely unstable mechanism

was the final stage in the laminar-turbulent transition process. However, Lingwood’s study

neglected the radial dependence of the basic flow (equivalent to the parallel-flow approx-

imation in a two-dimensional boundary layer). Subsequently, Davies and co-workers13,14

demonstrated that, for the genuine inhomogeneous flow due to an infinite rotating disc,

linear disturbances were globally stable.

The first studies to investigate global linear instability in the infinite rotating disc bound-

ary layer concentrated on azimuthal mode numbers, n, close to those values for the onset of

absolute instability, na say, and globally unstable behaviour could not be found. However,

the recent investigation of Thomas and Davies 15 revealed that global linear instability does

in fact exist for sufficiently large azimuthal mode numbers (larger than na) and is charac-

terised by a faster than exponential temporal growth. The situation is illustrated in figure 1,

detailing the regions of local and global linear stability in the (Re, n) space, where Re is the

Reynolds number. Thomas and Davies 15 also speculate that global linear instability exists

for other related rotating flows. Their follow-up study16 confirms this for the rotating cone

boundary layer.

The discovery by Thomas and Davies 15 that the rotating disc flow is globally linearly

unstable, now allows us to complete the picture of the effect of partial-slip conditions on

the flow instabilities possible in rotating disc boundary layers. In this study, we investigate

for the first time, the effect of a partial-slip wall boundary condition on the development of

local absolute and global linear instabilities. To achieve this goal, we follow the approach of

Thomas and Davies 15 and utilise the velocity-vorticity formulation developed by Davies and

Carpenter 17 . We will show that anisotropic surface roughness can be used to delay the onset

of absolute instability to significantly larger Reynolds numbers. Furthermore, disturbance

development to the inhomogeneous flow is numerically simulated and the azimuthal mode

numbers needed for global linear instability to occur are predicted using the Ginzburg-

Landau equation18.

The problem formulation is presented in Sec. II with the description of the base flow due

to a rotating disc with small-scale surface roughness modeled using partial-slip wall boundary
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FIG. 1. Diagram illustrating the local and global linear stability of the rotating disc boundary

layer (and family of flows), as determined by Thomas and Davies 15 .

conditions7. The linear perturbation equations are then presented for the velocity-vorticity

formulation. Stationary crossflow disturbances are excited by periodic forcing with the ho-

mogeneous flow approximation. Critical Reynolds numbers and radial wavenumbers are

computed, to compare with results of previous studies, which serve to validate the numer-

ical code. Our results for local absolute instability, excited by impulsive wall forcing, are

presented in Sec. III, with surface roughness shown to be stabilising. The description of how

the Ginzburg-Landau equation is employed to predict the onset of global linearly unstable

behavior follows in Sec. IV. Extensive numerical simulations reveal positive growth rates

arise for n > ng, where estimates for the threshold value ng are found for different parameter

values corresponding to the partial-slip conditions. The effect of radial inhomogeneity in

the base flow is one focus of Sec. V. Additionally, we verify the accuracy of the predictions

made in the previous section, for the azimuthal mode number n required for global linear

instability to occur. Conclusions follow in Sec. VI.
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II. FORMULATION

A. Base flow

A disc of infinite radius, rotates in an incompressible fluid of kinematic viscosity ν∗ at

a constant angular velocity Λ∗ about the vertical axis that passes through the centre of

the disc. Cylindrical polar coordinates are used to define the system, where r∗, θ and z∗

denote the respective radial, azimuthal and axial directions. (Asterisks denote dimensional

quantities.) Note that the coordinate system rotates with the disc.

The undisturbed steady flow field in this coordinate system is established using the von

Kármán 19 similarity variables

U∗ = {r∗Λ∗F (z), r∗Λ∗G(z), δ∗Λ∗H(z)}, (1)

where F , G and H represent the non-dimensional velocity profiles along the three coordinate

directions. The parameter δ∗ =
√

ν∗/Λ∗ denotes the constant boundary layer thickness used

here to scale units of length; r = r∗/δ∗ and z = z∗/δ∗. On substituting (1) into the Navier–

Stokes equation and the continuity equation in cylindrical coordinates, the following system

of ordinary differential equations is derived

F ′′ = F ′2 + F ′H − (G+ 1)2, (2a)

G′′ = 2F (G+ 1) +G′H, (2b)

0 = 2F +H ′, (2c)

subject to the modified wall boundary conditions (to take account of the rough surface)

F = λF ′(0), G = ηG′(0), H = 0 on z = 0, (2d)

and freestream conditions

F → 0 and G → −1 as z → ∞. (2e)

A prime denotes differentiation with respect to z. The two parameters λ and η give measures

of the roughness in the radial and azimuthal directions, respectively. Anisotropic roughness

is established for η > 0 and λ = 0 (concentric grooves) and, η = 0 and λ > 0 (radial grooves),
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FIG. 2. Steady velocity flow profiles for (a∗) λ = 0 and variable η; (b∗) η = 0 and variable λ.

