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Tyrosine kinases (TKs) play an essential role in regulating various cel-
lular activities and dysregulation of TK signaling contributes to onco-
genesis. However, less than half of the TKs have been thoroughly stu-
died. Through a combined use of RNAi and stable isotope labeling with
amino acids in cell culture (SILAC)-based quantitative proteomics, a
global functional proteomic landscape of TKs in breast cancer was
recently revealed highlighting a comprehensive and highly integrated
signaling network regulated by TKs (Stebbing et al., 2015) [1]. We
collate the enormous amount of the proteomic data in an open access
platform, providing a valuable resource for studying the function of TKs
in cancer and benefiting the science community. Here we present a
detailed description related to this study (Stebbing et al., 2015) [1] and
the raw data have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the identifier PXD002065.
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ubject area
 Biology

ore specific sub-
ject area
Cancer biology
ype of data
 Mass spectrometry (MS) data and annotations

ow data was
acquired
LTQ-Orbitrap Velos MS (Thermo Scientific)
ata format
 Raw and MaxQuant output data

xperimental
factors
RNAi of the 65 expressed TKs in breast cancer cells (MCF-7)
xperimental
features
Cells cultured in media with different SILAC labeling: ‘medium’ L-[13C6] arginine
(R6) and L-[2H4] lysine (K4), and ‘heavy’ L-[13C6,

15N4] arginine (R10) and L-
[13C6,

15N2] lysine (K8), and ‘light’ L-[12C6,
14N4] arginine (R0) and L-[12C6,

14N2]
lysine (K0)
ata source
location
London, UK
ata accessibility
 The raw data have been deposited to the ProteomeXchange Consortium via the
PRIDE partner repository with the identifier PXD002065. http://www.ebi.ac.uk/
pride/archive/projects/PXD002065
Value of the data
� This is the first dataset to examine the entirety of a TK-modulated proteome in breast cancer.
� For all the 65 TKs, from 27,000 non-redundant peptide sequences, a SILAC-based proteome

encompassing more than 2000 distinguishable and unambiguously identified proteins was
identified and quantified with a minimum of two peptides with a false discovery rate
(FDR) of 1%.

� Functional analysis shows that TK-regulated proteome are involved in a broad variety of cellular
activities including immune system process, metabolic process, growth, cell cycle, transcription,
and apoptosis, whose deregulation can contribute to carcinogenesis.

� Of note, instead of structural homology of TKs, our dataset highlights similarity in their biologic
function and shows a detailed portrait of their signaling networks.

� Our TK-proteome dataset provides an enormous resource for functional study of TKs in
cancer, particularly for studying the downstream effects and associated signaling modulated
by TKs.
1. Data

This dataset collates the comprehensive proteomic data generated through a SILAC-based quan-
titative MS approach upon silencing the 65 tyrosine kinases expressed in MCF7 breast cancer cells [1].
In addition to the raw data files deposited in the Pride database [2,3], here we also provide a new
quantification master-file that provides easy access to the TK SILAC dataset (Supplementary Table 1).
Each row provides information about the relative quantification of a protein in all knockdowns. The
data are organized by protein, with the HGNC symbol and Entrez identifier of corresponding genes for
cross references. Users of this dataset can easily access and cross reference our dataset to external
databases and to their in-house experimental data.

http://www.ebi.ac.uk/pride/archive/projects/PXD002065
http://www.ebi.ac.uk/pride/archive/projects/PXD002065
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2. Experimental design, materials and methods

2.1. Experimental design

To acquire the TK-regulated proteome and associated signaling dynamics, a combined approach of
RNAi with SILAC-based quantitative proteomics was employed in breast cancer cells MCF-7. Subse-
quently, bioinformatics analyses were implemented to reclassify the TKs family and to characterize
the associated functional portrait (Fig. 1).
Fig. 1. Workflow of the experimental design. Firstly, the gene expression of the 90 TKs was profiled by RT-qPCR in MCF7 cells.
Next, the knock-down efficiency of a certified RNAi library comprising two individual siRNAs against TKs was confirmed by RT-
PCR and western blotting. Subsequently, MCF7 cells grown in either R0K0 ‘light’, or R6K4 ‘medium’, or R10K8 ‘heavy’ were
treated with siControl or verified siRNAs targeting the TKs for 72 h. Protein samples were then harvested and analyzed by
SILAC-based MS quantitative proteomics. Further bioinformatic analyses were conducted to characterize the signaling
dynamics, to establish the associated functional portrait and to reclassify the family of TKs.



Fig. 2. Heatmap of the altered proteomic quantifications involved in studied cancer hallmarks (angiogenesis, cell cycle, gly-
colysis). Presented here are log2 values of normalized fold changes against control for the significantly up- (red) or down-
regulated (green) proteins (Significant B test Po0.05) upon silencing TKs in our dataset. Ten distinctive clusters were shown
color-coded as in our original publication.
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Fig. 3. Representatives of defined functional networks in angiogenesis, cell cycle, and glycolysis. The functional networks were
generated using GO analysis combined with the STRING platform. Proteins in red are up-regulated, whereas green indicates
down-regulation.
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Here, to show how our data could be more valuable to the scientific community, we sought to
further investigate the biological significance of our TKs proteomic dataset in studying the hallmarks
of cancer [4]. GO terms of cancer hallmarks, such as angiogenesis, cell cycle, glycolysis, motility and
apoptosis, were searched and a list of corresponding proteins/genes was identified. We then first
examined the overall effect TKs on each GO family by plotting a heatmap of all the term proteins that
were quantified in our dataset. Representative heatmaps showing quantified proteins involved in
angiogenesis, cell cycle, glycolysis are presented based on our classified clusters (Fig. 2 and Supple-
mentary Fig. 1). These findings highlight the involvement of TKs in the hallmarks of cancer. Of note,
our analysis was able to identify the top targets that were significantly modulated by TKs in each
category, including the Lemur Tyrosine Kinase 3 (LMTK3) in cell migration [5]. In addition, to establish
the functional protein–protein interaction networks in these hallmarks of cancer, we integrated the
GO analyses with the STRING interaction database. We illustrated the STRING network for the dif-
ferential proteins within each represented hallmark of cancer, including in angiogenesis, cell cycle,
and glycolysis (Fig. 3). These findings reinforce the essential role of TKs in regulating hallmarks of
cancer and highlight the complexities of TK-modulated cellular signaling.
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2.2. SILAC labeling and RNAi screening

