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Abstract: Based on the theory of wave propagation in three-dimensional (3D) continuum, a new
analytical approach for the longitudinal vibration characteristics of a floating pile in layered soils
with radial heterogeneity is developed by employing a viscous-type damping model. Firstly, an
analytical solution for the longitudinal complex impedance at the pile head is deduced by
employing the Laplace transform and complex stiffness technique with the compatibility
conditions of the pile and radially inhomogeneous surrounding soil. Secondly, a semi-analytical
solution in the time domain is further acquired by using the inverse Fourier transform method.
Furthermore, the corresponding analytical solutions are validated through contrasts with previous
solutions. Finally, parametric analyses are underway to investigate the effect of radial
heterogeneity of surrounding soils on longitudinal vibration characteristics of floating piles. It is
indicated that the proposed approach and corresponding solutions can provide a more
wide-ranging application than the simple harmonic vibration for longitudinal vibration analysis of
a floating pile in soils.

Keywords: pile vibration; analytical approach; longitudinal complex impedance; velocity
admittance; radial heterogeneity; viscous-type damping

1. Introduction

Structures such as bridges, tall buildings, and offshore platform often have piles as
foundations that experience dynamic loads from traffic, earthquakes, and mechanical oscillations.
The dynamic response of pile-soil interactions has always been a hot topic in research fields of
geotechnical engineering and soil dynamics; it has great reference value and guidance for pile
dynamic detection, earthquake-resistance design, and dynamic foundation design [1-3]. Many
approaches for the dynamic interaction systems of pile—soil vibration have been proposed by many
scholars in which the soil is commonly considered to be radially homogeneous [4-9]. The Winkler
model has been widely used due to its convenience, considering the surrounding soil as a series of
spring—dashpot elements [10]. Nevertheless, the wave propagation within the soil around the pile is
completely ignored in the Winkler model [11,12]. Novak and Nogami [13] further presented a
plane-strain model by assuming the surrounding soils as thin visco-elastic layers with
hysteretic-type damping. Manna and Baidya [14] found the performance of the Novak’s model was
unsatisfactory in a certain high-frequency range for neglecting the longitudinal wave propagation
between thin layers. Subsequently, various simplified models for pile vibration were proposed to
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consider the effect of 3D wave propagation within surrounding soil [15,16]. Furthermore, Zheng et
al. [17], Cai et al. [18], Yang et al. [19], and Cui et al. [20,21] examined the dynamic behavior of
foundations (e.g., piles and plates) in a saturated mediu under longitudinal excitation by regarding
the soil layer as porous saturated media.

However, there still exist some physical reactions occurring naturally in the disturbed
environment [22-24]. When the construction operations cause soil disturbance within the vicinity of
the pile shaft, the influence of soil radial inhomogeneity on the characteristics of pile-soil systems
should not be ignored [25]. Novak and Sheta [26] developed a simple massless boundary zone
model to take the radial heterogeneity of surrounding soil into account. Subsequently, Veletsos and
Dotson [27] proposed a new model by dividing the surrounding soil into two layers, a semi-infinite
outer undisturbed zone and an inner disturbed zone. To eliminate wave reflection at the interface of
the boundary zone, Han and Sabin [28] presented a mechanical model of softening the boundary
region without reflective phenomenon, in which the shear modulus and material damping are
described as a change in the parabola. Furthermore, EI Naggar [29] employed annular sub-layers to
examine the strengthened effect of surrounding soil on the longitudinal complex impedance of the
soil layer. Moreover, the research team of Wang [30,31] pointed out the defects of EI Naggar’s
model and then presented a new method for the longitudinal vibration of the pile—soil interaction
system by utilizing the complex stiffness method in the hysteretic-damping soil. Afterwards, based
on Wang’s model, Li et al. [32] developed a new method to research the longitudinal vibration
characteristics of a large-diameter pile in radially heterogeneous media.

Significantly, most of above mentioned research adopted hysteretic-type damping to describe
the material damping, which is only satisfactory for harmonic excitation and is independent of the
frequency [33]. On the contrary, viscous-type damping is appropriate for pile vibration which is
subjected to a non-harmonic excitation load [34]. Therefore, Cui et al. [35] developed a new method
for the longitudinal response of a pipe pile embedded in radially heterogeneous media with a
viscous-type damping model.

