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ABSTRACT 
In the cold rolling process of steel strip products, strip breakage is an undesired production 
failure which can lead to yield loss, reduced work speed and equipment damage. In order to 
perform a root cause analysis, conventional physics-based approaches which focus on 
mechanical and metallurgical principles have been applied in a retrospective manner. With the 
advancement of data acquisition technologies, a large amount of process monitoring data is 
collected by various sensors deployed along the cold rolling process; however, conventional 
approaches cannot take advantage of these data. In this paper, a machine learning-based 
approach is proposed to characterise and model strip breakage in a predictive manner. First, in 
order to match the temporal characteristic of strip breakage which occurs instantaneously, 
historical multivariate time-series data of a cold rolling process were extracted in a run-to-
failure manner, and a sliding window strategy was adopted for data annotation. Second, 
breakage-centric features were identified from three facets — physics-based approaches, 
empirical knowledge and data-driven features. Finally, these features were used as inputs for 
strip breakage modelling using recurrent neural networks (RNNs), which are specialised in 
discovering underlying patterns embedded in time-series data. An experimental study using 
real-world data collected from a cold-rolled electrical steel strip manufacturer revealed the 
effectiveness of the proposed approach. 
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1. INTRODUCTION 

Due to its high efficiency and accuracy, the cold rolling process is a primary metal forming 

process for the manufacturing of steel strips [1]. An increasing demand for cold-rolled products 

has aroused widespread concern for maintaining the production continuity of cold rolling. 

However, cold rolling can encounter certain unexpected production failures which cause 

unplanned interruptions of the process. Strip breakage is one of the most common and undesired 

production failures for the cold rolling of strip products [2]. This failure has serious 

consequences, such as yield loss due to unplanned stops of the rolling mill, extended downtime 

caused by severe damage of work rolls and altered rolling performance for subsequent rolling 

when production resumes following a strip breakage [3-5]. 

Numerous studies of strip breakage have been conducted, and their approaches can be 

generally classified into two different categories. The first type of approach, which is referred 

to as the conventional approach, addresses strip breakage by employing mechanical or 

metallurgical theories. According to related research [3, 6-8], the causes of strip breakage are 

various and can be generally classified as equipment factors, material defects, improper 

operation, sensor malfunction or production adjustment. The limitation of the conventional 

approach is its retrospective manner which focuses on cause analyses after the occurrence of 

this failure rather than a predictive approach. 

The data-driven approach, the second type of approach, has been employed within the last 

two decades with the advancement of technologies which facilitate data acquisition and storage 

for complex manufacturing processes [9]. With the deployment of various sensors and accurate 

measurement devices throughout the modern cold rolling process, process data such as coil 
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entry and exit speed, forward and backwards tension, roll gap position and eccentricity of the 

cold rolling system are measured in real-time, and a large amount of multivariate time-series 

data is collected and stored. In this data-rich environment, data-driven approaches to 

investigating strip breakage have previously been applied in a handful of works [5, 10, 11]. 

Despite the advantage of being able to extract useful knowledge and make appropriate decisions 

using the data-driven approach, three questions have rarely been explored. First, these works 

were conducted with the aim of quality characterisation [12], which is the primary step for 

quality improvement, rather than quality prediction [13]. Second, the rationale for determining 

the variables for breakage modelling was not explained and justified. Third, the granularity of 

the data used in these works cannot match the temporal characteristic of strip breakage, which 

occurs instantaneously.  

In light of these questions, we propose a predictive, data-driven approach to model strip 

breakage, one which uses multi-faceted features. Recurrent neural networks (RNNs) were 

applied to take full advantage of multivariate time-series data. In previous data-driven studies 

of strip breakage, it is often not clear why certain features are chosen, or from which facet 

should we select features. In this work, three breakage-centric feature sets are identified from 

three facets: physics-based approaches, empirical knowledge and data-driven features. 

Furthermore, in the actual production of cold-rolled strip, the steel strip shifts rapidly in the 

mill, where the rolling condition can change within milliseconds. The time-series process data 

of cold rolling is collected in a run-to-failure manner to match the temporal characteristic of 

this instantaneous production failure. A sliding window strategy is applied to segment and 

annotate whether a strip will break within the next time window (denoted as predicted window). 
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In addition, considering cold rolling process data may be characterised as multivariate time-

series, deep learning architectures may be applied because of their robust capability to 

manipulate multivariate time-series data compared with more conventional approaches [14]. 

