
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/134078/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Perera, Charith and Vasilakos, Athanasios V. 2016. A knowledge-based resource discovery for Internet of
Things. Knowledge-Based Systems 109 , pp. 122-136. 10.1016/j.knosys.2016.06.030

Publishers page: https://doi.org/10.1016/j.knosys.2016.06.030

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

A Knowledge-Based Resource Discovery for Internet of Things

Charith Pereraa,, Athanasios V. Vasilakosb,

aCentre for Research in Computing, The Open University, Milton Keynes, UK
bDept of Computer Science, Electrical and Space Engineering, Lulea University of Technology, Lulea, Sweden

Abstract

In the sensing as a service paradigm, Internet of Things (IoT) Middleware platforms allow data consumers to retrieve the data they
want without knowing the underlying technical details of IoT resources (i.e. sensors and data processing components). However,
configuring an IoT middleware platform and retrieving data is a significant challenge for data consumers as it requires both technical
knowledge and domain expertise. In this paper, we propose a knowledge driven approach called Context Aware Sensor Config-
uration Model (CASCOM) to simplify the process of configuring IoT middleware platforms, so the data consumers, specifically
non-technical personnel, can easily retrieve the data they required. In this paper, we demonstrate how IoT resources can be described
using semantics in such away that they can later be used to compose service work-flows. Such automated semantic-knowledge-
based IoT resource composition approach advances the current research. We demonstrate the feasibility and the usability of our
approach through a prototype implementation based on an IoT middleware called Global Sensor Networks (GSN), though our
model can be generalized to any other middleware platform.

Keywords: Internet of Things, Middleware, Semantic Knowledge, IoT Resource Composition

1. Introduction

The Internet of Things (IoT) [2] envisions connecting bil-
lions of smart devices to the Internet. It provides a networked
infrastructure that enables things to be connected anytime, any-
place, with anything and anyone, ideally using any path, any
network and any service [31]. These smart devices should be
smoothly integrated within Future Internet (FI) service delivery
models such as sensing as a service. The things2 in IoT are ac-
companied with sensors and actuators. It is estimated that there
are about 1.5 billion Internet-enabled PCs and over 1 billion
Internet-enabled mobile phones today. By 2020, there will be
50 to 100 billion devices connected to the Internet [31]. Since
these smart devices comprise sensors, it is evident that there
would be many sensors deployed around us in the future. Even
today, sensors are used in many domains such as agriculture,
environmental monitoring, and manufacturing [25].

In order to analyse and understand a given phenomenon ex-
tensively, data generated from appropriate sensors needs to be
fed into more sophisticated data analysis applications. These
applications are designed to produce certain results once they
are given required sensor data as inputs. IoT middleware so-
lutions simplify the retrieval of data from sensors for these ap-
plications by acting as a mediator between the hardware layer
and the application layer. In order to perform these bindings,

Email addresses: charith.perera@ieee.org (Charith Perera),
vasilako@ath.forthnet.gr (Athanasios V. Vasilakos)

1An earlier version of this work has been published in the Proceedings of
the 9th International Conference on Semantics, Knowledge & Grids (SKG).

2We use terms objects, things, smart objects, devices, nodes to give the same
meaning as they are frequently used in IoT literature interchangeably.

middleware solutions need to be configured depending on the
context information and user requirements. Our objective is
to automate and simplify the configuration of IoT middleware
platforms and improve their usability so both IT experts and
non-IT experts can use them efficiently and effectively.

There are several characteristics we have identified as impor-
tant for developing a model for IoT that provisions sensing as a
service by formulating and composing multiple types of sensor
as well as different filtering, fusing, and reasoning mechanisms
together on-demand. The core features of the proposed model
are as follows:

• Autonomic: The model should support the dynamic com-
position of internet-connected objects, in response to dy-
namically defined end-users’ requests. To this end, we
have incorporated semantic knowledge [30], along with
automated reasoning algorithms for orchestrating sensors,
and data processing mechanisms [25], according to the
data consumer requests.

• Utility Based: The proposed model should deliver services
according to a utility computing model [8, 22]. It should
offer sensing capability as a service[26] over dynamically
created and configured solutions3 that are custom gener-
ated for each consumer request. Sensor data consumers
(users) should be allowed to make the decisions on the
characteristic of the solution (e.g. accuracy, reliability, la-
tency and so on). Orchestration of IoT resources (i.e sen-
sors and data processing components) in the cloud envi-

3Solution is a combination of sensors and data processing components that
can be composed together in order to satisfy a user requirement.

Preprint submitted to Knowledge-Based Systems June 30, 2016

ar
X

iv
:1

60
6.

08
96

8v
1

 [
cs

.N
I]

 2
9

Ju
n

20
16

ronment at runtime is an important functionality [5]. The
dynamism implies the capability of adapting to resources
changes in volatile environments where sensors and data
processing components may be added or removed from
the system over time. This means that new solutions will
be able to compose together over time due availability of
new resources.

• Scalability and Flexibility: The proposed solution should
be flexible so data processing components and sensors can
be added over time [33]. Further, the proposed solution
should be scalable so any number of IoT resources can
be supported. Such ability increases the types of con-
sumer requests that can be fulfilled. Further, it increases
the number of different solutions that can be formulated to
accommodate a single request. Possibility of creating mul-
tiple different solutions will increase the choice and con-
trol consumer have. Finally, the proposed model and its
algorithms should be independent from the data (i.e. de-
scriptions of IoT resources) so adding a new resource does
not require changes to be made into the system.

• Ease of use / reduced learning curve: One of the primary
goals of an IoT middleware is to enable users to retrieve
data quickly without dealing with complex hardware or
software level configurations. It is important to make all
the process simplified so a non-technical personal (e.g, bi-
ologist) can use these IoT middleware platforms to collect
the data they need with minimum effort.

1.1. Motivation

Over the last few years, we have seen more and more IoT
middleware platforms making their way in the marketplace.
Large number of sensors are expected to connect to these mid-
dleware platforms. Further, variety of different IoT applications
are expected to be built on top of these middleware platforms.
These IoT applications have different types of algorithms that
analyse data built into them. These algorithms are nothing but
some type black boxes that take specific type of inputs and gen-
erate specific type of outputs. One of the main responsibilities
of an IoT middleware is to hide and abstract the connectivity
and communication details of sensors and support the users to
retrieve the data streams they required to be fed into their appli-
cation easily and quickly.

Data processing components can also be used to build these
required data streams as we later discuss in this paper. Cur-
rently, it is difficult to configure IoT middleware platforms in
a way that they produces a certain data stream that is required
by an IoT application. The challenges are discussed in Section
2. To make IoT middleware configuration easier, we propose a
knowledge driven approach called Context Aware Sensor Con-
figuration Model (CASCOM) to simplify the process of config-
uring IoT middleware platforms, so the data consumers, spe-
cially non-technical personnel, can easily retrieve the data they
required.

1.2. Main Contributions

The contributions of our paper are as follows:

• We propose a IoT configuration model called CASCOM
to enrich existing IoT middleware platforms. This model
helps non-IT experts to configure sensors and data pro-
cessing components with less effort.

• CASCOM is completely driven by semantically enriched
IoT resource descriptions at the back end. Therefore, new
sensors and data processing components can be added at
any time. No changes are required in the application from
an algorithmic perspective.

• CASCOM provides an easy way to construct the data
streams required by the data consumers by selecting ques-
tions and answering them.

• CASCOM automatically highlights to users on potential
secondary context information that can be derived from
existing primary context.

• Finally, CASCOM informs the users regarding potential
sensor and data processing components that can be added
to the system in order to enhance the ability to serve the
user requests.

• CASCOM uses ontologies to model semantics where three
ontologies capture the relevant knowledge collectively.
The usage of ontologies help to automated composition
and reasoning process. More importantly, modelling new
knowledge is very easy due to the adoption of ontology
based knowledge modelling technique. Specifically, we
employ two existing ontologies, namely SCO [9], and
SSN ontology [10] and developed our own ontology called
QA+TDO. New knowledge can be added to these existing
models easily using the proposed tool.