To date, based on the theory of 3D wave propagation and the viscous-type damping model,
there is little work on the longitudinal vibration of piles embedded in radially heterogeneous media.
In this paper, a new analytical approach for the longitudinal vibration of a floating pile embedded
in bidirectional heterogeneous soil with a viscous-type damping model is proposed, by extending
the complex stiffness transfer method, inverse Fourier transform, and the theory of 3D wave
propagation in continuum. Extensive parametric analyses were also conducted to study the
longitudinal vibration characteristics of a floating pile in longitudinally layered soils with radial
heterogeneity. The proposed model can simulate the complicated working conditions better than
the homogeneous media in the subgrade and can provide a reference and guide for practical
engineering.

2. Simplified Mechanical Model and Basic Assumptions

Figure 1 depicts a new simplified computational model of the coupled system of pile and soil.
This interaction system is divided into m layers and segments in a longitudinal direction, of the
surrounding soil and pile shaft, respectively, numbered 1, 2, ..., i, ..., m. The thickness and the upper
interface depth of the ith soil layer are li and h;, respectively. r, and 7, are the radii of the ith

pile segment and disturbed zone, respectively, of the ith soil layer. The ith soil layer with radial

thickness bi is further subdivided into m’ radial sub-layers, ordered 1, 2, ..., j, ..., m". r; represents

the radius of the inner interface for the jth subzone within the ith vertical soil layer. G (r)andc; (r)
are the shear modulus and viscous damping coefficient, respectively, which satisfy the following
expressions:

s
Gii r=rn
s s
G, (") =4 Gitrany x filr) 1y <7 <Figany (1)

s
Gitm+y ¥ 2 Tigms1)
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where f;(r)is a parabolic function [31]. The shear modulus and viscous damping coefficient of

each radial sub-zone which is homogeneous inside, are determined by Equations (1) and (2) with
respect to the corresponding radius r;. The interaction between the interfaces of longitudinal

N

layers is assumed to follow the Kelvin-Voigt model. k; ands; are visco-elastic constants of the

Kelvin - Voigt model at the interface between the ith and (i-1)th layers, of the jth sub-zone.
Similarly, the corresponding constants of visco-elastic supports beneath the pile toe are 6p and kp.
p(t) denotes the uniformly distributed excitation load.

In this paper, some assumptions are given in the presented mechanical model:

(1) The soil around the pile consists of two zones, one is a semi-infinite area, the other is an
inner disturbed area.

(2) The inner disturbed zone is subdivided into a series of annular sub-zones, and each annular
region is deemed to be homogeneous, linear viscoelastic, and isotropic [30,31].

(3) The displacement and shear stress at the interface between neighboring annular sub-zones
are continuous.

(4) The surrounding soils are linear visco-elastic continuums with frequency-dependent
viscous-type damping [36].

(5) The deformations of the soil-pile system are small. There is no interface sliding between the
pile and soils.

P

7777 SN r €5 =iy X Si(r)
= 777 i il
S ! AR D ) |G =G, x L)
|

1 layerm T e i
TTTL O Z@ReeT 1 RNy e T T [ =
m (0 layerm-li i RN O 0 1 Gy, Giimay
i e e ¢
D T T

15 ;
[ Cim'+1)

e Interface between the jth
5 i and (j-1)th sub-zones

Interface between inner disturbed zone
R : Ellld outer zone

Semi-infinite =

outer zone

Figure 1. The simplified mechanical model.

3. Governing Equations

According to the elastodynamic theory of 3D continuums, the governing equation of the jth
surrounding soil in the axisymmetric conditions is established as follows:

2 2 2 2 2
s s.0° g s 10 0 g sO|| 0 10 0 s s0° s
(% +2G} )az—zuij (rz0)+G, (;5+a7)u,.j (r.z.t)+c) &{[aﬂ o +622]uij (r,z,t):| =P (r,2,1) (3)
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where uj(r.z,t), pf, AS; , GY Lol ,uf are the longitudinal displacement, density, Lame’s
constant, shear modulus, viscous damping coefficient, and Poisson’s ratio, respectively;
a5 =2GSyS/(1—2,uS).
Y i ij
The longitudinal shear stress at the interface between the first radial sub-zone and pile
segment is

s 5”1S(V,Z,t)+cs o%us (r,2,)

s
2\, z,t)=G; : 4
Tll(l" z ) il or il otor ( )
The vibration behavior of the ith pile segment can be written by
o%uf z,t o*u? z,t
pfaf SLED f SUED g8 =0 ©)

022 ot?

where Ef and 47 denote the elastic modulus and cross-section area, respectively; the shear stress at
the interface between the first radial sub-zone of soil and the ith pile segment f;(z,¢) satisfies