Among various deep learning architectures, recurrent neural networks (RNNs) retain the recent 

memories of input patterns, which makes them suitable for time-series processing [15]. Notably, 

as a variant of RNNs, the long short-term memory (LSTM) network is capable of capturing 

long term memories due to its fully-trained recurrent models with adaptive gates [16]. Inspired 

by the studies cited above, to discover the underlying relationship between real-time measured 

rolling variables and omens of strip breakage, an approach based on RNNs is proposed for the 

modelling of strip breakage. 

To the best of our knowledge, the questions previously raised have not been investigated 

in any previous strip breakage studies, yet their answers might provide significant benefits in 

terms of decision-making for the occurrence of strip breakage. In actual cold rolling practice, 

if such a prediction can be made on a micro-level [17] with an adequately predicted window, a 

planned stop action can be taken to the mill in advance instead of a passive fast stop which will 

often result in severe damage to equipment.  

The remainder of this paper is structured as follows. In Section 2, a review of relevant 

studies of the cold rolling process, strip breakage analyses, and sequential pattern mining is 

provided. Section 3 outlines the flowchart of the proposed methodology for strip breakage 

modelling using three facets. Section 4 reports an experimental study using real-world cold 

rolling data to demonstrate the effectiveness of the method, followed by a result analysis and 

discussion. Section 5 concludes the paper. 
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2. LITERATURE REVIEW 

2.1 Cold Rolling Process and its Mechanical Models  

An essential process in the metal processing of sheets and strips, cold rolling is widely applied 

due to its high accuracy, efficiency and production rate. Cold rolling can be conducted using a 

single stand in a reverse manner or continuous stands [1]. One of the primary processes in 

electrical steel strip production, cold rolling enhances strip properties by changing the 

microstructure and thickness of the steel. These enhanced properties include surface 

smoothness, tensile strength, yield strength and hardness [10]. 

Analysis of rolling is dated back to the pioneering work of Orowan [18], who developed a 

comprehensive theory based on an extension of the slab method by introducing non-

homogeneity of plastic deformation of the sheet and elastic deformation of the rolls. Sims [19] 

developed analytical expressions of pressure distribution, roll force and roll torque by avoiding 

most of the numerical integration in Orowan’s theory. 

Various mechanical models regarding the cold rolling process have been developed and 

presented. These models generally consist of rolling parameters such as tension, roll force, 

torque and yield strength of the strip as well as several operating parameters. The model 

developed by Orowan was one of the most comprehensive among these cold rolling process 

models [18]. However, these conventional rolling force formulas only provided not more than 

reasonably accurate approximations. By contrast, mathematical modelling of the cold rolling 

process is desirable and conducive to actual rolling operation practices [20]. Nevertheless, in 

these theoretical analyses of the rolling process, enormous factors such as friction conditions, 
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roll flattening, deflection of the rolling mill and temperature make these approaches 

problematic and time-consuming. Since exact values of these variables cannot be measured 

during the rolling process, other parameters are needed for better accuracy of the mathematical 

models [21]. As stated above, complex and various operation conditions limit the construction 

of physical models and make the modelling of the cold rolling process difficult. 

 

2.2 Strip Breakages in the Cold Rolling Process  

Similarly to metal forming processes, cold rolling can encounter certain defects with regard to 

the final product. According to technical reports, common defects in the sheet metal rolling 

process are edge cracking, central burst, surface defects and buckling of the strip. Among these 

defects, strip breakage requires special consideration because it not only significantly increases 

production costs but can also cause serious damage to rolls and mill accessories [22]. As one 

of the most common production failures in the cold rolling process, much research has been 

conducted on strip breakage. 

Research on strip breakage has typically been conducted in a retrospective manner which 

focuses on root cause analysis. The causes of strip breakage in the cold rolling process have 

been proved to be various and have been thoroughly analysed [2, 3, 5, 7, 8, 10, 11, 23-25]. 

From these works, the causes of strip breakage can be classified into two categories. One 

category is general causes which are theoretically supported, such as mechanical defects or 

rolling chatter. The other is specific causes which are on a case by case basis, such as equipment 

malfunction, improper operation or rolling schedule adjustment. 
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For the general causes of strip breakage in the cold rolling process, chatters is a primary 

cause. Rolling and other metal forming processes are subject to the occurrence of a variety of 

self-excited periodic vibrations which are collectively referred to as ‘chatter’ [23]. Chatter 

usually reaches its maximum amplitude within a few seconds or even milliseconds and causes 

undesirable periodic variations in product gauge and surface finish. Under extreme conditions 

of chatter, strip breakage or damage to the rolling mill may occur [24].  

