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Abstract
In clinical trials and observational studies of clustered binary data, understanding between-cluster variation is essential:
in sample size and power calculations of cluster randomised trials, for example, the intra-cluster correlation coefficient
(ICC) is often specified. However, quantifications of between-cluster variation can be unintuitive, and an ICC as low as
0.04 may correspond to surprisingly large between-cluster differences. We suggest that understanding is improved
through visualising the implied distribution of true cluster prevalences—possibly by assuming they follow a beta
distribution—or by calculating their standard deviation, which is more readily interpretable than the ICC. Even so,
the bounded nature of binary data complicates the interpretation of variances as primary measures of uncertainty,
and entropy offers an attractive alternative. Appealing to maximum entropy theory, we propose the following rule of
thumb: that plausible ICCs and standard deviations of true cluster prevalences are both bounded above by the overall
prevalence, its complement, and one third. We also provide corresponding bounds for the coefficient of variation (CV),
and for a different standard deviation and ICC defined on the log odds scale. Using previously published data, we
observe the quantities defined on the log odds scale to be more transportable between studies with different outcomes
with different prevalences than the ICC and CV. The latter increase and decrease, respectively, as prevalence increases
from 0% to 50%, and the same is true for our bounds. Our work will help clinical trialists better understand between-
cluster variation, and avoid specifying implausibly high values for the ICC in sample size and power calculations.

Keywords
Intra-cluster correlation coefficient, Intra-class correlation coefficient, coefficient of variation, prevalence, proportion,
binary outcome, cluster randomised trial, sample size, maximum entropy, bounds

Introduction

Quantifying between-cluster or between-site variation is
of interest in observational studies1 and in randomised
controlled trials2,3, especially cluster randomised trials.
In a parallel-group cluster randomised trial, clusters such
as healthcare organisations, school classes or geographic
areas are randomised to trial arms (e.g. intervention or
control), and outcomes are measured on individuals within
those clusters. Less common types of cluster randomised
trials include stepped-wedge designs and cluster-crossover
designs.

In sample size and power calculations for cluster
randomised trials, the between-cluster variation in the
primary outcome needs to be anticipated, and in a parallel-
group cluster randomised trial, this variation must be
anticipated for each arm. For trials with a binary primary
outcome, this is nearly always done by specifying a
single value of the intra-cluster (or intra-class) correlation
coefficient (ICC)2,4. Cluster randomised trials require more
individuals than individually randomised controlled trials: a
parallel-group cluster randomised trial should be 1 + (m−
1)× ICC times larger than the corresponding individually
randomised controlled trial, where m is the average number
of individuals in a cluster2.

The ICC quantifies homogeneity of outcome within
clusters, and can be expressed as the proportion of the total
variance that is accounted for by between-cluster rather than

within-cluster variation. Perhaps more helpfully, the ICC is
also the correlation between the outcomes of any pair of
individuals in the same cluster. For binary outcome data, the
ICC is equivalent to the kappa statistic5.

None of the aforementioned ways of expressing the ICC
lend themselves to helping researchers guage whether a
certain value of the ICC is “high” or “low”. As the ICC
ranges from 0 (no variation in cluster prevalences) to 1
(all individuals within a cluster have identical outcomes),
a researcher might understandably guess that an ICC of
0.04 (a fairly typical value) corresponds to a tiny amount of
between-cluster variation.

Making things harder to understand still, empirically
observed ICCs vary with the prevalence of the binary
outcome5, and there is an alternative definition of the ICC,
defined not on the probability scale but on the log odds scale,
which can differ considerably6. It is not hard for researchers
new to cluster randomised trials involving binary outcomes
to confuse the two definitions. Other definitions of the ICC
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also exist, for example derived from models that adjust for
covariates6.

The ICC has been described as unintuitive and harder
to understand than the coefficient of variation (CV) of the
cluster-specific prevalences, which is an alternative way of
describing the between-cluster variation7. Sample size for a
cluster randomised trial is sometimes calculated for a binary
outcome using the CV8. The calculation is not as neat as the
one using the ICC, and care must be taken if the anticipated
prevalence exceeds 50%.