S s . P_ PP P 2
[P @)=t (2,0 oy smp =pi Ai A =

4. Boundary and Initial Conditions

The boundary condition at the interface between the ith and (i+1)th vertical layers of the jth
radial sub-zone can be given by

s s s S
ez Gy wlenn) Koy o ©)
P £ a gl "7

where E] is Young’s modulus.
The boundary condition at the lower interface of ith vertical layers, within the jth radial
sub-zone, can be given by
6145 (r, z,t)
Oz

S s S A S
k,-j uj (r, z, t) 5,»]» au,-j (r, z, t)
R s tos 3 ] @)
Ej E} t

z=h+l;, =

For the ith vertical layer of soil, the completely coupled conditions are:

s 2.8 s 2.8
GS ouj g 0uy s Mgy s 9T (8)
ij ey r=rgay i) Ci(j+) r=rGa
or otor J or otor J
s s
uz] (ra z, t) F=Ti(4n) - ui(j+1) (}", z, t) F=Ti( 41 (9)

The completely coupled conditions at the interface between the ith pile segment and the first
radial sub-zone of the ith vertical layer are:

S
uy(r,z,t)

- (10)

1=t z0

r=r (11)

The fringe conditions of the ith pile segment satisfy the following expressions.

duip| B zipuiP (12)
TP 4P
dz oy Ef 4
A .
TP, P
dz E; 4

z=h;+1;
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where ziP _,and 2 are the displacement impedance functions at the top and toe of the ith pile

segment, respectively.

5. Solution of the Governing Soil

The derivation procedure of the analytical solution is shown in Figure 2.

The velocity response in time

: . | The complex stiffness
domain Inverse Fourier .
y L= BT -ioT\ior ,— | transform sEHicpilclcad The mth pile segment
= L[ﬁ“” Ty K, =K, +iK,
R w
I 1 1
1 I 1 1
aemmmm - 1 1 1 1
/ ‘\ Coupling conditions The ith pile segment
," \ between pile and soil
' 3 T T T T
; b - I 1 | 1
m +1 'm j---rHEm'H i I I 1 I
II 1 P
“ r’ ZZ
| \_/ / The second pile segment
N \_/ Interface between the :

-~ jthrand (7+1)th sub-layers Continuity fequilibrium

~ -

The first pile segment

General solutions _— ! ;
| Continuity IP_‘I Governing

for displacement . - % . .
.. | equilibrium ]
and stress of SOl|S| 4 L Equations of pile

Y
Governing Boundary
equations of soil [Conditions

Figure 2. The derivation procedure of the analytical solution.

Taking the Laplace transform, Equation (4) can be rewritten as

25 4268 o* Us GS 1o d* U s 2> 198 2° Us = ,S32uS 14
( i+ ,»j)az—z ij(r,z,s)+ U(75+ar—2) ij(r,z,s)+cijs(ar—2+:5+az—2) l-j(r,z,s)—pijs ij(r,z,s) ( )
wheres=iw, i=+-1, U is the Laplace transform of u; .
Applying the separation variable method, the displacement of the jth radial sub-zone within
the first vertical layer can be viewed in Appendix A.

Thus, the shear stress at the inner interface of the jth radial sub-zone within the first vertical

layer yields:
o0
G + )Y Auai K (@ir) costhz = 0f,)  (i=m'+1)
i) = " (15)
G+ Y aiul=BuT1 (@) + CFuKi (afumeoshil ' = oi%,)  (j=m',...2.1)
n=1

where [, (qlsjnr) represents modified Bessel functions of the first kind of order one; K, (qlsjnr)

represents modified Bessel functions of the second kind of order one.
Considering the boundary conditions listed in Equations (8) and (9), we have
ifj=m':
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S .S S s s s
(Gim' + <t S Dimn K1 (@i +1)) K 0 (@im +1ynT1(m'+1)) — (Cigm'+1y
s s s
s T Cm+))Ko @i i +1) K1 (Gigm s 1yn (' +1))

Im'n =" g S S S S S
(Gim' + imS)imn 1 (Gimnti(m'+1) Ko (Gi(m +1ynTiom'+1)) + (i 41

(16)
s s s s
+ Cim sy i(m +0n L 0 Gimn1om'+1) K1 (G0 1y i (o' +1))
if j=m'—1,..,2,1:

s s s s s s s
s =Gy TN G K0 @G DXLy 1 Gy 1G00) = K1 (Gl

n =" s 58S s s s s s
(Gij +¢19)91ju 1 (@11 G+)P ey Lo (1G0T Ko (G 1G4 = (G (17)

s s s s s s
=K1 (1" 1G+0) B @ Gea1G+0)1X €10y a0 (1)
Substituting Equation (15) into Equation (5) and taking the Laplace transform produces