Among the specific breakage causes, the equipment factor has been frequently analysed. 

In one case study [7], a servo-valve malfunction resulted in high-pressure fluctuation leading 

to inter-frame tension deviations and crushing the strip on one side. Other equipment 

malfunctions such as the piston rod protrusion of HGC (hydraulic gap control) and poor tension 

meter detection accuracy have also been discussed [2]. Apart from equipment factors, 

inappropriate operation parameter settings also account for the occurrence of strip snap. Several 

operating parameters related to the working roll, such as diameter disparity between the top and 

bottom working rolls, levelness of the bottom working roll and convexity degree of the working 

rolls, have been discussed as significant strip breakage causes. In addition, working rolls, 

levelness and perpendicular of the deflector rolls have also been proved to generate strip 

breakages [3].  

 

2.3 Sequential Pattern Mining and Pattern-Based Classification 

Sequential pattern mining is a widely researched topic. It refers to the mining of frequently 

occurring events in order as patterns. It was first introduced [26] in the Apriori family of 

algorithms. The algorithms perform pattern mining in sequences of itemsets (events) and find 
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frequent patterns in the input. A large variety of algorithms, similar to the Apriori algorithms, 

have been introduced, such as Sequential PAttern Discovery using Equivalence classes 

(SPADE) [27], PrefixSpan [28] and Sequential PAttern Mining (SPAM) [29]. These algorithms 

all use the support measure to determine frequency. The support of a sequence is simply the 

proportion of entries in the data that it appears in frequency. The ability to address the complex 

data structure of sequences is what sets sequential pattern mining apart from standard data 

mining [30]. Sequential pattern mining can access and obtain information that may be hidden 

in the structure of a sequence. The collective behaviour and hidden relations between such data 

can contain decisive information [31]. 

As was reviewed in Section 2.2, with severe thickness variations of the strip and noticeable 

tension fluctuations, the chatter will typically result in unexpected strip breakage [23]. Since 

this chatter incident is a sudden, self-excited periodic vibration of specific process variables, 

inspired by works cited in Section 2.3, sequential pattern mining is considered to capture 

patterns of chatters in the cold rolling process. 

 

3. METHODOLOGY 

In this paper, we propose a machine learning-based approach that consists of three main stages; 

the flowchart of the proposed approach is shown in Figure 1. We start with a data collection 

and pre-processing step, where data is extracted from a cold-rolled steel strip plant. In stage 2, 

we examine three different facets to generate candidate sets of features. Combinations of these 

three feature sets are constructed to present different scenarios for strip breakage modelling. In 
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stage 3, a sequence-to-vector RNN architecture is applied for modelling and evaluating the 

predictive performance of the scenarios.  

 

Figure 1. Flowchart of multi-faceted strip breakage modelling 
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3.1 Data Pre-processing and Time Window Processing 

The collection of cold rolling process monitoring data was first conducted. Since strip breakage 

is an incident that occurs instantaneously, temporal observations that extend far from the 

breakage point into the past are likely to have lower support for breakage modelling. To collect 

informative and predictive time-series data, we should incorporate the concept of recency to 

breakage in the collection of process monitoring data [32]. In this context, data was collected 

in a run-to-failure manner, from the strip breakage time point backwards in time to obtain the 

observations most recent to breakage. Due to the high correlation of neighbouring data, a sliding 

window strategy was adopted to segment the raw time-series data into a collection of pieces; 

an illustration of this strategy is shown in Figure 2. This strategy is applied to capture the 

momentary variations before strip breakage. In addition, we can take better advantage of time-

series data since a time window conveys more information than a single time point. 

In this sliding window strategy, an instance is a two-dimensional matrix containing r 

sampling points (i.e. the window length) with N attributes. By sliding the window backwards 

in time from the breakage point following a selected step size, the total window length is 

segmented into M instances. For both training and testing data, the label of each instance is 

determined by the interval between the last sample point and the strip breakage point. If the 

interval is wider than the predefined predicted window length, the corresponding instance is 

labelled as 0 representing no breakage. Otherwise, if the interval is within the preset predicted 

window length, the corresponding matrix instance is labelled as 1, which represents the coming 

breakage. In this manner, the label of the classification task is a binary number representing 

whether the strip will break within a specific predicted time window. 
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Figure 2. Illustration of the proposed sliding window strategy 

 

3.2 Breakage Relevant Feature Identification from Multi-facets  

Because there are typically thousands of measurements being taken throughout the cold rolling 

process, it is necessary to select or construct a subset of the most relevant features. Considering 

the complexity of strip breakage causes, we are not sure whether the algorithms can make use 

of all the features. When choosing features, the domain of the text in the dataset is also of 

significant influence. Certain features work better either for a specific domain or in a non-

domain dependent dataset [33]. We choose to determine candidate feature sets from the 

following three facets: 
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 The physics-based (PB) feature set contains features directly derived from previous 

physics-based models of strip breakage failure. This facet is selected to capture the general 

causes of strip breakage, as was reviewed in Section 2.2. 

