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A plate theory for nematic liquid crystalline solids

L. Angela Mihai∗ Alain Goriely†

July 22, 2020

Abstract

We derive a Föppl-von Kármán-type constitutive model for solid liquid crystalline plates where
the nematic director may or may not rotate freely relative to the elastic network. To obtain the
reduced two-dimensional model, we rely on the deformation decomposition of a nematic solid into
an elastic deformation and a natural shape change. The full solution to the resulting equilibrium
equations consists of both the deformation displacement and stress fields. The model equations are
applicable to a wide range of thin nematic bodies subject to optothermal stimuli and mechanical
loads. For illustration, we consider certain reversible natural shape changes in simple systems
which are stress free, and their counterparts, where the natural deformations are blocked and
internal stresses appear. More general problems can be addressed within the same framework.

Keywords: liquid crystals, nematic solids, elastic plates, nonlinear deformation, multiplicative
decomposition, stress.

1 Introduction

Liquid crystalline (LC) solids are complex materials that combine the elasticity of polymeric solids with
the self-organisation of liquid crystal structures [21,34]. Due to their molecular architecture, consisting
of cross-linked networks of polymeric chains containing liquid crystal mesogens, their deformations are
typically large and nonlinear, and can arise spontaneously and reversibly under certain external stimuli
(heat, light, solvents, electric or magnetic field) [5,14,19,20,35,45,52,53,81,88,89,95,96,105,109,111,
113]. These qualities suggest many avenues for technological applications, but more research efforts are
needed before they can be exploited on an industrial scale [15,28,38,40,43,64,73,79,82,86,90,93,94,108].

For thin nematic bodies, large deformations have been studied extensively, both theoretically
and in laboratory. Rectangular geometries were assumed in [6, 18], circular discs were considered
in [7,8,48,49,60–62,65,66,70,101], thin ribbons were treated theoretically in [1–3,80] and experimentally
in [74,75,87]. Different molecular structures and compositions, and the complex morphing behaviour
that can be achieved in liquid crystal polymer networks were reviewed in [22,51,63,69,97,107].

At the constitutive level, for ideal monodomain nematic solids, where the mesogens are aligned
throughout the material, a general formulation is usually provided by the phenomenological neoclas-
sical strain-energy function proposed in [13, 99, 104]. This model is based on the molecular network
theory of rubber elasticity [84], where the parameters are directly measurable experimentally or de-
rived from macroscopic shape changes [102, 103]. For nematic polydomains, where the mesogens are
separated into many domains, such that in every domain, they that are aligned along a local direc-
tor, in [11, 12], it is assumed that each domain has the same strain-energy density as a monodomain.
Extensions to strain-energy functions for nematic elastomer plates with out-of-plane heterogeneities
were proposed in [1–3]. General continuum mechanical theories for nematic elastomers are provided
in [9, 112].
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In this study, we derive a reduced two-dimensional (2D) model describing the equilibrium of thin
nematic solids made of a liquid crystalline material subject to optothermal stimuli and mechanical
loads. We first define the strain-energy function for a solid nematic material where the director may
or may not rotate freely relative to the elastic matrix (Section 2), then formulate the corresponding
stress tensors similar to those from the finite elasticity theory (Section 3). Here, we take as reference
configuration the isotropic phase at high temperature [18, 25–27, 29] (inspired by the classical work
of Flory (1961) [36] on polymer elasticity), rather than the nematic phase in which the cross-linking
was produced [9,13,91,99,104,112]. The relation between the trace formula of [13] (using as reference
orientation the one corresponding to the cross-linking state) and the neo-Hookean-based strain-energy
density defined in [25] (with a “virtual” isotropic state as reference configuration) is explained in [29].
Similar nematic strain-energy densities based on other classical hyperelastic models (e.g., Money-
Rivlin, Ogden) are also discussed in [29]. In adopting the isotropic phase as reference configuration,
we follow Cirak et al. (2014) [18], where strain-energy functions with either free or frozen nematic
director are defined, and the director has an initial direction which may be spatially varying. Our choice
is phenomenologically motivated by the multiplicative decomposition of the deformation gradient
from the reference configuration to the current configuration into an elastic distortion followed by a
natural (stress free) shape change. This multiplicative decomposition is similar to those found in the
constitutive theories of thermoelasticity, elastoplasticity, and growth [41, 56], but it is fundamentally
different as the stress free geometrical change of liquid crystalline solids is superposed on the elastic
deformation, which is applied directly to the reference state. Such difference is important since,
although the elastic configuration obtained by this deformation may not be observed in practice, it may
still be possible for the nematic body to assume such a configuration under suitable external stimuli.
The elastic stresses can then be used to analyse the final deformation where the particular geometry
also plays a role. However, in liquid crystalline materials, asymmetric Cauchy stresses generally occur,
unlike in purely elastic materials [103, p. 80]. We employ the method of asymptotic expansions, with
the thickness of the body as the small parameter, and show that the leading term of the expansion
is the solution of a system of equations of the Föppl-von Kármán-type [37, 92] (Section 5). A similar
model for the elastic growth of thin biological plates was developed in [24] (see also [23]). For an initial
application of the plate theory, we consider ‘spontaneous’ nonlinear deformations of annular circular
discs (Section 6). We conclude with a summary of these results and further remarks (Section 7).

2 An ideal nematic solid

For an ideal nematic liquid crystalline (NLC) solid, the neoclassical strain-energy density function
takes the generic form

W (nc)(F,n) = W (A), (1)

where F represents the deformation gradient from the isotropic state, n denotes the unit vector (or
‘director’) for the orientation of the nematic field, and W (A) is the strain-energy density of the
isotropic polymer network, depending only on the (local) elastic deformation tensor A. The tensors
F and A satisfy the relation (see Figure 1)

F = GA, (2)

where G is the ‘natural’ (or ‘spontaneous’) deformation tensor defining a change of frame of reference
from the isotropic phase to a nematic phase, and is equal to

G = a1/3n⊗ n + a−ν/3 (I− n⊗ n) = a−ν/3I +
(
a1/3 − a−ν/3

)
n⊗ n. (3)

In (3), a > 0 is a temperature-dependent stretch parameter, ν denotes the optothermal analogue to
the Poisson ratio [62], relating responses in directions parallel or perpendicular to the director n, ⊗
stands for the tensor product of two vectors, and I = diag(1, 1, 1) is the identity tensor. For example,
spontaneous extensions or contractions of magnitude 10%-400% along n can occur in LC solids, while
elastomers have ν = 1/2, i.e., their volume remains unchanged during deformation, and glasses have
ν ∈ (1/2, 2) [90,97]. We assume here that a and ν are spatially-independent (no differential swelling).
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These parameters can be estimated independently (e.g., by examining the thermal or light-induced
response of the nematic elastomer with uniform planar alignment [49]). The ratio r = a1/3/a−ν/3 =
a(ν+1)/3 represents the anisotropy parameter, which, in an ideal nematic solid, is the same in all
directions. In the nematic phase, both the cases with r > 1 (prolate molecules) and r < 1 (oblate
molecules) are possible; when r = 1, the energy function reduces to that of an isotropic hyperelastic
material [22]. Note that G given by (3) is symmetric, i.e., G = GT (with the superscript “T” denoting
the transpose operation), whereas the elastic tensor A may not be symmetric in general.

Figure 1: Schematic of composite deformation of a nematic solid from a reference configuration to the
current configuration, by a natural shape change superposed on an elastic distortion.