2P 2y s SoNCS S ;.S S N S S
s (Z,5) - P{;}) Gir+q 15)2611 A Bl (G D + G K (g DIcosty,z = o1,) =0 (18)
P14 =1

UL (Z,s)
o=

where 1" =\El/pl , Ul isthe Laplace transform of uf .
The general solution for Equation (18) is obtained by:
P _ P i ' P . i '
U =D cos(lez)+D1 sm(lez) (19)

In addition, the corresponding particular solution can be given by

U]P* = ZM{Z cos(hlsmz'—(ﬂlsln) (20)

n=1

2147 (GS +iw><cS)

S 11911 11 11 S N S N

where Mj, =—— " ————[B1,/1(qi1,711) ~ C1, K1 (q11,711)] -
p1 AT (V1 hi)” —o

Therefore, the solution for Equation (18) can be obtained as

o0
' @ ’ . @ ’
uf = ZM{% cos(hiinz' = i)+ Di cos(—;z )+ D sin(—;-z’) (21)
n=1 1 4
Furthermore, according to the continuity conditions in Equation (10), the following expression
can be given by

o0

s s s S S 8
Z[Bnnlo(411n711)+C11nK0(%m’n)]cos(hnnz ~9i1n)
= 22)
=D1P cos(—z’)+D11D sin(—z’)+ZM1§, cos(hlslnz’—golsln)
|48 |48

1 1 n=1

Combining Equations (16), (17), (21), and (22) yields

S ! 1 a) ' ' S " 1 1 a) 1
UIP = DIP [Z 71n Cos(hlsln z _¢1S1n ) + COS(_P z )] + DIP [_Z 71n Cos(hlsln z _¢1S1n ) + Sln(_P z )] (23)
V; 14
n=l1 1 n=1 1
where y,, and y,, are presented in Appendix B.

Performing the recursion of the transfer function method, Z} is obtained as
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P ®

D,
F P Zymn mln Sm(wmln)"' 7_27mn mln Sm(¢mln) PAP
Z,g(a,):U_';:_E;Am m_nml m_nel - 7 " (24)
m
" DP' (1 +zymn COS((pmln )) zymn COS((pmln)
n=l1
DP& —s o v =S g
% Z Y mn hmln Sln(¢’mln ) + em - Z Y mn hmln Sln(¢mln)
m p=1 n=1

where K, = is the dimensionless complex

DP' (1 +Z Y mn COS((pmln )) Z Y mn COS((pmln)

n=1

O COS(em)‘i'Z}/mnhmln Sln(hmln ¢’mln)+ Em 1 = [sin(&,,) - Z7mn COS(hmln ¢7mln )]

. D
impedance; —- = o= L }:" n "wl , F,
D . =S . -8 Z: 4l ' -S
" Hm Sln(em ) + Z Y mn hmln Sln(h mln — (ptlen ) - E”;,;;l [COS((gm ) + z Y mn COS(hmln - (prftln )]
n=1 m*“tm n=1

denotes the Laplace transform of p(¢); The displacement impedance function of the first and ith
pile segments is given in Appendix C.
Further, the dimensionless complex impedance K, can be expressed as

K, =K, +iK, (25)

where K, denotes the true stiffness, and x; represents the equivalent damping.
With respect to the semi-sine wave p(t) = Q. xsin(#/T) , the velocity response in the time

domain is obtained by the inverse Fourier transform:

1 ' 7l i [0) )
V(0= O IFTI= g Hy —— 5 (e )= - (26)
PimAmVm T P AmVom
» A+ T — . g
where Vv =0. SX.[ [ﬁH ye7do; o denotes the amplitude of the exciting pressure;
-T w

T represents the impulse width of the exciting pressure; T=T/T, denotes the corresponding

dimensionless impulse width; VP WIEP / pm ; th ; t'=t/T, represents dimensionless time;
i=1

o = oT, ; the dimensionless frequency response function H, () is given in Appendix D.