 The empirical knowledge (EK) feature set is a feature set that would capture specific 

relevant and discriminative data by looking at the informative factors that result in a strip 

breakage and referring to domain experts. This facet is selected to capture the specific 

causes of strip breakage, as was reviewed in Section 2.3, since these causes vary from mill 

to mill.  

 The data-derived (DD) features are binary features derived from sequential patterns based 

on PB and EK features. 

 

3.3 Multi-Faceted Modelling for Strip Breakage Using Machine Learning 

3.3.1 Modelling procedure 

Regarding the prediction task for whether a strip will break within a predicted window, a 

supervised machine learning approach based on sequence-to-vector RNN architecture is 

proposed. The task is set as a binary classification problem to classify whether a strip will break 

within a specific time window. To be specific, an instance entering the proposed RNN 

architecture is a two-dimensional matrix containing r sampling points (i.e. the window length), 

with N attributes. 

Unlike a standard neuron network, RNN consists of a series of recurrent neurons, and the 

output from a recurrent neuron is connected to the next recurrent neuron, as shown in Figure 3. 

One issue associated with the standard RNN is the ‘fading memory’ problem. Once the number 
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of time steps becomes large, the ‘future’ time steps will contain virtually no memory of the first 

inputs, as there is no structure in the standard recurrent layer that individually controls the flow 

of the memory itself. To solve this problem, the LSTM network, a family of the recurrent cell 

which incorporates the standard recurrent layer along with additional ‘memory’ control gates, 

has been proposed [34]. An LSTM network is formed exactly like a simple RNN except that 

memory blocks replace the nonlinear units in the hidden layer. Indeed, LSTM blocks may be 

mixed with simple units if required — although it is typically not necessary. Also, as with other 

RNNs, the hidden layer can be attached to any differentiable output layer, depending on 

whether the required task is a regression or classification [35].  

 

 

Figure 3. RNN structure illustration 

The proposed RNN is applied to multivariate time-series classification as follows: input 

data for a time slice represented as a matrix instance (r × N) is fed into the recurrent layers, and 

only the output of the last neuron is fed into the linear layer (the rest are ignored). This output 

is subsequently fed into a linear layer which is embedded with an activation function to make 

binary predictions.  
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3.3.2 Evaluation metrics  

The area under the receiver operating characteristic curve (AUC) is selected to evaluate the 

performance of the proposed modelling methodology since AUC is suitable for binary 

classification. Conventionally, accuracy rate is a standard metric for binary classification. 

Nevertheless, regarding the unbalanced dataset in this study, accuracy rate is not an appropriate 

index since it does not distinguish between numbers of correctly classified instances of different 

classes [36]. To evaluate the classification performance of positive and negative classes 

independently, we can obtain the following two metrics from the confusion matrix [37]: 

True positive rate (TPR) is the percentage of positive instances correctly classified: 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

               (1) 

True negative rate (TNR) is the percentage of negative instances correctly classified: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝐹𝐹
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹

                (2) 

However, neither of these measures is adequate for evaluating the classification 

performance since classification intends to achieve good results for both positive and negative 

classes. In this case, the receiver operating characteristic (ROC) graph offer a means to combine 

these measures to produce an evaluation measurement [38]. The AUC provides a single 

measure of a classifier’s performance for the evaluation regarding which model is on average 

better. Regarding the unbalanced characterisation of the dataset, AUC is used in this study as 

the metric for the classification of performance evaluation [39]. 
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4 EXPERIMENTAL STUDY 

The experimental study was conducted using the historical data provided by a cold-rolled 

silicon electrical steel manufacturer. Due to excellent electrical and magnetic properties, cold-

rolled silicon steel strip is a primary functional material widely used for the manufacturing of 

transformer cores and motors in the power electronics industry [40]. For the production of 

silicon steel strips, cold rolling is an essential process which compresses and squeezes the 

incoming strip into the thinner outcoming strip to enhance properties such as yield strength, 

surface smoothness and permeability. Compared with general low carbon steel strips, silicon 

steel strips are lower in toughness due to a high silicon content [41]. In this context, strip 

breakages therefore more frequently occur in the cold rolling process of high silicon steel strips. 