The hyperelastic strain-energy function W (A) in (1) is minimised by any deformation satisfying
AAT = I [68, 85], while the corresponding nematic strain-energy W (nc)(F,n) is minimised by any
deformation satisfying FFT = G2. Hence, every pair (GR,n), where R is an arbitrary rigid-body
rotation (i.e., R−1 = RT and detR = 1), is a natural (i.e., stress free) state for this material model.

In NLC solids, the director n is an observable (spatial) quantity. Denoting by n0 the reference
orientation of the local director corresponding to the cross-linking state, n may differ from n0 both by
a rotation and a change in r. For NLC elastomers, which are weakly cross-linked, the nematic director
can rotate freely, and the material exhibits isotropic mechanical effects. In NLC glasses, which are
densely cross-linked, the nematic director n cannot rotate relative to the elastic matrix, but changes
through convection due to elastic strain, and satisfies [18,60–62,65]

n =
Fn0

|Fn0|
. (4)

This constraint enables patterning of the director field at cross-linking and guarantees that the
“written-in” pattern remains virtually the same during natural shape changes [60, 61, 100]. The elas-
tic anisotropy of NLC materials where the director cannot rotate was investigated experimentally
in [33, 59]. Natural strains in NLC glasses are typically of up to 4%, whereas for NLC elastomers,
these may be up to 400%.

3 Stress tensors

We restrict our attention to the case when W (A) in (1) describes an incompressible neo-Hookean
material [83], i.e.,

W (A) =
µ

2

[
tr
(
AAT

)
− 3
]
, (5)
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where “tr” denotes the trace operator, and µ > 0 represents the constant shear modulus at small
strain.

Of particular significance are the left and right Cauchy-Green tensors defined, respectively, by

B = AAT and C = ATA. (6)

Using these deformation tensors, the elastic Almansi strain tensor is equal to [68, pp. 90-91]

e =
1

2

(
I−B−1

)
, (7)

and the elastic Green-Lagrange strain tensor is [68, pp. 89-90]

E =
1

2
(C− I) . (8)

For the given hyperelastic material, the Cauchy (true) stress tensor (representing the internal force
per unit of deformed area acting within the deformed solid) takes the form

T = (detA)−1 ∂W

∂A
AT − pI = µB− pI, (9)

where p denotes the Lagrange multiplier for the internal constraint detA = 1 [68, pp. 198-201]. The
Cauchy stress tensor T defined by (9) is symmetric and coaxial (i.e., it has the same eigenvectors)
with the left Cauchy-Green tensor B given by (6), and with the Almansi strain tensor e given by (7).

The corresponding first Piola-Kirchhoff stress tensor (representing the internal force per unit of
undeformed area acting within the deformed solid) is equal to

P = TCof(A) =
∂W

∂A
− pA−T = µA− pA−T , (10)

where Cof(A) = (detA)A−T is the cofactor of A. This stress tensor is not symmetric in general. Its
transpose PT is known as the nominal (engineering) stress tensor [68, pp. 152-153].

The associated second Piola-Kirchhoff stress tensor is

S = A−1P = 2
∂W

∂C
− pC−1 = µI− pC−1, (11)

and this is symmetric and coaxial with the right Cauchy-Green tensor C defined by (6) and with the
Green-Lagrange strain tensor E defined by (8).

In the small strain limit, the Cauchy stress tensor T and the Piola-Kirchhoff stress tensors P and
S coincide [58].

Based on the hyperelastic model defined by (5), we construct the following strain-energy function
of the form (1) corresponding to an ideal nematic solid [18,26,29],

W (nc)(F,n) =
µ

2

{
a2ν/3

[
tr
(
FFT

)
−
(

1− a−2(1+ν)/3
)
n · FFTn

]
− 3
}
. (12)

Despite its dependence on n, this strain-energy function is isotropic [29, 33], and it can therefore
be expressed equivalently in terms of the principal stretch ratios [18]. To see this, we distinguish
two cases: first, when the nematic director is ‘free’ to rotate relative to the elastic matrix, in which
case it tends to align in the direction of the maximum principal stretch ratio, and second, when the
nematic director is ‘frozen’ and satisfies condition (4). For both these cases, in order to construct the
corresponding plate models, we are interested in the stress tensors of the deformed nematic material
in terms of the stresses in the base polymeric network. The relations between these stress tensors are
presented in Appendix A, where the superscript ‘(nc)’ is used when denoting stresses in the nematic
material.
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4 The 3D equilibrium equations

We consider a solid nematic body characterised by the strain-energy function defined by (12), and
occupying a compact domain Ω̄ ⊂ R3, such that the interior of the body is an open, bounded, connected
set Ω ⊂ R3, and its boundary ∂Ω = Ω̄ \ Ω is Lipschitz continuous (in particular, we assume that a
unit normal vector N exists almost everywhere on ∂Ω). The elastic energy stored by the body is equal
to [68, p. 205]

E =

∫
Ω

[
W (nc) (F)− p(nc) (detF− detG)

]
dV, (13)

where p(nc) (detF− detG) enforces the condition that detF = detG, with detG representing the
local change of volume due to the ‘spontaneous’ deformation.

Assuming that, on part of its boundary, ΓN ⊂ ∂Ω, the body is subject to a surface force (traction)
fN that is also derivable from a potential function, the energy minimisation problem in the absence of
body forces is:

Minimise Et = E −
∫

ΓN

fN · u dA subject to detF = detG, (14)

where Et represents the total potential energy over all displacement fields u(X) = x−X, with gradient
tensor ∇u = F− I, such that the kinematic constraint (2) holds, and the last integral represents the
work done by the external force. Following a standard procedure of computing variations δE in E for
infinitesimal variations δu in u, the following first variation in Et is obtained (see [68, p. 310-312]),

δEt = δE −
∫

ΓN

fN · δu dA

= −
∫

Ω
P(nc) : δFdV −

∫
ΓN

fN · δu dA

=

∫
Ω

Div P(nc) · δu dV,

(15)

where P(nc) is the first Piola-Kirchhoff stress tensor (given explicitly by (A.6) in Appendix A).
We arrive at the principle of stationary potential energy stating that: of all admissible displace-

ments fields that the body can assume, those for which the total potential energy assumes a stationary
value, such that δEt = 0, correspond to static equilibrium state described by

−Div P(nc)(X) = 0, (16)

together with the traction boundary condition causing the deformation, P(nc)N = fN , where N is the
outward unit normal vector to the external surface ΓN .

To simplify the mechanical analysis, it is convenient to rewrite the above equations equivalently in
terms of the elastic stresses for the base polymeric network. Since the elastic deformation is applied
directly to the reference state, using the relations between the stress tensors in the nematic material
presented in Appendix A, we obtain

δE = −
∫

Ω
P(nc) : δFdV

= −
∫

Ω
G−1P : δ (GA) dV

= −
∫

Ω
G−1AS : δ (GA) dV

= −
∫

Ω
S :
[(
G−1A

)T
δ (GA)

]
dV

(17)

where P and S are the Piola-Kirchhoff stress tensors given by (10) and (11), respectively. Hence,

δE = −
∫

Ω
S : δE dV, (18)
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where E is the Green-Lagrange strain tensor defined by (8). The equilibrium equation (16) is then
equivalent to

−Div S(X) = 0, (19)

with the corresponding boundary condition SN = A−1GfN .
The potential energy (13) can be expressed equivalently as

E =

∫
Ω

[W (A)− p (detA− 1)] dV, (20)

whereW (A) is the elastic strain-energy function on which the nematic strain-energy functionW (nc)(A)
is based, and p (detA− 1) enforces the incompressibility condition detA = 1.