Another motivation for the CV is that it may be ‘trans-
portable’ between groups: if a treatment acts multiplicatively
on the risk of an adverse event, then the CV will be the same
in both intervention and control groups7. Crespi et al.9 offer
similar motivation (transportable “across study conditions
and between studies with different outcome prevalences”)
for another measure of between-cluster variation, R = 1 +
ICC× (1− µ)/µ, where µ is the overall prevalence. How-
ever, R can equivalently be written as 1 + CV2 10, and hence
is transportable if and only if the CV is.

In observational studies, there are many ways of
quantifying between-cluster variation1,11. Most express the
difference between two clusters using an odds ratio: a
cluster mean that exceeds another on the log odds scale
by σL will have larger odds by a factor of exp(σL).
This may make it easier to compare (possibly residual)
between-cluster variation with the effects of covariates (also
expressed as odds ratios) and ensures that the between-
cluster variation does not depend on covariates, but it
requires some mental gymnastics to determine what this
variation actually corresponds to on the probability scale.
The easiest way is probably to calculate a few percentiles,
for example the 2.5th and 97.5th percentiles, for one or more
fixed prevalences.

In this paper we aim to help researchers in their
understanding of between-cluster variation in studies with
binary outcomes. We also describe what we determine to be
the largest plausible values of several common measures of
between-cluster variation.

Notation

We shall think of cluster-specific true prevalences as random
effects6. We denote by pi the true (rather than observed)
prevalence of a binary outcome in cluster i, and let µ =
E(pi) and σ = SD(pi) be their mean and standard deviation,
respectively. While we typically think of pi representing the
probability of an adverse event, there is no reason not to work
instead in terms of qi = 1− pi, the probability of avoiding
an adverse event. (The only measure of variability for which
this distinction makes a difference is the coefficient of
variation.) We sometimes use the phrase “overall prevalence”
in place of “mean cluster prevalence”, implicitly assuming
that all clusters are in principle infinite. The coefficient of
variation of the cluster prevalences is

CV(pi) =
SD(pi)

E(pi)
=
σ

µ
.

If yij is a binary outcome on individual j in cluster i,
Eldridge et al.6 define the ICC as

ICC =
Var(pi)
Var(yij)

=
σ2

µ(1− µ)
.

and an alternative ICC (on the log odds scale) as

ICCL =
σ2
L

σ2
L + π2/3

,

where
σL = SD(logit pi)

is the standard deviation of the cluster prevalences on the
unconstrained log odds scale, with logit pi = log{pi/(1−
pi)} denoting the usual logistic transformation.

This alternative definition of ICC is motivated by the fact
that a binary outcome may be thought of as a dichotomised
version of an underlying continuous variable: individuals
for whom the value of this latent continuous variable is
above a certain threshold have a value of 1 for the binary
outcome, and all other individuals have a value of 0. If, given
cluster prevalences, the underlying latent continuous variable
is assumed to follow a standard logistic distribution (whose
variance is π2/3), then the ICC on the log odds scale can be
interpreted as the proportion of the total variance of the latent
continuous variable that is between, as opposed to within,
clusters. In this way, ICCL is made analogous to an ICC used
for continuous outcomes.

Although this alternative, log odds definition of the ICC
implies a residual logistic distribution given cluster means,
none of the foregoing measures of between-cluster variation
depend on assuming any particular parametric form for the
distribution of the cluster prevalances pi. Nevertheless, such
parametric assumptions can be helpful for visualisation or
computation, and we now discuss several possible choices.

Logistic-normal distribution
With an unspecified distribution on the cluster prevalences,
the alternative ICC (ICCL) is implicitly invoking a generic
logistic mixture model. The logistic-normal model is
a generalised linear mixed model12 that incorporates a
Gaussian mixing distribution and is commonly applied in
trials and in observational studies. While cluster-specific
factors such as trial arm are allowed to affect µ, the logistic-
normal model assumes that the logit pi have a normal
distribution and that their standard deviation σL does not
change with cluster-specific factors or other covariates.

