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Abstract

In clinical trials and observational studies of clustered binary data, understanding between-cluster variation is essential:

in sample size and power calculations of cluster randomised trials, for example, the intra-cluster correlation coefficient

(ICC) is often specified. However, quantifications of between-cluster variation can be unintuitive, and an ICC as low as

0.04 may correspond to surprisingly large between-cluster differences. We suggest that understanding is improved

through visualising the implied distribution of true cluster prevalences—possibly by assuming they follow a beta

distribution—or by calculating their standard deviation, which is more readily interpretable than the ICC. Even so,

the bounded nature of binary data complicates the interpretation of variances as primary measures of uncertainty,

and entropy offers an attractive alternative. Appealing to maximum entropy theory, we propose the following rule of

thumb: that plausible ICCs and standard deviations of true cluster prevalences are both bounded above by the overall

prevalence, its complement, and one third. We also provide corresponding bounds for the coefficient of variation (CV),

and for a different standard deviation and ICC defined on the log odds scale. Using previously published data, we

observe the quantities defined on the log odds scale to be more transportable between studies with different outcomes

with different prevalences than the ICC and CV. The latter increase and decrease, respectively, as prevalence increases

from 0% to 50%, and the same is true for our bounds. Our work will help clinical trialists better understand between-

cluster variation, and avoid specifying implausibly high values for the ICC in sample size and power calculations.

Keywords

Intra-cluster correlation coefficient, Intra-class correlation coefficient, coefficient of variation, prevalence, proportion,

binary outcome, cluster randomised trial, sample size, maximum entropy, bounds

Introduction

Quantifying between-cluster or between-site variation is

of interest in observational studies1 and in randomised

controlled trials2,3, especially cluster randomised trials.

In a parallel-group cluster randomised trial, clusters such

as healthcare organisations, school classes or geographic

areas are randomised to trial arms (e.g. intervention or

control), and outcomes are measured on individuals within

those clusters. Less common types of cluster randomised

trials include stepped-wedge designs and cluster-crossover

designs.

In sample size and power calculations for cluster

randomised trials, the between-cluster variation in the

primary outcome needs to be anticipated, and in a parallel-

group cluster randomised trial, this variation must be

anticipated for each arm. For trials with a binary primary

outcome, this is nearly always done by specifying a

single value of the intra-cluster (or intra-class) correlation

coefficient (ICC)2,4. Cluster randomised trials require more

individuals than individually randomised controlled trials: a

parallel-group cluster randomised trial should be 1 + (m−
1)× ICC times larger than the corresponding individually

randomised controlled trial, where m is the average number

of individuals in a cluster2.

The ICC quantifies homogeneity of outcome within

clusters, and can be expressed as the proportion of the total

variance that is accounted for by between-cluster rather than

within-cluster variation. Perhaps more helpfully, the ICC is

also the correlation between the outcomes of any pair of

individuals in the same cluster. For binary outcome data, the

ICC is equivalent to the kappa statistic5.

None of the aforementioned ways of expressing the ICC

lend themselves to helping researchers guage whether a

certain value of the ICC is “high” or “low”. As the ICC

ranges from 0 (no variation in cluster prevalences) to 1

(all individuals within a cluster have identical outcomes),

a researcher might understandably guess that an ICC of

0.04 (a fairly typical value) corresponds to a tiny amount of

between-cluster variation.

Making things harder to understand still, empirically

observed ICCs vary with the prevalence of the binary

outcome5, and there is an alternative definition of the ICC,

defined not on the probability scale but on the log odds scale,

which can differ considerably6. It is not hard for researchers

new to cluster randomised trials involving binary outcomes

to confuse the two definitions. Other definitions of the ICC
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also exist, for example derived from models that adjust for

covariates6.

The ICC has been described as unintuitive and harder

to understand than the coefficient of variation (CV) of the

cluster-specific prevalences, which is an alternative way of

describing the between-cluster variation7. Sample size for a

cluster randomised trial is sometimes calculated for a binary

outcome using the CV8. The calculation is not as neat as the

one using the ICC, and care must be taken if the anticipated

prevalence exceeds 50%.