5 The nematic plate model

Our goal is to devise a 2D model for a nematic solid which is sufficiently thin so that it can be
approximated by a plate equation. In our derivation of the constitutive equations for the nematic
plate model, we rely on the following conditions assumed a priori:

(P1) Surface normals to the plane of the plate remain perpendicular to the plate after deformation;

(P2) Changes in the thickness of the plate during deformation are negligible;

(P3) The stress field in the deformed plate is parallel to the mid-surface.

These kinematic assumptions from the classical theory of plates (the Kirchhoff-Love hypotheses) [55]
are valid also for the Föppl-von Kármán theory [37, 92] (see also [16, 32, 54]). They are appropriate
for nematic solids which are typically prepared as thin sheets, so that suitable heat transfer can be
ensured [22, 51, 63, 69, 86, 97, 107], and allow to reduce the dimensionality of the problem, which is
useful computationally.

Figure 2: Geometry of the Föppl-von Kármán plate: undeformed (reference) configuration (top), and
deformed configuration (bottom). The deformation is fully characterised by the vertical displacement
ξ(X1, X2) of the mid-surface S = (−L1/2, L1/2)× (−L2/2, L2/2)× {0}.

Specifically, we assume that Ω = (−L1/2, L1/2) × (−L2/2, L2/2) × (−H/2, H/2) is the domain
occupied by the thin nematic body in the undeformed state, where H is small compared to L1 and L2,
which are both of order L, i.e., H � L. We denote by S = (−L1/2, L1/2)× (−L2/2, L2/2)× {0} the
mid-surface. The nematic plate in the undeformed state is illustrated in Figure 2-top. In a Cartesian
system of coordinates, X = (X1, X2, X3) ∈ Ω is given by X = X1e1 +X2e2 +X3e3.
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5.1 Free nematic director

We consider in detail the case when F and n are independent variables. First, we express the elastic
strain-energy function described by (5) in the equivalent form

W(I1) =
µ

2
(I1 − 3) , (21)

where I1 = tr(B) = tr(C) is the first principal invariant of the Cauchy-Green tensors given by (6).
Taking into account that the body is thin, we can approximate this function as follows,

W(I1) ≈ W0

(
I

(0)
1

)
+W1

(
I

(1)
1

)
X3 +W2

(
I

(2)
1

)
X2

3 , (22)

with
W0

(
I

(0)
1

)
=
µ

2

(
I

(0)
1 − 3

)
, W1

(
I

(1)
1

)
=
µ

2
I

(1)
1 W2

(
I

(2)
1

)
=
µ

2
I

(2)
1 , (23)

and
I1 ≈ I(0)

1 + I
(1)
1 X3 + I

(2)
1 X2

3 , (24)

where “≈” is used to denote the Taylor expansion up to second order in X3.
The corresponding expansions for the determinant of the elastic deformation and the hydrostatic

pressure are, respectively,
detA ≈ D(0) +D(1)X3 +D(2)X2

3 , (25)

p ≈ p(0) + p(1)X3 + p(2)X2
3 . (26)

We will show that both p(1) and p(2) vanish and, therefore, we do not include them explicitly in the
subsequent expressions.

For plates, when large out-of-plane deflections occur, the bending generally involves stretching. In
this case, the energy defined by (20) can be approximated as follows,

E ≈ Estretch + Ebend, (27)

where Estretch and Ebend represent the stretching and bending contributions, respectively. Explicitly,
they read

Estretch = H

∫ L2/2

−L2/2

∫ L1/2

−L1/2

[
W0

(
I

(0)
1

)
− p(0)

(
D(0) − 1

)]
dX1dX2 (28)

and

Ebend =
H3

12

∫ L2/2

−L2/2

∫ L1/2

−L1/2

[
W2

(
I

(2)
1

)
− p(0)D(2)

]
dX1dX2. (29)

Note that, due to the symmetry of the domain relative to the mid-surface S, the integral of the
first-order term in the approximate strain-energy function given by (22) vanishes identically.

5.1.1 Model reduction

We denote by D = ∇u = F − I the gradient tensor of the displacement field. For the thin nematic
body, we write the displacement vector as

u =

 u1(X1, X2, X3)
u2(X1, X2, X3)
u3(X1, X2, X3)

 =

 u1(X1, X2, X3)
u2(X1, X2, X3)

ξ(X1, X2) + w(X1, X2, X3)

 , (30)

such that:

u1(X1, X2, X3) ≈ u(0)
1 (X1, X2) +X3u

(1)
1 (X1, X2) + · · · ,

u2(X1, X2, X3) ≈ u(0)
2 (X1, X2) +X3u

(1)
2 (X1, X2) + · · · ,

u3(X1, X2, X3) ≈ u(0)
3 (X1, X2) +X3u

(1)
3 (X1, X2) + · · · ,

(31)
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where u1(X1, X2, X3) and u2(X1, X2, X3) are the in-plane displacements of the plate, and introduce

the notation ξ(X1, X2) = u
(0)
3 (X1, X2) to emphasise the fact that this out-of-plane component of the

mid-surface S (where X3 = 0) may be large compared to any other displacement components, then set

w(X1, X2, X3) = X3u
(1)
3 (X1, X2) + · · · . The nematic plate in a deformed state is depicted in Figure 2-

bottom. We further define a tensor g = G−I, with components gij = Gij−δij � 1, i, j = 1, 2, 3,where
δ = (δij)i,j=1,2,3 is the Kronecker symbol. Since the plate is thin, we assume G = G(X1, X2), and
therefore, g = g(X1, X2). As G is symmetric, g = gT .

The length scales for our plate model based on assumptions (P1)-(P3) are as follows [24,110]:

• ξ is of order γH, where 1 < γ � L/H, i.e, out-of-plane displacements are small compared to
the characteristic length L, but may be large relative to the thickness H;

• u1 and u2 are of order ξ2/L;

• g11, g12, g22 are of order ξ2/L2;

• g13 and g23 are of order ξ/L;

• g33 = J − 1− g11 − g22 + g2
13 + g2

23 is of order ξ2/L2.

In this case, the left Cauchy-Green tensor given by (6) takes the equivalent form

B = G−1
(
DDT + D + DT + I

)
G−1, (32)

and its in-plane components are approximated to leading orders as follows,

B
(0)
αβ =

∂u
(0)
α

∂Xβ
+
∂u

(0)
β

∂Xα
− 2gαβ + gα3gβ3 + δαβ, α, β = 1, 2. (33)

Then, the Almansi strain tensor defined by (7) is approximated by a tensor e(0) =
(
e

(0)
ij

)
i,j=1,2,3

with

the in-plane components defined by

e
(0)
αβ =

1

2

∂u(0)
α

∂Xβ
+
∂u

(0)
β

∂Xα
− 2gαβ + gα3gβ3

 , α, β = 1, 2. (34)

By assumption (P3), the Cauchy stress in the normal direction to the deformed mid-surface vanishes.
As only moderate deflections are considered here (the plate is only slightly bent), the curvature of
the plate is small and we can assume that the surface normal does not deviate much from e3, so that
the stress components T13, T23, T33 are small compared to other stress components everywhere in the

plate [23,24]. Then T13 = T23 = 0 implies e
(0)
13 = e

(0)
23 = 0, i.e.,

∂u1

∂X3
≈ − ∂ξ

∂X1
+ 2g13,

∂u2

∂X3
≈ − ∂ξ

∂X2
+ 2g23. (35)

Hence,

u1 ≈ u(0)
1 (X1, X2)−X3

(
∂ξ

∂X1
− 2g13

)
, u2 ≈ u(0)

2 (X1, X2)−X3

(
∂ξ

∂X2
− 2g23

)
, (36)

where u
(0)
1 and u

(0)
2 are of order ξ2/L. In addition, e

(0)
33 ≈ −e

(0)
11 − e

(0)
22 , due to the incompressibility

condition, detB = 1 (see Appendix B). Since T
(nc)
33 = 0, the hydrostatic pressure satisfies

p = µB33, (37)

and, since B33 does not depend on X3, the coefficients in its approximation given by (26) are

p(0) = µ
(

2e
(0)
33 − g

2
13 − g2

23 + 1
)
, p(1) = p(2) = 0. (38)
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The following approximations are now obtained for the in-plane components of the Cauchy stress
tensor defined by (9):

T
(0)
11 = 2µ

(
e

(0)
11 − e

(0)
33 +

1

2
g2

13 +
1

2
g2

23

)
≈ 2µ

(
2e

(0)
11 + e

(0)
22 +

1

2
g2

13 +
1

2
g2

23

)
,

T
(0)
22 = 2µ

(
e

(0)
22 − e

(0)
33 +

1

2
g2

13 +
1

2
g2

23

)
≈ 2µ

(
e

(0)
11 + 2e

(0)
22 +

1

2
g2

13 +
1

2
g2

23

)
,

T
(0)
12 = T

(0)
21 = 2µe

(0)
12 .

