
mutations in minor cell populations during the course of CLL
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Biological and prognostic impact of APOBEC-induced
mutations in the spectrum of plasma cell dyscrasias and
multiple myeloma cell lines
Leukemia (2018) 32, 1043–1047; doi:10.1038/leu.2017.345

Tumors are characterized by variable numbers of somatic variants
that have accumulated during the life history of the cancer cell as
a result of abnormal DNA replication and/or DNA repair processes.
The classification of such variants into six types based on the
nucleotide change was used in the past to differentiate the crude
mutation pattern of different cancers.1 Recently, the 5′- and 3′-
context of each substitution was included in such analyses,

expanding the combinations to 96 possible mutation types. This
trinucleotide mutational model represents the combined effect of
several mutational signatures, and has enough resolution to allow
deconvolution of the underlying mutational processes through
the non-negative matrix factorization (NNMF) algorithm.2 To date,
more than 30 distinct signatures have been identified, opening
the field to the investigation of the biological processes
responsible for shaping the genome of cancer, and allowing a
deeper understanding of their relative contribution in different
cancer types.2,3
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In multiple myeloma (MM), two independent whole-exome
sequencing (WES) studies have revealed four mutational signa-
tures. Two are associated with aberrant activity of APOBEC
cytidine deaminases (signatures #2 and #13). The other two
reflect processes generating mutations at a steady rate, resulting
in a mutation load that is often proportional to the cancer age at
the time of sampling: these processes are highlighted by signature
#1, arising from spontaneous deamination of methylated cyto-
sines, and by signature #5, a less-understood process that exhibits
transcriptional strand bias.3–5 Mutational signatures have not been
investigated in other primary plasma cell dyscrasias such as
monoclonal gammopathy of unknown significance (MGUS) or
primary plasma cell leukemia (pPCL). Furthermore, human
myeloma cell lines (HMCLs) bear a genomic profile that is only
partially recapitulating their primary counterparts,6 and mutational
signatures have never been studied in that context. Finally, while
APOBEC activity has been correlated to increased mutational
burden and poor-prognosis MAF/MAFB translocations in MM at
diagnosis5, this has never been confirmed in multivariate analysis
in an independent large series.
To answer these questions, we mined two large public MM WES

data sets4,7 that included six MGUS/Smoldering MM and 255 MM,
to which we added 896 MM samples from the IA9 public release of
the CoMMpass trial. The CoMMpass data were generated as part
of the Multiple Myeloma Research Foundation Personalized
Medicine Initiatives (https://research.themmrf.org and www.
themmrf.org). Furthermore, we included matched WES data from
five previously published pPCL patients.8 Finally, we used
WES mutational catalogs from 18 HMCLs available from the
COSMIC cell-line project (v81, http://cancer.sanger.ac.uk/cell_lines;
Supplementary Table 1). Extraction of mutational signatures was
performed using the NNMF algorithm across cumulative catalogs
of coding and non-coding mutations as previously described2,3

(Supplementary Materials and Methods).
We analyzed 203 917 mutations from 1162 whole exomes of

primary plasma cell dyscrasias and 18 HMCLs. The global mutation
burden increased linearly from MGUS to MM and pPCL. HMCLs
showed the highest burden overall, but likely included many
residual germline variants despite extensive filtering of these
unmatched samples (Supplementary Figure 1). In all three studies,
the mutational load of MM was quite heterogeneous, with a
minority of hypermutated samples (Figure 1a).
NNMF extracted four signatures in the whole cohort pertaining