Figure 1 shows the between-cluster variation implied by
a logistic-normal model with σL = 0.4 (and hence ICCL =
0.046) for 5 different prevalences ranging from µ = 0.1 to
µ = 0.9. Despite the fact that σL is held constant, σ gets
smaller as µ gets further from 0.5, and at a particularly fast
rate as µ approaches 0 or 1. The same is true of the ICC,
which takes a value slightly smaller than ICCL at µ = 0.5
(ICC = 0.037 < 0.046), but which is considerably smaller
than ICCL at µ = 0.1 (ICC = 0.015� 0.046). As µ gets
closer to 0, the CV increases.

Beta distribution
Like the normal distribution, the beta distribution is a
continuous distribution determined by two parameters, often
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Figure 1. Distribution of cluster prevalences pi when σL held
constant while mean cluster prevalence µ varies. (Constructed
following simulation of logistic-normal data, and smoothed using
kernel density estimation.)

labelled (α, β). Unlike the normal distribution, values are
restricted to lie within the range 0 to 1, so the beta
distribution is a convenient and flexible option for describing
the distribution of cluster prevalences pi.

Assuming a beta distribution, the mean cluster prevalence
µ is

α

α+ β

and the ICC13 is
1

1 + α+ β
.

Conversely, the parameters (α, β) needed to obtain a
specified mean and ICC (µ, ICC) are

α = µ× 1− ICC
ICC

β = (1− µ)× 1− ICC
ICC

.

With the right statistical software package, visualising a beta
distribution is straightforward, as is calculating percentiles.
Here, we have used Stata14.

Going between the log odds and probability
scales
Simulation of data is one way of translating between the log
odds and probability scales, and we recommend simulation
as a good tool in general for checking that the variation
being described is in fact realistic in the relevant application
area. However, it is sometimes convenient to relate these two
scales more directly.

Murray and Murray15 give an approximation linking σ
and σL, namely

σ ≈ σL × µ(1− µ)

that assumes a logistic-normal model and is derived from
a Taylor series expansion valid for small σL. However,
seemingly unknown in the field of ICC research is an elegant,
exact calculation that links σL to the usual standard deviation
σ and mean µ via the trigamma function16 by assuming

Figure 2. Distribution of cluster prevalances pi when mean
cluster prevalence µ = 0.5. (Beta distribution assumed.)

instead that cluster prevalences follow a beta distribution
with parameters (α, β):

σ2
L = trigamma(α) + trigamma(β)

This identity follows directly from the fact that the
logistic transformation of a beta distribution is equivalent
to the logarithm of the ratio of two independent gamma
distributions; trigamma(α) and trigamma(β) are their
respective logarithmic variances. The identity provides
a mathematically precise connection between a beta
distribution on the probability scale and the standard
deviation σL on the log odds scale, and we use it to compute
σL in Figure 2 and Figure 3.

Visualisation
Figure 2 shows five different distributions of cluster
prevalences pi. They all have the same mean, µ = 0.5, but
they have differing amounts of variation about the mean.
For example, the orange distribution has standard deviation
σ = 0.1. As the beta distribution has been assumed, we can
calculate that the middle 95% of clusters have prevalences
ranging from 31% to 69%, in this case encompassing
approximately 2 standard deviations either side of the mean.
The coefficient of variation is CV = 0.2, and the intra-cluster
correlation is ICC = 0.04.

It may surprise some readers, as it surprised us, that such
a seemingly low value of ICC (0.04) can be associated with
such a large amount of between-cluster variation. In some
cases such instincts may derive from inter-rater reliability
studies, where ICCs up to 0.4 can be classified as poor17.

The green distribution represents the extreme scenario
where 50% of clusters have a prevalence of 0% and 50%
of clusters have a prevalence of 100%. This leads to the
maximum possible between-cluster standard deviation (σ =
0.5, which is only possible when µ = 0.5). The ICC is 1;
unlike the maximal σ = 0.5, this maximal ICC is possible
for any 0 < µ < 1.

