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Abstract: Based on the theory of wave propagation in three-dimensional (3D) continuum, a new 

analytical approach for the longitudinal vibration characteristics of a floating pile in layered soils 

with radial heterogeneity is developed by employing a viscous-type damping model. Firstly, an 

analytical solution for the longitudinal complex impedance at the pile head is deduced by 

employing the Laplace transform and complex stiffness technique with the compatibility 

conditions of the pile and radially inhomogeneous surrounding soil. Secondly, a semi-analytical 

solution in the time domain is further acquired by using the inverse Fourier transform method. 

Furthermore, the corresponding analytical solutions are validated through contrasts with previous 

solutions. Finally, parametric analyses are underway to investigate the effect of radial 

heterogeneity of surrounding soils on longitudinal vibration characteristics of floating piles. It is 

indicated that the proposed approach and corresponding solutions can provide a more 

wide-ranging application than the simple harmonic vibration for longitudinal vibration analysis of 

a floating pile in soils. 

Keywords: pile vibration; analytical approach; longitudinal complex impedance; velocity 

admittance; radial heterogeneity; viscous-type damping 

 

1. Introduction 

Structures such as bridges, tall buildings, and offshore platform often have piles as 

foundations that experience dynamic loads from traffic, earthquakes, and mechanical oscillations. 

The dynamic response of pile–soil interactions has always been a hot topic in research fields of 

geotechnical engineering and soil dynamics; it has great reference value and guidance for pile 

dynamic detection, earthquake-resistance design, and dynamic foundation design [1–3]. Many 

approaches for the dynamic interaction systems of pile–soil vibration have been proposed by many 

scholars in which the soil is commonly considered to be radially homogeneous [4–9]. The Winkler 

model has been widely used due to its convenience, considering the surrounding soil as a series of 

spring–dashpot elements [10]. Nevertheless, the wave propagation within the soil around the pile is 

completely ignored in the Winkler model [11,12]. Novak and Nogami [13] further presented a 

plane–strain model by assuming the surrounding soils as thin visco-elastic layers with 

hysteretic-type damping. Manna and Baidya [14] found the performance of the Novak’s model was 

unsatisfactory in a certain high-frequency range for neglecting the longitudinal wave propagation 

between thin layers. Subsequently, various simplified models for pile vibration were proposed to 



Mathematics 2020, 8, 1294 2 of 17 

consider the effect of 3D wave propagation within surrounding soil [15,16]. Furthermore, Zheng et 

al. [17], Cai et al. [18], Yang et al. [19], and Cui et al. [20,21] examined the dynamic behavior of 

foundations (e.g., piles and plates) in a saturated mediu under longitudinal excitation by regarding 

the soil layer as porous saturated media. 

However, there still exist some physical reactions occurring naturally in the disturbed 

environment [22–24]. When the construction operations cause soil disturbance within the vicinity of 

the pile shaft, the influence of soil radial inhomogeneity on the characteristics of pile–soil systems 

should not be ignored [25]. Novak and Sheta [26] developed a simple massless boundary zone 

model to take the radial heterogeneity of surrounding soil into account. Subsequently, Veletsos and 

Dotson [27] proposed a new model by dividing the surrounding soil into two layers, a semi-infinite 

outer undisturbed zone and an inner disturbed zone. To eliminate wave reflection at the interface of 

the boundary zone, Han and Sabin [28] presented a mechanical model of softening the boundary 

region without reflective phenomenon, in which the shear modulus and material damping are 

described as a change in the parabola. Furthermore, EI Naggar [29] employed annular sub-layers to 

examine the strengthened effect of surrounding soil on the longitudinal complex impedance of the 

soil layer. Moreover, the research team of Wang [30,31] pointed out the defects of EI Naggar’s 

model and then presented a new method for the longitudinal vibration of the pile–soil interaction 

system by utilizing the complex stiffness method in the hysteretic-damping soil. Afterwards, based 

on Wang’s model, Li et al. [32] developed a new method to research the longitudinal vibration 

characteristics of a large-diameter pile in radially heterogeneous media. 