We explain all the above mentioned contributions in detail
throughout the paper. The rest of this paper is structured as
follows. Section 2 presents the background and related work.
First, we briefly introduce an IoT reference architecture and its
characteristics. Then, we explain where our proposed model
fits in such an architecture. Later, we review some related work
and compare them with our own to highlight the similarities and
differences. The research challenges are discussed in Section
3. We have used a real world use-case scenario from the agri-
culture domain to explain the research problem in detail. Our
research question is ‘How to develop a model that allows data
consumers (i.e, non-IT and IT experts) to configure IoT middle-
ware platforms by discovering and composing IoT resources
(i.e, sensors and data processing components) effortlessly?’.
Once the configuration is completed, the IoT middleware plat-
form should produce the data streams that the data consumers
have requested. Data consumers can use these data streams to
achieve their own objectives.

Subsequently, we explain the importance of resource dis-
covery and composition in IoT domain and why it need to be

2

knowledge-driven. Architectural designs are presented in Sec-
tion 4. We propose our solution, CASCOM, which consists of
six phases where each phase is explained in detail with relevant
algorithms and examples. Section 6 presents the implemen-
tation and experimentation details. We evaluate the proposed
model from both computational (i.e. storage requirements, data
model loading time, query time) and usability point of views,
presenting our findings in Section 7. We explain why our pro-
posed model is feasible and how it helps users to configure IoT
middleware platforms easily. Finally, we conclude the paper in
Section 8.

2. Background and Related Work

2.1. Background
In this section, we review a number of related work and dis-

cuss the problem domain in detail. Broadly, configuration in
IoT paradigm can be categorized into two areas: sensor-level
configuration and system-level configuration. Sensor-level con-
figuration [13] focuses on changing a sensor’s behaviour by
configuring its embedded software parameters such as sens-
ing schedule, sampling rate, data communication frequency,
communication patterns and protocols. In this paper, we fo-
cus on developing a system-level configuration model for IoT
midddleware platforms. System-level configuration focuses on
changing the behaviour of IoT middleware systems by config-
uring internal software components. Specifically, our proposed

model identifies, composes, and configures both sensors and
data processing components in order to create the data streams
based on user requirements.

We start by briefly introducing a reference architecture for
IoT middleware. Our reference architecture, a detailed descrip-
tion of which is given in [24], is presented in Figure 1. The
details are presented in [24]. Even though the details of this
reference architecture are out of scope of this paper, we would
like to briefly introduce some of the major responsibilities of an
IoT middleware and its different components. The objective of
an IoT middleware from users’ perspective is to collect sensor
data streams so they can inject them into an application that is
capable of performing analysis [4]. A data stream is simply a
set of data items that is captured and transferred to the users
sequentially and continuously at certain intervals (e.g. every 5
seconds, every 2 hours). A sample data stream is illustrated in
Figure 2. A data stream may consist of one type of data (e.g.
as illustrated in data stream 2 in Figure 2) or multiple types of
data (e.g. as illustrated in data stream 1 in Figure 1).

The reference architecture illustrated in Figure 1 consists of
four layers: Data, Semantics, and Context Dissemination Layer
(DSCDL), Context Processing and Reasoning Layer (CPRL),
Context and Semantic Discovery Layer (CSDL), and Sensor
Data Acquisition Layer (SDAL). Data, Semantics, and Context
Dissemination Layer (DSCDL) is responsible for user manage-
ment. The components belonging to this layer are data dis-
patcher, request manager, and publish/subscribe. Typically,

Sensing
(Physical,
Virtual)
Layer

S1 S2 S3
S4 S5 Sn

Context and
Semantic
Discovery
Layer (CSDL)

Physical or Virtual Sensor (Context Sources)

Context and Semantic
Discoverers (CSD)

Context Provider
Registry (CPR)

Reasoning
Engine (RE)

Secondary Context
Processor (SCP)

Primary Context
Processor (PCP)

Sensor Wrappers (SW)
(GSN Wrappers)

Processing
and Reasoning
Layer (CPRL)

Context
Registry (CR)

Context
Knowledge
Base (CKB)

Data,
Semantics,
and Context
Dissemination
Layer (CDL)

User
(Application
or Service)

User Oriented Front
 End (UOFE)

Request

S1

Data Fusion Operator
Repository (DFOR)

Publish/ Subscribe (P&S)
Request

Manager (RM)

Context and
Semantic
Discoverers
Repository
(CSDR)

Cloud
(Storage, Processing, Logs)

Analytics
(Multi-Model Interface,

Visualization)Open Linked Data

S2 S3

S4 S5 Sn

Context and
Semantic
Discoverer
Generator
(CSDG)

Data Dispatcher (DD)

Figure 1: Internet of Things Reference Architecture. Our proposed model, CASCOM, fits within the Reasoning Engine (RE) block
of the architecture. The details of this architecture is discussed in detail in [24]

3

Temperature

Humidity

Pressure

Light

Noise

Wetness

Single Data

Items
Data Stream

Data Stream
1

2

Figure 2: Data Stream

users will not know about the technical details of the sensors or
data processing components. They only know about the prob-
lem they need to solve. therefore, users need to be provided
with the easy-to-use mechanisms to express their requirements
in high-level without requiring technical knowledge.

The Processing and Reasoning Layer (CPRL) is responsible
for data processing, reasoning, fusing, knowledge generating
and storing. In this layer data processing components are orga-
nized into work-flows in such a way that they collectively pro-
duce the data streams required by the consumers. Context and
Semantic Discovery Layer (CSDL) is responsible for manag-
ing context and generating secondary context information from
primary context information. Sensor Data Acquisition Layer
(SDAL) is responsible for acquiring data. This layer communi-
cates with hardware and software sensors and retrieves sensor
data into IoT middleware.

In this reference architecture, data processing components sit
within the Data Fusion Operator4 (DFO) registry. Similarly,
Context Provider Registry (CPR) keeps track of the data items
captured by the sensors. Reasoning Engine (RE) is responsible
for building the above mentioned work-flow solutions to satisfy
user requests.

The challenge of configuring an IoT middleware solution at
run time can be understood by analysing an existing middle-
ware such as Global Sensor Networks (GSN) [1]. Some of the
key challenges are as follows.

• Users need to know the low-level details such as data types
and measurement units of the sensors in order to request
them manually.

• It is extremely difficult to memorise different combinations
of sensor data types that can be used to fulfil user require-
ments (e.g. which sensors need to be composed together to
detect an event?). In particular, domain knowledge (e.g.,
relating to agriculture) is difficult to memorise when there
are multiple ways of building a given data stream.

• Users need to know the availability of data processing
components, their input/output data types and their capa-
bilities to develop a strategy. Data processing operations
need to be applied on data in the correct sequence.

4DFO is also called the data processing component.

• There is no way to find out the strategies to overcome the
issues when existing hardware resources (i.e. existing sen-
sors) and software resources (i.e. data processing com-
ponents) are incapable of producing the results that users
required.

• Further, the solutions designed by users may not be opti-
mal (e.g. due to the variability of hardware and software
costs).

An ideal IoT middleware configuration model should address
all the above mentioned challenges. The proposed configu-
ration model, CASCOM, is applicable towards several other
emerging paradigms, such as sensing as a service [35]. Our pro-
posed solution combines technologies from different research
areas such as IoT middleware, semantic technologies, software
component composition, and context-aware computing. We
discuss major related research efforts in the remainder of this
section.