More generally, the maximum possible between-cluster
variance is σ2 = µ(1− µ), occurring when 100(1− µ)% of
clusters have a prevalence of 0% and 100µ% of clusters have
a prevalence of 100%18. Since µ(1− µ) is the denominator
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Figure 3. Distribution of cluster prevalances pi when mean
cluster prevalence µ = 0.1. (Beta distribution assumed.)

in our definition of ICC, it follows that ICC can be
expressed purely in terms of between-cluster variation: the
ICC is the attained percentage of the maximum possible
between-cluster variance, given mean cluster prevalence µ.
To our knowledge, this is the first time the ICC has been
expressed in this way. We argue that the extreme, discrete
distribution with variance equal to this denominator variance
is unrealistic in most applications, and may be one possible
source of confusion about plausible magnitudes of ICCs.

Figure 3 shows five more distributions of cluster
prevalances pi. The ICCs are the same as those in Figure 2.
The distributions in Figure 3 all have the same mean, µ =
0.1, but they have differing amounts of variation about
the mean. The (beta) distributions are not symmetric: the
orange distribution has standard deviation σ = 0.06, and the
middle 95% of clusters have prevalences ranging from 2%
to 25%. The coefficient of variation is CV = 0.6, and the
intra-cluster correlation is ICC = 0.04 as before. Once again,
some readers may be surprised that a seemingly low value of
ICC can be associated with such a large amount of between-
cluster variation.

The values of ICCL are slightly larger than corresponding
values of ICC when µ = 0.5 (Figure 2), but considerably
larger when µ = 0.1 (Figure 3).

Maximum entropy distribution

One reason our instincts about ICCs can mislead us
is because of the temptation to confuse variance with
uncertainty. Entropy is a more general notion of uncertainty
that is applicable to all types of random variables, and
“agrees with our intuitive notions that a broad distribution
represents more uncertainty than does a sharply peaked
one”19. For example, the degenerate green distributions
of Figure 2 and Figure 3 have large variance but very
small entropy, since only two values of pi are possible.
Put another way, though these distributions have maximal
variance given their mean µ, there are many distributions
with the same mean but larger entropy. A somewhat more
detailed description of entropy may be found in an appendix
to this paper.

It turns out that there is a uniquely determined density
function that conveys the least information possible while
remaining compatible with a particular prevalence µ. This
is called the maximum entropy distribution and, as its name
suggests, it has the largest entropy within this class of
distributions19. Informally, it is the distribution that is the
most “spread out” across its support, subject to the mean
restriction that we choose to impose. It may be viewed as
an extension of Laplace’s principle of insufficient reason to
cases where considerations of symmetry or uniformity are
replaced by more general restrictions. From the perspective
of information theory, the maximum entropy distribution
is the least informative distribution within that class. The
maximum entropy distribution therefore constitutes a natural
reference distribution against which other distributions—
all of which encode more information about the pi—may
be compared. Figure 4 shows four such maximum entropy
distributions for various means, and again the appendix
provides more detail about the mathematical derivation of
maximum entropy distributions.

For a given prevalence µ, the standard deviation of
the maximum entropy distribution is considerably smaller
than the maximum possible standard deviation (Table 1).
For example, for prevalences of 1%, 10% and 50%, the
maximum possible standard deviations are, respectively, 0.1,
0.3 and 0.5, while the corresponding maximum entropy
distribution standard deviations range from 0.01 to 0.29
(= 1/

√
12, the standard deviation of a uniform distribution

on the unit interval). In agreement with our intuition,
distributions with smaller standard deviation than that of
the maximum entropy distribution also have lower entropy.
Interestingly, increasing the standard deviation beyond that
of the maximum entropy distribution has the effect of
supplying additional information about the pi and actually
decreases uncertainty. This is a feature of the bounded range
of the pi, and a major reason why our intuition from studying
ICCs for continuous responses (where entropy increases as
between-cluster variation increases) can mislead us.