Significantly, most of above mentioned research adopted hysteretic-type damping to describe 

the material damping, which is only satisfactory for harmonic excitation and is independent of the 

frequency [33]. On the contrary, viscous-type damping is appropriate for pile vibration which is 

subjected to a non-harmonic excitation load [34]. Therefore, Cui et al. [35] developed a new method 

for the longitudinal response of a pipe pile embedded in radially heterogeneous media with a 

viscous-type damping model. 

To date, based on the theory of 3D wave propagation and the viscous-type damping model, 

there is little work on the longitudinal vibration of piles embedded in radially heterogeneous media. 

In this paper, a new analytical approach for the longitudinal vibration of a floating pile embedded 

in bidirectional heterogeneous soil with a viscous-type damping model is proposed, by extending 

the complex stiffness transfer method, inverse Fourier transform, and the theory of 3D wave 

propagation in continuum. Extensive parametric analyses were also conducted to study the 

longitudinal vibration characteristics of a floating pile in longitudinally layered soils with radial 

heterogeneity. The proposed model can simulate the complicated working conditions better than 

the homogeneous media in the subgrade and can provide a reference and guide for practical 

engineering. 

2. Simplified Mechanical Model and Basic Assumptions 

Figure 1 depicts a new simplified computational model of the coupled system of pile and soil. 

This interaction system is divided into m layers and segments in a longitudinal direction, of the 

surrounding soil and pile shaft, respectively, numbered 1, 2, ..., i, ..., m. The thickness and the upper 

interface depth of the ith soil layer are li and hi, respectively. 1ir  and )1'( mir  are the radii of the ith 

pile segment and disturbed zone, respectively, of the ith soil layer. The ith soil layer with radial 

thickness bi is further subdivided into m’ radial sub-layers, ordered 1, 2, ..., j, ..., m’. ijr  represents 

the radius of the inner interface for the jth subzone within the ith vertical soil layer.  rG S
ij and  rcSij  

are the shear modulus and viscous damping coefficient, respectively, which satisfy the following 

expressions: 

   






















)1'()1(

)1'(1)1(

11

mi
S
mi

miii
S
mi

i
S
i

S

rrG

rrrrfG

rrG

rG
ij

 (1) 



Mathematics 2020, 8, 1294 3 of 17 

   






















)1'()1(

)1'(1)1(

11

mi
S
mi

miii
S
mi

i
S
i

S
ij

rrc

rrrrfc

rrc

rc  (2) 

where )(rf i is a parabolic function [31]. The shear modulus and viscous damping coefficient of 

each radial sub-zone which is homogeneous inside, are determined by Equations (1) and (2) with 

respect to the corresponding radius ijr . The interaction between the interfaces of longitudinal 

layers is assumed to follow the Kelvin–Voigt model. S
ijk and S

ij  are visco-elastic constants of the 

Kelvin–Voigt model at the interface between the ith and (i-1)th layers, of the jth sub-zone. 

Similarly, the corresponding constants of visco-elastic supports beneath the pile toe are δp and kp. 

)(tp  denotes the uniformly distributed excitation load. 

In this paper, some assumptions are given in the presented mechanical model: 

(1) The soil around the pile consists of two zones, one is a semi-infinite area, the other is an 

inner disturbed area. 

(2) The inner disturbed zone is subdivided into a series of annular sub-zones, and each annular 

region is deemed to be homogeneous, linear viscoelastic, and isotropic [30,31]. 

(3) The displacement and shear stress at the interface between neighboring annular sub-zones 

are continuous. 

(4) The surrounding soils are linear visco-elastic continuums with frequency-dependent 

viscous-type damping [36]. 

(5) The deformations of the soil–pile system are small. There is no interface sliding between the 

pile and soils. 

 

Figure 1. The simplified mechanical model. 

3. Governing Equations 

According to the elastodynamic theory of 3D continuums, the governing equation of the jth 

surrounding soil in the axisymmetric conditions is established as follows: 
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where  tzru Sij ,, , S
ij , S

ij
 , S

ijG , S
ijc , S

ij
 are the longitudinal displacement, density, Lame’s 

constant, shear modulus, viscous damping coefficient, and Poisson’s ratio, respectively; 

)21(2 SSSS

ijijijij
G   . 