6. Results and Discussion

Numerical analyses are illustrated to verify the acquired solutions by comparison with prior
solutions and to investigate the characteristics of a floating pile in bidirectional heterogeneous
media with a viscous-type damping model. EI Naggar [29] and Wang et al. [30] pointed out that
stable solutions can be obtained if m'>20. Hence, the value of m' is taken as 20 in this paper. The
coefficient of the disturbance degree &5 is defined as:

s/ s ;
\/Gll/Gl(m +1) \/cil/ci(m'Jrl) =Vii Vi +1) (i=12....,m) (27)

If fl-S <1, the soil layer is weakened; if §I-S >1, the soil layer is strengthened; if §I-S =1, the soil

layer is radially homogeneous.
Unless otherwise specified, some parameters are employed in the following analyses:

ra=b;=05m , pf =2500kg/m* , V7 =3200m/s , H=20m, k,=1x10°kN/m’, &, =1x10°kN-s/m? ,

2 N '
pij =2000kg/m*, V.. =100m/s, 43 =04, ¢, =1kN-s/m*, & =06, m=5, m'=20.
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6.1. Verification of the Solution

The dimensionless complex impedance k) written in Equation (25) is degenerated to depict
the longitudinal dynamic characteristics in homogeneous soil by setting &° —1 (i=1,2,..,m). Then,
the present solution of k7 is validated by comparing it with the solution of Hu et al. [15]. It is very

clear from Figure 3 that with different values of pile length H, the present solution agrees well with
that derived by Hu et al. [15]. Furthermore, Figure 4 show that the present solution also agrees well
with the existing solution of Yang et al. [31] by setting c; —0. Hence, the validity of the present

solution has been examined with the contrasts above.

Present solution H=10m 20 Present solution H=10m 4
6L o Hueral [15] H=10m 18 o Huetal [15] H=10m a
...... Present solution H=20m 16|} - Present solution A=20m o A:l' !
_ Huetal [15] H=20m <, 4 Huetal[15] H=20m , % 74 ¢
R o0 I~ noora iy
X g {nad
= ‘a 12+ %
8 g
£ S 10t
E £ sl
[
g s 6| o
= =] N
o MY
D 4 4o
Al
2+
A
| S SN U SO S N S E—— 0 PR SR N RN ST SR SRS R
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Frequency (/Hz) Frequency (f/Hz)
(a) (b)

Figure 3. Contrast of the obtained solution (&5 — 1) with the solution of Hu et al. [15] (rp =0.5m,

m=0, m'=0); (a) true stiffness; (b) equivalent damping.

28
12 + i =
0 I;resent Solhlﬂ;)ln : 12)0m 26 - Present solution
- o =
- ang et al. [' 1 m 24 o Yangetal [31]
gk - Present solution H=20m ~ 22 e Present solution
Q* ol 4 Yangetal [31] F ; X 20 F A Yangetal. [31]
< . | opst
2 4r 3 | Bt
£ 2 5 < 14r
Z 0 s 12r A
g L s 10} i
) Z Ao
F 2 8 PR R
4 For AR
. at A%
I ' 2F o
81 T N T SR SN S R SR RS RS ‘: 0 & . ' ' ’ : .
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Frequency (f/Hz) Frequency (/Hz)

Figure 4. Contrast of the obtained solution (cg — 0) with the prior solution of Yang et al. [31]

(77 =0.5m,b;, =0.5m, H=20m, & =0.6,m=0, m'=20); (a) true stiffness; (b) equivalent damping.

6.2. Parametric Analyses

Figures 5 and 6 show the influence of the soil weakening degree on the complex impedance
and dynamic response, respectively. It is found that the weakening degree has a significant impact
on both the complex impedance and dynamic response. The oscillation amplitudes of the complex
impedance and dynamic response rise with an increasing weakening degree. Figures 7 and 8 show
the effect of the soil strengthening degree on the complex impedance and dynamic response,
respectively, of the pile shaft. It can be seen that both the complex impedance and dynamic
response evidently depend on the strengthening degree. Specifically, the oscillation amplitudes of
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the complex impedance and dynamic response decrease with increasing strengthening degree. It is
very clear that this phenomenon is consistent with the existing results of Yang et al. [31].

P
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Figure 5. Influence of soil weakening degree on the complex impedance (H=20m, r; =0.5m,

by =0.5m, Vi) = 100m/s, m=5, m'=20); (a) true stiffness; (b) equivalent damping.
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Figure 6. Influence of soil weakening degree on the dynamic response (H=20m, ;; = 0.5m, b; = 0.5m,

Vi(m'+1) =100m/s, m=5, m'=20); (a) velocity admittance; (b) reflected signal.
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Figure 7. Influence of soil strengthening degree on the complex impedance (H=20m, 7, =0.5m,

b; =0.5m, Vi(m'+l) =100m/s, m=5, m'=20); (a) true stiffness; (b) equivalent damping.
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Figure 8. Effect of soil strengthening degree due to construction disturbance on the dynamic
response (H=20m, r;; =0.5m , b; =0.5m, Vl.(m,+1) =100m/s, m=5, m'=20); (a) velocity admittance;

(b) reflected signal.