2.2. Related Work

Microsoft SensorMap [18] (sensormap.org) is a data shar-
ing and visualization framework. It is a peer produced sen-
sor network that consists of sensors deployed by contributors
around the world. SensorMap mashes up sensor data on a map
interface. Then, it allows to selectively query sensors and vi-
sualize data. Our approach completely automates the configu-
ration process by eliminating the requirement of hand picking
sensors. Linked Sensor Middleware (LSM) [29] (lsm.deri.ie)
is a platform that provides wrappers for real time data collec-
tion and publishing. It also provides a web interface for sensor
search, linked stream data query, data annotation and visuali-
sation. LSM mainly focuses on linked data publishing. Sensor
selection needs to be done manually in order to retrieve sensor
data. Xively (Xively.com) is a platform for Internet of Things
devices. Xively allows different data sources to be connected
to it. Then, it provides functionalities such as event trigger-
ing and data filtering. It acts as a mediator between sensors
and applications where users need to manually select and con-
figure sensors. HyperCat (hypercat.io) is an open, lightweight
JSON-based hypermedia catalogue format for exposing collec-
tions of URIs. HyperCat has proposed the notion of describing
resources in a semantic way. These descriptions are designed
for exposing information about IoT assets over the web. Hyper-
Cat provides a standard mechanism for developers to publish
linked-data descriptions of resources.

Context-awareness is a critical functionality that needs to be
embedded into IoT middleware solutions [25]. Context infor-
mation (e.g. accuracy, reliability, cost) plays a significant role
in selecting sensors and data processing components [23]. To
support this, CASCOM provides context discovery functional-
ities by using semantic knowledge and fusing raw sensor data.
The SensorMashup [28] platform offers a visual composer for
sensor data streams. Data sources and intermediate analyti-
cal tools are described by reference to an ontology, enabling
an integrated discovery mechanism for such sources. Selection
of data sources and analytical tools based on user requirement

4

need to be done manually by users. Khemakhem et al. [14] use
multiple ontologies to discover and compose software compo-
nents by focusing on non-functional proprieties. In web service
composition domain, service composition means composing a
larger service by combining many smaller services. This is the
same principle used when composing a larger software compo-
nent from many smaller components.

Web service (WS) composition using ontologies [17] is sim-
ilar to IoT resource composition performed in CASCOM from
a functional point of view but different from an implementation
and execution point of view. Web services composition domain
only involves in combining multiple software components. In
contrast, CASCOM needs to deal with both hardware and soft-
ware components in its configuration model. We present a com-
parison of WS composition and IoT resource composition in
Table 1.

Leitner et al. [16] have proposed a cost-based service com-
position model to support service level agreements (SLA) in
manufacturing domain. Similar to our approach, in SLAs, cus-
tomers are allowed to express their requirements and expecta-
tions (e.g. monetary costs, time to deliver, quality). Based on
the customer needs, different service providers will be used to
accommodate the request order (e.g. normal shipping or ex-
press shipping). However, these composition are done based on
predefined business rules. Haddad et al. [11] have addressed
the issue of selecting and composing Web services not only ac-
cording to their functional requirements but also to their trans-

actional properties and QoS characteristics. Though QoS char-
acteristics are important in IoT resource composition domain,
transactional properties are less relevant. The reason is that IoT
resource composition does not need to support compensations
or undoing transactions. Bronsted et al. [7] has mentioned that
’Only 10 cases use scenario-based evaluation, which is most
realistic because it involves actual use by users. So, for many
of the mechanisms, there’s weak empirical support for the claim
that they work in realistic settings’. This is one of the reasons
we evaluate our approach using use-case and also described the
processes and techniques using real-world applications. Kri-
tikos and Plexousakis [15] have discussed quality of service and
its importance towards web service discovery. They recognize
QoS as a set of performance and domain-dependent attributes
that has a substantial impact on WS requesters’ expectations.
This is also similar in IoT resource composition domain as well.

Several projects [9] have designed and developed ontologies
to describe software components. Such approaches have helped
them to perform dynamic composition of software components.
A process of software component matching using ontologies
has been explained in [21]. In our work we employed the Soft-
ware Component Ontology discussed in [9]. Semantic Sensor
Ontology (SSNO) [10] also allowed us to model sensor descrip-
tions. Noguchi et al. [19] have proposed a mechanism that gen-
erates connection between different software components in or-
der to process sensor data and detect events. In contrast, our
objective is to produce the data streams required by the users

Table 1: Comparison of web services composition and IoT resource composition Domains. In summary, web services selection
is based on virtual capabilities and characteristics where IoT resources selection is based on both physical and virtual capabilities
and characteristics. As a result, IoT resources are much complex elements to be selected and composed autonomously than web
services.

Web Service Domain [36] IoT Domain

Si
m

ila
ri

tie
s

• Consuming single web service may not create significant value.
Therefore, web services selection and composition is critical to gen-
erate value.

• Many alternative web services are available to use

• Can be found through directory services

• Quality of services matters [34].

• There are free as well as paid services.

• Collecting data from a single sensor may not create significant value.
Therefore, sensor selection and composition is critical to generate
value.

• Many alternative sensors will be available to use

• Middleware solutions such as OpenIoT and GSN will play a mediator
roles between sensors and sensor data consumers

• Quality of sensors (and data) matters

• There will be free as well as paid sensors

D
iff

er
en

ce
s

• Web service compose with other web services in to work-flows.

• Largely guided by standards.

• Largely depend on software.

• Less uncertainty (unless some hardware sensors are involved. e.g,
data from weather stations.)

• Not tangible and more reliable.

• Some web services accept data as input and produce some data based
on them (e.g. data fusion).

• Data send to the consumer using web services.

• Comparatively, fewer web services will accessible over the Internet
by 2020 [36].

• Typically provide more meaningful processed and refined data.

• Sensors and data processing components compose together into work-
flows.

• No standards (yet) [12].

• Largely depend on hardware, firmware, as well as software

• More uncertainty.

• Sensors are Tangible, could be mobile and less reliable.

• Some sensors may accept queries/conditions/preferences as inputs
and produce data based on them. Nevertheless, sensors do not ac-
cept raw data with the intention of fusing data.

• Comparatively, more sensors will be accessible over the Internet by
2020 [31].

• Sensors, typically provides less meaningful raw sensor data where
they need to be processed by data processing components.

5

Our objective is
to help the user

to overcome
these challenges

A user wants to
monitor / detect

/ discover
 a phenomenon

User does not know which data
processing components to use

User does not know how to
configure the IoT middleware

User does not know which
sensors to use to retrieve data

Figure 3: The Problem Definition in General

so they can be further analysed extensively using sophisticated
applications.

3. Research Challenges

This section describes and analyses the research challenges
in detail with concrete examples and scenarios. Figure 3 illus-
trates the problem in general. The explanations are based on
agriculture and environmental monitoring domains. The pro-
posed solution helps data consumers to overcome the difficul-
ties listed in Section 2. Our research question is ‘How to de-
velop a model that allows non-IT experts to configure sensors
and data processing mechanisms in an IoT middleware accord-
ing to their requirements?’. The notations we use in this section
are presented in Table 2. Other notations we used in this paper
are as follows: Wrapper (W) and Virtual Sensor (VS).

Figure 4 illustrates two scenarios from two different domains.
Each of them has different consumer requirements that lead to
two different execution flows. We selected these two scenar-
ios due to the fact that, together, they allow us to showcase the
full capabilities of Context-Aware Sensor Configuration Model
(CASCOM). In use case 1, a plant scientist wants to monitor
whether the experimental crops can be infected by Phytophtora
[3] disease or not. Phytophtora is a fungal disease which can
enter a field through a variety of sources. The development and
associated attack of the crop depends strongly on the clima-
tological conditions within the field. Humidity plays a major
role in the development of Phytophtora. Both temperature and
whether or not the leaves are wet are also important indicators
to monitor Phytophtora. The following facts explain Phytoph-
tora monitoring (simplified for demonstration purposes). It is
important to highlight that rule-based reasoning5 does not in-
tended to replace rule engines [32]. The objective here is to
create the data items that are required by the application.

5we employed rules based reasoning in this disuccions

(a) User Case 1 (Agriculture): A plant scientist wants
to monitor whether the experimental crops can be

infected by Phytophtora disease

Retrieve data from
sensors:

Air temperature,
Air humidity,
Leaf wetness

Need following data
processing

components:
airStressDetector,
phytophtoraMonitor

(b) User Case 2 (Environment): A environmental
scientist wants to monitor environmental pollution in

Canberra, Australia

Need following data
processing

components:
(MANY) different

components

Plant
Scientist

Environmental
Scientist

Retrieve data from
sensors:

pH, Temperature
Humidity, O

2
, CO,

CO
2
, dust, sound

Figure 4: Use cases that illustrates the need of CASCOM.