While considerations of plausibility are necessarily
tentative, subjective and application-specific, we suggest that
the distribution with largest entropy (for a given mean)
helpfully bounds the range of standard deviations and ICCs
that will arise in typical practice. For µ = 0.5, the maximum
entropy distribution is the uniform distribution on (0, 1); for
other values of µ, the maximum entropy distribution should
be thought of as analogous to the uniform distribution,
in the sense that the probability mass is dispersed as
evenly as possible while respecting the mean restriction. As
illustrated in Figure 4, for a general 0 ≤ µ ≤ 1 the maximum
entropy distribution is a truncated exponential distribution
(see Conrad20, Theorem 5.1), with density proportional to
exp(λpi) for a parameter λ. Unlike the distribution with
largest variance for a given mean µ—which degenerates
to provide support only on the two-point set {0, 1}—the
corresponding maximum entropy distribution has a density
that is strictly positive on the whole unit interval for every
0 < µ < 1. We suggest that the amount of between-cluster
variation in real world examples will rarely be greater
than the variation exhibited by this maximum entropy
distribution.
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Figure 4. Distribution of cluster prevalances pi according to
four maximum entropy distributions (with mean cluster
prevalences of µ = 0.01, 0.1, 0.3, and 0.5 respectively).

Table 1. Maximum plausible values and maximum possible
values of measures of between-cluster variation in prevalence.
The overall prevalence is µ. Plausible bounds are derived from
the maximum entropy distribution.

Plausible Possible

Measure µ ≈ 0 µ = 0.5 µ ≈ 1 0 ≤ µ ≤ 1

Probability scale:
SD, σ µ 0.29 1− µ

√
µ(1− µ)

CV 1 0.58 (1− µ)/µ
√

(1− µ)/µ
ICC µ/(1− µ) 0.33 (1− µ)/µ 1

Log odds scale:
SD, σL 1.28 1.81 1.28 ∞
ICCL 0.33 0.50 0.33 1

Restricting attention to distributions with variance no
larger than that of the maximum entropy distribution yields
bounds on plausible ICCs and related quantities. These
bounds vary with the mean: as σ in the maximum entropy
distribution is smaller than µ for µ < 0.5 and σ < 1− µ
for µ > 0.5 (Figure 5), it follows that ICC < µ/(1− µ) ≈
µ for µ� 0.5 and ICC < (1− µ)/µ ≈ 1− µ for µ�
0.5 (Table 1). Further, the ICC of the maximum entropy
distribution when µ = 0.5 (the uniform distribution) has
ICC = 1/3. Hence a rough rule of thumb is this: plausible
ICCs and cluster prevalence standard deviations are both
bounded above by the overall prevalence, its complement,
and one third. Figure 5 shows that our rule of thumb is
satisfactory, even if it slightly underestimates the ICC arising
from the maximum entropy distribution for µ < 0.25 and
µ > 0.75.

Eldridge and Kerry2 considered bounds for the ICC based
on the beta distribution:

“The most likely shape of this distribution is
unimodal (having one peak) rather than U-
shaped with peaks at 0 and 1, or J-shaped with
a peak at either 1 or 0. Assuming a unimodal
beta distribution, it is possible through algebraic
manipulation of formulae representing the shape
of the distribution to calculate the maximum
possible ICC for different overall prevalences
. . . ICCs over 0.35 are unlikely for binary

Figure 5. Bounds for the ICC and standard deviation
describing the between-cluster variation in prevalence on the
probability scale (assuming the maximum entropy distribution
describes the maximum plausible amount of variation).

outcomes, and for extreme prevalences ICCs
may be even smaller. Nevertheless, high values
of the ICC may be observed in some trials as a
result of sampling error, and in rare cases when
the distribution of ICCs may not be unimodal.”

Their bound for the ICC based on the unimodal beta
distribution (where the mode lies strictly between 0 and 1,
i.e. α, β > 1) is lower than our bound for the ICC based on
the maximum entropy distribution except when µ = 0, 0.5 or
1, when it is the same (Figure 5).

The CV associated with the maximum entropy distribution
is near 1 when the overall prevalence is below about
15% (Figure 6), and then decreases sharply and essentially
linearly, reaching 0 when the overall prevalence is 100%.
When an outcome has an overall prevalence of 50%, our
suggested maximum plausible CV is 0.58 (Table 1).

The bounds for σL and ICCL implied by our maximum
entropy considerations are shown in Figure 7 and Table 1. It
is important to note that, unlike on the probability scale, these
quantities do not fall away to zero as they approach 0% and
100%, because σL is unbounded above and may be specified
independently of µ.