(39)

This is a generalised form of Hooke’s law.
Similarly, the right Cauchy-Green tensor given by (6) is equal to

C =
(
DT + I

)
G−2 (D + I) , (40)

and its in-plane components are approximated to leading orders by

C
(0)
αβ =

∂u
(0)
α

∂Xβ
+
∂u

(0)
β

∂Xα
+

∂ξ

∂Xα

∂ξ

∂Xβ
− 2gαβ − gα3gβ3 + δαβ, α, β = 1, 2. (41)

Thus, the Green-Lagrange strain tensor defined by (8) is approximated by E(0) =
(
E

(0)
ij

)
i,j=1,2,3

with

the in-plane components (see also [54, p. 51])

E
(0)
αβ =

1

2

∂u(0)
α

∂Xβ
+
∂u

(0)
β

∂Xα
+

∂ξ

∂Xα

∂ξ

∂Xβ
− 2gαβ − gα3gβ3

 , α, β = 1, 2. (42)

By the incompressibility condition, detC = 1, it follows that E
(0)
33 ≈ −E

(0)
11 − E

(0)
22 (see Appendix B).

The in-plane components of the associated second Piola-Kirchhoff stress tensor given by (11) are
then approximated as follows:

S
(0)
11 = 2µ

(
E

(0)
11 − E

(0)
33 +

1

2
g2

13 +
1

2
g2

23

)
≈ 2µ

(
2E

(0)
11 + E

(0)
22 +

1

2
g2

13 +
1

2
g2

23

)
,

S
(0)
22 = 2µ

(
E

(0)
22 − E

(0)
33 +

1

2
g2

13 +
1

2
g2

23

)
≈ 2µ

(
E

(0)
11 + 2E

(0)
22 +

1

2
g2

13 +
1

2
g2

23

)
,

S
(0)
12 = S

(0)
21 = 2µE

(0)
12 .

(43)

This is the stress tensor that will be used to formulate the plate model. Next, we take into account
the fact that the nematic director can re-orient.

5.1.2 Director orientation

When the deformation is not stress free, it is also necessary to determine the director orientation. By
(A.3) and (A.5), the following condition must be satisfied(

gT(0) −T(0)g
)
n = 0. (44)

This is equivalent to
gT(0) = T(0)g, (45)

which, by (39), it is also equivalent to
ge(0) = e(0)g. (46)

Hence,
g13 = g23 = 0, (47)

9



i.e., the nematic director n is tangent to the mid-surface, and

g11ε12 + g12ε22 = g12ε11 + g22ε12, (48)

where

εαβ =
1

2

∂u(0)
α

∂Xβ
+
∂u

(0)
β

∂Xα

 , α, β = 1, 2. (49)

The nematic director n differs from the unit vector n obtained by the projection of the reference
director n0 on the mid-surface by a rotation R, i.e., n = Rn. Denoting by G = I+g the ‘spontaneous’
deformation tensor given by (3) with n instead of n, we obtain G = RGR−1 and g = RgR−1. Then,
(46) takes the equivalent form

RgR−1e(0) = e(0)RgR−1, (50)

from which the rotation R can be found. To see this, we denote

g =

 g1 0 0
0 g2 0
0 0 g3

 , R =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , (51)

so that

g11 =
g1 + g2 tan2 α

1 + tan2 α
, g22 =

g1 tan2 α+ g2

1 + tan2 α
, g12 =

g2 tanα− g1 tanα

1 + tan2 α
. (52)

By (48) and (52), we obtain

ε12 tan2 α− (ε11 − ε22) tanα− ε12 = 0, (53)

or equivalently,

tan(2α) =
2ε12

ε11 − ε22
, (54)

from which the angle α is found.

5.1.3 The plate equations

To obtain the plate equations, we compute the first variation of the energy given by (18). In (27), the

stretching energy Estretch, defined by (28), involves both the in-plane displacements u
(0)
1 , u

(0)
2 and the

out-of-plane deflection ξ, and thus scales like µHξ4/L4, while the bending energy Ebend, described by
(29), involves only the out-of-plane displacement ξ, and scales like µH3ξ2/L4.

First, for the stretching energy given by (28), we note (see Appendix B for details) that Estretch
can be expressed in terms of stresses and strains as

Estretch = H

∫ L2/2

−L2/2

∫ L1/2

−L1/2
S

(0)
αβE

(0)
αβ dX1dX2, (55)

where the Einstein summation notation for repeated indices is used. Then, the small variation with
respect to the in-plane elastic strains takes the form (see also [54, pp. 50-53])

δEstretch = H

∫ L2/2

−L2/2

∫ L1/2

−L1/2
S

(0)
αβ δE

(0)
αβ dX1dX2

= H

∫ L2/2

−L2/2

∫ L1/2

−L1/2
S

(0)
αβ

(
∂δu

(0)
α

∂Xβ
+

∂ξ

∂Xα

∂δξ

∂Xβ

)
dX1dX2

= −H
∫ L2/2

−L2/2

∫ L1/2

−L1/2

∂S(0)
αβ

∂Xβ
δu(0)

α +
∂

∂Xβ

(
S

(0)
αβ

∂ξ

∂Xα

)
δξ

 dX1dX2.

(56)

The last identity in (56) was obtained through integration by parts.
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Second, we show in Appendix B that the bending energy Ebend in (29) simplifies to

Ebend =
µH3

6

∫ L2/2

−L2/2

∫ L1/2

−L1/2
I

(2)
1 dX1dX2. (57)

Then, the variation with respect to the out-of-plane deflection ξ is equal to (see Appendix B for details
and also [54, pp. 38-44])

δEbend =
µH3

6

∫ L2/2

−L2/2

∫ L1/2

−L1/2
δ (∆ξ)2 dX1dX2 + C

=
µH3

3

∫ L2/2

−L2/2

∫ L1/2

−L1/2
δξ∆2ξdX1dX2 + C,

(58)

where C represents contributions from the boundary conditions.
From (27), (56) and (58), by the principle of stationary potential energy [68, p. 306], assuming that

external stretching forces can be neglected, the following equations are obtained for the equilibrium
of the nematic plate under the external bending force fP acting in the direction normal to the plate,

µ

3
H3∆2ξ −H ∂

∂Xβ

(
S

(0)
αβ

∂ξ

∂Xα

)
= fP , (59)

∂S
(0)
αβ

∂Xβ
= 0, α = 1, 2. (60)

In these equations, µH3/3 represents the bending modulus of the plate, and the unknowns are the

out-of-plane bending ξ and the in-plane stretching components u
(0)
1 , u

(0)
2 .