Subscripts 1, 2 and 3 match to the respective radial F , azimuthal G and wall-normal H velocity

profiles.
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while isotropic roughness corresponds to the case η > 0 and λ > 0. Figure 2 depicts velocity

profiles F, G and H for different combinations of the parameters λ and η.

The non-dimensional base flow is then given as

UB(r, z) =

{
r

Re
F (z),

r

Re
G(z),

1

Re
H(z)

}
, (3)

where the Reynolds number Re is defined as

Re = r∗o
√
Λ∗/ν∗ ≡ ro, (4)

for some non-dimensional reference radius ro.

B. Perturbation equations

Total velocity and vorticity fields are decomposed as

U = UB + u, Ω = ΩB + ω,

where UB and ΩB = ∇ ∧UB represent the undisturbed velocity and vorticity of the basic

state (3), while the velocity and vorticity perturbation variables are defined as

u = {ur, uθ, uz}, ω = {ωr, ωθ, ωz}.

Selecting the perturbation fields {ωr, ωθ, uz} as the primary variables, the linearized distur-

bance evolution can be determined using the following set of governing equations

∂ωr

∂t
+

1

r

∂Nz

∂θ
− ∂Nθ

∂z
− 2

Re

(
ωθ +

∂uz

∂r

)
=

1

Re

((
∇2 − 1

r2

)
ωr −

2

r2
∂ωθ

∂θ

)
, (5a)

∂ωθ

∂t
+

∂Nr

∂z
− ∂Nz

∂r
+

2

Re

(
ωr −

1

r

∂uz

∂θ

)
=

1

Re

((
∇2 − 1

r2

)
ωθ +

2

r2
∂ωr

∂θ

)
, (5b)

∇2uz =
1

r

(
∂ωr

∂θ
− ∂(rωθ)

∂r

)
, (5c)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
,

and

N = {Nr, Nθ, Nz} = ΩB × u+ ω ×UB.

The convective term N depends on both the primary variables and the remaining perturba-

tion components {ur, uθ, ωz}. However, these so-called secondary variables can be explicitly
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defined in terms of the primary variables, by rearranging the definition for vorticity and the

solenoidal condition as

ur = −
∫ ∞

z

(
ωθ +

∂uz

∂r

)
dz, (6a)

uθ =

∫ ∞

z

(
ωr −

1

r

∂uz

∂θ

)
dz, (6b)

ωz =
1

r

∫ ∞

z

(
∂(rωr)

∂r
+

∂ωθ

∂θ

)
dz. (6c)

The linearization permits the no-slip conditions and the wall-normal zero-displacement

conditions on the disc surface to be formulated as

ur = − r

Re
F ′(0)ζ, uθ = − r

Re
G′(0)ζ, uz =

∂ζ

∂t
, (7a,b,c)

where ζ is a non-dimensional vertical wall-displacement that is used to excite disturbances in

the boundary layer. For the subsequent investigation the wall-forcing ζ was centered about

a radial location rf and was either time-periodic or impulsive. The former forcing type was

imposed with a fixed frequency, while the latter forcing type was prescribed for a finite time

period that was sufficient to excite a broad range of disturbances. Substituting (7a) and

(7b) into the definitions (6a) and (6b) for the secondary variables gives the following integral

constraints for the primary variables ωθ and ωr:∫ ∞

z

ωθ dz =
r

Re
F ′(0)ζ −

∫ ∞

z

∂uz

∂r
dz, (8a)∫ ∞

z

ωr dz = − r

Re
G′(0)ζ +

∫ ∞

z

1

r

∂uz

∂θ
dz. (8b)

Finally, the condition (7c) for uz on the disc surface is unchanged, while all perturbations

are assumed to asymptote towards zero in the far-field limit.

As we are only interested in the development of linear disturbances, it is possible to

consider modes of the general form

{u,ω} = {û, ω̂}einθ, (9)

where n = βRe is the integer valued azimuthal mode number. As a consequence of the cir-

cumferential periodicity of the disc, n can only take integer values. The azimuthal wavenum-

ber β is more commonly employed in local stability studies1, since β can be modeled as a

continuous parameter.

8



C. Code validation

The accuracy of the base flow profiles and numerical scheme was first tested by drawing

comparisons with the earlier study by Cooper et al. 1 who undertook a local linear stability

study on the stationary crossflow instability. To achieve this, several disturbances were

numerically simulated subject to a time-periodic wall-forcing with the frequency set to zero.