For a given coefficient of the disturbance degree, i.e., §,-S =0.6, the effects of the weakened soil
radius on complex impedance and the dynamic response are shown in Figures 9 and 10,
respectively. It is very clear that the oscillation amplitudes of the complex impedance and dynamic
response become greater with the increase of the softened radius of disturbed zone. Figures 11 and
12 depict the effect of the strengthened soil radius of the disturbed zone on the complex impedance
and dynamic response, respectively, of the pile shaft. In contrast, the oscillation amplitudes of the
complex impedance and dynamic response increase with the decrease of the strengthened radius.
Moreover, the effect of the softened or strengthened radius on the resonance frequencies of complex
impedance and velocity admittance is negligible. Furthermore, the change of the disturbance radius
of soil induces no further additional effects on the complex impedance and dynamic response when
the disturbance radius reaches a critical value, e.g., b, =0.5r; .

10 F
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Figure 9. Influence of weakened soil radius on the complex impedance (H=20m, r; =0.5m,

Viewsty = 100m/s, & =0.6, m=5, m'=20); (a) true stiffness; (b) equivalent damping.



Mathematics 2020, 8, 1294

2.4

e b1=0

Velocity admittance (‘HJ)
o - - N
oo 58] N (=}
T

e
~

Olr,

—o—b=0.5r,

0.0 =— .
0 100

200

300 400 500
Frequency (#/Hz)

(a)

600

700

800 900

11 of 17

Reflected signal (V/

e b=0.01r,

—o— bIZO,Srl1 ---- b‘_:lrll
0.2

0.1
0.0hA
-0.1
-0.2

0.5

1.0

1.5 2.0 2.5 3.0 35
Dimensionless time (')
(b)

4.0

Figure 10. Influence of weakened soil radius on the dynamic response (H=20m, 7; =0.5m,

Viowsn)

41 =2 b=001r,

—o— b‘=0.5r‘1

ko
3L 0o !
- A fod
~ ri iyoie i H
82 A= - I L
»n [ Fe
172 4
Q.)l 4 )
;0 ' : RAOAT
5 I I
E-l ! beove A T
IRV TRY
2k k }v:' (FI
Ly
!
3t v
0 100 200 300 400 500 600 700 800 900
Frequency (f/Hz)
(a)

20

=100m/s, & =0.6, m=5, m'=20); (a) velocity admittance; (b) reflected signal.

18

—_ =
S~

12

Equivalent damping (K})
=

0

100 200 300 400 500 600 700 800 900

Frequency (f/Hz)

(b)

Figure 11. Influence of strengthened soil radius on the complex impedance (H=20m, r,; =0.5m,

Viemsn)

o
=)

Velocity admittance (\H;|)
o
(=2}

o
w

0.0 L L

e p=0.017,

—o—b=05r, --0--b=lr,

0 100 200

300 400 500 600
Frequency (f/Hz)

(@)

700 800

900

Reflected signal (V)

=100m/s, & =14, m=5, m'=20); (a) true stiffness; (b) equivalent damping.

v

PO

o o o o o
N W

o
=1 —
T

s s
& £

-2 b=0.01r,

—0o—b=0.5r  --0--b=1r
i il i il
0.04
0.00 Eﬁﬁ
-0.04 \
v r
-0.08 " /
\ 7
0.12 K

S
ISy

1.5 2.0 2.5 3.0

Dimensionless time ()

(b)

Figure 12. Influence of strengthened soil radius on the dynamic response (H=20m, 7; =0.5m,

Viowsn)

=100m/s, & =14, m=5, m'=20); (a) velocity admittance; (b) reflected signal.



Mathematics 2020, 8, 1294 12 of 17

7. Conclusions

Based on the theory of wave propagation in a 3D continuum, a new approach for the
longitudinal vibration of a floating pile is proposed by extending the complex stiffness method with
the viscous-type damping model. The analytical solutions for the longitudinal impedance and
dynamic response are achieved and validated by comparison with prior solutions.

The results of parametric analyses show that: i) the oscillation amplitudes of the complex
impedance and dynamic response of the pile shaft decline with the increase in the soil disturbance
degree; ii) the oscillation amplitudes of the complex impedance and dynamic response for the pile
shaft depend significantly on the disturbance radius of the surrounding soil, while the effect on the
resonance frequencies of the complex impedance and velocity admittance is nearly negligible; iii) It
is essential to take the influence of the construction effects on the pile into consideration to improve
the rationality and reliability of pile design.