Another motivation for the CV is that it may be ‘trans-

portable’ between groups: if a treatment acts multiplicatively

on the risk of an adverse event, then the CV will be the same

in both intervention and control groups7. Crespi et al.9 offer

similar motivation (transportable “across study conditions

and between studies with different outcome prevalences”)

for another measure of between-cluster variation, R = 1 +
ICC × (1− µ)/µ, where µ is the overall prevalence. How-

ever, R can equivalently be written as 1 + CV2 10, and hence

is transportable if and only if the CV is.

In observational studies, there are many ways of

quantifying between-cluster variation1,11. Most express the

difference between two clusters using an odds ratio: a

cluster mean that exceeds another on the log odds scale

by σL will have larger odds by a factor of exp(σL).
This may make it easier to compare (possibly residual)

between-cluster variation with the effects of covariates (also

expressed as odds ratios) and ensures that the between-

cluster variation does not depend on covariates, but it

requires some mental gymnastics to determine what this

variation actually corresponds to on the probability scale.

The easiest way is probably to calculate a few percentiles,

for example the 2.5th and 97.5th percentiles, for one or more

fixed prevalences.

In this paper we aim to help researchers in their

understanding of between-cluster variation in studies with

binary outcomes. We also describe what we determine to be

the largest plausible values of several common measures of

between-cluster variation.

Notation

We shall think of cluster-specific true prevalences as random

effects6. We denote by pi the true (rather than observed)

prevalence of a binary outcome in cluster i, and let µ =
E(pi) and σ = SD(pi) be their mean and standard deviation,

respectively. While we typically think of pi representing the

probability of an adverse event, there is no reason not to work

instead in terms of qi = 1− pi, the probability of avoiding

an adverse event. (The only measure of variability for which

this distinction makes a difference is the coefficient of

variation.) We sometimes use the phrase “overall prevalence”

in place of “mean cluster prevalence”, implicitly assuming

that all clusters are in principle infinite. The coefficient of

variation of the cluster prevalences is

CV(pi) =
SD(pi)

E(pi)
=
σ

µ
.

If yij is a binary outcome on individual j in cluster i,
Eldridge et al.6 define the ICC as

ICC =
Var(pi)

Var(yij)
=

σ2

µ(1− µ)
.

and an alternative ICC (on the log odds scale) as

ICCL =
σ2

L

σ2

L + π2/3
,

where

σL = SD(logit pi)

is the standard deviation of the cluster prevalences on the

unconstrained log odds scale, with logit pi = log{pi/(1−
pi)} denoting the usual logistic transformation.

This alternative definition of ICC is motivated by the fact

that a binary outcome may be thought of as a dichotomised

version of an underlying continuous variable: individuals

for whom the value of this latent continuous variable is

above a certain threshold have a value of 1 for the binary

outcome, and all other individuals have a value of 0. If, given

cluster prevalences, the underlying latent continuous variable

is assumed to follow a standard logistic distribution (whose

variance is π2/3), then the ICC on the log odds scale can be

interpreted as the proportion of the total variance of the latent

continuous variable that is between, as opposed to within,

clusters. In this way, ICCL is made analogous to an ICC used

for continuous outcomes.

Although this alternative, log odds definition of the ICC

implies a residual logistic distribution given cluster means,

none of the foregoing measures of between-cluster variation

depend on assuming any particular parametric form for the

distribution of the cluster prevalances pi. Nevertheless, such

parametric assumptions can be helpful for visualisation or

computation, and we now discuss several possible choices.

Logistic-normal distribution

With an unspecified distribution on the cluster prevalences,

the alternative ICC (ICCL) is implicitly invoking a generic

logistic mixture model. The logistic-normal model is

a generalised linear mixed model12 that incorporates a

Gaussian mixing distribution and is commonly applied in

trials and in observational studies. While cluster-specific

factors such as trial arm are allowed to affect µ, the logistic-

normal model assumes that the logit pi have a normal

distribution and that their standard deviation σL does not

change with cluster-specific factors or other covariates.