Furthermore, the homogeneous flow approximation was implemented, whereby the radial

dependence of the basic state (3) was ignored. This was achieved by setting the radius

r = Re. For each combination of the roughness parameter set (λ, η), two disturbances

were simulated for flow settings (Re, n) near the conditions necessary for the onset of the

stationary crossflow instability. The values for the integer-valued azimuthal mode number n

and Reynolds number Re were carefully chosen using the results given in Cooper et al. 1 . The

method of bisection was then used to compute the critical conditions (Rec, nc) for stationary

crossflow. Tables I and II compare the critical values for the onset of the stationary crossflow

instability obtained by Cooper et al. 1 with those computed using the numerical simulations

(given in bold). The critical wavenumber αc was determined from the numerical simulations

using the formula

αc = − i

ωθ,w

∂ωθ,w

∂r
, (10)

where ωθ,w denotes the azimuthal vorticity perturbation on the disc surface. Excellent

agreement was realised in all cases modeled with the minor variations attributed to the

current analysis considering only integer-valued mode numbers n, while the earlier study by

Cooper et al. 1 was based on the continuous azimuthal wavenumber β.

III. ABSOLUTE INSTABILITY

The numerical study was extended to model absolutely unstable disturbances. Base flow

profiles were again based on the homogeneous flow approximation, while impulsive wall forc-

ing was utilised to excite perturbations in the spatial-temporal plane. Many disturbances

were simulated for an extensive range of roughness and flow parameters. Disturbance char-

acteristics were computed and, neutral stability curves and critical conditions for absolute

instability determined. In the subsequent discussion we will illustrate the process for com-

puting critical parameter settings for the infinite rotating disc with concentric roughness
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η Rec nc αc

0 286.1 22.2 0.384

0 285.9 22 0.371

0.25 312.3 18.3 0.366

0.25 313.5 18 0.351

0.5 336.8 16.1 0.358

0.5 338.1 16 0.345

0.75 358.9 14.4 0.342

0.75 361.3 14 0.320

1 379.1 13.2 0.331

1 381.3 13 0.316

TABLE I. Critical values for the onset of the stationary crossflow instability as found by Cooper

et al. 1 for λ = 0 and η ≥ 0 using a localised stability analysis with a homogeneous flow ap-

proximation. Values given in bold are determined from the numerical simulations using the same

approximation.

λ Rec nc αc

0.25 380.1 37.0 0.353

0.25 379.6 37 0.346

0.5 527.5 59.4 0.318

0.5 525.8 59 0.311

0.75 722.6 89.4 0.286

0.75 719.4 89 0.282

TABLE II. Critical values for the onset of the stationary crossflow instability as found by Cooper

et al. 1 for η = 0 and λ > 0 using a localised stability analysis with a homogeneous flow ap-

proximation. Values given in bold are determined from the numerical simulations using the same

approximation.
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FIG. 3. Time histories for ωθ,w (solid lines), together with envelopes ±|ωθ,w| (dashed), for an

impulsively excited disturbance centered about rf = 600 with n = 70 (and Re = 600). (a)

r = rf − 25; (b) r = rf ; (c) r = rf + 25; (d) r = rf + 50. The base flow is established using the

homogeneous flow approximation for the roughness parameter settings η = 0.5 and λ = 0.

settings η = 0.5 and λ = 0.

Figure 3 displays time histories for a perturbation impulsively excited about the radial

position rf = 600 (and Re = 600) with the azimuthal mode number n = 70. Disturbance

development is plotted as a function of time about the radial centre of forcing rf along with

three additional equally spaced radial locations: rf ± 25 and rf + 50. The time variation

is scaled on the disc rotation rate T = 2πRe. The azimuthal vorticity perturbation field

at the wall ωθ,w is plotted (solid lines), along with the corresponding envelopes ±|ωθ,w|

(dashed) that are obtained from the complex-valued amplitude. In each instance plotted,

including that upstream of the center of forcing, the perturbation grows as time increases.

Hence, strong temporal growth is observed, which would indicate the disturbance is locally

absolutely unstable.

The temporal frequencies and growth rates matching to the above disturbance are com-
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puted using the formula

f =
i

ωθ,w

∂ωθ,w

∂t
, (11)

where the real and imaginary parts of f represent the temporal frequency and growth rate of

the perturbation based on a local time non-dimensionalisation. The locally scaled frequency

f is based on the ratio of the constant boundary-layer thickness and the circumferential

speed of the rotating disc and is commonly used in local stability investigations such as that

undertaken by Cooper et al. 1 . However, in keeping with the earlier studies by Davies and

co-workers13–15 we will present results based on a global time scaling that is defined by taking

the inverse of the disc angular velocity. Thus, the globally defined frequency, g = fRe, will

be presented. Figure 4(a,b) displays the globally defined frequency gr and corresponding

growth rate gi associated with the four time histories plotted in figure 3. For all four curves

plotted, the temporal frequency quickly converges towards a fixed value gr ≈ −28.9, while

the matching growth rates are found to approach the value gi ≈ 0.2 for large time. Since the

temporal growth rate is positive, the disturbance can be classified as being locally absolutely

unstable.