Empirical data
In an interesting investigation, Gulliford et al.5 quantified
the empirical relationship between overall prevalence µ
and ICC that was observed in healthcare settings with a
large number of clusters and a large number of subjects
in each cluster. After swapping the prevalence µ for 1− µ
when µ > 0.5, they found linear associations of log ICC
with logµ in two datasets of ICCs they compiled. Using
the symmetry of ICC about µ = 0.5, the relationship
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Figure 6. Bounds for the Coefficient of Variation (CV)
describing the between-cluster variation in prevalence on the
probability scale (assuming the maximum entropy distribution
describes the maximum plausible amount of variation).

Figure 7. Bounds for the standard deviation describing the
between-cluster variation in prevalence on the log odds scale
(assuming the maximum entropy distribution describes the
maximum plausible amount of variation). (Constructed following
simulation of data.)

between ICC and CV (ICC = CV2 × µ/(1− µ)) and the
aforementioned approximate relationship between σ and σL,
we have drawn their associations on Figure 5, Figure 6 and
Figure 7, with µ ranging from 0.01 to 0.99.

Their estimated regression lines can be seen to fall below
our bounds for all 0.01 < µ < 0.99. Using the dataset
arising from their analysis of the General Practice Research
Database (GPRD), average ICCs were 0.008, 0.032 and
0.080 for prevalences of 0.01, 0.1 and 0.5, respectively;
corresponding ICCs of 0.001, 0.007 and 0.032 were found
for their second dataset concerning outcomes in community
and health services settings from a Health Technology
Assessment (HTA) review.

The corresponding associations between overall preva-
lence µ and CV in Figure 6 provide rare, hard-to-find empiri-
cal evidence that CV tends to decline as prevalence increases
from 1% to 50%10. That CV tends to decline as prevalence
increases from 50% to 100% is clear from the definition of
CV: the SD tends to decrease as the mean increases.

The associations between overall prevalence µ and
σ/(µ(1− µ)) in Figure 7 suggest that σL, and its
approximation, have only a little dependence on prevalence.
Our bounds for σL, and its approximation, also have only
a little dependence on prevalence. Since σ/(µ(1− µ)) is
very nearly constant and equal to one, another plausible
approximate upper bound for the standard deviation σ is
given by Var(yij) = µ(1− µ).

Recall that our approximation to σL is valid only for small
σL, and so the large differences in Figure 7 between exact
and approximate versions of σL are not unexpected.

Discussion
Despite appearing in the vast majority of sample size and
power calculations of cluster randomised trials, many trialists
find the intra-cluster correlation coefficient to be unintuitive
in the setting of binary outcomes. Some researchers will
be surprised to learn just how much variation is implied
by an ICC as low as 0.04. In general, it is hard to
decide what is a large amount of variation and what is
not. The ICC is typically expressed in terms of variances,
not standard deviations, which may explain why more
attention is given to variances despite standard deviations
being easier to interpret. We suggest that understanding
is much improved through visualising the distribution
of true cluster prevalences or at least calculating their
standard deviation, which is more readily interpretable than
the dimensionless ICC—the latter cannot be interpreted
independently of the overall prevalence. In principle, this
excercise in understanding can and should be done for
each arm of a parallel-group cluster randomised trial7. It
is, perhaps, worth repeating the general advice to think in
terms of standard deviations: their units are likely to be better
grounded in reality, and in this case are event probabilities.

Outside the trials setting, this paper may be helpful to
researchers seeking to understand variation and clustering in
any study with a binary outcome. In observational studies
where a random intercepts logistic regression model is
used, it may be helpful to use the Murray and Murray15

approximation to calculate the standard deviation σ from
σL, or to visualise the distribution of pi (assuming either a
beta distribution or a logistic-normal distribution), for one or
more fixed prevalences (as in Figure 1).

Appealing to maximum entropy theory, we have proposed
bounds on several measures for what between-cluster
variation in outcomes is plausible (Table1). This led to the
following rule of thumb: that plausible ICCs and standard
deviations of true cluster prevalences are both bounded above
by the overall prevalence, its complement, and one third. A
qualitatively similar bound for the ICC (“ICCs over 0.35 are
unlikely for binary outcomes, and for extreme prevalences
ICCs may be even smaller”) was suggested by Eldrige and
Kerry2 based on a beta distribution being unimodal.