to three distinct mutational processes:2,3 two are the age-related
signatures #1 and #5, and the third process is represented by
aberrant APOBEC activity3 (Figures 1a and b). While the activity of
age-related processes was more prominent in the cohort as a
whole (median 70%, range 0–100%), APOBEC showed a hetero-
geneous contribution (Figures 1a and b). The absolute contribu-
tion of APOBEC activity to the mutational repertoire correlated
with the overall number of mutations (r= 0.71, P= o0.0001;
Supplementary Figure 2). As previously described, APOBEC
contribution was significantly enriched among MM patients with
t(14;16) and with t(14;20) (Po0.001; Supplementary Figure 3 and
Supplementary Table 2).5 However, even after subgrouping
patients by main cytogenetic aberrations, the association between
absolute APOBEC contribution and mutational load remained
significant across all main subgroups (Supplementary Figure 2). In
the MGUS/SMM series the APOBEC contribution was generally
low, but the limited number of mutations and the supposedly low
sample purity did not allow any further statistical investigation
(Supplementary Figure 4). Among the pPCL cohort, APOBEC
activity was preponderant in three out of five samples, all of them
characterized by the t(14;16)(IGH/MAF); in the remaining two
cases, the absolute number of APOBEC mutations was similar to
that in MM (Supplementary Figure 5).
In HMCLs, unsupervised clustering based on APOBEC activity

highlighted two distinct subgroups: one highly enriched in

APOBEC activity (cluster A); and one with a virtually absent
APOBEC activity (cluster B; Figure 1c, Supplementary Figure 6 and
Supplementary Material and Methods). Interestingly, in cluster A
we observed an enrichment of MAF/MAFB translocations (6/8) as
compared to cluster B (1/10), and this partially explains the higher
activity of APOBEC in the former. However, APOBEC activity was
still variable even within cluster A, and its relative contribution was
not enriched in MAF/MAFB translocated samples as compared to
the other samples in the same cluster A (Figures 1c and d and
Supplementary Figure 6). Cluster B was instead devoid of APOBEC
activity. While some cell lines in this cluster (MC-CAR, IM-9 and
ARH-77) are annotated as MM but were found to be compatible
with Epstein–Barr virus-transformed lymphoblastoid cells instead
(Supplementary Table 1),9,10 others are of clear MM or PCL origin,
thus underscoring the genomic diversity of HMCLs. Overall, the
APOBEC contribution was characterized by a progressive incre-
ment from MGUS/SMM to MM and pPCL and ‘cluster A’ HMCLs
(Figures 1e and f).
We next investigated the prognostic impact of APOBEC

signatures at diagnosis using prospective data from the CoMM-
pass study (median follow-up 435 days (30–1421)). Patients with
an absolute APOBEC contribution in the fourth quartile had
shorter 2-year progression-free survival (PFS; 47% vs 66%,
Po0.0001) and 2-year overall survival (OS; 70% vs 85%,
P= 0.0033) than patients in in the first–third quartiles (Figures 2a
and b). As APOBEC contribution correlates with higher mutational
burden and MAF/MAFB translocations, two known poor
prognostic factors in MM5,11–13 we performed a multivariate
analysis with Cox regression to assess the independent prognostic
value of APOBEC activity against these and other prognostic
factors such as the International Staging System (ISS)14 and type
of treatment (Figure 2c and d, Supplementary Figure 7 and
Supplementary Table 3). In this model, variables such as IGH
translocations and overall mutational load did not show any
independent prognostic significance. Conversely, ISS stage III, as
expected, had the highest hazard ratio (HR) and significance as
independent prognostic factor for both PFS and OS. Remarkably,
fourth quartile APOBEC had an independent adverse prognostic
effect of significant magnitude (PFS HR 2.02, P= 0.02, OS HR 2.78,
P= 0.02; Figures 2c and d and Supplementary Table 3). Despite
MAF/MAFB/MAFA translocations being associated with high
APOBEC activity,5 such cases accounted for just 23% of patients
included in the fourth APOBEC quartile. The remainder of
APOBEC-high patients did not carry MAF/MAFB/MAFA transloca-
tions nor overexpression of these genes (Supplementary Figure 8
and Supplementary Table 4). Conversely, they were characterized
by a higher APOBEC (particularly APOBEC3B) gene expression
compared to other quartiles (Supplementary Figure 9 and
Supplementary Table 5).5 We went on to combine fourth quartile
APOBEC activity with ISS stage III in a two-variable prognostic
score, and we found that co-occurrence of these two factors
identifies a fraction of high-risk patients with 2-year OS of 53.8%
(95% confidence interval (CI) 36.6–79%), while their simultaneous
absence identifies long-term survivors with 2-year OS of 93.3%
(95% CI 89.6–97.2%; Supplementary Figures 10a and b). This was
partially explained by a higher proportion of primary refractory
cases among patients carrying both risk factors (Supplementary
Figures 10c and d).
In this study, we provided a global overview on the contribution