The spatial-temporal disturbance development matching the above flow conditions is

plotted in figure 4(c) using amplitude contours of the azimuthal vorticity at the wall |ωθ,w|.

Contours are drawn using a natural logarithmic scaling and have been normalised to have

a maximum amplitude of unity at time t = 0.2T . The leading and trailing edges of the

disturbance wavepacket are easily identified as the outer contours that originate from the

radial centre rf of the impulsive forcing. The leading edge propagates radially downstream

(to the right) at a large constant velocity, while the trailing edge moves in the opposite

radial direction (to the left) and is found to travel far more slowly. The illustration provides

further confirmation that for the given flow settings, the disturbance is locally absolutely

unstable as the leading and trailing edges propagate in opposite directions.

The above process was repeated for many combinations of the Reynolds number Re and

azimuthal mode number n. Numerical simulations were carried out for azimuthal mode

number step sizes ∆n = 1 and 5. The smaller step size was employed in the parameter

region where disturbances first become absolutely unstable, while the larger step size was

utilised as the azimuthal mode number n was increased to larger values. For a fixed integer-

valued n, numerical simulations were performed at step intervals of five Reynolds number

units, with the method of bisection again utilised to determine the critical conditions for

12
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FIG. 4. (a) Temporal frequencies gr; (b) growth rates gi; (c) spatial-temporal development for the

disturbance modeled in figure 3. (Contours in (c) are drawn using a logarithmic scaling.)

absolute instability; the Reynolds number Re where the temporal growth rate changes sign.

The absolutely unstable neutral curve for the concentric roughness modeled above, with

parameter settings (η, λ) = (0.5, 0), is plotted in figure 5(a) using a chain line. The critical

Reynolds number for local absolute instability Rea ≈ 567 is greater than that associated with

the smooth rotating disc (Rea ≈ 507), while the critical azimuthal mode number na = 68 in
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FIG. 5. Neutral stability curves for local absolute instability in the (Re, n)-plane. (a) λ = 0 and

variable η; (b) η = 0 and variable λ.

both cases.

The remaining line types plotted in figure 5 depict the absolutely unstable neutral curves

for several concentric roughnesses (η ̸= 0 and λ = 0) and radial roughnesses (λ ̸= 0 and

η = 0). Neutral stability curves are presented at ∆η = 0.25 intervals for the concentric

roughness models (those curves depicted on the left) and ∆λ = 0.025 intervals for the radial

roughness models (those curves depicted on the right). The critical Reynolds number Rea
increases as the degree of concentric and radial roughness increases. However, the radial

roughness modeling approach establishes a considerably greater stabilising effect than the

concentric roughness strategy. For the latter roughness type, the onset of absolute instability

is raised to Rea ≈ 617 when η = 1, while for the former roughness strategy setting λ = 0.1

increases the critical Reynolds number to Rea ≈ 886. Hence, a significant stabilising effect

is realised using the radial roughness approach for a relatively small roughness parameter

setting.

The critical azimuthal mode number na for absolute instability is unchanged for those

concentric roughness models investigated, with neutral stability curves shifted at regular

intervals to the right. On the other hand, for the radial roughness modeling approach,

the value for na increases with increasing λ. A complete listing of the critical parameters

(including temporal frequencies gr,a and radial wavenumbers αa) for local absolute instability

14
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FIG. 6. Contour plot of the critical Reynolds number Rea for local absolute instability in the

(η, λ)-plane.

are tabulated in tables IV-VII in the appendix.

Figure 6 depicts contours of the critical Reynolds number for local absolute instability Rea
in the (η, λ)-plane. Blue contours in the lower left-hand corner display values Rea ≈ 500,

while the red contours in the upper right-hand corner correspond to values Rea ≈ 950.

Using the results plotted in figure 6 and presented in table IV it is observed that the critical

Reynolds number Rea increases almost linearly with the concentric roughness parameter η.

Meanwhile, Rea increases on a quadratic trend for the radial roughness parameter λ.

IV. PREDICTING THE ONSET OF GLOBALLY UNSTABLE

BEHAVIOUR

Similar to the recent studies undertaken by Thomas and Davies 15,16 we will now attempt

to predict the azimuthal mode number ng necessary for globally unstable behaviour to occur.