DMEM medium deficient in arginine (R) and lysine (K) was supplemented with stable isotope-
encoded arginine and lysine as previously described [6,7]. Briefly, medium were provided with either
‘light’ L-[12C6,14N4] arginine (R0) and L-[12C6,14N2] lysine (K0), or ‘medium’ L-[13C6] arginine (R6) and
L-[2H4] lysine (K4), or ‘heavy’ L-[13C6, 15N4] arginine (R10) and L-[13C6, 15N2] lysine (K8) from Dundee
Cell Products Ltd. (Dundee, UK). MCF7 cells were grown in these DMEM mediums for at least seven
divisions prior to experiments. The han Tyrosine Kinase family siRNAs library (Qiagen FlexiPlate)
comprising two individual verified siRNAs was utilized (final concentration 40 nM) for 72 h (Sup-
plementary Table 2).

2.3. Protein digestion and peptide fractionation

Prior to digestion, equal amounts of lysates from unlabeled and labeled samples were mixed. Next,
samples were reduced in 10 mM DTT and alkylated in 50 mM Iodoacetamide followed by boiling in
loading buffer, and then separated by one-dimensional SDS-PAGE (4–12% Bis-Tris Novex mini-gel,
Invitrogen) and visualized by colloidal Coomassie staining (Novex, Invitrogen). The entire protein gel
lanes were excised and cut into 10 slices each, with each gel slice subjected to in-gel digestion with
trypsin overnight at 37 °C. The resulting tryptic peptides were extracted by formic acid (1%) and
acetonitrile (CH3CN), lyophilized in a speedvac and resuspended in 1% formic acid.

2.4. Mass spectrometry

Trypsin-digested peptides were separated using an Ultimate 3000 RSLC (Thermo Scientific)
nanoflow LC system. On average 0.5 mg was loaded with a constant flow of 5 ml/min onto an Acclaim
PepMap100 nanoViper C18 trap column (100 mm inner-diameter, 2 cm; Themro Scientific). After trap
enrichment, peptides were eluted onto an Acclaim PepMap RSLC nanoViper, C18 column (75 mm,
15 cm; Thermo Scientific) with a linear gradient of 2–40% solvent B (80% acetonitrile with 0.08%
formic acid) over 65 min with a constant flow of 300 nl/min. The HPLC systemwas coupled to a linear
ion trap Orbitrap hybrid mass spectrometer (LTQ-Orbitrap Velos, Thermo Scientific) via a nano
electrospray ion source (Thermo Scientific). The spray voltage was set to 1.2 kV, and the temperature
of the heated capillary was set to 250 °C. Full-scan MS survey spectra (m/z 335–1800) in profile mode
were acquired in the Orbitrap with a resolution of 60,000 after accumulation of 1,000,000 ions. The
fifteen most intense peptide ions from the preview scan in the Orbitrap were fragmented by collision-
induced dissociation (normalized collision energy, 35%; activation Q, 0.250; and activation time,
10 ms) in the LTQ Orbitrap after the accumulation of 10,000 ions. Maximal filling times were 1000 ms
for the full scans and 150 ms for the MS/MS scans.

2.5. Proteome quantification

The raw mass spectrometric data files were collated using MaxQuant [8] and the Andromeda
search engine software [9]. Peptide ratios were calculated for each arginine- and/or lysine-containing
peptide as the peak area of labeled arginine/lysine divided by the peak area of non-labeled arginine/
lysine for each single-scan mass spectrum. Data are normalized using 1/median ratio value for each
identified protein group per labeled sample. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium [2] via the PRIDE partner repository with the dataset
identifier PXD002065. The corresponding labeling of the respective silencing of the TKs in the dataset
is shown in Supplementary Table 3. Annotated spectra for all results can be accessed using MS-Viewer
[10] via the links provided from Supplementary Table 4.

2.6. Bioinformatics analysis

The bioinformatics analyses were developed in R [11] and SWI-Prolog [12], using Real [13] for
linking the two systems. The hierarchical clustering of proteomics data was performed based on
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calculated distances by R's hclust function. To visualize the TK-modulated proteomics, the heatmap of
quantified values exhibiting the overall pattern of regulation was displayed. Significance B test was
used to characterize the most significantly regulated proteins after silencing of TKs (po0.05) [8]. For
analyzing Gene ontology (GO) [14] and STRING [15] network, GO, protein–protein interaction sear-
ches and identifier mapping was via the bio_db library with primary data provided by GO, HGNC and
STRING. SWI-Prolog was used for constructing the graphs and R library igraph was deployed for
displaying the graphs. Protein–protein interactions were provided by String version 10. The HGNC
and GO databases were accessed on 2015/9/28.
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