In this steel strip manufacturer, brittle high silicon electrical steel strips are cold-rolled five 

passes back and forth, decreasing the original thickness by 90% on a reversing mill where 

undesired strip breakages occur from time to time. Breakages of strip coils result in yield loss, 

reduced speed of work and failure to achieve the final target thickness. Consequently, strip 

breakage production failure increasingly aroused attention from this steel company. 

Furthermore, in this company, causes of strip breakage are currently identified retrospectively 

rather than in a predictive manner. The company can benefit from an effective strip breakage 

prediction model by taking countermeasures beforehand to increase productivity and prevent 

further damage.  

An initial experimental study was conducted to predict strip breakage and gain insights 

into feature sets constructed from different facets. In addition to experiments on different 

feature sets, to discover the appropriate predicted window length for the evaluation of 
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prediction performance and actual production practice, experiments exploring different 

predicted window lengths were also conducted. 

 

4.1 Data Acquisition and Preparation 

The raw data regarding the cold rolling process in this study were extracted from a production 

data acquisition (PDA) system installed on-site. Cold rolling process variables such as speed, 

tension, eccentricity and roll gap position can be measured by this automated system, which is 

employed with accurate measurement devices. Data are monitored and recorded continuously 

in real-time at a frequency of 100 Hz to record the continuous working condition of the mill. 

Due to the high correlation between neighbouring data points, a lower sampling rate results in 

a distortion, compared with raw data. Therefore, to get the most information possible from this 

PDA-recorded data, we used full resolution data under the sampling rate of 100 Hz. 

Additionally, using full-resolution data enables a detailed calculation of the breakage point, 

resulting in more accurate labels for classification. 

Since the causes of strip breakage are currently identified retrospectively in this company, 

each broken strip coil is marked with a specific cause manually by shop floor engineers. These 

causes are generally classified into material causes, non-material causes and unknown causes. 

It should be noted that, as was reviewed in Section 2.1, a primary cause of strip breakage is the 

issue of incoming raw material which is annealed and pickled hot-rolled strips. The case is 

similar in this company as well. However, the information regarding these hot-rolling strips 

was collected in a batch level (i.e. the measurements were taken on each coil) in practical cold 

rolling operations, and no detailed material data were collected at a second level. Since the 
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objective of the experimental study is to predict strip breakage at a micro-level, the material 

issue was not in its scope. In this context, data were obtained from coils with a unified material 

grade.  

Pre-processing of data was conducted concerning the momentary manner of strip breakage 

with the aim of taking better advantage of time-series data. To be specific, the collection and 

pre-processing of the process data were conducted from the strip breakage point backwards in 

time. Following this, data cleaning was conducted to deal with abnormal and missing data. 

There were abnormal negative values in variables such as entry and exit speed, indicating the 

rolling direction (since the mill was reversing), and the absolute value was therefore taken. 

Furthermore, values were missing within the dataset. In consideration of the correlation of 

neighbouring data points, forward imputation was applied, which imputed any missing value 

to be the same as its previous measurement. In this context, data were collected from the strip 

coils broken due to non-material causes, and these coils possessed the same incoming material 

grade. It should also be noted that for each selected coil only broke once. Thus, the dataset 

contained 33 broken strip coils marked with non-material causes under the same incoming 

material grade, covering three months of production. The dataset was divided into training and 

testing sets before training. The training set consisted of 27 coils, and the test set contained 6 

coils. In consideration of obtaining a manageable dataset size while at the same time 

considering recency, the parameter set of the sliding strategy was determined as shown in Table 

1.  
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Table 1. Parameters in sliding window strategy (unit: second). 

Instance length Step size Predicted window length 
Time backwards from 

breakage point 

58 0.01 0.5 60 

To be specific, under this parameter setting, each coil in the training set could generate 201 

instances; 50 of the 201 were marked as break and the remainder were labelled non-break.  

 

4.2 Experimental Setup 

In order to gain insights into predictive performance among feature sets, the first experimental 

study was a performance comparison of models based on different combinations of feature sets 

identified from multiple facets. Subsequently, based on the results from the first experimental 

study, further exploratory experiments were conducted to discover an appropriate predicted 

time window length.  