To achieve this we will utilise the strategy developed by Thomas and Davies14,15,20 that is

based on coupling the local stability computations with solutions of the linearised Ginzburg-

Landau equation18. Disturbance characteristics from the numerical simulations undertaken

15



in the preceding section are carefully matched to the parameters of the Ginzburg-Landau

equation that allow us to predict the critical value for ng, such that for all n > ng a form of

global linear instability emerges. Once we have made these predictions for the onset of global

linear instability, we will verify our results by undertaking a numerical study of disturbance

development to the genuine radially-dependent flow.

The linearised Ginzburg-Landau equation is given as
∂A

∂t
+ U

∂A

∂x
= µA+ γ

∂2A

∂x2
, (12)

where A(x, t) is a measure of the disturbance amplitude at the spatial location x and time

t. The parameters µ, U and γ denote stability, convection and diffusion/dispersion effects,

respectively. The stability parameter µ is allowed to vary linearly with the spatial direction.

Thus,

µ(x) = µ0 + µ1x,

where the real and imaginary parts of µ1 represent the respective spatial variations in the

temporal growth rate and matching frequency. The Green’s solution to (12) is then given

as18,20

G(x, t) =

√
1

4πγt
exp

(
1

2
µ1xt+

1

12
µ2
1γt

3 − x2

4γt

)
exp{i(α0x− f0t)}, (13a)

where

f0 = i

(
µ0 −

U2

4γt

)
and α0 = −i

U

2γ
, (13b,c)

and complex parameters f0 and α0 = α0,r + iα0,i denote the temporal frequency and radial

wavenumber, respectively. (Numerical values for both f0 and α0 are obtained from the

numerical simulations of the rotating disc with the homogeneous flow approximation.) The

spatial coordinate x has been shifted, so that the impulsive forcing is centered about x = 0.

When the stability coefficient µ1 = 0 the imaginary part of µ0 determines whether or not

the flow is locally stable, convectively unstable or absolutely unstable.

The complex temporal frequency of the Green’s solution (13a) is then determined using

(11) (by replacing ωθ,w with G) with the growth rate given as

Re(f) → ρt2 as t → ∞ for ρ = [(µ2
1,r − µ2

1,i)γr − 2µ1,rµ1,iγi]. (14a,b)

Thus, the form of the disturbance is governed by the stability coefficient µ1 = µ1,r+iµ1,i and

the diffusion/dispersion parameter γ = γr+ iγi. Hence, if ρ < 0, the disturbance is classified

as globally linearly stable, while if ρ > 0 the disturbance is globally linearly unstable.
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Expressions for the stability coefficient µ1 are formulated using the methods outlined in

Thomas and Davies15,20 and given as

µ1,r = 2
∂gi
∂x

and µ1,i = −2
∂gr
∂x

, (15a,b)

where g = gr+ igi is the complex temporal frequency obtained via the numerical simulations

of the disturbance development to the homogeneous flow. Similarly, the dispersion and

diffusion effects γ = γr + iγi are defined as

1

γ
=

γr
|γ|2

− i
γi
|γ|2

, (16a)

for
γr
|γ|2

= −2α0,i

U
and γi

|γ|2
=

2

U

(
∂ϕ

∂x

∣∣∣
max

− α0,r

)
, (16b,c)

where the convection velocity U is measured about the contour line that the disturbance

achieves a maximum amplitude in the spatial-temporal plane and ∂ϕ
∂x

∣∣∣
max

represents a phase

shift.

The analysis was applied to the concentric and radial roughnesses modeled in figure 5:

λ = 0 and η = 0, . . . , 1 at step intervals ∆η = 0.25 and, η = 0 and λ = 0, . . . , 0.1 at

step intervals ∆λ = 0.025. All quantities required to compute the growth rate ρ, given by

(14), were carefully extracted from the numerical simulations for azimuthal mode numbers

n ∈ [60, 200]. Results corresponding to the concentric roughness are plotted in figure 7(a),

while figure 7(b) depicts the corresponding results matching to the radial roughness. In

each instance, the growth rate ρ increases linearly with the azimuthal mode number n and

in most cases a positive valued ρ is realised for sufficiently large n. There is a noticeable

exception for the case η = 0 and λ = 0.1. For very large azimuthal mode numbers n (> 200),

numerical instabilities emerged that prevented disturbances being simulated for a sufficient

time interval. Thus, stability characteristics required to compute ρ could not be determined.

Nevertheless, given the trends of those other cases plotted in figure 7, it is expected that

ρ > 0 will be attained for n > 200.