The static equilibrium of the nematic plate, describing both its Gaussian and the mean curvature,
is fully characterised by equations (59)-(60) together with (52) and (54), and completed by boundary
conditions imposed on the ‘edge’ of the plate.

A classic way to simplify these equations is to define the Airy stress function χ, such that

S
(0)
11 =

∂2χ

∂X2
2

, S
(0)
12 = − ∂2χ

∂X1∂X2
, S

(0)
22 =

∂2χ

∂X2
1

. (61)

Denoting

[χ, ξ] =
1

2

∂2χ

∂X2
1

∂2ξ

∂X2
2

+
1

2

∂2χ

∂X2
2

∂2ξ

∂X2
1

− ∂2χ

∂X1∂X2

∂2ξ

∂X1∂X2
, (62)

and noting that the Gaussian curvature is approximately equal to

[ξ, ξ] =
∂2ξ

∂X2
1

∂2ξ

∂X2
2

−
(

∂2ξ

∂X1∂X2

)2

, (63)

we obtain

∆2χ =
∂4χ

∂X4
1

+ 2
∂4χ

∂X2
1∂X

2
2

+
∂4χ

∂X4
2

=

(
∂4χ

∂X4
2

− 1

2

∂4χ

∂X2
1∂X

2
2

)
+

(
∂4χ

∂X4
1

− 1

2

∂4χ

∂X2
1∂X

2
2

)
+ 3

∂4χ

∂X2
1∂X

2
2

=
∂2

∂X2
2

(
S

(0)
11 −

1

2
S

(0)
22

)
+

∂2

∂X2
1

(
S

(0)
22 −

1

2
S

(0)
11

)
− 3

∂2S
(0)
12

∂X1∂X2

= 3µ

(
∂2E

(0)
11

∂X2
2

+
∂2E

(0)
22

∂X2
1

− 2
∂2E

(0)
12

∂X1∂X2

)
= −3µ ([ξ, ξ]−ΨG) ,

(64)

11



where

ΨG = 2
∂2g12

∂X1∂X2
− ∂2g11

∂X2
2

− ∂2g22

∂X2
1

(65)

is the source of Gaussian curvature, with g11, g22, g12 described by (52), and the angle α given by
equation (54).

Using (61), (62), and (64), the plate equations now take the equivalent form

µ

3
H3∆2ξ − 2H[χ, ξ] = fP , (66)

∆2χ+ 3µ ([ξ, ξ]−ΨG) = 0, (67)

where ΨG is given by (65).
These equations are valid for nematic liquid crystalline plates with ‘free’ nematic director, subjected

simultaneously to applied forces and optothermal stimuli. A direct application of these equations would
be the wrinkling or pattern formation in nematic thin films [4, 44,50,71,77].

5.2 Frozen nematic director

When the nematic director is ‘frozen’, the plate equations are obtained in a similar manner using the
modified strain-energy function given by (A.11). The difference is that, for this case, if the deformation
is not stress free, then a condition analogous to (44) must be derived from (A.12) and (A.14).

6 Applications: Nematic rings

For illustration, we apply the plate equations to some classical problems of temperature-driven shape
changes based on the disc geometry. We focus our attention on nematic circular annular discs, or rings,
with the ‘frozen’ director uniformly distributed throughout the thickness and circularly symmetric
around the centre. These rings can deform homogeneously through the thickness and inhomogeneously
in the plane [4, 7, 8, 22, 30, 48, 49, 60–62, 65, 66, 70, 101]. For the thin plate model, in the absence
of external forces, when only heat generated or optomechanical responses arise, the ‘spontaneous’
deformation tensor is equal to G = diag (1 + g1, 1 + g2, 1) in cylindrical polar coordinates (R,Θ, Z),
and the components of the stress tensor defined by (43) are equal to zero, i.e., the deformation is
stress free [30,31]. If g1 = g2, then a = 1 and the ring remains flat.

6.1 Large out-of-plane deformations

When stress-free out-of-plane deformations are much larger than the thickness of the plate, i.e., ξ � H,
bending can be neglected, and the only equation that remains to be solved is the Monge-Ampère
equation [23,110]

[ξ, ξ] = ΨG, (68)

where, in polar coordinates,

[ξ, ξ] =
1

R

∂ξ

∂R

∂2ξ

∂R2
+

1

R2

∂2ξ

∂R2

∂2ξ

∂Θ2
− 1

R2

(
∂2ξ

∂R∂Θ
− 1

R

∂ξ

∂Θ

)2

(69)

and

ΨG = (g1 − g2)
δ(R)

R
, (70)

with δ(·) denoting the Dirac delta function.
We consider rings with the nematic field forming spirals around the centre, which are initially

at low temperature with 0 < a < 1, then heated [46, 47, 61]. We set n0 = [cosϕ, sinϕ, 0]T , where
−π/2 < ϕ < π/2, in cylindrical polar coordinates (R,Θ, Z), and look for solutions of the form
ξ(R,Θ) = ξ(R), which leads to

ξ(R,Θ) = (R−R0)a1/3

√
a2(ν+1)/3 + 6 + a−2(ν+1)/3

2
(
a2(ν+1)/3 + 1

) . (71)

The resulting shape is a truncated right circular cone (see Figure 3).
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Figure 3: Schematics of natural shapes taken by a nematic ring with n0 = [cosϕ, sinϕ, 0]T in cylindrical
polar coordinates (R,Θ, Z), where ϕ = π/4 (top) or ϕ = −π/4 (bottom), as truncated right circular
cones when heated from an initial low temperature. The undeformed bodies at low temperature are
represented in blue colour, and their deformed shapes at high temperature are shown in red colour.

6.2 Moderate out-of-plane deformations

Next, we assume that the nematic director is aligned in the azimuthal direction, i.e., n0 = [0, 1, 0]T

in cylindrical polar coordinates (R,Θ, Z), and the ring is initially at high temperature with a > 1,
then cooled, so that the material will tend to elongate in the azimuthal direction and contract in the
radial direction. In this case, when the out-of-plane deformations are of the same order as the plate
thickness, i.e., ξ ≈ H, a stability analysis similar to that carried out in [23] can be performed.

For the nematic ring, at the inner surface, where R = A, we assume u1 = 0, u2 = 0 and ξ = 0, such

that ∂ξ/∂R = 0, while at the outer surface, where R = B, we impose S
(0)
11 = 2µs0, with s0 constant,

and S
(0)
12 = 0, and also the two boundary conditions that the edge of the plate is free from traction

(see Appendix B).
We are interested in deformations with the in-plane displacement and stresses independent of

Θ, i.e., u1 = u1(R), u2 = u2(R), and S
(0)
11 = S

(0)
11 (R), S

(0)
12 = S

(0)
12 (R), S

(0)
22 = S

(0)
22 (R), while the

out-of-plane displacement may vary both with R and Θ, i.e., ξ = ξ(R,Θ).
Under these conditions, after rescaling, so that R → R/B, and denoting the ratio between inner

and outer radii by R0 = A/B, so that R ∈ (R0, 1), we can write

u1(R) = u1(R0) + u′1(R0)(R−R0), u2(R) = u2(R0) + u′2(R0)(R−R0), (72)

where u′1 and u′2 represent the first derivative of u1 and u2 with respect to R, respectively. We then
solve equations (60), given the constitutive relations (43), and obtain (see Appendix C for details) the
stress components

S
(0)
11 = 2µs0, S

(0)
22 = −2µs0, S

(0)
12 = 0, (73)

and the displacement components

u1 = (R−R0) (g1 + g2) , u2 = 0, (74)

for all R ∈ (R0, 1). Such situation may arise, for example, when the ring is continuously attached to
an inner disc that remains undeformed [7].
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Figure 4: Schematics of natural shapes taken by a nematic ring with n0 = [0, 1, 0]T in cylindrical polar
coordinates (R,Θ, Z) as d-cones (figures on top-left, top-right, bottom-left, bottom-right showing
modes m = 1, 2, 3, 4, respectively) when cooled from an initial high temperature (middle figure). The
undeformed body at high temperature is represented in red colour, and the deformed shapes at low
temperature are shown in blue colour.