In the first experimental study, models were built based on feature sets identified from EK, 

physical-based models and DD approaches. First, the feature set derived from EK was created 

since these features are informative and include specific strip breakage causes in the cold rolling 

system of this company. Details of this feature set are listed in Table 2. 

Table 2. Details of features relevant to strip breakage based on empirical knowledge. 

No. Name Description 

1 Raw entry speed (m/min) Strip speed measured on the entry side 

2 Raw exit Speed (m/min) Strip speed measured on the exit side 

3 Total load feedback 
The force pushing the load apart, equal to the 

pressure on the strip 

4 Front capsule force Force applied on the front capsule  
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5 Back capsule force Force applied on the back capsule 

6 LR tension 
A force applied to the pull strip from the side of the 

left reel into the rolls  

7 RR tension 
A force applied to the pull strip from the side of the 

right reel into the rolls 

8 Exit gauge deviation (mm) Strip thickness deviation measured on the exit side 

9 Raw gap position (mm) 
A separation distance of work rolls with no elastic 

deformation 

10 Eccentricity trim (mm) 
A periodic trim to handle the non-circularity of the 

rolls which result in periodic variation in the roll gap 

11 Measured slip (%) 
The displacement ratio between the strip coil and the 

working roll 

Second, in addition to the features identified from EK which cover specific strip breakage 

causes as reviewed in Section 2.2, features identified from PB models were considered as the 

second facet to be included in general causes of strip breakage. Diameter disparity between the 

top and bottom working rolls as well as left and right deflector roll were first considered [3]. 

Since chatter is a vital aspect of strip breakage, the causes of chatter were also considered. As 

chatter was proved to be the manifestation of torsional vibrations of the roll-spindle shaft 

system [42], the frequency of vertical and torsional vibrations of work roll and spindle are 

typically considered in chatter modelling. As there were only data measuring the working roll, 

the frequency was derived by taking the spectrum of the work roll position signal. In this context, 

six PB features were constructed for further experiments. Details of the features constructed 

from physical-based models for strip breakage analysis are listed in Table 3. 
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Table 3. Details of features constructed from physical-based models. 

No. Name Description 

1 Diameter disparity of work roll (%) Top working roll diameter divided by bottom working roll 

2 Diameter disparity of deflector roll 

(%) 
Left deflector roll diameter divided by right deflector roll 

3 Vertical vibration frequency of top 

work rolls (Hz)  
The spectrum of the top work roll position signal 

4 Vertical vibration frequency of 

bottom work roll (Hz)  
The spectrum of the bottom work roll position signal 

5 Work roll location error Mean error of location of rolls 

6 Angular velocity error Mean error of angular velocity of rolls 

Third, as a main non-material cause of strip breakage, chatter can cause drastic variation 

in primary variables [43]. It would be beneficial to discover the sequential variation pattern 

regarding the selected primary features and apply these patterns as features for the prediction 

task. 

In this context, sequential pattern mining was conducted on the 17 selected EK and PB 

features listed in Table 2 and 3. First, to handle the complex time-series, temporal abstraction 

[44] was conducted to transform the numeric time-series variables into a qualitative high-level 

form. To be specific, each primary variable was converted into an interval-based representation. 

When the mill encounters a chatter, the values of certain primary features fluctuate remarkably. 

Under this condition, each primary feature was segmented using 10th, 25th, 75th and 90th 

percentiles of the numeric values. Five states were defined as Very Low (VL), Low (L), Normal 

(N), High (H) and Very High (VH). For instance, a value between the 10th and 25th percentiles 

was segmented as low, and a value above the 90th was very high. Following the temporal 
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abstraction of the global one-minute data for each coil, PrefixSpan [45] sequential pattern 

mining algorithms were applied on the selected 27 broken coils in the training dataset. An 

abstracted state corresponds to an event (itemset) within a sequence. To be specific, the 

abstracted state for each primary feature consisted of a sequence within a broken coil, and the 

sequential pattern mining was then conducted for all 27 coils. The sequential pattern mining 

was conducted using the open-source Java-based package SPMF [46]. For the PrefixSpan 

algorithm, the Min support was set to 0.4 and Max pattern length to 10. The pattern with the 

highest support was chosen as the most frequent sequential pattern of strip breakage for this 

primary feature.  