For the concentric roughness modelling approach, ρ is negative for the critical azimuthal

mode number na = 68 for local absolute instability. However, ρ > 0 arises for ng > 83

for all concentric roughnesses modeled. This would suggest that those inhomogeneous flows

with concentric roughness will be globally linearly stable for smaller valued azimuthal mode

numbers n and globally linearly unstable for larger valued n.
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FIG. 7. Growth rates ρ as a function of the azimuthal mode number n for (a) λ = 0 and variable

η; (b) η = 0 and variable λ.

Growth rates ρ matching to the radial roughness suggest that disturbances will be globally

linearly stable for the respective azimuthal mode numbers na and become globally linearly

unstable for larger valued n. Table III compares the critical azimuthal mode numbers na for

local absolute instability with the predicted values ng for the appearance of globally linearly

unstable disturbances. (Note that the predicted values based on coupling the Ginzburg-

Landau equation with the numerical solutions of the homogeneous flow are labelled ng,pred,

while ng,in denotes the parameter range given by the numerical simulations of disturbances

to the inhomogeneous flow.) In all instances modeled, the azimuthal mode number for

global linear instability is considerably greater than that corresponding to the onset of local

absolute instability. Furthermore, figure 7(b) and table III suggest that radial roughness

establishes a significant stabilising effect and suppresses the appearance of globally linearly

unstable characteristics to very large azimuthal mode numbers n.

V. DISTURBANCE DEVELOPMENT IN THE INHOMOGENEOUS FLOW

The numerical investigation was extended to the development of disturbances in the

inhomogeneous flow, whereby the radial dependence of the base flow (3) was retained. The

two major objectives in this section are to
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λ na ng,pred ng,in

0.0 (and η ̸= 0) 68 83 80-90

0.025 76 103 100-120

0.05 87 129 120-140

0.075 100 163 160-180

0.10 116 200+ 200+

TABLE III. Critical azimuthal mode numbers na for the appearance of local absolute instability

and ng for globally linearly unstable disturbances. Values ng,pred are predictions based on coupling

solutions of the Ginzburg-Landau equation with the numerical solutions of the homogeneous flow,

while ng,in represents the parameter range inferred by disturbance development to the inhomoge-

neous flow.

1. Ascertain the effect of radial inhomogeneity on the global linear stability characteristics

of the rotating disc with surface roughness established via the partial-slip condition.

2. Verify the Ginzburg-Landau predictions, made in the previous section, for the az-

imuthal mode number n required for global linear instability to occur.

Figure 8 depicts the temporal frequencies, growth rates and spatial-temporal development

for a disturbance impulsively excited about the radial position rf = 600 with the azimuthal

mode number n = 70 and the concentric roughness parameter settings η = 0.5 and λ = 0.

(The equivalent results for the homogeneous flow are illustrated in figure 4.) There is a clear

distinction between the homogeneous and inhomogeneous flow computations. Furthermore,

the stability characteristics depicted in figure 8 are consistent with that found by Davies

and co-workers13,15,20 for the rotating disc without roughness. Temporal frequencies gr vary

with the radial direction and in time; gr increases over the time interval shown. Meanwhile,

the corresponding temporal growth rates gi decrease and are eventually negative at all

radial positions plotted. Hence, the disturbance can be classified as being globally linearly

stable. This is further demonstrated by the contour plot in figure 8(c) that illustrates the

disturbance evolution in the spatial-temporal plane. The leading edge propagates radially

outboard with a constant velocity comparable with that found for the homogeneous flow

(recall figure 4(c)). However, the trailing edge acts in the opposite sense to that found
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FIG. 8. (a) Temporal frequencies gr; (b) growth rates gi; (c) spatial-temporal development for

a disturbance impulsively excited about rf = 600 with n = 70 in the inhomogeneous flow. The

roughness parameter settings η = 0.5 and λ = 0.

earlier (for the homogeneous flow) and propagates to the right with what appears to be

an increasing velocity. Thus, the disturbance is globally linearly stable and dominated by

convective stability characteristics.

Further disturbances were numerically simulated about rf = 625 with the concentric
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FIG. 9. Spatial-temporal development for impulsively excited disturbances centered about rf = 625

(and Re = 625) with roughness parameter settings (η, λ) = (0.5, 0) and (a, b) n = 70; (c, d)

n = 100. Solutions on the left correspond to the homogeneous flow, while those on the right are

associated with the inhomogeneous flow.

roughness parameter settings again given as η = 0.5 and λ = 0. Figure 9 depicts the

disturbance wavepackets established for the azimuthal mode numbers n = 70 (figure 9(a,

b)) and n = 100 (figure 9(c, d)). Illustrations on the left display results matching to the

homogeneous flow (for Re = 625), while those on the right depict the equivalent solutions to

the inhomogeneous flow. The two azimuthal mode numbers n were chosen to demonstrate

any changes in the global linear stability characteristics as n is increased to larger values.