Table 2: Common Algorithmic Notations

Symbol Definition

S Complete set of sensors described in the data model.

S α
S denotes the sensor and subscript α denotes the types of
the sensor. Examples are listed in Table 3.

Mθ

Model represent the complete ontology based semantic
data model. The θ can be replaced by either c as (i.e.
Mc) or s (i.e. Ms). c demotes the complete model and
s denotes the subset of the complete model.

T Filtered set of tasks described in the data model.

Tu
Task selected by the user (or sensor data consumer) where
IoT middleware needs to be configured accordingly.

Ψβ

SPARQL query that selects different properties from the
data model. β can be replaced by t tasks, a answers, q
questions, and d data streams.

Q Filtered set of questions described in the data model (List
of questions).

Qu Single question selected by the user to answer.

A Filtered set of answers described in the data model (List
of answers).

Au Single answer selected by the user.

Cγ(∆) : z

C denotes the data processing components where γ is used
an identifier to distinguish each different component. Ar-
guments/ parameters accept by each components are de-
picted by ∆ as set. ∆ may accept one or more inputs as
denoted by ‘λ#’. The symbol # denotes the number of the
input parameter. The type of each argument is depicted by
letters such as x, y (i.e. ∆ = {λ1 x, λ2y}). The return value
is depicted by letter after ‘:’ symbol. Examples are listed
in Table 4.

H Filtered set of solutions composed by CASCOM which
are capable to producing data streams required by the user.

Hu

A single solution composed by CASCOM which are ca-
pable to producing data streams required by the user. So-
lutions is a composition of sensors and data processing
components formulated into a certain order.

D
Filtered set of different data-streams that can fulfil user
requirements. Data stream is a continuous flow of data
which encompasses several data items.

D A single data stream is composed with number of different
data items.

Πi This denotes the ith data item of a given data stream.

R

Recommendation list that contains information about sen-
sors and data processing components that are not avail-
able. Acquire such resources will help to facilitates user
requirement in the future.

P

List of all the data items that are available to be captured
by the IoT middleware either directly through active wrap-
pers or by combining / composing such data iteams with
data processing components. Depending in the complex-
ity of retrieving and generating data items, we categorize
them into number of categories.

P A single data item that is available to be captured from
active wrapper.

M Additional list context information that can be discovered
by the users if needed.

σ
Matrix that stores the information about input / outputs of
data processing components and data items in P.

6

Sensor Explanation

S AT Air Temperature
S AH Air Humidity
S LW Leaf Wetness
S CM Carbon Monoxide
S CD Carbon Dioxide
S MO Molecular Oxygen
S ME Methane
S ND Nitrogen Dioxide

Table 3: Subset of Sensors

Sensor Explanation

C1(∆) : z airStressDetector
C2(∆) : z phytophtoraMonitor
C3(∆) : z pollutionDetector
C4(∆) : z airQualityMonitor

Table 4: Subset of DPCs

• IF Air Temperature < α AND Air Humidity < β THEN
Air Stress level = low ELSE Air Stress level = high

• IF Air Stress = high AND Leaf Wetness > δ THEN Phy-
tophtora Disease = Can-be-infected ELSE = Cannot-be-
infected

One of the responsibilities of an IoT middleware is to com-
bine different sensors and data processing components au-
tonomously and produce a data stream as illustrated in Figure
2. Mostly, our focus is on data streams that consists of multiple
data types. A data consumer can feed the data stream into an
application for further complex processing such as visualiza-
tion and modelling that allows the data consumers to achieve
their objectives. The main challenge is that the plant scien-
tist may not know (or remember) the domain knowledge listed
as rules above. Further, we should not expect a plant scientist
to write XML or Java code as part of the configuration. An
ideal IoT middleware should help the scientist (non-IT expert)
to overcome these challenges by providing tools that are easy
to use. The scientist should be able to configure the middle-
ware according to the problems/tasks at hand with minimum
effort. Additionally, advanced customization will be useful to
optimize the configuration process. Comparatively, use case 1
is less complex as there is only one way to monitor the disease
(above rules). For example, the sensor types and data process-
ing components need to be used are straight forward.

• Use case (1) Solution: ((S AT , S AH)⇒ C1, S LW)⇒ C2

As symbolized in the above statement, the IoT resource may
need to be composed as follows. First, air temperature (S AT)
and air humidity (S AH) need to be fed into airStressDetector
component (C1). Then, it produces the airStress as the out-
come. Then leaf wetness (S LW) and airStress need to be fed into
phytophtoraMonitor component (C2). It produces the phytoph-
toraDisease status. The IoT resource composition is illustrated
in Figure 5

Configuration becomes a complex task in the use case 2. In
this scenario, an environmental scientist wants to measure the
environmental pollution in Canberra, Australia. In comparison
to the use case 1, there are many different ways to measure and
visualize pollution. Different sensors and data processing com-
ponents can be combined together to fulfil the requirements of
data consumers as listed below. Even the same Data Processing

Required Data
element(s)

Leaf Wetness

Phytophtora
Disease Status

Sensors Data Processing Components

Air Stress
Air Stress
Detector

Leaf Wetness Sensor

Temperature Sensor Phytophtora
Monitor

Humidity Sensor

Orchestration

Figure 5: Resource Composition in IoT

Components (DPC) may accept different combination of input
in order to perform the same task. DPC is a black box that
accept certain types of inputs and produces certain types of out-
puts. The reasoning happen within a given DPC could be varies
from, rules based reasoning, statistical reasoning, logical infer-
encing machine learning, probabilistic reasoning and so on. As
an example, we used a rule based DPC in the paper discussion.

• Use case (2) Solution 1: (S CM , S CD, S MO, S ME , S ND) ⇒
C4

• Use case (2) Solution 2: (S CD, S ND)⇒ C3

• Use case (2) Solution 3: (S AT , S CD, S ME)⇒ C4

In such circumstances, it is important to consider context in-
formation (e.g. accuracy, reliability) and cost of data acquisi-
tion (e.g. data communication time and computation time). The
availability of more than one option allows a data consumers to
make the final decision on which solution to be used depending
on the cost and context factors. Both hardware and software
costs need to be considered. Additionally, data consumers may
need to discover additional context information [25]. Depend-
ing on the requirements of the data consumers and application
requirements, the required output data stream may vary. Sam-
ple data streams, in relation to use case 1, are listed below.

• Output 1: airTemperature [double], airHumidity [dou-
ble], airStress [string],
leafWetness [double], PhytophtoraDisease [boolean]

• Output 2: PhytophtoraDisease [boolean], location
[string], batteryLevel[double]

Application 1 Application 2

Phytophtora Monitoring

Leaf WetnessAir Stress

Humidity

Location

Battery Level

Phytophtora Disease

Temperature

Figure 6: Each application may accept different data streams
and provide outputs at different detail levels

7

Previously, we explained that the objective of IoT middle-
ware is to produce data streams so the users can inject them
into applications. We assume that these applications will ac-
cept multiple different data streams as illustrated in Figure 6.
The ideology is that when these applications are provided with
more data items, they will perform better or provide additional
featured / results. However, each application will have a mini-
mum number of data items that it would accept in order to per-
form the primary task it promises to deliver. For example, if the
application 2 (in Figure 6) is provided with PhytophtoraDisease
and location data, it will simply mark the areas which are un-
der risk of getting infected by PhytophtoraDisease. In contrast,
if the application 2 is provided with more information such as
batteryLevel, leafWetness, and airStress, it will produces more
detailed and comprehensive visualization that may include risk
level with certain confidence. Raw data values of leafWetness,
and airStress may help the application 2 to perform these addi-
tional calculations and predictions.

In summary, we assume each application would perform one
or more tasks (e.g. PhytophtoraDisease monitoring). Each ap-
plication would accept one more different data streams. In such
circumstances, each data stream may consist of different types
of data items. Additionally, different developers (or compa-
nies) or the same developer may develop multiple applications
that perform the same tasks. Similarly, we also assume that
there would multiple data processing components that would
perform the same data fusion operations though their context
information may varied. Due to the large number of possibili-
ties, IoT middleware platforms require an automated process to
optimally serve the user requests.