Figure 1 shows the between-cluster variation implied by

a logistic-normal model with σL = 0.4 (and hence ICCL =
0.046) for 5 different prevalences ranging from µ = 0.1 to

µ = 0.9. Despite the fact that σL is held constant, σ gets

smaller as µ gets further from 0.5, and at a particularly fast

rate as µ approaches 0 or 1. The same is true of the ICC,

which takes a value slightly smaller than ICCL at µ = 0.5
(ICC = 0.037 < 0.046), but which is considerably smaller

than ICCL at µ = 0.1 (ICC = 0.015 ≪ 0.046). As µ gets

closer to 0, the CV increases.

Beta distribution

Like the normal distribution, the beta distribution is a

continuous distribution determined by two parameters, often

Prepared using sagej.cls
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Figure 1. Distribution of cluster prevalences pi when σL held

constant while mean cluster prevalence µ varies. (Constructed

following simulation of logistic-normal data, and smoothed using

kernel density estimation.)

labelled (α, β). Unlike the normal distribution, values are

restricted to lie within the range 0 to 1, so the beta

distribution is a convenient and flexible option for describing

the distribution of cluster prevalences pi.
Assuming a beta distribution, the mean cluster prevalence

µ is
α

α+ β

and the ICC13 is
1

1 + α+ β
.

Conversely, the parameters (α, β) needed to obtain a

specified mean and ICC (µ, ICC) are

α = µ× 1− ICC

ICC

β = (1− µ)× 1− ICC

ICC
.

With the right statistical software package, visualising a beta

distribution is straightforward, as is calculating percentiles.

Here, we have used Stata14.

Going between the log odds and probability

scales

Simulation of data is one way of translating between the log

odds and probability scales, and we recommend simulation

as a good tool in general for checking that the variation

being described is in fact realistic in the relevant application

area. However, it is sometimes convenient to relate these two

scales more directly.

Murray and Murray15 give an approximation linking σ
and σL, namely

σ ≈ σL × µ(1− µ)

that assumes a logistic-normal model and is derived from

a Taylor series expansion valid for small σL. However,

seemingly unknown in the field of ICC research is an elegant,

exact calculation that links σL to the usual standard deviation

σ and mean µ via the trigamma function16 by assuming

Figure 2. Distribution of cluster prevalances pi when mean

cluster prevalence µ = 0.5. (Beta distribution assumed.)

instead that cluster prevalences follow a beta distribution

with parameters (α, β):

σ2

L = trigamma(α) + trigamma(β)

This identity follows directly from the fact that the

logistic transformation of a beta distribution is equivalent

to the logarithm of the ratio of two independent gamma

distributions; trigamma(α) and trigamma(β) are their

respective logarithmic variances. The identity provides

a mathematically precise connection between a beta

distribution on the probability scale and the standard

deviation σL on the log odds scale, and we use it to compute

σL in Figure 2 and Figure 3.

Visualisation

Figure 2 shows five different distributions of cluster

prevalences pi. They all have the same mean, µ = 0.5, but

they have differing amounts of variation about the mean.

For example, the orange distribution has standard deviation

σ = 0.1. As the beta distribution has been assumed, we can

calculate that the middle 95% of clusters have prevalences

ranging from 31% to 69%, in this case encompassing

approximately 2 standard deviations either side of the mean.

The coefficient of variation is CV = 0.2, and the intra-cluster

correlation is ICC = 0.04.

It may surprise some readers, as it surprised us, that such

a seemingly low value of ICC (0.04) can be associated with

such a large amount of between-cluster variation. In some

cases such instincts may derive from inter-rater reliability

studies, where ICCs up to 0.4 can be classified as poor17.

The green distribution represents the extreme scenario

where 50% of clusters have a prevalence of 0% and 50%

of clusters have a prevalence of 100%. This leads to the

maximum possible between-cluster standard deviation (σ =
0.5, which is only possible when µ = 0.5). The ICC is 1;

unlike the maximal σ = 0.5, this maximal ICC is possible

for any 0 < µ < 1.

More generally, the maximum possible between-cluster

variance is σ2 = µ(1− µ), occurring when 100(1− µ)% of

clusters have a prevalence of 0% and 100µ% of clusters have

a prevalence of 100%18. Since µ(1− µ) is the denominator

Prepared using sagej.cls
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Figure 3. Distribution of cluster prevalances pi when mean

cluster prevalence µ = 0.1. (Beta distribution assumed.)

in our definition of ICC, it follows that ICC can be

expressed purely in terms of between-cluster variation: the

ICC is the attained percentage of the maximum possible

between-cluster variance, given mean cluster prevalence µ.