The presented approach and corresponding solutions can provide a more wide-ranging
application for longitudinal vibration analysis of a floating pile in layered soils with radial
inhomogeneity, which can be easily degenerated to examine the integrity detection for the
longitudinal vibration of a floating pile or an end-bearing pile in layered soils with radial
homogeneity. The heterogeneous effect model can also be extended to some important research
fields (such as biophysics and physical chemistry, etc.) where diffusion may become abnormal due
to crowded heterogeneity.

Appendix A

Setting z' = z - i, , the following expression can be obtained according to the variable separation
method:

U; (r.z.8) =R (NZ; (2" (A1)

Inserting Equation (A1) into Equation (14) with rearrangement produces

2,8 S A2pS
s 102y s s s 1 10R; O°R;
(A3 +2G5 +655)— —pSs? 4GS S s) —(— Y y=0 A2
b g g ;js‘ az,z g g b R;JS‘ r or 6}"2 ( )
Then, Equation (A2) can be further separated into
2,8
j 52,8 _
a2 ()72 =0 (A3)
d*R 1 dR]
512 pS
E I 8RS =0 (A4)

art r dr
where g7 and 4} are undetermined coefficients which satisfy the following expression.
s S LS NSV2 (S 4 S Sy 2 S 2
= (A +2Gj +cys)hij ) +(Gy +ciis)q;)” =pys (A5)
Further, Equation (A6) is expressed as

(g +2G;) +cjs)(hi)? +pj s

542 i
(¢5)" = (G,;s +c,-§s) (A6)
Hence, the general solution of Equations (A3) and (A4) can be obtained as
Z3 (z')=C; cos(h; z')+ D sin(h; z') (A7)
R (=)= 4 1y (g} r) + B} Ko (gjir) (A8)
where 47, B}, Cj, and Dj are undetermined coefficients; I,(¢;jr) and K,(q;r) present the

nth-type modified Bessel functions of order zero.
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Substituting Equation (A1) into Equations (6) and (7) and performing the Laplace transform
yields

S S S
dazs| kS 4 se, 45
= T s A (A9)
z'=0 1
S S N
lej| _ ki + 5935 78 (A10
2 S J
= |z’:l, Eij )

Thus, substituting Equation (A7) into Equations (A9) and (A10) gives

K5+ K35l
tan(hlsjll): (Kij + K i ] (A11
S1\2 TSTS
(hih)”™ - KiKi; )
Iz S S z S’ S S S S S S S S
where K =K51/ES,, K =K5L[ES,, K& =k +565, K5, =k3; +s65;.

When r — «, The displacement of the outer zone is given by

us| o (A12
2 P )
By combining Equations (A9), (A10), (A11), and (A12), we have
D 4 Ko (gt cos(h,z = of,)  (=m'+1)
s ) (A13
=Y . )
D 1Bulo (i) + CiKoafurleosthz = 0f,)  (=m',...2,1)
n=1
where ¢}, 2" =arctan(K7), /0, 1), 45,, BS,, CP, areundetermined coefficients.
Appendix B
71» and yy, canbe expressed by
: @ S S : S : @ S S : S
sin[(——hiy, )l + @11, 1 =sin(@yi, ) Slﬂ[(VT”'nn My =it 1+sin(opy,) (Al4
Yin = 71n[ ! + ! ]
QO 48 @ S )
P 1ln P 11n
Vi "
O kS oS 1- s O S N oS 1 s
cos[(—— A1)l = @itn1=cos(@iy) - cos[(—4 —hiy, ) + @1, ] - cos(eyi,)
. v, " (A15
Yin = 7171[ + ]
D S @ 48 )
P 11n P 11n
14 4
where y,, can be written as
(1+iG, 9)_S o s s (Al6
iGy, Vil o —S = =5 -
Yin =~ —SIL lqull;plg S [Kl(qllnr“)_Plﬁnll(qllnrll)]
ri((hn)” =60 Li, )

' =S —s - —
S S S S S P
Where Glc :Cll /(Glltlc) ’ h]]n :llhlln , qln :llqln ’ 01 =wtlc 7 tlc 211 /le , Il :rll /ll , Vi1l ZVH /Vl ’

o =pi/pl, 45 and I, canbe written as

2myqty, (G +iaed) 2myqty, (G +iaeD) Al17

iy =P (@in ) - },1 1,,1" P“S 3 U 3 L@ DI+ Ko (@in D+ },1 ;1" PHS 3 u 5 Ki(gi,m)] (
prAr (7 hiy)” - prA (7 i) - )
(A18

y
S ! 2,28 1 S |
Ly, ZL cos” (hi1,z'—pi1, )dz )
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Appendix C