Our rule of thumb may help researchers planning a cluster
randomised trial to not specify implausibly high values of the
ICC. Implausibly high values of the ICC can be suggested
by analysis of previous data (this includes pilot studies and
very many trials, even large trials), for at least two reasons.
Firstly, ICCs are often estimated very imprecisely, with large
standard errors21. Low precision in estimating ICCs can be

Prepared using sagej.cls



Chatfield and Farewell 7

seen whenever the number of clusters is small, so even in
large trials our bounds may provide a helpful reality check.
Secondly, ICCL can be confused with ICC22, and while the
difference between the two may be small when µ = 0.5, for
very small (or very large) µ, ICCL will be several times larger
than the ICC, as we and others have shown6.

Confusing ICCL for ICC is a particularly easy trap for
Stata users to fall into. Stata’s simple “estat icc” command
calculates ICCL following mixed effects logistic regression.
If a Stata user looks hard in the software’s extensive
documentation, they may find mention of another definition
of ICC for binary data (on the probit scale after use of the
“meprobit” command), but no mention of the usual ICC on
the probability scale. In fact, this is true even for the required
ICC input to the “power twoproportions, cluster” command,
which experienced trialists will realise must be the ICC on
the probability scale. However, this is not made explicit in
the documentation. We also note that the default value taken
by this ICC is 0.5, irrespective of the mean prevalence µ, and
far beyond our suggested bounds even if µ ≈ 50%.

Our bounds may also help to inform the choice of prior
distributions in Bayesian analyses. For example, Turner et
al.23 employed a uniform prior distribution on [0, 1] for the
ICC “to represent lack of prior knowledge”, but a narrower
range may be warranted, particularly if prior information
indicates an overall prevalence near zero or one.

A recent example of an anticipated ICC that was
unrealistically high is a stepped wedge trial of a cleaning
intervention to reduce the rates of healthcare-associated
infections in hospitals24. The power calculation assumed
binary outcome data with an overall prevalence of combined
infection (per occupied bed-day) of µ = 0.0015. It specified
a within-hospital correlation in infection of 0.3 (far
higher than our bound), the source of which is unclear
(Adrian Barnett, personal communication). The actual
trial data (during the pre-intervention phase) showed an
overall prevalence of µ = 0.0004, ICC = 0.0001 estimated
using one-way ANOVA,6,25, and ICCL = 0.1. These three
represent very different ICC values, even if stepped wedge
trials are relatively insensitive to variations in ICC26.

Our bound for the ICC is broadly consistent with the
findings of Gulliford et al.5, although when prevalence is
0.5% the average ICC from their model on one of their
datasets (GPRD) is 0.005, the same as our bound. The
average ICC from their model on the HTA dataset (where
the smallest overall prevalance was 0.003% rather than
0.2% (GPRD)) is 0.0005, comfortably below our bound.
Gulliford et al.5 point out “[t]he distribution of cluster-
specific proportions [. . . ] may vary according to the nature
of the outcome measure, the characteristics of clusters
and individual subjects, and the context of a study”, and
Eldridge and Kerry2 review patterns in ICCs, such as their
apparent dependence on prevalence, and the fact that process
outcomes tend to have larger ICCs than clinical outcomes.
Almost half of the ICCs in the GPRD dataset arose from
studies of the proportion of GP consultations resulting
in a prescription of antibiotics (including penicillins,
nonpenicillins or penicillins and nonpenicillins combined),
for each of fifteen acute conditions. Many other ICCs were
derived from studies of proportions of patients in a general
practice prescribed each of fifteen classes of drugs.

Our ICC bound (which tends to 0 as the mean prevalence
decreases) agrees qualitatively with all of this prior empirical
and theoretical research. However, the maximum entropy
distribution itself often seems too extreme to be described
as “plausible”. For example, a uniform distribution (with
µ = 0.5) seems implausible to us as a distribution of cluster
prevalences. We suggest that values above or close to our
bound should be treated with caution, and the reasoning
behind this choice should be double-checked. We emphasise,
though, that ICCs beyond our bound are of course possible:
if patients in different clusters receive very different care
because of clinical training or practice that is highly variable
internationally, a bimodal distribution might occur and even
ICCs approaching 1 may arise.