of mutational processes in the largest WES series of plasma cell
dyscrasias, from MGUS to MM to pPCL, investigated to date by
NNMF. Contrary to what anticipated, we did not identify additional
signatures compared to smaller data sets.4,5,7 Our data never-
theless suggest that the relative contribution of APOBEC activity
may increase during progression through the different phases of
MM evolution. Further studies will be necessary to confirm these
findings. In primary samples, APOBEC activity showed a con-
tinuum of increased contribution that correlated with the overall
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Figure 1. APOBEC contribution in plasma cell dyscrasias. (a, b) Barplot of absolute (a) and relative (b) contribution of mutational signatures on
three different MM WES series. (c, d) Extraction of mutational signature from 18 HMCLs: (c) unsupervised hierarchical clustering, showing two
main clusters A and B characterized by different APOBEC contribution. (d) Barplot representing the absolute APOBEC contribution to the
mutational load when NNMF was applied considering clusters A and B as independent series. Asterisks (*) highlight cell lines with ‘canonical’
t(14;16) translocations (IGH/MAF). The template (§) and hash (#) signs mark cell lines carrying alternative MAF/MAFB rearrangements among
clusters A and B, respectively. (e, f) Boxplot showing the progressive increase of the APOBEC absolute (e) and relative (f) mutation load from
MGUS to Cluster A HMCLs.
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mutational burden. In HMCLs instead, we found a clear-cut
distinction between a cluster that had a much higher APOBEC
contribution as compared to primary samples, and a second
cluster where APOBEC activity was minimal or absent. Further-
more, in HMCLs the correlation with mutational burden was
apparently lost. This observation is independent from the high

number of likely residual germline variants observed in cell lines,
as such variants are enriched for age-related signatures, while
APOBEC mutations are typically of somatic nature.15 Furthermore,
both in primary MM and HMCLs, the presence of MAF/MAFB/MAFA
translocations explained some but not all cases with high APOBEC
activity, suggesting other factors may modulate this aberrant

Figure 2. Prognostic role of APOBEC mutations. (a, b) Kaplan–Meier estimated curves of PFS (a) and OS (b) according to APOBEC mutational
activity in all patients from the CoMMpass study. (c, d) Forest plot summarizing the results of multivariate analysis for PFS (c) and OS (d).
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process. Clearly, the low number of HMCLs and their poor
annotation represent a potential confounding factor. Never-
theless, our data underscore the heterogeneity of HMCLs and
prompt for comprehensive studies where the signature profile of
cell lines is compared to that of the primary disease.6

It was shown before that a high fraction of APOBEC mutations is
associated with adverse prognosis.5 Our findings nevertheless add
relevant clinical information. In fact, high APOBEC activity
emerged as one of the strongest and independent adverse
prognostic factors in MM. Furthermore, combination of APOBEC
activity and ISS showed an additive effect on survival that was
already evident with a short follow-up, likely due to resistance or
early relapse following initial response.
This suggests that analysis of APOBEC activity at diagnosis can

help identify a small fraction of high-risk patients that could
benefit from more effective treatments. We propose that cases
with high APOBEC activity may represent a novel prognostic
subgroup that is transversal to conventional cytogenetic classifi-
cation, advocating for closer integration of next-generation
sequencing studies and clinical annotation to confirm this finding
in independent series.
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