The longitudinal shear stress at the interface between the first radial sub-zone and pile 

segment is 
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The vibration behavior of the ith pile segment can be written by 
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where p
iE and p

iA denote the elastic modulus and cross-section area, respectively; the shear stress at 

the interface between the first radial sub-zone of soil and the ith pile segment  tzf Si ,  satisfies 

1
),,(),( 1 irr
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i rA  . 

4. Boundary and Initial Conditions 

The boundary condition at the interface between the ith and (i+1)th vertical layers of the jth 

radial sub-zone can be given by 
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where S
ijE is Young’s modulus. 

The boundary condition at the lower interface of ith vertical layers, within the jth radial 

sub-zone, can be given by 
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For the ith vertical layer of soil, the completely coupled conditions are: 

)1()1(

)1(
2

)1(

)1(

)1(

2

 


























jiji rr

S
jiS

ji

S
jiS

jirr

S
ijS

ij

S
ijS

ij
rt

u
c

r

u
G

rt

u
c

r

u
G  (8) 

)1()1(
),,(),,( )1(   

jiji rr
S
jirr

S
ij tzrutzru  (9) 
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where P
i
z

1
and P

iz  are the displacement impedance functions at the top and toe of the ith pile 

segment, respectively. 

5. Solution of the Governing Soil 

The derivation procedure of the analytical solution is shown in Figure 2. 

 

Figure 2. The derivation procedure of the analytical solution. 
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where is  , 1i , S
ijU is the Laplace transform of S

iju . 

Applying the separation variable method, the displacement of the jth radial sub-zone within 

the first vertical layer can be viewed in Appendix A. 

Thus, the shear stress at the inner interface of the jth radial sub-zone within the first vertical 

layer yields: 
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where )( 11 rqI S
jn  represents modified Bessel functions of the first kind of order one; )( 11 rqK S

jn  

represents modified Bessel functions of the second kind of order one. 

Considering the boundary conditions listed in Equations (8) and (9), we have 

if mj  : 
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Substituting Equation (15) into Equation (5) and taking the Laplace transform produces 
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where PPP ρEV 111  , PU1  is the Laplace transform of Pu1 . 

The general solution for Equation (18) is obtained by: 
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Therefore, the solution for Equation (18) can be obtained as 
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Furthermore, according to the continuity conditions in Equation (10), the following expression 

can be given by 
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Combining Equations (16), (17), (21), and (22) yields 
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where '
1n  and ''

1n  are presented in Appendix B. 

Performing the recursion of the transfer function method, p
mZ  is obtained as 
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 , mF

denotes the Laplace transform of )(tp ; The displacement impedance function of the first and ith 

pile segments is given in Appendix C. 

Further, the dimensionless complex impedance '
dK can be expressed as 

ird iKKK '  (25) 

where rK  denotes the true stiffness, and iK  represents the equivalent damping. 

With respect to the semi-sine wave  )/sin()( max TtQtp  , the velocity response in the time 
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 ; maxQ  denotes the amplitude of the exciting pressure; 

T  represents the impulse width of the exciting pressure; cTTT / denotes the corresponding 

dimensionless impulse width; P
m

P
m

P
m EV / ; 
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1

; cTtt /'  represents dimensionless time;

cT  ; the dimensionless frequency response function )(' vH  is given in Appendix D. 

6. Results and Discussion 

Numerical analyses are illustrated to verify the acquired solutions by comparison with prior 

solutions and to investigate the characteristics of a floating pile in bidirectional heterogeneous 

media with a viscous-type damping model. EI Naggar [29] and Wang et al. [30] pointed out that 

stable solutions can be obtained if 20m . Hence, the value of m  is taken as 20 in this paper. The 

coefficient of the disturbance degree S
i is defined as: 

S
mi

S
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S
mi

S
i

S
mi

S
i

S
i VVccGG )1(1)1(1)1(1 /     mi ,...,2,1  (27) 

If 1Si , the soil layer is weakened; if 1Si , the soil layer is strengthened; if 1Si , the soil 

layer is radially homogeneous. 