Our bound for the coefficient of variation (CV = 1 for
low prevalences) is somewhat higher than that of Hayes et
al.8, who say that “experience from field trials suggest that
the coefficient of variation is often ≤ 0.25”. A coefficient
of variation of 0.25 can arise in a setting where the mean
prevalence is expected to be 30%, but prevalence in villages
could easily vary between 15% and 45% according to
experts8. Assuming a roughly normal distribution, this could
suggest σ = 0.075 (so that 95% of villages have a prevalence
within 2 standard deviations of the mean), hence CV =
0.075/0.3 = 0.25. A similar crude heuristic argument, this
time restricting 95% of cluster prevalences to take non-
negative values (e.g. 0% to 60%), leads Hayes et al.8 to
suggest coefficient of variation “seldom exceeds 0.5”.

The quantity σL can be considered transportable within a
cluster randomised trial if a treatment acts multiplicatively
on the odds of an adverse event7. Our bound for σL (1.28 to
1.81 depending on prevalence) fits nicely with the range (up
to 0.9) often seen in cluster randomised trials6. This bound
has less dependence on prevalence than the bounds for both
ICC and CV. The approximation σL ≈ σ/(µ(1− µ)) has a
bound that has less dependence on prevalence still. Between-
cluster variation quantified in this way on previous data has
little dependence on prevalence5.

Dedication
This paper is dedicated to the memory of Dr Dan
Lunn, our undergraduate mathematics and statistics tutor at
Worcester College, Oxford. His depth of insight made him
unorthodox—we recall his prodigal proof that the sample
mean and variance are independent—while his inexhaustible
supply of anecdotes kept us laughing all the way to the
Examination Schools. Dan made statistics both meaningful
and merry, and we both owe him a huge debt of gratitude.
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Appendix: entropy, and maximum entropy
distributions
We have used entropy in this paper to characterise
uncertainty in probability distributions, and compute it for
various examples in Figures 1–4. This appendix provides
a little more detail about entropy and maximum entropy
distributions.

Informally, entropy measures the average information
content in a probability distribution, where a degenerate
distribution carries no information and where entropy
increases as the distribution becomes more evenly spread out
across its support.

More formally (and slightly more broadly), entropy
is a quantification of the average ability to discriminate
between a given probability distribution and some arbitrary
reference distribution. Since the most powerful numerical
summary for discrimating between two candidate models
is their likelihood ratio R, entropy is typically defined as
−E(logR), with expectation being taken with respect to the
distribution of interest rather than the reference distribution.

For continuous distributions on the unit interval such as the
majority of those dealt with in the present paper, the uniform
distribution is often chosen as the point of reference, and a
distribution with probability density function f(x) has a so-
called differential entropy of

−
∫ 1

0

f(x) log f(x) dx.

By construction, the uniform distribution itself has an
entropy value of 0. The beta distribution Beta(α, β) has
differential entropy

logB(α, β)− (α− 1)ψ(α)

− (β − 1)ψ(β) + (α+ β − 2)ψ(α+ β),

where B is the beta function and ψ the digamma function.
In the absence of a closed form expression for the entropy
of a logistic normal distribution, numerical integration was
used to compute the entropy in Figure 1. Differential entropy
can be negative, and discrete distributions may be assigned a
notional differential entropy of −∞.

Conrad20 illustrates how to derive maximum entropy
distributions on a given support and with particular
constraints. Of particular interest to us is Conrad’s Theorem
5.1, which states that “[t]he continuous probability density
function on the interval [a, b] with mean µ that maximizes
entropy among all such densities (on [a, b] with mean µ) is a
truncated exponential density”. When [a, b] = [0, 1], this has
the form

f(x) =
c exp(cx)

exp(c)− 1

for the unique c satisfying the equation µ = 1− 1/c+
1/{exp(c)− 1}. The variance of this maximum entropy
distribution may be computed (e.g. via integration by parts),
and turns out to be

1

c2
+

1

2− 2 cosh c
.

More straightforwardly, its differential entropy is

log{exp |c| − 1} − log |c| − |c|µ

for c 6= 0, and is 0 if c = 0 (the uniform distribution).
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