To our knowledge, this is the first time the ICC has been

expressed in this way. We argue that the extreme, discrete

distribution with variance equal to this denominator variance

is unrealistic in most applications, and may be one possible

source of confusion about plausible magnitudes of ICCs.

Figure 3 shows five more distributions of cluster

prevalances pi. The ICCs are the same as those in Figure 2.

The distributions in Figure 3 all have the same mean, µ =
0.1, but they have differing amounts of variation about

the mean. The (beta) distributions are not symmetric: the

orange distribution has standard deviation σ = 0.06, and the

middle 95% of clusters have prevalences ranging from 2%

to 25%. The coefficient of variation is CV = 0.6, and the

intra-cluster correlation is ICC = 0.04 as before. Once again,

some readers may be surprised that a seemingly low value of

ICC can be associated with such a large amount of between-

cluster variation.

The values of ICCL are slightly larger than corresponding

values of ICC when µ = 0.5 (Figure 2), but considerably

larger when µ = 0.1 (Figure 3).

Maximum entropy distribution

One reason our instincts about ICCs can mislead us

is because of the temptation to confuse variance with

uncertainty. Entropy is a more general notion of uncertainty

that is applicable to all types of random variables, and

“agrees with our intuitive notions that a broad distribution

represents more uncertainty than does a sharply peaked

one”19. For example, the degenerate green distributions

of Figure 2 and Figure 3 have large variance but very

small entropy, since only two values of pi are possible.

Put another way, though these distributions have maximal

variance given their mean µ, there are many distributions

with the same mean but larger entropy. A somewhat more

detailed description of entropy may be found in an appendix

to this paper.

It turns out that there is a uniquely determined density

function that conveys the least information possible while

remaining compatible with a particular prevalence µ. This

is called the maximum entropy distribution and, as its name

suggests, it has the largest entropy within this class of

distributions19. Informally, it is the distribution that is the

most “spread out” across its support, subject to the mean

restriction that we choose to impose. It may be viewed as

an extension of Laplace’s principle of insufficient reason to

cases where considerations of symmetry or uniformity are

replaced by more general restrictions. From the perspective

of information theory, the maximum entropy distribution

is the least informative distribution within that class. The

maximum entropy distribution therefore constitutes a natural

reference distribution against which other distributions—

all of which encode more information about the pi—may

be compared. Figure 4 shows four such maximum entropy

distributions for various means, and again the appendix

provides more detail about the mathematical derivation of

maximum entropy distributions.

For a given prevalence µ, the standard deviation of

the maximum entropy distribution is considerably smaller

than the maximum possible standard deviation (Table 1).

For example, for prevalences of 1%, 10% and 50%, the

maximum possible standard deviations are, respectively, 0.1,

0.3 and 0.5, while the corresponding maximum entropy

distribution standard deviations range from 0.01 to 0.29

(= 1/
√
12, the standard deviation of a uniform distribution

on the unit interval). In agreement with our intuition,

distributions with smaller standard deviation than that of

the maximum entropy distribution also have lower entropy.

Interestingly, increasing the standard deviation beyond that

of the maximum entropy distribution has the effect of

supplying additional information about the pi and actually

decreases uncertainty. This is a feature of the bounded range

of the pi, and a major reason why our intuition from studying

ICCs for continuous responses (where entropy increases as

between-cluster variation increases) can mislead us.

While considerations of plausibility are necessarily

tentative, subjective and application-specific, we suggest that

the distribution with largest entropy (for a given mean)

helpfully bounds the range of standard deviations and ICCs

that will arise in typical practice. For µ = 0.5, the maximum

entropy distribution is the uniform distribution on (0, 1); for

other values of µ, the maximum entropy distribution should

be thought of as analogous to the uniform distribution,

in the sense that the probability mass is dispersed as

evenly as possible while respecting the mean restriction. As

illustrated in Figure 4, for a general 0 ≤ µ ≤ 1 the maximum

entropy distribution is a truncated exponential distribution

(see Conrad20, Theorem 5.1), with density proportional to

exp(λpi) for a parameter λ. Unlike the distribution with

largest variance for a given mean µ—which degenerates

to provide support only on the two-point set {0, 1}—the

corresponding maximum entropy distribution has a density

that is strictly positive on the whole unit interval for every

0 < µ < 1. We suggest that the amount of between-cluster

variation in real world examples will rarely be greater

than the variation exhibited by this maximum entropy

distribution.