4. Architectural Design

Based on the challenges we identified in Section 3, we de-
signed a model, which is supported by a tool, to overcome the
difficulties. Context-Aware Sensor Configuration Model (CAS-
COM) simplifies the IoT middleware configuration process sig-
nificantly. Our proposed model allows non-technical person-
nel to configure IoT middleware effortlessly. All the technical
configurations are handled internally behind the scenes with-
out the users’ involvement. Additionally, we offer several ad-
vanced features that allow optimization and customizations. As
depicted in Figure 7, CASCOM consists of six phases. Some
phases may or may not be visible to the users. Phases are dif-
ferent from the steps needed to be followed in the CASCOM
Tool.

Users

Phase 1:
Understand User

Requirements

Phase 2:
Select Data Processing

Components

Phase 3:
Select Sensors

Phase 4
(Optional):

Provide advice and
 Recommendations

Phase 5
(Optional):

Discover Additional
Context

Phase 6
(Optional):

Context-based Cost
OptimizationApplications

Figure 7: The Context-Aware Sensor Configuration Model
(CASCoM)

CASCOM Execution Flow: In phase 1, data consumers
(users) interact with a graphical user interface that is based on a
question-answer (QA) approach, to specify their requirements.
Users can answer as many questions as possible. CASCOM
searches and filters the tasks that the user may want to perform.
From the filtered list, users can select the desired task. The de-
tails of the QA approach are presented later in this section. In
phase 2, CASCOM searches for different programming compo-
nents that allow to generate the data stream required. In phase
3, CASCOM tries to find the sensors that can be used to pro-
duce the inputs required by the selected data processing compo-
nents. If CASCOM fails to produce the data streams required
by the users due to insufficient resources (i.e. unavailability of
the sensors), it will provide advice and recommendations on fu-
ture sensor deployments in phase 4. Phase 5 allows the users to
capture additional context information. The additional context
information that can be derived using available resources and
knowledge are listed to be selected. In phase 6, users are pro-
vided with one or more solutions6. CASCOM calculates the
costs for each solution. By default, CASCOM will select the
solution with lowest cost. However, users can select the cost
models (discussed later in this section) as they required. Fi-
nally, CASCOM generates all the configuration files and pro-
gram codes which the actual IoT middleware may requires[27].
Data starts streaming soon after.

Phase 1: Understand User Requirements: The objective
of this phase is to help data consumers to search for a task
(e.g. PhytophtoraDisease monitoring) that they need to per-
form easily from a large number of possibilities. For example,
data consumers are allowed to narrow down the possibilities by
mentioning facts such as domain (e.g, agriculture), and type of
the task (e.g. event, visualization). In order to increase the us-
ability, CASCOM retrieves the facts from the data consumers
through a QA model (Sample questions: Do you want to vi-
sualize data?, Do you want to detect an event?, Do you want

6A solution is a combination of sensors and data processing components
that can be composed together in order to satisfy the user requirements.

Algorithm 1 Question-Answer based Task Filtering

Require: (M).
1: Output: Tu

2: M← Load data into model
3: while Tu!= NULL do
4: Q← executeQuery(Ψq,M)
5: Qu ← Ask user to select a question from Q
6: Add Qu to Ψ

7: A← executeQuery(Ψa,M)
8: Au ← Ask user to select a answer from A
9: Add Au to Ψ

10: T← executeQuery(Ψt,M)
11: Tu ← Ask user to select a task from T
12: if Tu!= NULL then
13: return Tu

14: end if
15: end while

8

Task

C1

Q2

C2

C3

C4

C5

Q3

Q4

Q5

Q1

Figure 8: A part of QA-TDO shows how we developed the QA
model. It is important to note the pattern (i.e. Task→ Concept
→ Question).

to monitor a disease infection? What is the domain your task
is related to?). When a user answer a question, the remaining
questions will be dynamically selected based on the previous
answer. An extract of the proposed Question and Answer ori-
ented Task Description Ontology (QA+TDO) is presented in
Figure 8. In QA+TDO, tasks can be explained by any con-
cept as depicted in C1, C2, etc. in Figure 8. Each concept
should have a ‘hasQuestion’ property which links to a question
(i.e. Q1, Q2 and so on). It is expected that new questions will
be added to the QA+TDO over time by different domain ex-
perts and contributors as part of the knowledge modelling pro-
cess so the non-technical users can take advantage of them. In
QA+TDO, C are answers to the questions. (e.g, If Q1= What
is the domain your task is related to?, then C5 is ‘domain’ and
an individual of C5 can be ‘agriculture’.). This process is pre-
sented in algorithmic perspective in Algorithm 1, which takes
the data model as the input and outputs the user preferred task.
The design philosophy of this algorithm is that it repeatedly al-
low the user to select questions and answer them. As a result,
the algorithm will generate a SPAQRL statement and update it
every time when a user selects and answers a question. Every
time a user answers a question, the number of possible options
offered to the users will get reduced as the new Q&A will al-
ways add more constraints to the query.

Let us briefly explain the algorithm 1. CASCOM first allows
users to select a question as demoted in Qu. Next CASCOM
uses Qu to query its knowledge-base. The results are denoted
as A. Next, both question and answers is amended to a single
query Ψ. Ψ is used to query the knowledge-base and resulted
tasks are denoted by T. This process repeats until users find the
tasks they are looking for Tu.

Phase 2 and 3: Select Sensors and Data Processing Com-
ponents: CASCOM requires all the information related to sen-
sors and data processing components to be stored in a repos-
itory. We extended the Software Component Ontology [9]
(SCO) as presented in Figure 9 in order to model information
about data processing components. Further, we modelled sen-
sor descriptions using semantic Sensor Ontology (SSN) [10].
In this phase, the software components are selected in such a
way that they can together produce the data stream required to
perform the task selected in phase 1. For example, in order
to monitor PhytophtoraDisease, first CASCOM searches for a

Algorithm 2 Resources Composition and Recommendation

Require: (M), (Tu)
1: Output: H,R
2: M← Load data into model
3: D← executeQuery(Ψd,Tu,M)
4: //D = {Π1, Π2, Π3...Πn}

5: for all D ∈ D do
6: for all Πi ∈ D do
7: if Πi == output of a sensor S α in the set S then
8: add S α to Hu

9: else
10: if Πi == output of a component Cγ in the set C

then
11: add Cγ to Hu

12: composeFurther(Cγ,Hu)
13: else
14: add λ# to R
15: end if
16: end if
17: end for
18: end for
19:
20: Function composeFurther(Cγ,Hu)
21: for all λ# ∈ ∆ of Cγ do
22: if λ# == output of a sensor S α in the set S then
23: add S α to Hu

24: break
25: else
26: if Πi == output of a component Cγ in the set C then
27: add Cγ to Hu

28: composeFurther(Cγ,Hu)
29: else
30: add λ# to R
31: end if
32: end if
33: end for

software component that can be used to produce the required
data. It first finds PhytophtoraDisease Detector. The inputs it
requires are air stress and leaf wetness. Phase 3 selects the sen-
sors that produce the output that matches the inputs of the se-
lected component. Leaf wetness can be measured directly using
hardware sensors. However, air stress cannot be detected using
any physical sensor. This requires CASCOM to execute phase
2 again in order to find a software component that produces air
stress. Then CASCOM finds Air Stress Detector which takes
air temperature and air humidity as inputs and produces air
stress as the output. Further, air temperature and air humidity
can be sensed directly through hardware sensors. The IoT mid-
dleware configuration process will be completed once the re-
quired sensors and data processing components are identified.
The remaining phases are optional.