Unless otherwise specified, some parameters are employed in the following analyses: 

m5.01  ii br , 3m/kg2500pi , s/m3200piV , H=20m, 35
p m/kN101k , 25

p m/skN101  , 

3m/kg2000Sij , s/m100)1'( miV , 4.0S
ij , 2

)1'( m/skN1 mic , 6.0S
i , 5m , 20m . 
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6.1. Verification of the Solution 

The dimensionless complex impedance dK   written in Equation (25) is degenerated to depict 

the longitudinal dynamic characteristics in homogeneous soil by setting 1S
i  mi ,...,2,1 . Then, 

the present solution of dK   is validated by comparing it with the solution of Hu et al. [15]. It is very 

clear from Figure 3 that with different values of pile length H, the present solution agrees well with 

that derived by Hu et al. [15]. Furthermore, Figure 4 show that the present solution also agrees well 

with the existing solution of Yang et al. [31] by setting 0Sijc . Hence, the validity of the present 

solution has been examined with the contrasts above. 
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Figure 3. Contrast of the obtained solution ( 1S
i ) with the solution of Hu et al. [15] ( m5.01 ir , 

0m , 0m ); (a) true stiffness; (b) equivalent damping. 
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Figure 4. Contrast of the obtained solution ( 0S
ijc ) with the prior solution of Yang et al. [31] 

( m5.01 ir , m5.0ib , H=20m, 6.0i , 0m , 20m ); (a) true stiffness; (b) equivalent damping. 

6.2. Parametric Analyses 

Figures 5 and 6 show the influence of the soil weakening degree on the complex impedance 

and dynamic response, respectively. It is found that the weakening degree has a significant impact 

on both the complex impedance and dynamic response. The oscillation amplitudes of the complex 

impedance and dynamic response rise with an increasing weakening degree. Figures 7 and 8 show 

the effect of the soil strengthening degree on the complex impedance and dynamic response, 

respectively, of the pile shaft. It can be seen that both the complex impedance and dynamic 

response evidently depend on the strengthening degree. Specifically, the oscillation amplitudes of 
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the complex impedance and dynamic response decrease with increasing strengthening degree. It is 

very clear that this phenomenon is consistent with the existing results of Yang et al. [31]. 
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(a) (b) 

Figure 5. Influence of soil weakening degree on the complex impedance (H=20m, m5.01 ir ,

m5.0ib , s/m100)1'( miV , 5m , 20m ); (a) true stiffness; (b) equivalent damping. 
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Figure 6. Influence of soil weakening degree on the dynamic response (H=20m, m5.01 ir , m5.0ib , 

s/m100)1'( miV , 5m , 20m ); (a) velocity admittance; (b) reflected signal. 
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Figure 8. Effect of soil strengthening degree due to construction disturbance on the dynamic 

response (H=20m, m5.01 ir , m5.0ib , s/m100)1'( miV , 5m , 20m ); (a) velocity admittance; 

(b) reflected signal. 
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Figure 9. Influence of weakened soil radius on the complex impedance (H=20m, m5.01 ir , 

s/m100)1'( miV , 6.0i , 5m , 20m ); (a) true stiffness; (b) equivalent damping. 
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Figure 10. Influence of weakened soil radius on the dynamic response (H=20m, m5.01 ir , 

s/m100)1'( miV , 6.0i , 5m , 20m ); (a) velocity admittance; (b) reflected signal. 
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Figure 11. Influence of strengthened soil radius on the complex impedance (H=20m, m5.01 ir , 

s/m100)1'( miV , 4.1i , 5m , 20m ); (a) true stiffness; (b) equivalent damping. 
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Figure 12. Influence of strengthened soil radius on the dynamic response (H=20m, m5.01 ir , 

s/m100)1'( miV , 4.1i , 5m , 20m ); (a) velocity admittance; (b) reflected signal. 