Prepared using sagej.cls
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Figure 4. Distribution of cluster prevalances pi according to

four maximum entropy distributions (with mean cluster

prevalences of µ = 0.01, 0.1, 0.3, and 0.5 respectively).

Table 1. Maximum plausible values and maximum possible

values of measures of between-cluster variation in prevalence.

The overall prevalence is µ. Plausible bounds are derived from

the maximum entropy distribution.

Plausible Possible

Measure µ ≈ 0 µ = 0.5 µ ≈ 1 0 ≤ µ ≤ 1

Probability scale:

SD, σ µ 0.29 1− µ
√

µ(1− µ)

CV 1 0.58 (1− µ)/µ
√

(1− µ)/µ
ICC µ/(1− µ) 0.33 (1− µ)/µ 1

Log odds scale:

SD, σL 1.28 1.81 1.28 ∞

ICCL 0.33 0.50 0.33 1

Restricting attention to distributions with variance no

larger than that of the maximum entropy distribution yields

bounds on plausible ICCs and related quantities. These

bounds vary with the mean: as σ in the maximum entropy

distribution is smaller than µ for µ < 0.5 and σ < 1− µ
for µ > 0.5 (Figure 5), it follows that ICC < µ/(1− µ) ≈
µ for µ≪ 0.5 and ICC < (1− µ)/µ ≈ 1− µ for µ≫
0.5 (Table 1). Further, the ICC of the maximum entropy

distribution when µ = 0.5 (the uniform distribution) has

ICC = 1/3. Hence a rough rule of thumb is this: plausible

ICCs and cluster prevalence standard deviations are both

bounded above by the overall prevalence, its complement,

and one third. Figure 5 shows that our rule of thumb is

satisfactory, even if it slightly underestimates the ICC arising

from the maximum entropy distribution for µ < 0.25 and

µ > 0.75.

Eldridge and Kerry2 considered bounds for the ICC based

on the beta distribution:

“The most likely shape of this distribution is

unimodal (having one peak) rather than U-

shaped with peaks at 0 and 1, or J-shaped with

a peak at either 1 or 0. Assuming a unimodal

beta distribution, it is possible through algebraic

manipulation of formulae representing the shape

of the distribution to calculate the maximum

possible ICC for different overall prevalences

. . . ICCs over 0.35 are unlikely for binary

Figure 5. Bounds for the ICC and standard deviation

describing the between-cluster variation in prevalence on the

probability scale (assuming the maximum entropy distribution

describes the maximum plausible amount of variation).

outcomes, and for extreme prevalences ICCs

may be even smaller. Nevertheless, high values

of the ICC may be observed in some trials as a

result of sampling error, and in rare cases when

the distribution of ICCs may not be unimodal.”

Their bound for the ICC based on the unimodal beta

distribution (where the mode lies strictly between 0 and 1,

i.e. α, β > 1) is lower than our bound for the ICC based on

the maximum entropy distribution except when µ = 0, 0.5 or

1, when it is the same (Figure 5).

The CV associated with the maximum entropy distribution

is near 1 when the overall prevalence is below about

15% (Figure 6), and then decreases sharply and essentially

linearly, reaching 0 when the overall prevalence is 100%.

When an outcome has an overall prevalence of 50%, our

suggested maximum plausible CV is 0.58 (Table 1).

The bounds for σL and ICCL implied by our maximum

entropy considerations are shown in Figure 7 and Table 1. It

is important to note that, unlike on the probability scale, these

quantities do not fall away to zero as they approach 0% and

100%, because σL is unbounded above and may be specified

independently of µ.