The two contour plots corresponding to the homogeneous flow infer that the disturbance

is strongly locally absolutely unstable for n = 70 and on the threshold of becoming locally
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FIG. 10. Temporal growth rates associated with those disturbances illustrated in figure 9, for

rf = 625 and the roughness parameter settings (η, λ) = (0.5, 0) and (a) n = 70; (b) n = 100.

Solid-crossed lines labelled H depict the corresponding solutions in the homogeneous flow about

the impulse centre.

absolutely unstable for n = 100. This behaviour is consistent with the neutral stability

curve plotted in figure 5(a), where the critical Reynolds number for local absolute instability

Rea ≈ 568 and 626 for the respective azimuthal mode numbers n = 70 and 100.

Solutions matching to the inhomogeneous flow display very contrasting global linear sta-

bility features. For the smaller valued azimuthal mode number, n = 70, the trailing edge

initially propagates radially upstream. However, about t/T = 1.25, the trailing edge can

be seen to reverse direction and starts to propagate to the right and radially downstream.

Thus, the disturbance displays convective characteristics and globally linearly stable be-

haviour prevails. Conversely, for the larger valued azimuthal mode number, n = 100, the

trailing-edge initially propagates upstream, but after one rotation of the disc the trailing-

edge changes direction and begins to propagate radially inward with an increasing velocity.

This would suggest that strong temporal growth will eventually be realised and hence, a

form of global linear instability will ensue.
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Figure 10 depicts the temporal growth rates gi associated with those disturbances de-

scribed in figure 9(b, d). Temporal growth rates are again plotted about four equally spaced

radially locations, while the equivalent homogeneous flow calculations are drawn using a

solid-cross line. Results confirm that disturbances are globally linearly stable and unstable

for n = 70 and n = 100, respectively. Growth rates decrease for the former case, while

rapidly increasing growth rates are observed for the larger azimuthal mode number. Given

the trends depicted in figure 10, negative and positive valued growth rates can be expected

for the respective n = 70 and n = 100 cases, about all radial locations shown within a further

half period of the disc rotation. Thus, there is a clear and marked difference between the two

disturbances, which suggests that there is a critical azimuthal mode number ng ∈ [70, 100],

for which n > ng globally linearly unstable behavior ensues.

In an attempt to improve the above numerical estimate for the emergence of globally

linearly unstable disturbances, several perturbations were impulsively excited for azimuthal

mode numbers n ∈ [70 : 100] at intervals n = 5 about the radial location rf that cor-

responds to the onset of absolute instability (based on those numerical simulations with

the homogeneous flow approximation). Figure 11(a) depicts the temporal growth rates for

the concentric roughness model η = 0.5 and λ = 0, with the values for the impulse cen-

tre rf given in the figure legend. Growth rates are plotted in ascending order of n, with

the lowest curve corresponding to n = 70 and the highest curve to n = 100. There is a

noticeable change in behaviour as the azimuthal mode number n increases. For n ≤ 75,

temporal growth rates gi are decreasing before the end of the time period shown. Hence,

strong temporal decay and globally linearly stable behavior are realised for these particular

disturbances. However, for larger valued azimuthal mode numbers, temporal growth rates

increase over the entire time interval plotted. Thus, a form of global linear instability is

observed that is characterised by a faster than exponential growth. The numerical calcu-

lations indicate that globally linearly unstable disturbances will first occur for azimuthal

mode numbers ng ∈ [80, 90]. Hence, for this particular roughness arrangement, numerical

calculations are consistent with the Ginzburg-Landau analysis that predicted global linear

instability would first arise for ng = 83.

Temporal growth rates for a second concentric roughness and two radial roughnesses are

plotted in figure 11(b-d); roughness parameters η and λ are as given in the caption. The three

illustrations depict similar trends to that found for the roughness model (η, λ) = (0.5, 0), with
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FIG. 11. Temporal growth rates gi, for disturbances impulsively excited about the onset of absolute

instability rf for roughness parameter settings (η, λ) = (a) (0.5, 0); (b) (1, 0); (c) (0, 0.05); (d)

(0, 0.1).

growth rates increasing as the azimuthal mode number n increases. Results indicate that

ng ∈ [80, 90] and ng ∈ [120, 140] for the two roughnesses (η, λ) = (1, 0) and (η, λ) = (0, 0.05),

while calculations suggest that ng > 200 is required for the radial roughness (η, λ) = (0, 0.1).

(As stated above, disturbance development for larger valued n was very difficult to simulate.

Nonetheless, given the trends depicted in figure 11, positive and increasing growth rates

may be expected for larger valued n.) Thus, the numerical computations are again in good

agreement with the earlier Ginzburg-Landau predictions.