Mathematics 2020, 8, 1294 12 of 17 

7. Conclusions 

Based on the theory of wave propagation in a 3D continuum, a new approach for the 

longitudinal vibration of a floating pile is proposed by extending the complex stiffness method with 

the viscous-type damping model. The analytical solutions for the longitudinal impedance and 

dynamic response are achieved and validated by comparison with prior solutions. 

The results of parametric analyses show that: i) the oscillation amplitudes of the complex 

impedance and dynamic response of the pile shaft decline with the increase in the soil disturbance 

degree; ii) the oscillation amplitudes of the complex impedance and dynamic response for the pile 

shaft depend significantly on the disturbance radius of the surrounding soil, while the effect on the 

resonance frequencies of the complex impedance and velocity admittance is nearly negligible; iii) It 

is essential to take the influence of the construction effects on the pile into consideration to improve 

the rationality and reliability of pile design. 

The presented approach and corresponding solutions can provide a more wide-ranging 

application for longitudinal vibration analysis of a floating pile in layered soils with radial 

inhomogeneity, which can be easily degenerated to examine the integrity detection for the 

longitudinal vibration of a floating pile or an end-bearing pile in layered soils with radial 

homogeneity. The heterogeneous effect model can also be extended to some important research 

fields (such as biophysics and physical chemistry, etc.) where diffusion may become abnormal due 

to crowded heterogeneity. 

Appendix A 

Setting ihzz  , the following expression can be obtained according to the variable separation 

method: 
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Hence, the general solution of Equations (A3) and (A4) can be obtained as 
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ijD are undetermined coefficients; )(0 rqI S
ij  and )(0 rqK S

ij present the 

nth-type modified Bessel functions of order zero. 
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Substituting Equation (A1) into Equations (6) and (7) and performing the Laplace transform 

yields 
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Appendix C 

Applying the Laplace transform to Equations (12) and (13) yields 
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where PZ0 and PZ1 are the Laplace transform of Pz0  and Pz1 , respectively; pPP ikz 0 . 
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where 1F  denotes the axial pressure on the head of the first pile segment; 
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Similarly, the displacement impedance function of the ith pile segment at the upper interface is 

))cos()cos(

)sin()sin(

)(

1

1

'

''1

1

''

11

1

''
11

1

'

'

S
ni

n

inP
i

P
i

P
i

P
iS

ni

n

in

S
ni

S
ni

n

inp
i

S
ni

S
ni

n

inP
i

P
i

P
i

P
ip

i

ip
i

D

D

D

D

h
V

h
D

D

AE
U

F
Z

































  (A22

) 

where 
'P

i

P
i

D

D
, '

in  and ''
in  are given by 

)sin()sin()]cos()[cos(

)]cos()[sin()sin()cos(

111

1

'
11

1

'1

11

1

''1
111

1

''

'
S
ni

S
ni

S
ni

n

inii
S
ni

S
ni

n

iniP
i

P
i

i
P
i

S
ni

S
ni

n

iniP
i

P
i

i
P
iS

ni
S
ni

S
ni

n

inii

P
i

P
i

hhh
AE

lZ

h
AE

lZ
hh

D

D































  (A23

) 

]

)sin(])sin[()sin(])sin[(

[

1

111

1

111
'

S
niP

i

S
ni

S
nii

S
niP

i

S
niP

i

S
ni

S
nii

S
niP

i
inin

h
V

lh
V

h
V

lh
V






















  
(A24

) 

]

)cos(])cos[()cos(])[(cos

[

1

111

1

111
''

S
niP

i

S
ni

S
nii

S
niP

i

S
niP

i

S
ni

S
nii

S
niP

i
inin

h
V

lh
V

h
V

lh
V






















  
(A25

) 

where in  can be written as 

)]()([
))((

)1(
1111111

22
11

2
111

'

i
S

ni
S
nii

S

ni
S
in

S
ini

S
nii

ii

S

niiic
in rqIPrqK

Lhr

qiG










  

(A26

) 



Mathematics 2020, 8, 1294 15 of 17 
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Appendix D 

Based on Equation (24), the frequency response function is easily achieved by 
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In addition, the function of velocity admittance )(vH  can be obtained as 
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