Empirical data

In an interesting investigation, Gulliford et al.5 quantified

the empirical relationship between overall prevalence µ
and ICC that was observed in healthcare settings with a

large number of clusters and a large number of subjects

in each cluster. After swapping the prevalence µ for 1− µ
when µ > 0.5, they found linear associations of log ICC

with logµ in two datasets of ICCs they compiled. Using

the symmetry of ICC about µ = 0.5, the relationship

Prepared using sagej.cls
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Figure 6. Bounds for the Coefficient of Variation (CV)

describing the between-cluster variation in prevalence on the

probability scale (assuming the maximum entropy distribution

describes the maximum plausible amount of variation).

Figure 7. Bounds for the standard deviation describing the

between-cluster variation in prevalence on the log odds scale

(assuming the maximum entropy distribution describes the

maximum plausible amount of variation). (Constructed following

simulation of data.)

between ICC and CV (ICC = CV2 × µ/(1− µ)) and the

aforementioned approximate relationship between σ and σL,

we have drawn their associations on Figure 5, Figure 6 and

Figure 7, with µ ranging from 0.01 to 0.99.

Their estimated regression lines can be seen to fall below

our bounds for all 0.01 < µ < 0.99. Using the dataset

arising from their analysis of the General Practice Research

Database (GPRD), average ICCs were 0.008, 0.032 and

0.080 for prevalences of 0.01, 0.1 and 0.5, respectively;

corresponding ICCs of 0.001, 0.007 and 0.032 were found

for their second dataset concerning outcomes in community

and health services settings from a Health Technology

Assessment (HTA) review.

The corresponding associations between overall preva-

lence µ and CV in Figure 6 provide rare, hard-to-find empiri-

cal evidence that CV tends to decline as prevalence increases

from 1% to 50%10. That CV tends to decline as prevalence

increases from 50% to 100% is clear from the definition of

CV: the SD tends to decrease as the mean increases.

The associations between overall prevalence µ and

σ/(µ(1− µ)) in Figure 7 suggest that σL, and its

approximation, have only a little dependence on prevalence.

Our bounds for σL, and its approximation, also have only

a little dependence on prevalence. Since σ/(µ(1− µ)) is

very nearly constant and equal to one, another plausible

approximate upper bound for the standard deviation σ is

given by Var(yij) = µ(1− µ).

Recall that our approximation to σL is valid only for small

σL, and so the large differences in Figure 7 between exact

and approximate versions of σL are not unexpected.

Discussion

Despite appearing in the vast majority of sample size and

power calculations of cluster randomised trials, many trialists

find the intra-cluster correlation coefficient to be unintuitive

in the setting of binary outcomes. Some researchers will

be surprised to learn just how much variation is implied

by an ICC as low as 0.04. In general, it is hard to

decide what is a large amount of variation and what is

not. The ICC is typically expressed in terms of variances,

not standard deviations, which may explain why more

attention is given to variances despite standard deviations

being easier to interpret. We suggest that understanding

is much improved through visualising the distribution

of true cluster prevalences or at least calculating their

standard deviation, which is more readily interpretable than

the dimensionless ICC—the latter cannot be interpreted

independently of the overall prevalence. In principle, this

excercise in understanding can and should be done for

each arm of a parallel-group cluster randomised trial7. It

is, perhaps, worth repeating the general advice to think in

terms of standard deviations: their units are likely to be better

grounded in reality, and in this case are event probabilities.

Outside the trials setting, this paper may be helpful to

researchers seeking to understand variation and clustering in

any study with a binary outcome. In observational studies

where a random intercepts logistic regression model is

used, it may be helpful to use the Murray and Murray15

approximation to calculate the standard deviation σ from

σL, or to visualise the distribution of pi (assuming either a

beta distribution or a logistic-normal distribution), for one or

more fixed prevalences (as in Figure 1).

Appealing to maximum entropy theory, we have proposed

bounds on several measures for what between-cluster

variation in outcomes is plausible (Table1). This led to the

following rule of thumb: that plausible ICCs and standard

deviations of true cluster prevalences are both bounded above

by the overall prevalence, its complement, and one third. A

qualitatively similar bound for the ICC (“ICCs over 0.35 are

unlikely for binary outcomes, and for extreme prevalences

ICCs may be even smaller”) was suggested by Eldrige and

Kerry2 based on a beta distribution being unimodal.