To find the out-of-plane deformations, we solve equation (59), which is equivalent to

∆2ξ − 3

H2µ

(
S

(0)
11

∂2ξ

∂R2
+ S

(0)
22

∂2ξ

R2∂Θ2

)
= 0, (75)

where the biharmonic operator of the out-of-plane displacement in polar coordinates takes the form:

∆2ξ =
∂4ξ

∂R4
+

2∂4ξ

R2∂R2∂Θ2
+

∂4ξ

R4∂Θ4
+

2∂3ξ

R∂R3
− 2∂3ξ

R3∂R∂2Θ
− ∂2ξ

R2∂R2
+

4∂2ξ

R4∂Θ2
+

∂ξ

R3∂R
. (76)

The four boundary conditions for equation (75) are as follows:

• At the inner surface, where R = R0,

ξ = 0,
∂ξ

∂R
= 0. (77)

• At the outer surface, where R = 1, setting ñ = [1, 0]T and t̃ = [0, 1]T as the outward unit normal
and tangent vector, respectively, the two equations (B.16)-(B.17) take the form

∂2ξ

∂R2
= 0,

∂3ξ

∂R3
= 0. (78)

Changing variable to ρ = R − R0 and assuming solutions of the form ξ = ζ(ρ) cos(mΘ), equation
(75) reduces to the following fourth-order ordinary differential equation,

ρ4ζiv + 2ρ3ζ ′′′ −
(
1 + 2m2 + Cρ2

)
ρ2ζ ′′ +

(
1 + 2m2

)
ρζ ′ −

(
4−m2 + Cρ2

)
m2ζ = 0, (79)

where ζ ′, ζ ′′, ζ ′′′, and ζiv are the derivatives of order 1, 2, 3 and 4, respectively, of ζ with respect to

ρ, and C = 3S
(0)
11 /(H

2µ) = −3S
(0)
22 /(H

2µ) = 6s0/H
2 > 0 is a control parameter.

For equation (79), the boundary conditions are:
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• At ρ = 0,
ζ = 0, ζ ′ = 0. (80)

• At ρ = 1−R0,
ζ ′′ = 0, ζ ′′′ = 0. (81)

(a) (b)

Figure 5: (a) The effect of variation in the control parameter C = 6s0/H
2 > 0 on the mode number

m for rings with different ratios R0 between the inner and outer radii; (b) Critical values C0 of the
control parameter at which mode numbers m ∈ {1, 2, 3, 4} are observed as the width of the ring 1−R0

changes.

For m = 0, the ring deforms into a truncated right circular cone. For m > 0, by treating the
boundary value problem as an eigenvalue problem in the control parameter C, we can find the threshold
value for this parameter such that a non-trivial out-of-plane deformation occurs. In this case, the
evolved shapes are anti-cones (developable or d-cones) as shown in Figure 4.

To solve equation (79), subject to the boundary conditions (80)-(81), we apply a numerical scheme
described in [41, pp. 460-461]. Figure 5(a) shows the mode number m observed for rings with different
ratios between the inner and outer radii, R0, as the prescribed (control) value C = 6s0/H

2 > 0
changes. In Figure 5(b), for mode numbers m = 1, 2, 3, 4, the minimum critical control values C0 are
plotted as functions of the width, 1 − R0. Note that, for width 1 − R0 ∈ {0.4, 0.5, 0.6}, the mode
number m = 1 is not obtained, while for width 1 − R0 = 0.3, mode numbers m = 1 and m = 2 are
not found.

7 Conclusion

We have developed here a Föppl-von Kármán-type model to describe the elastic behaviour of NLC
plates, subject to combined optothermal stimulation and mechanical loading. We achieve this by
exploiting the multiplicative decomposition of the deformation gradient into an elastic component and
a ‘spontaneous’ deformation tensor. To illustrate the application of this model, we provide analytical
solutions to combined natural and forced shape changes of circular rings with ‘frozen’ nematic director
in circular disclination patterns, where the deformation is homogeneous through the thickness and the
director remains tangent to the mid-surface.

Stress free natural shape changes had been analysed extensively from the kinematic point of view
before [22, 63, 97]. However, the ability of these complex morphing materials to do physical work
(which is critical in soft robotics applications, for instance) has been much less addressed [22,78]. As
interest in synthetic morphogenic materials continues to increase [17,67], the proposed model is timely
and accounts for both the displacement and stress fields in a deforming nematic plate.
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Our derivation is based on the neoclassical strain-energy function describing an ideal liquid crystal
solid with ‘free’ or ‘frozen’ nematic director, but the dimensional reduction procedure could, in princi-
ple, be extended to other strain-energy functions as well [29, 39, 57]. The equilibrium plate equations
derived here could further be employed to tackle inverse problems where, for a target deformation,
the orientation of the nematic director and the forces to be applied in the reference configuration are
sought [6, 42,66,72,76,101].
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stitutive modelling of liquid crystalline solids. The support by the Engineering and Physical Sci-
ences Research Council of Great Britain under research grants EP/R020205/1 to Alain Goriely and
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A Relations between stress tensors

In this appendix, we derive the stress tensors of the deformed nematic material in terms of the stresses
in the base polymeric network when the nematic director is ‘free’ to rotate relative to the elastic
matrix, and when the nematic director is ‘frozen’.

A.1 Free director

When the nematic director is ‘free’, F and n are independent variables, and the strain-energy function
given by (12) takes the equivalent form

W(nc)(λ1, λ2, λ3) =
µ

2

{
a2ν/3

[
λ2

1 + λ2
2 + λ2

3 −
(

1− a−2(1+ν)/3
)
n ·

(
3∑
i=1

λ2
i ei ⊗ ei

)
n

]
− 3

}
, (A.1)

where {λ2
i }i=1,2,3 and {ei}i=1,2,3 denote the eigenvalues and eigenvectors, respectively, of the left

Cauchy-Green tensor, such that

FFT =
3∑
i=1

λ2
i ei ⊗ ei. (A.2)

Next, we use the multiplicative decomposition (2) of F to obtain the stress tensors of the nematic
material in terms of the stresses of the elastically deformed polymeric network. Since G is symmetric,
the Cauchy stress tensor for the nematic material with the strain-energy function described by (12)
is calculated as follows,

T(nc) = J−1∂W
(nc)

∂F
FT − p(nc)I

= J−1G−T
∂W

∂A
ATGT − p(nc)I

= J−1G−1∂W

∂A
ATG− p(nc)I

= J−1G−1TG,

(A.3)

where T is the elastic Cauchy stress defined by (9), J = detF = detGdetA = detG = a(1−2ν)/3, and
the scalar p(nc) (the hydrostatic pressure) represents the Lagrange multiplier for the internal constraint
J = a(1−2ν)/3.