Longer time simulations, that may have been used to determine the exact azimuthal mode

number ng for the onset of globally unstable behavior, were very difficult to realise. As a
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consequence of disturbances being linear, perturbations could grow exponentially without

bound and thus achieve huge amplitudes that were impossible to model computationally.

Nevertheless, our investigation indicates that the local-global linear stability of the rotating

disc with partial-slip is similar to that found for the smooth rotating disc15. For sufficiently

large azimuthal mode numbers n, a form of global linear instability emerges that is charac-

terised by a stronger than exponential growth. For all cases modeled, the value for n was

greater than that value associated with the onset of local absolute instability.

VI. CONCLUSIONS

A numerical investigation has been undertaken on the local and global linear stability

of the infinite rotating disc boundary layer with roughness implemented via the partial-slip

condition on the disc surface. Both anisotropic (including concentric and radial grooves)

and isotropic roughnesses were modeled, while the evolution of disturbances was examined

using the velocity-vorticity formulation developed by Davies and Carpenter17. Disturbance

development was simulated for both the homogeneous and inhomogeneous flows, with the

former established by fixing the radius.

The local linear stability study (based on the homogeneous flow) indicates that both

concentric and radial roughnesses can be used to delay the onset of local absolute instability

to Reynolds numbers greater than that associated with the rotating disc without rough-

ness. Furthermore, the latter modeling approach was found to establish significantly greater

control benefits than the former roughness strategy.

Numerical computations of the genuine inhomogeneous flow display global linear stabil-

ity characteristics comparable with that found by Thomas and Davies15,16 for the infinite

rotating disc and family of rotating cones. A form of global linear instability, characterised

by a faster than exponential growth, arises when the azimuthal mode number n exceeds a

threshold value ng. For disturbances simulated at azimuthal mode numbers n < ng, global

linear stability prevails. In all instances modeled, it was found that ng > na, where na de-

notes the critical azimuthal mode number for the onset of local absolute instability. Hence,

the local-global linear stability of the infinite rotating disc with partial-slip can be described

by the diagram depicted in figure 1. Additionally, the radial roughness strategy raised the

azimuthal mode number ng to considerably larger values than that corresponding to those
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concentric roughnesses modeled.

Using the modeling developed by Thomas and Davies14–16,20 the azimuthal mode number

ng for the onset of globally unstable disturbances was predicted accurately by coupling

solutions to the Ginzburg-Landau equation18 with local disturbance characteristics from the

homogeneous flow simulations. For all cases modeled, predictions for ng were consistent

with the numerical simulations of the inhomogeneous flow. Thus, global linear stability

characteristics can be estimated by the local linear stability analysis, without the need for

undertaking a more thorough and computationally expensive study of the genuine radially

dependent flow.

This initial study on the effect of surface roughness on absolute and global linear stability

of flow due to a rotating disc could be extended to other rotating boundary layers. Of interest

would be the effect of different roughness models, such as that considered by Garrett et al. 3 .

It remains to be seen what the role of absolute or global instabilities play in the transition

process for rotating flows with surface roughness and we eagerly await future experimental

investigations of these flows.
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The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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TABLE IV. Critical Reynolds number Rea for the onset of absolute instability.
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η

0 68 76 87 100 116

0.25 68 76 86 99 114

0.5 68 76 85 96 111

0.75 68 75 84 94 106

1 68 75 83 93 105

TABLE V. Critical azimuthal mode number na for the onset of absolute instability.
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Appendix A: Critical parameters for absolute instability
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λ

0 0.025 0.05 0.075 0.1

η

0 -17.478 -18.520 -20.115 -21.772 -23.480

0.25 -23.974 -26.024 -28.707 -32.316 -36.134

0.5 -28.397 -31.271 -34.304 -37.579 -43.476

0.75 -31.782 -34.594 -38.227 -42.307 -47.024

1 -34.438 -37.641 -41.185 -45.876 -51.203

TABLE VI. Critical frequency gr,a for the onset of absolute instability.

λ

0 0.025 0.05 0.075 0.1

η

0 0.218-0.118i 0.212-0.121i 0.207-0.126i 0.202-0.129i 0.198-0.134i

0.25 0.204-0.110i 0.199-0.112i 0.194-0.117i 0.192-0.119i 0.186-0.123i

0.5 0.193-0.104i 0.189-0.109i 0.185-0.110i 0.180-0.113i 0.177-0.116i

0.75 0.185-0.100i 0.186-0.107i 0.177-0.105i 0.173-0.108i 0.169-0.111i

1 0.178-0.096i 0.174-0.097i 0.170-0.101i 0.167-0.104i 0.164-0.107i

TABLE VII. Critical wavenumber αa for the onset of absolute instability.
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