Our rule of thumb may help researchers planning a cluster

randomised trial to not specify implausibly high values of the

ICC. Implausibly high values of the ICC can be suggested

by analysis of previous data (this includes pilot studies and

very many trials, even large trials), for at least two reasons.

Firstly, ICCs are often estimated very imprecisely, with large

standard errors21. Low precision in estimating ICCs can be
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seen whenever the number of clusters is small, so even in

large trials our bounds may provide a helpful reality check.

Secondly, ICCL can be confused with ICC22, and while the

difference between the two may be small when µ = 0.5, for

very small (or very large) µ, ICCL will be several times larger

than the ICC, as we and others have shown6.

Confusing ICCL for ICC is a particularly easy trap for

Stata users to fall into. Stata’s simple “estat icc” command

calculates ICCL following mixed effects logistic regression.

If a Stata user looks hard in the software’s extensive

documentation, they may find mention of another definition

of ICC for binary data (on the probit scale after use of the

“meprobit” command), but no mention of the usual ICC on

the probability scale. In fact, this is true even for the required

ICC input to the “power twoproportions, cluster” command,

which experienced trialists will realise must be the ICC on

the probability scale. However, this is not made explicit in

the documentation. We also note that the default value taken

by this ICC is 0.5, irrespective of the mean prevalence µ, and

far beyond our suggested bounds even if µ ≈ 50%.

Our bounds may also help to inform the choice of prior

distributions in Bayesian analyses. For example, Turner et

al.23 employed a uniform prior distribution on [0, 1] for the

ICC “to represent lack of prior knowledge”, but a narrower

range may be warranted, particularly if prior information

indicates an overall prevalence near zero or one.

A recent example of an anticipated ICC that was

unrealistically high is a stepped wedge trial of a cleaning

intervention to reduce the rates of healthcare-associated

infections in hospitals24. The power calculation assumed

binary outcome data with an overall prevalence of combined

infection (per occupied bed-day) of µ = 0.0015. It specified

a within-hospital correlation in infection of 0.3 (far

higher than our bound), the source of which is unclear

(Adrian Barnett, personal communication). The actual

trial data (during the pre-intervention phase) showed an

overall prevalence of µ = 0.0004, ICC = 0.0001 estimated

using one-way ANOVA,6,25, and ICCL = 0.1. These three

represent very different ICC values, even if stepped wedge

trials are relatively insensitive to variations in ICC26.

Our bound for the ICC is broadly consistent with the

findings of Gulliford et al.5, although when prevalence is

0.5% the average ICC from their model on one of their

datasets (GPRD) is 0.005, the same as our bound. The

average ICC from their model on the HTA dataset (where

the smallest overall prevalance was 0.003% rather than

0.2% (GPRD)) is 0.0005, comfortably below our bound.

Gulliford et al.5 point out “[t]he distribution of cluster-

specific proportions [. . . ] may vary according to the nature

of the outcome measure, the characteristics of clusters

and individual subjects, and the context of a study”, and

Eldridge and Kerry2 review patterns in ICCs, such as their

apparent dependence on prevalence, and the fact that process

outcomes tend to have larger ICCs than clinical outcomes.

Almost half of the ICCs in the GPRD dataset arose from

studies of the proportion of GP consultations resulting

in a prescription of antibiotics (including penicillins,

nonpenicillins or penicillins and nonpenicillins combined),

for each of fifteen acute conditions. Many other ICCs were

derived from studies of proportions of patients in a general

practice prescribed each of fifteen classes of drugs.

Our ICC bound (which tends to 0 as the mean prevalence

decreases) agrees qualitatively with all of this prior empirical

and theoretical research. However, the maximum entropy

distribution itself often seems too extreme to be described

as “plausible”. For example, a uniform distribution (with

µ = 0.5) seems implausible to us as a distribution of cluster

prevalences. We suggest that values above or close to our

bound should be treated with caution, and the reasoning

behind this choice should be double-checked. We emphasise,

though, that ICCs beyond our bound are of course possible:

if patients in different clusters receive very different care

because of clinical training or practice that is highly variable

internationally, a bimodal distribution might occur and even

ICCs approaching 1 may arise.