Note that the Cauchy stress tensor T(nc) given by (A.3) is not symmetric in general [9,77,112]. In
addition, the following condition must hold [9, 112],

∂W (nc)

∂n
= 0, (A.4)

or equivalently, by the principle of material objectivity stating that constitutive equations must be
invariant under changes of frame of reference (see [9] for details),(

T(nc)T −T(nc)
)
n = 0. (A.5)
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The first Piola-Kirchhoff stress tensor for the nematic material is equal to

P(nc) = T(nc)Cof(F) = G−1TA−T = G−1P, (A.6)

where P is the elastic first Piola-Kirchhoff stress given by (10).
The corresponding second Piola-Kirchhoff stress tensor is

S(nc) = F−1P(nc) = A−1G−2P = A−1G−2AS, (A.7)

where S is the elastic second Piola-Kirchhoff stress tensor given by (11).

A.2 Frozen director

If the nematic director is ‘frozen’, then the strain-energy function described by (12) can be written
equivalently as follows,

W(nc)(λ1, λ2, λ3) =
µ

2

a2ν/3

λ2
1 + λ2

2 + λ2
3 −

(
1− a−2(1+ν)/3

) ∣∣∣(∑3
i=1 λ

2
iEi ⊗Ei

)
n0

∣∣∣2
n0 ·

(∑3
i=1 λ

2
iEi ⊗Ei

)
n0

− 3

 ,

(A.8)
where {λ2

i }i=1,2,3 and {Ei}i=1,2,3 represent the eigenvalues and eigenvectors, respectively, of the right
Cauchy-Green tensor, such that

FTF =

3∑
i=1

λ2
iEi ⊗Ei. (A.9)

To obtain the above form, we have used the identities

n · FFTn =
|FTFn0|2

|Fn0|2
=
|FTFn0|2

n0 · FTFn0

. (A.10)

The kinematic interpretation of n0 · FTFn0 = |Fn0|2 is that it represents the square of the stretch
ratio in the direction n0.

In this case also, we can express the stress tensors of the nematic material in terms of the stresses in
the deformed polymeric network. First, we define a modified strain-energy function with independent
variables F and n,

Ŵ (nc)(F,n) =
µ

2

{
a2ν/3

[
tr
(
FFT

)
−
(

1− a−2(1+ν)/3
)
n · FFTn

]
− 3
}
− q

(
n · Fn0

|Fn0|
− 1

)
, (A.11)

where the scalar q is the Lagrange multiplier for the constraint (4).
Then, the Cauchy stress tensor for the nematic material takes the form

T̂
(nc)

= J−1∂Ŵ
(nc)

∂F
FT − p(nc)I

= J−1G−1TG− J−1q

(
I− Fn0 ⊗ Fn0

|Fn0|2

)
n⊗ Fn0

|Fn0|
,

(A.12)

where T is the elastic Cauchy stress defined by (9), and p(nc) is the Lagrange multiplier for the volume
constraint J = a(1−2ν)/3.

As the Cauchy stress tensor given by (A.12) is not symmetric in general, the following additional
condition must hold,

∂Ŵ (nc)

∂n
= 0, (A.13)

or equivalently, (
T̂

(nc)T
− T̂

(nc)
)
n = 0. (A.14)

The corresponding first Piola-Kirchhoff stress tensor for the nematic material is equal to

P̂
(nc)

= T̂
(nc)

Cof(F). (A.15)

The associated second Piola-Kirchhoff stress tensor is

Ŝ
(nc)

= F−1P̂
(nc)

. (A.16)
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B Detailed calculations for the energy components

We provide in this appendix some detailed calculations for our derivation of the plate equations
and their boundary conditions. These are standard and are included here for convenience. Similar
calculations can be found in more detail in [54], for example.

First, we compute the different terms appearing in the stretching energy (28). To lowest-order,
the incompressibility condition is given by

0 = det
(

2E(0) + 1
)
− 1

=
(

2E
(0)
33 + 1

)[(
2E

(0)
11 + 1

)(
2E

(0)
22 + 1

)
− 4

(
E

(0)
12

)2
]
− 1

= 2
(
E

(0)
11 + E

(0)
22 + E

(0)
33

)
+ 4

[
E

(0)
11 E

(0)
22 + E

(0)
22 E

(0)
33 + E

(0)
33 E

(0)
11 −

(
E

(0)
12

)2
]

+O(ξ6/L6)

= 2tr E(0) +O(ξ4/L4).

(B.1)

It follows that E
(0)
33 = −E(0)

11 − E
(0)
22 +O(ξ4/L4). Similarly, e

(0)
33 = −e(0)

11 − e
(0)
22 +O(ξ4/L4).

Then,

I
(0)
1 = tr

(
2E(0) + 1

)
= 2tr E(0) + 3 = 3 +O(ξ4/L4) (B.2)

and, with p(0) defined in (38), we have

−p(0)
(
D(0) − 1

)
= −p(0)

[
det
(

2E(0) + 1
)
− 1
]

= 4µ

[(
E

(0)
11

)2
+
(
E

(0)
22

)2
+
(
E

(0)
12

)2
+ E

(0)
11 E

(0)
22

]
+O(ξ6/L6)

= S
(0)
11 E

(0)
11 + S

(0)
22 E

(0)
22 + 2S

(0)
12 E

(0)
12 +O(ξ6/L6),

(B.3)

where E
(0)
αβ and S

(0)
αβ are given by (42) and (43), respectively. Therefore,

Estretch = H

∫ L2/2

−L2/2

∫ L1/2

−L1/2
S

(0)
αβE

(0)
αβ dX1dX2, (B.4)

from which its first variation given in (56) follows.
Second, we consider the bending energy (29). We have

I
(2)
1 =

(
∂2ξ

∂X2
1

)2

+

(
∂2ξ

∂X2
2

)2

+ 2

(
∂2ξ

∂X1∂X2

)2

+O(ξ3/L3)

= (∆ξ)2 − 2[ξ, ξ] +O(ξ3/L3)

(B.5)

and
D(2) = [ξ, ξ] +O(ξ4/L4), (B.6)

where [ξ, ξ] is given by (63).
The components of the associated Green-Lagrange strain tensor are

E
(2)
αβ = −

(
∂2ξ

∂Xα∂Xβ

)2

, α, β = 1, 2, (B.7)

and the corresponding second Piola-Kirchhoff stress has the components

S
(2)
αβ = 2µE

(2)
αβ , α, β = 1, 2. (B.8)

Therefore,

Ebend =
H3

12

∫ L2/2

−L2/2

∫ L1/2

−L1/2
S

(2)
αβE

(2)
αβ dX1dX2

=
µH3

6

∫ L2/2

−L2/2

∫ L1/2

−L1/2
I

(2)
1 dX1dX2.

(B.9)
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For the variation given by (58), we require the variational derivative

1

2
δ (∆ξ)2 = ∆ξ∆δξ = ∇ · [∆ξ∇δξ]−∇ · [δξ∇ (∆ξ)] + δξ∆2ξ, (B.10)

as well as the variational derivative of the Gaussian curvature,

δ[ξ, ξ] =
∂2ξ

∂X2
1

∂2δξ

∂2X2
+
∂2δξ

∂X2
1

∂2ξ

∂2X2
− 2

∂2ξ

∂X1∂X2

∂2δξ

∂X1∂X2

=
∂

∂X1

(
∂δξ

∂X1

∂2ξ

∂X2
2

− ∂δξ

∂X2

∂2ξ

∂X1∂X2

)
+

∂

∂X2

(
∂δξ

∂X2

∂2ξ

∂X2
1

− ∂δξ

∂X1

∂2ξ

∂X1∂X2

)
.