Finally, for an instance which represented a 58-second time window, the same abstraction 

strategy was adopted. The abstracted instance was matched with 17 sequential patterns 

generated from 17 selected primary features. Then, 17 binary features were constructed in each 

instance. The value of each binary feature depended on the matching between an abstracted 

primary feature and its corresponding pattern. Within an instance, if an abstracted primary 

feature contained its following sequential pattern, the corresponding binary feature was marked 

as 1, and vice versa. In this manner, regarding the primary feature set, the 5800×17 instance 

was transformed into 5800×34 after feature construction. 

In terms of the deep learning architecture, the main deep learning model parameters 

consisted of the type of layer, number of layers, number of nodes in each layer and dropout rate. 

After several trials, a pyramid shape network structure was designed in accordance with both 

computation cost and classification performance to balance the trade-off between computation 
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cost and model depth. Rectified linear unit (ReLU) was selected as the activation function. 

Detailed information for the proposed network is shown in Table 4. 

Table 4. Detailed information for each layer of the proposed network model. 

Layers Layer name Main parameters  Other parameters 

Layer 1 Embedding  N/A N/A 

Layer 2 LSTM/GRU/RNN 60 units Dropout = 0.3 

Layer 3 LSTM/GRU/RNN 30 units Dropout = 0.3 

Layer 4 Flatten N/A N/A 

Layer 5 Fully-connected 30 units Activation = ReLU 

Layer 6 Fully-connected 2 units NA 

To be specific, since this was a binary classification problem, CrossEntropy was used as 

the loss function. The efficient Adam algorithm [47] was used for optimisation. The model was 

fit for 100 epochs because it quickly overfits the problem. A batch size of 60 was used to space 

out weight updates. Python was the utilised platform, and the deep learning models were built 

using Pytorch [48]. Details of the parameters for the training process are specified in Table 5. 

Table 5. Parameters of the training process of strip breakage deep learning prediction model. 

Learning rate Batch size Epochs 
Activation 

function 
Optimiser Loss function 

0.001 60 100 ReLU Adam CrossEntropy 

A benchmark test was conducted to compare five prevailing machine learning algorithms: 

random forest (RF) [49, 50], support vector classification (SVC) [51], artificial neuron network 

(ANN), RNN and gated recurrent unit (GRU). For the conventional RF, SVC and NN 

algorithms, which are unable to handle the high dimensionality of time-series data directly, 

hand-crafted features were required, and feature extractions were consequently applied. Six 

types of features, including time domain and frequency domain, were designed and crafted, as 
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shown in Table 6. The benchmark tests of the conventional algorithms were carried out using 

the open-source package Scikit-learn [52] with the default hyperparameters. For RF, the 

number of trees in the forest was set as 100, and the number of features to consider when 

looking for the best split was set as the square root of the number of input features. For SVC, 

radial basis function was used as the kernel type, the degree of the polynomial kernel function 

was set as 3 and the kernel coefficient for radial basis function was set as the reciprocal of the 

number of features. For ANN, two hidden layers were designed with 100 neurons in each layer; 

the other parameters were set as with LSTM, as shown in Table 5. In terms of the RNN and 

GRU network, the input data can be tensor, as with an LSTM network. Therefore, architecture 

and training parameters for the RNN and GRU network were set to be identical to the LSTM 

network. 

Table 6. List of extracted features. 

Domain Features 

Statistical 

Root mean square 

Variance 

Maximum 

Peak-to-peak 

Frequency 
Spectral skewness 

Spectral kurtosis 

A graphics processing unit (GPU) was used for the experiment to increase speed and 

decrease training time. More specifically, the processing system used for the analysis was as 

follows: CPU Core i7-9700 K 3.8 GHz with 32 GB RAM and GPU NVIDIA GeForce 2080ti. 
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4.3 Results and Discussion 

4.3.1 Experiments using multi-faceted feature sets  

Based on the experimental setup, which explored different combination scenarios of the feature 

sets identified from different facets, the quantitative results of the predictive models are 

presented in Table 7 under the metrics of AUC evaluated using the test dataset. 

Table 7. AUCs of models with the best performance in predicting strip breakage using 

different algorithms and feature sets. 

 
Feature sets 

Conventional    RNN-based  

 RF SVM ANN  RNN GRU LSTM 

Single 

feature set 

EK 0.519 0.563 0.679  0.772 0.788 0.820 

PB 0.507 0.554 0.665  0.749 0.735 0.807 

Multiple 

feature 

sets 

EK + DD 0.518 0.561 0.697  0.751 0.792 0.821 

PB + DD 0.506 0.552 0.682  0.749 0.787 0.809 

EK+PB 0.515 0.559 0.698  0.736 0.757 0.811 

EK + PB + DD 0.511 0.561 0.693  0.779 0.801 0.835 

In Table 7, the performance of various models in which both RNN-based and conventional 

approaches were applied with different mixes of feature sets is displayed. Generally, due to the 

default setting of hyperparameter selection and different manner of data representation, the 

improvement of RNN-based deep learning models compared with traditional methods is 

enormous. However, as a result of model complexity, hyperparameter selection is required to 

achieve the desired performance.  