Our bound for the coefficient of variation (CV = 1 for

low prevalences) is somewhat higher than that of Hayes et

al.8, who say that “experience from field trials suggest that

the coefficient of variation is often ≤ 0.25”. A coefficient

of variation of 0.25 can arise in a setting where the mean

prevalence is expected to be 30%, but prevalence in villages

could easily vary between 15% and 45% according to

experts8. Assuming a roughly normal distribution, this could

suggest σ = 0.075 (so that 95% of villages have a prevalence

within 2 standard deviations of the mean), hence CV =
0.075/0.3 = 0.25. A similar crude heuristic argument, this

time restricting 95% of cluster prevalences to take non-

negative values (e.g. 0% to 60%), leads Hayes et al.8 to

suggest coefficient of variation “seldom exceeds 0.5”.

The quantity σL can be considered transportable within a

cluster randomised trial if a treatment acts multiplicatively

on the odds of an adverse event7. Our bound for σL (1.28 to

1.81 depending on prevalence) fits nicely with the range (up

to 0.9) often seen in cluster randomised trials6. This bound

has less dependence on prevalence than the bounds for both

ICC and CV. The approximation σL ≈ σ/(µ(1− µ)) has a

bound that has less dependence on prevalence still. Between-

cluster variation quantified in this way on previous data has

little dependence on prevalence5.

Dedication

This paper is dedicated to the memory of Dr Dan

Lunn, our undergraduate mathematics and statistics tutor at

Worcester College, Oxford. His depth of insight made him

unorthodox—we recall his prodigal proof that the sample

mean and variance are independent—while his inexhaustible

supply of anecdotes kept us laughing all the way to the

Examination Schools. Dan made statistics both meaningful

and merry, and we both owe him a huge debt of gratitude.
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Appendix: entropy, and maximum entropy

distributions

We have used entropy in this paper to characterise

uncertainty in probability distributions, and compute it for

various examples in Figures 1–4. This appendix provides

a little more detail about entropy and maximum entropy

distributions.

Informally, entropy measures the average information

content in a probability distribution, where a degenerate

distribution carries no information and where entropy

increases as the distribution becomes more evenly spread out

across its support.

More formally (and slightly more broadly), entropy

is a quantification of the average ability to discriminate

between a given probability distribution and some arbitrary

reference distribution. Since the most powerful numerical

summary for discrimating between two candidate models

is their likelihood ratio R, entropy is typically defined as

−E(logR), with expectation being taken with respect to the

distribution of interest rather than the reference distribution.

For continuous distributions on the unit interval such as the

majority of those dealt with in the present paper, the uniform

distribution is often chosen as the point of reference, and a

distribution with probability density function f(x) has a so-

called differential entropy of

−
∫

1

0

f(x) log f(x) dx.

By construction, the uniform distribution itself has an

entropy value of 0. The beta distribution Beta(α, β) has

differential entropy

logB(α, β)− (α− 1)ψ(α)

− (β − 1)ψ(β) + (α+ β − 2)ψ(α+ β),

where B is the beta function and ψ the digamma function.

In the absence of a closed form expression for the entropy

of a logistic normal distribution, numerical integration was

used to compute the entropy in Figure 1. Differential entropy

can be negative, and discrete distributions may be assigned a

notional differential entropy of −∞.

Conrad20 illustrates how to derive maximum entropy

distributions on a given support and with particular

constraints. Of particular interest to us is Conrad’s Theorem

5.1, which states that “[t]he continuous probability density

function on the interval [a, b] with mean µ that maximizes

entropy among all such densities (on [a, b] with mean µ) is a

truncated exponential density”. When [a, b] = [0, 1], this has

the form

f(x) =
c exp(cx)

exp(c)− 1

for the unique c satisfying the equation µ = 1− 1/c+
1/{exp(c)− 1}. The variance of this maximum entropy

distribution may be computed (e.g. via integration by parts),

and turns out to be

1

c2
+

1

2− 2 cosh c
.

More straightforwardly, its differential entropy is

log{exp |c| − 1} − log |c| − |c|µ
for c 6= 0, and is 0 if c = 0 (the uniform distribution).
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