(B.11)

We define

C1 =

∫∫
D
∇ · (∆ξ∇δξ) dA =

∮
C

∆ξ (ñ · ∇δξ) dL, (B.12)

C2 =

∫∫
D
∇ · [δξ∇ (∆ξ)] dA =

∮
C
δξ [ñ · ∇ (∆ξ)] dL, (B.13)

and

C3 =

∫∫
D
δ[ξ, ξ]dA

=

∮
C

(ñ · ∇δξ)
(
ñ2

2

∂2ξ

∂X2
1

+ ñ2
1

∂2ξ

∂X2
2

− 2ñ1ñ2
∂2ξ

∂X1∂X2

)
dL

+

∮
C
δξt̃ · ∇

[
ñ1ñ2

(
∂2ξ

∂X2
2

− ∂2ξ

∂X2
1

)
+
(
ñ2

1 − ñ2
2

) ∂2ξ

∂X1∂X2

]
dL,

(B.14)

where ñ = [ñ1, ñ2]T and t̃ = [−ñ2, ñ1]T are the outward unit normal and the tangent vector to the
boundary, respectively.

The boundary contribution in the expression of the small variation of bending energy (58) is then

C =
µH3

3
(C1 − C2 − C3) . (B.15)

In particular, when the ‘edge’ of the plate is free from traction, the variations δξ and n · ∇δξ are
arbitrary, and their coefficients in the contour integrals are equal to zero. In this case, the boundary
conditions for out-of-plane deformations are

∆ξ −
(
ñ2

2

∂2ξ

∂X2
1

+ ñ2
1

∂2ξ

∂X2
2

− 2ñ1ñ2
∂2ξ

∂X1∂X2

)
= 0, (B.16)

ñ · ∇ (∆ξ) + t̃ · ∇
[
ñ1ñ2

(
∂2ξ

∂X2
2

− ∂2ξ

∂X2
1

)
+
(
ñ2

1 − ñ2
2

) ∂2ξ

∂X1∂X2

]
= 0. (B.17)

C An inflated nematic ring

Here, we derive the in-plane solution (73)-(74) for the nematic ring under the boundary conditions
specified in Section 6.2. We first consider a circular ring of neo-Hookean material, with the strain-
energy function described by (5). This ring occupies the reference configuration in cylindrical polar
coordinates (R,Θ, Z) ∈ (R0, 1) × [0, 2π) × (0, H), where R0, H > 0 are constants, and deforms in a
plane perpendicular to its axis (see also [41, p. 388]). In the current configuration, we have

r =
f(R)

1 + g1
, θ =

Θ

1 + g2
, z = Z, (C.1)

where f = f(R) is a function of R to be determined. For this finite deformation, the Cauchy-Green
tensor is equal to

B = diag

(
(f ′)2

(1 + g1)2 ,
r2

R2 (1 + g2)2 , 1

)
, (C.2)
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where f ′ is the first derivative of f with respect to R, such that the incompressibility condition
detB = (f ′/J)2 (r2/R2

)
= 1 is satisfied, and J = detG = (1 + g1) (1 + g2).

For the nematic ring described by the generalised Hooke’s law, if the in-plane displacements and
stresses only depend on R, then the Cauchy-Green tensor takes the approximate form (33), i.e.,

B22 ≈ 1− 2g2, B11 =
1

B22
≈ 1 + 2g2 = 1− 2 (g1 + 1− J) , B12 = 0, (C.3)

where J ≈ 1 + g1 + g2. The associated strain components given by (34) are

e11 = g2 = −g1 − 1 + J, e22 = −g2, e12 = 0. (C.4)

It follows that the in-plane displacements are equal to

u1 = (R−R0) (g1 + g2) , u2 = 0, (C.5)

and the corresponding stresses are

S
(0)
11 = 2µg2, S

(0)
22 = −2µg2, S

(0)
12 = 0. (C.6)

Thus, assuming S
(0)
11 = 2µs0 at the outer surface implies s0 = g2.
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[92] von Kármán T. 1910. Festigkeitsproblem im Maschinenbau, Encyklopadie der Mathematischen
Wissenschaftler 4, 311-385.

[93] Wan G, Jin C, Trase I, Zhao S, Chen Z. 2018. Helical structures mimicking chiral seedpod opening
and tendril coiling, Sensors 18(9), 2973 (doi: 10.3390/s18092973).

[94] Wang Z, He Q, Wang Y, Cai S. 2019. Programmable actuation of liquid crystal elastomers via
living exchange reaction, Soft Matter 15(13), 2811-2016.

[95] Wang Z, Tian H, He Q, Cai S. 2017. Reprogrammable, reprocessible, and self-healable liquid
crystal elastomer with exchangeable disulfide bonds, ACS Applied Materials & Interfaces 9(38),
33119-33128 (doi: 10.1021/acsami.7b09246).

[96] Ware TH, McConney ME, Wie JJ, Tondiglia VP, White TJ. 2015. Voxelated liquid crystal elas-
tomers, Science 347, 982-984.

[97] Warner M. 2020. Topographic mechanics and applications of liquid crystalline solids, Annual Re-
view of Condensed Matter Physics 11, 125-145 (doi: 10.1146/annurev-conmatphys-031119-050738).

[98] Warner M, Bladon P, Terentjev E. 1994. “Soft elasticity” - deformation without resistance in
liquid crystal elastomers, Journal de Physique II 4, 93-102.

[99] Warner M, Gelling KP, Vilgis TA. 1988. Theory of nematic networks, The Journal of Chemical
Physics 88, 4008-4013.

[100] Warner M, Modes CD, Corbett D. 2010. Curvature in nematic elastica responding to light and
heat, Proceedings of the Royal Society A 466, 2975-2989 (doi:10.1098/rspa.2010.0135).

[101] Warner M, Mostajeran C. 2018. Nematic director fields and topographies of solid shells of rev-
olution, Proceedings of the Royal Society A 474, 20170566.

[102] Warner M, Terentjev EM. 1996. Nematic elastomers - a new state of matter?, Progress in Polymer
Science 21, 853-891.

[103] Warner M, Terentjev EM. 2007. Liquid Crystal Elastomers, paper back, Oxford University Press,
Oxford, UK.

[104] Warner M, Wang, XJ. 1991. Elasticity and phase behavior of nematic elastomers, Macro-
molecules 24, 4932-4941 (doi: 10.1021/ma00017a033).

[105] Wei J, Yu Y. 2012. Photodeformable polymer gels and crosslinked liquid-crystalline polymers,
Soft Matter 8(31), 8050-8059.

[106] White TJ. 2017. Photomechanical Materials, Composites, and Systems: Wireless Transduction
of Light Into Work, John Wiley & Sons, Hoboken, NJ.

25



[107] White TJ, Broer DJ. 2015. Programmable and adaptive mechanics with liquid crystal polymer
networks and elastomers, Nature Materials 14, 1087-1098 (doi:10.1038/nmat4433).

[108] Wie JJ, Shankar MR, White TJ. 2016. Photomotility of polymers, Nature Communications 7,
13260.

[109] Winkler M, Kaiser A, Krause S, Finkelmann H, Schmidt AM. 2010. Liquid crystal elastomers
with magnetic actuation, Macromolecular Symposia 291-292(1), 186-192.

[110] Xu F, Fu C, Yang Y. 2020. Water affects morphogenesis of growing aquatic plant leaves, Physical
Review Letter 124, 038003.

[111] Zentel R. 1986. Shape variation of cross-linked liquid-crystalline polymers by electric fields,
Liquid Crystals 1, 589-592.

[112] Zhang Y, Xuan C, Jiang Y, Huo Y. 2019. Continuum mechanical modeling of liquid crystal
elastomers as dissipative ordered solids, Journal of the Mechanics and Physics of Solids 126, 285-
303.

[113] Zhao D, Liu Y. 2020. Light-induced spontaneous bending of a simply supported liquid crystal
elastomer rectangular plate, Physical Review E 101, 042701.

26