CASCOM performs validation as illustrated in Figure 10.
During the sensors and data processing components composi-
tion process, different criteria are evaluated (e.g. data types:

9

Q
A

-T
D

O
 C

la
s

se
s

S
S

N
O

 C
la

s
se

s
S

C
O

+
 C

la
s

se
s

In
d

iv
id

u
al

s

TaskAction Domain

Output

Application DataStream DataItem

:performs

:performedBy

QA-TDO

:belongsToQuestion
:hasQuestion

:supports :requires

Question:hasQuestion

 : hasDataType

Property

 : hasProperty

Sensor
 ssn: observes: hasDataType

MeasurementCapability

Quality
MeasurementProperty

Accuracy ResponseTime
 ssn:hasMeasurementCapability

 ssn:hasMeasurementProperty

Wrapper

 :connectsThrough

DataValue

:hasDataValue

SSNO

DataProcessingComponent

 : produces Input

: requires

DataItem(Repeat)

 : hasDataType

Property (Repeat)

 : hasProperty

DataItem(Repeat)Property

 : hasProperty

 : hasDataType

DataValue
ProcessingCapability

Quality
MeassurementProperty

MemoryRequirement

OperatingProperty
Accuracy

: hasDataValue

 : hasProcessingCapability

: hasMeasurementProperty

 : hasOperatingProperty

Package
ProcessingClass

Method

 : hasPackage

 : hasProcessingClass

 : hasMainMethod

SCO+

DataType

DataType DataType

Figure 9: Extracts of different ontological data models used in CASCOM: QA-TDO, SCO [9], and SSN ontology [10]. The colour
coding refers to different prefixes. Prefixes in abbreviated Internationalized Resource Identifiers (IRIs).

int, boolean / measurement units: Celsius, Fahrenheit) in order
to verify whether the inputs and outputs are compatible. The
above mentioned procedures are presented in algorithmic per-
spective in Algorithm 2.

This algorithms takes the data model (demoted by M) and
the data stream elements of the user preferred task as the in-
puts (demoted by Tu). First, it finds out what are the output
data stream required by the user preferred task (denoted by D).
Then, it attempts to generate that data stream by composing
sensors and data processing components (from line 5-18). The
design philosophy behind the search and composition is that
priority is given to prepare the output data stream using direct
sensor outputs (denoted by S α). If this is not possible (e.g.
when a certain data element cannot be directly sensed), the al-
gorithm will search for a data processing component which may
be able to produce the required output (denoted by Cγ). If it
succeeds, then the inputs of the selected data processing com-
ponent will be searched (using the composeFurther(Cγ,Hu)).
As illustrated in Figure 5, this process will continue until the
algorithms finds ways to produce the elements in the required
output data stream.

Phase 4 (Optional): Provide Advice and Recommenda-
tions: Through comparing SSN ontology and SCO, this phase
identities the resource insufficiencies and provides advice to the

DataItem

Property

DataType

Criteria_1

Criteria_2

Output / Sensor

Property

DataType

Criteria_1

Criteria_2

Figure 10: IoT Resource compositions need to be validated be-
fore presented to the users. Semantic meanings as well as syn-
tactic definition (e.g. programming level data types) need to
matched and compatible

data consumers regarding future sensor deployments and soft-
ware component acquisition. This phase provides alternative
advice if there are multiple ways to address the insufficiencies
(e.g. use case 2). As presented in Algorithm 2, resource insuf-
ficiencies are also detected and identified during the resource
composition process. A list of resource insufficiencies is pre-
pared and returned as R.

Lets consider use case 2. Its objective is to determine envi-

10

Algorithm 3 Context Discovery

Require: (List of Active Wrappers).
1: Output: M
2: P = {P0,P1,P2...Pn}

3: P0 ← List data items available through active wrappers
4: add P0 to M
5: for all Pi ∈ Pn do
6: for all C ∈ C do
7: for all λ# ∈ C do
8: if λ# == any P in the set Pi then
9: add X to λ# of C in σ

10: end if
11: end for
12: end for
13: for all C ∈ C do
14: if All λ# of C == X then
15: add output of C to Pi+1

16: add X to λ# of C in σ
17: end if
18: end for
19: end for
20: for all C ∈ C do
21: if All λ# of C == X then
22: add output of C to M
23: end if
24: end for

ronmental pollution in a city. As presented in Section 3, there
are three different solutions that that can be used to achieve this
objective. Assume, in our IoT system, we only have access to
sensors S CD and S ME . However, those two sensors are not ca-
pable of producing data that is required by any of the exiting
DPCs, namely C3 and C4. Therefore, this phase of our model
recommends users to deploy either sensors S ND or S AT . Such
deployments will fulfil the data requirements of above compo-
nents.

Phase 5 (Optional): Additional Context Discovery: With
the help of knowledge modelled in ontologies, this phase dis-
covers context information that can be derived by using sensor
data. Additional context information such as sensor location
and sensor battery life may be required by applications in or-
der to perform complex tasks such as geographical visualiza-
tion and developing energy-aware sensing schedules. There-
fore, discovering additional context is important. Each appli-
cation may have a compulsory set of inputs that it needs to
perform the primary task, though they may accept additional
context information in order to provide enhanced results.

First, all the data items directly retrieved through sensors
(we call them parameters and denoted by P) are added to a
list of context information denoted by M. Such pieces of con-
text information are referred to as primary context [25]. Each
wrapper has set of data items (i.e. parameters) it can produce.
Set of parameter produce by each active wrapper is noted by
{P0,P1,P2...Pn}. Next, these primary context parameters are
composed with all existing DPCs (denoted by C) to check

whether secondary context [25] can be produced. If possible,
such secondary context parameters are also added to the list of
context information denoted M as well. The context discov-
ery procedures are presented in algorithmic perspective in self-
explanatory Algorithm 3. Further, We can explain the context
discovery procedure using the Figure 11. This algorithm works
independently from users’ preferences. Further, it can also be
preprocessed. The design philosophy behind this algorithm is
that it attempts to identify all possible secondary context in-
formation that can be generated by combining all the possible
outputs of sensors as well as data processing components. This
algorithm is only required to run when a new sensor or data
processing component appears or when existing resource dis-
appears.

Phase 6 (Optional): Context-based Cost Calculation: In
CASCOM, the main objective is to identify the required IoT
resources at a conceptual-level. In the first 5 phases, we achieve
this main objective. In phase 6, we focus on identifying actual
IoT resources. It is important to note that there can be multiple
DPCs that can perform similar tasks. Further, there are large
numbers of sensors available with overlapping and sometimes
redundant functionality. In such situation, data consumers may
want to decide the exact criteria that IoT resources selection
process should consider.

CASCOM performs ontological reasoning to find out all pos-
sible solutions. Each solution may combine different sensors
and data processing components where their costs may differ-
ent. For example, different types of sensors can be used to mon-
itor environmental pollution as illustrated in Figure 4. Cost does
not always refer to financial terms (e.g, sensors: energy, band-
width, latency; data processing: memory requirement, process-
ing time). By default, all the context parameters are treated
equally. However, users can define their priorities for each con-
text property in comparative fashion [23]. If the users want
more reliable sensors, the reliability can be defined with more
priority, but it may increase the cost.

Data Model

Active Data
Items

Reasoning

Sensors Wrappers

Additional
Context

Information

1

2

W1

W2

Primary Context

Secondary
Context

Figure 11: Primary and Secondary Context Discovery

5. Description Generation Tool

In our proposed model, the description of IoT resources and
related knowledge play a significant role. Today, even though
there are sophisticated tools that can be used to develop ontolo-
gies and model instances such as Protege [20], they are very

11

(a) (b)

Figure 12: Semantic Data Modelling Tools: (a) Protege and (b) proposed IoT resource description tool

complex to use. The learning curve of these tools are signifi-
cant. The user interface of Protege tool, with CASCOM data
model opened, is presented in Figure 12(a). As it is clearly vis-
ible, the Protege user interface looks very complex to someone
who has never used it before and hard to understand where to
even begin.