Applying the Laplace transform to Equations (12) and (13) yields

where z{ and z{" are the Laplace transform of z§ and:{, respectively; z{ =k’ +iws?.

duf ztul
dz' o - Ef 4f
avl| _ zgul
dz' - EF AP

Thus, the displacement impedance function of the first pile segment is given by:

Zhllnyln sin(pf}, )+~ ZJ’mhl 1 sin(oi1,)
» F P { =l 4%
Zl (a)) :_P:—El Al
bl
1 — it cos(pi,) - Z7ln cos(¢i’,)
o pf n=1
where F  denotes the axial pressure on the head of the first

o 008(91)+Z71nh11n sin(hi1n - m)+

1 n=l

n=l

[sm(el) Zm cos(hin - i},)]

n=1

. [
0 s1n(91)+271,,hun sin(ii1n ~ 1)~

1 n=1

[cos(91)+2m cos(hiin ~ i)

pile
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(A19

(A20

(A21

segment;

Similarly, the displacement impedance functlon of the ith pile segment at the upper interface is

where

i

0
neS =8 zZ
0; 08(0,)+ Y yiuhitn sinChitn @i}, )+ o

0

Z Vin tln sm(q’lln)+

i n=1

Z7!n iln Sm(¢tln)

D , " .
—5, 7in and y;, are givenby

n=l1

- 7m Cos(q’lln

n=1 i

P
i1l

[

in 0S(911,))

00
) " -
L1sin@) = Y 7in costhinn =il

n=1

P

; zh N —s _ S -5 . =S
LS eos@)+ ) 7in costhitn i1+ 6 sin(@,)+ Y iphitn sinlhitn i)
i n=l n=1
. (4] . S : S
Sln[(i lln )l + (olln ] Sln(@lln ) Sln[( lln )l ~®iln ] + Sln(@iln )
71'}1 = 7in[ : @ < + : ]
5 hll}'l 7+htln
Vi i
@ S
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" ' i + i
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i i
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 (1+iG.0; Yoo povi
+1 ic q il 1Vl']
}/in = = [Kl(qllnrll) lnll(qllnrll)]

ril ((hiln)

~63)Ls,

(A22
)

(A23
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(A26
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—S"' ' —s
where ¢ =arctanKj1 /3 1) , G =c5 (Gity.) , T = Lhiy , ay, =hdty , 6=ty , te=LI1VE,

r,1—r1/ll, v =V, i /V , ;;1=p;§/p,-P, ¢,i and Lfn can be written as

N S, s S, . S
Gj +iac; ) a1, (G +iac; ) s (A27
_ P ; I T — Ti19i1n ( il il I Sl K T + T0119i1n il il K Sl
B = Billo(a 1) PAP S - 1@~ [Ko(@im) oPAP VIS - 1gi1aniD] )
/i A28
L‘,sn :.[0 cos (h,lnz ¢zln )dz' ( )
Appendix D
Based on Equation (24), the frequency response function is easily achieved by
Zymn COS((ﬂmln) + m (1 + Z}’mn cos((pmln))

Ur[r; 1 Im n=l1 m lm ! (A29

Hu(w):_: =""Pp P - _ﬁH (@)
Fn  ZP (o) Eq 4, E, 4, )

FZ}’mnhmm Sln(wmln) + 9 Z}’mnhmm Sln(wmln)
m p=] n=l1

P DP © s
Z Y mn COS((Dmln ) 0 Di;”)' z Y mn COS((Dmln ))

n=1 m m_ p=1

where H, (o) = is the dimensionless frequency

P 0
DP' Z;}’mnhmln Sln(q)mln) leﬂ/mnhmln Sln(¢mln)+9
m g n

response function of displacement corresponding to #,, ().

In addition, the function of velocity admittance #,(») can be obtained as

7(1"' Y mn COS(Q)m n )) Y mn COS((om n '
i0, Y Z 1 Z} " W (A30

P PP
pmA Vm DP - pm Am Vlﬂ )
pr

Hv(a)) =ioH, (w) =
hml" Sln(wmln ) + 6 - Z Y mn hml" Sln((pmln )

m p=1 n=1

Dm (1 + Zymn c()S((/7m1n )) Zymn COS((/’mln)

where H,(w)=-i6, o - n=l is the dimensionless frequency

DP Zymn hml" 51n(¢mln) + 9 z7mn hmln 51n(¢mln)

m p=1 n=1

response function of velocity corresponding to #, () .
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