Among the models built on primary features, the best performance was obtained when the 

LSTM network was applied. The RNN-based algorithms outperformed conventional 
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algorithms when only single feature sets were being applied. This may result from hand-crafted 

features used to represent the raw time-series data limiting modelling performance [53]. Among 

the models built on multiple feature sets, the LSTM network still outperformed other algorithms. 

Indeed, as a result of the inclusion of more features, the overall performance of various 

conventional algorithms improved. 

Among the models built on the proposed LSTM network, the best performance was 

achieved when features from all three sets were analysed together. An analysis of the 

performance of the best model on the test set for the different feature sets indicates that the 

network is able to make use of extra features. The performance advantage of the inclusion of 

the KB feature sets for the primary feature set was substantial. The advantage of the inclusion 

of SPM feature sets for the primary feature set was relatively subtle. 

 

4.3.2 Experiments using different time window lengths 

The above experimental studies were to train a model to predict whether a strip would break 

within the next 0.5 seconds. The 0.5-second window was suggested by the steel plant since they 

consider it sufficient time to respond. An adequate predicted window can provide enough time 

to take countermeasures before a strip breakage occurs. For instance, operators can take 

contingency mitigation countermeasures such as an actively planned stop rather than a passive 

fast stop, which will often result in severe damage to the rolling mill. However, as a rule of 

thumb, a wider predicted window often leads to undesirable prediction accuracy. Based on the 

best model in Section 4.2.1, to gain insights on the trade-off between predicted time window 
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length and prediction performance, the following experiments were designed to explore 

window sizes from 0.1 to 0.9 seconds. 

 

Figure 4. Algorithm performance of models based on different predicted time windows in terms of 

ACC and AUC. 

Based on different window lengths, performance was compared when the algorithm 

converged. The relationship between the algorithm performance and different predicted 

window lengths in terms of AUC and ACC are shown in Figure 4. It can be seen that ACC 

generally decreases with the increment of predicted window length, which conforms with our 

assumption of the relationship between prediction accuracy and predicted time window. 

However, according to our proposed sliding window strategy, the selection of a predicted 
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window length will affect the data balance. Even if better performance in terms of ACC is 

achieved when the window length is narrow, the best AUC is achieved with a predicted window 

of 0.6 seconds.  

 

5. CONCLUSIONS AND FUTURE WORK 

Strip breakage is a severe production failure which occurs instantaneously in the cold rolling 

process. Prediction of this failure can bring significant benefits to the cold rolling industry in 

terms of contingency mitigation and quality improvement. In the present study, to minimise the 

occurrence and impact of strip breakage, we achieved a micro-level prediction of strip breakage 

based on historical process data. The first contribution of this paper is its exploration of deep 

learning models applied to a cold rolling process at an event level as compared to a batch level 

regarding strip breakage failure. The cold rolling mill operator can benefit from utilising this 

prediction approach in developing their contingency mitigation strategies. According to the 

predicted information, a planned stop action can be taken to avoid damage from an unplanned 

fast stop. Understanding the likelihood of strip breakage in the near future can also be vital for 

post-analysis, such as in determining what countermeasures should be used. 

For real cold rolling practice, even if we considered all the causes of strip breakage 

beforehand, occurrence of this failure may not always be avoided. This limitation is due to 

information such as unexpected sudden changes, an undetected internal material defect or, like 

most cases, from an unknown reason not conveyed in the current dataset. Therefore, this 

approach is more practical for breakages with a divinable manifestation in rolling process 

variables, such as breakages caused by chatter.  
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In further work, first, the algorithm performance in terms of ACC and AUC can be 

continuously improved. Furthermore, with more studies on strip breakage cause analysis and 

further domain expert assistance, future work would include more domain-based features to 

expand the scope of this proposed multi-faceted approach. Finally, the data collected in this 

study were under the same material grade. In this context, strip breakages caused by material 

defect, which is another critical issue for strip breakage, was not within the scope of this work. 

Therefore, to improve the breadth of collected information regarding strip breakage, data 

recorded about this production failure from different sources, such as material data, need to be 

incorporated to generate collective values. 
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