In CASCOM, we expect data processing components, sen-
sors, and domain knowledge to be collectively described and
modelled by developers, domain experts, and non-technical
personnel (e.g. capabilities, inputs, output, etc.). However, not
even all developers are familiar with semantic modelling tools
such as Protege. Therefore, we built a very simple form-based
tool where anyone can learn and use it with very limited effort.
They can fill the form and the tool will model the according
to CASCOM ontology behind the scenes. More importantly,
this tool can be used to add IoT resource descriptions to exist-
ing knowledge models. Our form-based knowledge modelling
tool in presented in Figure 12(b). This tool consists of number
to separate tabs where each tab allows users to model certain
type of knowledge (e.g. describe a data processing component,
describe sensors, add domain knowledge, etc.).

6. Implementation and Experimentation

This section presents implementation details of our proof of
concept development and evaluation from both computational
and usability perspectives.

6.1. Testbed
For proof of concept deployment and evaluation, we used a

computer with Intel(R) Core i7 CPU and 16GB RAM. We used
the Java programming language to develop the CASCOM tool
and employed the open source Apache Jena API to manipulate
semantic data. We used a Jena TDB-backed7 approach to store
the data. The user interface has been developed using the Java
Swing framework. We modelled sensor descriptions according
to the Semantic Sensor Network Ontology (SSN) [10]. Further,
we modelled data processing components (DPC) descriptions
according to the Software Component Ontology Plus (SCO+).
The proposed SCO+ is based on SCO [9], but additionally sup-
ports modelling context information such as accuracy and reli-
ability as presented in Figure 9.

7jena.apache.org/documentation/tdb

Figure 13: User interface of the software tool that supports CASCOM

12

To evaluate the proposed model, we developed a software
tool that is illustrated in Figure 13. First, data consumers can
select a question that they can answer from the drop down box.
Then, they are allowed to answer the question. Possible an-
swers will be listed in the next panel. Next, consumers can
either answer another question by clicking Answer More but-
ton. In contrast, they can click Search Tasks button to search
possible sensing tasks. Possible sensing tasks will be listed at
the bottom of the next panel. Data consumers can select the
sensing task they want and click Search Solution button. CAS-
COM will automatically generate different compositions of IoT
resource that can perform the sensing task requested by the con-
sumer.

6.2. Methodology

We evaluated CASCOM using both qualitative and quantita-
tive methods. We analysed and compared our proposed solution
with respect to the existing GSN configuration model [1]. First,
let us present our quantitative evaluation strategy (i.e. computa-
tional performance). In Figure 14a, we examined the feasibility
of CASCOM model in term of how much data storage capacity
is required as the knowledge-base grows. In Figure 14b, we ex-
amined the feasibility of CASCOM by measuring the variabil-
ity of the data model loading time as the knowledge-base grows.
Next, in Figure 14c, we evaluated the variability of query pro-
cessing time, related to searching tasks, when the knowledge-
base grows. In Figure 14d, we examined how IoT resource
composition and secondary context discovery query processing
time varied as the knowledge-base grows. In order to evaluate
CASCOM’s computational performance, we generated a data
model, according to the ontology presented in Figure 9, that
consists of large amount of IoT resource descriptions.

Now, let us present our qualitative evaluation strategy (i.e us-
ability). We used three use-case scenarios for this evaluation. In

each use case, the user was required to configure the IoT mid-
dleware in such a way that it produces a specific data stream: (1)
monitor Phytophtora disease, (2) monitor environmental pollu-
tion, and (3) monitor and analyse crowd movement (indoor).
Further, we selected three types of users: (1) IT experts who
were familiar with GSN configuration process, (2) IT experts
who was were familiar with the GSN, and (3) non-IT experts.

For the usability study, we created a similar data model, but
with a small number of IoT resource descriptions. Details of
these data sets are presented below. For each use case, a set
of basic instructions and programming guidelines that explains
the GSN configuration process were given. First, we asked the
users to configure the GSN middleware without the support of
CASCOM. Secondly, we asked the users to configure the GSN
middleware by using CASCOM. We measured the time taken
by each user and results are presented in Figure 14e. In this
evaluation, we considered the time taken by both users as well
as by the computer to perform resource selection and compo-
sition. Further, 31 participants (15 IT expert who were not fa-
miliar with the GSN, 15 non-IT experts, and 1 IT expert who
was familiar with GSN configuration process) were involved in
this experiment. In Figure 14f, we analysed different phases of
the configuration process separately and compared the current
approaches with the CASCOM approach. In order to make the
results comparable, we assumed the users are IT experts who
know the GSN configuration process.

7. Results, Discussion and Lessons Learned

As shown in Figure 14a, the storage requirement grows lin-
early8 when the knowledge-base grows. In semantic modelling,
the data model loading time is proportionate to the data model

8Graphs in logarithmic scale.

1

10

100

1000

10000

100000

1000000

Number of IoT Resource Descriptions (in logarithmic scale)

S
to

ra
ge

 R
eq

ui
re

m
en

ts
 (

K
ilo

by
te

s)

(in
 lo

ga
rit

hm
ic

 s
ca

le
)

(a)

1

10

100

1000

Number of IoT Resource Descriptions (in logarithmic scale)

K
no

w
le

dg
e

M
od

el
 L

o
ad

in
g

T
im

e
(s

ec
on

ds
)

(in
 lo

ga
rit

hm
ic

 s
ca

le
)

(b)

0

0.5

1

1.5

2

Number of IoT Resource Descriptions (in logarithmic scale)

Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e

–
S

ea
rc

hi
ng

A

ns
w

er
s

an
d

Ta
sk

s
(s

ec
on

ds
)

(c)

0

0.5

1

1.5

2

2.5

3

Number of IoT Resource Descriptions (in logarithmic scale)

Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e

–
S

er
vi

ce

C
om

po
si

tio
n

(s
ec

on
ds

)

(d)

Usecase (1) Usecase (2) Usecase (3)

Non-IT Expert without GSN Skills (without CASCoM)
IT Expert without GSN Skills (without CASCoM)
IT Expert with GSN Skills (without CASCoM)
Everyone with CASCoM (Average)

Different ScenariosT
im

e
 t

o
 c

o
m

pl
e

te
 c

o
nf

ig
ur

a
tio

n
(s

e
c)

(L
og

ar
ith

m
ic

 S
ca

le
)

(e)

14%

16%

14%

55%

4%1%
8%

1%

86%

Search Wrappers Define VSD
Search Programming Components Write VS Class
Time Saved

Without CASCOM With CASCOM

(f)

Figure 14: CASCOM Performance Evaluations

13

size. Therefore, as expected, loading time also grows linearly
when the knowledge-base grows as shown in Figure 14b. How-
ever, it is important to note that the actual data model size
and the actual loading time vary based on the data modelling
technique used (e.g. file-based, database-based) and the se-
mantic framework employed [6] (e.g. Jena, Sesame). The
amount of time that is required to load the CASCOM data
model into memory is less than 200 seconds even when it con-
tains 100,0009 descriptions. Similarly, Jena-TDB takes only
1GB to model and store 100,000 IoT resource descriptions10. In
similar conditions, task searching query can return the results in
less than 1.5 seconds as show in Figure 14c. Further, resource
composition can also be completed in 2.5 seconds as shown in
Figure 14d. When we consider real world deployments, it is
very unlikely that a single instance os GSN middleware would
host over a 100,000 sensors and data processing components
connect to it. Based on these results we can conclude that CAS-
COM is feasible to use in real-world deployment.

In semantic data modelling, model size, storage requirement,
and query times depend on the number of descriptions that are
modelled in a given store. Let us consider the data model de-
picted in Figure 9. In this model (as well as in our simulations),
we have used only a part of the SSN ontology, because the other
parts are irrelevant for the composition process. However, if
we want to model using the full SSNO, the model size would
grow depending on how much more information (i.e. nodes and
edges) that we want to include in order to describe a given set
of IoT resources.

As also presented in Figure 14e, non-IT experts required ex-
tremely detailed guidelines (compared to IT experts) to perform
the configuration as they are not familiar with the activities
such as programming. They also required direct verbal assis-
tant from the authors. In addition, it was revealed that non-IT
experts and IT experts who are not familiar with GSN were
unable to configure the GSN at all without guidelines. In con-
trast, simple guidelines that explain the GUI allowed all users to
complete the given task, using CASCOM, within a fairly simi-
lar amount of time. Though the complexity of the user require-
ment (i.e. configuration related to each scenario) makes visible
impact on configuration time in the current GSN approach, it
diminishes when users use CASCOM to configure GSN. Fig-
ure 14e shows that CASCOM allows to considerably reduce
the time required for configuration of data processing mecha-
nism in IoT middleware. Specifically, CASCOM allowed the
three types of users to complete the given task approximately
40, 110 and 210 times faster (respectively) in comparison to the
existing approach.

According to Figure 14f, even IT experts who know GSN
can save time by using CASCOM up to 86%. Specially, time
taken for defining the Virtual Sensor Definition (VSD) and Vir-
tual Sensor (VS) class have been significantly reduced 11. Both

9100,000 means we have modelled 100,000 sensor descriptions, data pro-
cessing components, and tasks related knowledge descriptions each.

10In our synthetic data generation process, we assume each data processing
component accepts three inputs and produce one output.

11VSD, VS are both configuration files that need to be dealt with when con-
figuring GSN middleware. More details are available in [1]

files can be generated by CASCOM autonomously within a sec-
ond even for complex scenarios. However, the time taken to
find data processing components and sensors (and wrappers)
depends on the size of the semantic data model.

As CASCOM models knowledge according to ontologies,
users do not need to memorise domain knowledge (i.e. which
sensor data types are required to perform a certain task?). This
is an significant improvement over the existing approach. Due
to the employment of semantic technologies, CASCOM is ex-
tensible into any domain. More importantly, adding new sensor
descriptions and data processing component descriptions to the
data model overtime allows CASCOM to compose new solu-
tions. Ontological reasoning allows to deal with inconsistent
usage of domain specific terminologies among domain experts.
Ontologies helped in CASCOM to deal with performing val-
idating task in composition of data components. Alternative
to ontologies, we could have used a configuration file that ex-
plains which programming components and sensors need to be
used to produce the required data stream for a given application
(e.g. template-base approach). However, such an approach will
drastically reduce the interoperability and flexibility. In IoT,
ideal approaches should be able to dynamically compose and
configure sensors and data processing components as it is im-
possible predict their availability at give time (new sensors and
data processing components may available to use).

7.1. Revisiting Challenges
In this section, we summarise how the challenges and draw-

backs identified in the related work section are being addressed
by our proposed solution. Main weakness in the existing so-
lutions, such as Microsoft SensorMap [18] and Linked Sensor
Middleware (LSM) [29], is that they are user driven and not
scalable and . Users are expected to conduct discovery and
composition by themselves either using naked eye (i.e. look-
ing at the user interface provided) or limited keyword-based
search facilities. In contrast, CASCOM is a knowledge driven
approach where users only required to input very high level
user requirement. The discovery and composition is done au-
tonomously based on the knowledge model. As CASCOM
models knowledge according to ontologies, users do not need to
memorise domain knowledge. This is an significant improve-
ment over the existing approach such as Microsoft SensorMap
and Linked Sensor Middleware (LSM). Our results also show
that knowledge driven approach allowed users to accomplish
their task much faster than the user driven approaches.

Additionally, we successfully demonstrated how hardware
resources and software resources can be composed into work
flows to achieve certain tasks. This is an advancement over
existing approaches such as web service composition [17, 14]
where only software services are composed together.

8. Conclusions and Future Work

In this paper, we proposed a semantic knowledge driven IoT
resource discovery and composition engine to assist sensor data
consumers to retrieve the data they want quickly and effort-
lessly. In particular, we focus on facilitating non-technical users

14

to use IoT middleware platforms without spending too much
time on learning technical details. To achieve this, we devel-
oped an IoT middleware configuration model called CASCOM.
CASCOM makes the configuration process much easier by pro-
viding a sophisticate graphical user interface to express user re-
quirements. Through a proof of concept implementation, we
evaluated CASCOM both in term of usability and computa-
tional complexity. The results shows that the proposed model is
significantly useful for non-technical personal to use IoT mid-
dleware platforms to retrieve data. CASCOM engine is highly
flexible and scalable due to its knowledge driven nature where
we can add more descriptions about data processing compo-
nents and sensors over time. We have also done computational
evaluations to demonstrate the feasibility and scalability of our
proposed model. In additions to its primary role, CASCOM
is capable of discovering secondary context through processing
primary context information.

In the future, we would like to incorporate privacy aspects
into the model. Currently, CASCOM is not considering any
privacy violations that may occur when data processing com-
ponents and sensors are composed together. It is important to
evaluate and verify all consumer requests received by an IoT
middleware to make sure that data owners’ privacy are pro-
tected at all times. More importantly, for some consumer tasks
(e.g. monitor and analyse crowd movement (indoor)), privacy
would be a greater concern than for others (e.g. monitor Phy-
tophtora disease).

Acknowledgements

Dr. Charith Perera’s work has been funded by The Australian
National University, The Commonwealth Scientific and Indus-
trial Research Organisation (CSIRO), and European Research
Council Advanced Grant 291652 (ASAP).

References

[1] K. Aberer, M. Hauswirth, A. Salehi, Infrastructure for data processing in
large-scale interconnected sensor networks, in: International Conference
on Mobile Data Management, 2007, pp. 198–205.

[2] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Comput.
Netw. 54 (15) (2010) 2787–2805.

[3] A. Baggio, Wireless sensor networks in precision agriculture, Tech.
rep., Delft University of Technology The Netherlands, http:

//www.sics.se/realwsn05/papers/baggio05wireless.pdf [Ac-
cessed on: 2012-05-10] (2009).

[4] S. Bandyopadhyay, M. Sengupta, S. Maiti, S. Dutta, Role of middleware
for internet of things: A study, International Journal of Computer Science
and Engineering Survey 2 (2011) 94–105.
URL http://airccse.org/journal/ijcses/papers/

0811cses07.pdf

[5] A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. Kranenburg, S. Lange,
S. Meissner (eds.), Enabling Things to Talk: Designing IoT solutions
with the IoT Architectural Reference Model, Database Management &
Information Retrieval, Springer-Verlag Berlin Heidelberg, 2013.

[6] C. Bizer, A. Schultz, The berlin sparql benchmark, Int. J. Semantic Web
Inf. Syst. 5 (2) (2009) 1–24.

[7] J. Bronsted, K. Hansen, M. Ingstrup, Service composition issues in per-
vasive computing, Pervasive Computing, IEEE 9 (1) (2010) 62–70.

[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud
computing and emerging {IT} platforms: Vision, hype, and reality for

delivering computing as the 5th utility, Future Generation Computer
Systems 25 (6) (2009) 599 – 616.
URL http://www.sciencedirect.com/science/article/pii/

S0167739X08001957

[9] F. E. Castillo-Barrera, R. C. M. Ramirez, H. A. Duran-Limon, Knowl-
edge capitalization in a component-based software factory: a semantic
viewpoint, in: LA-NMR, 2011, pp. 105–114.

[10] M. Compton, P. Barnaghi, L. Bermudez, R. Garca-Castro, O. Corcho,
S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang,
K. Janowicz, W. D. Kelsey, D. L. Phuoc, L. Lefort, M. Leggieri,
H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, K. Taylor, The
ssn ontology of the w3c semantic sensor network incubator group, Web
Semantics: Science, Services and Agents on the World Wide Web 17 (0)
(2012) 25 – 32.

[11] J. El Hadad, M. Manouvrier, M. Rukoz, Tqos: Transactional and qos-
aware selection algorithm for automatic web service composition, Ser-
vices Computing, IEEE Transactions on 3 (1) (2010) 73–85.

[12] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things
(iot): A vision, architectural elements, and future directions, Future
Generation Computer Systems 29 (7) (2013) 1645 – 1660, including
Special sections: Cyber-enabled Distributed Computing for Ubiquitous
Cloud and Network Services & Cloud Computing and Scientific
Applications Big Data, Scalable Analytics, and Beyond.
URL http://www.sciencedirect.com/science/article/pii/

S0167739X13000241

[13] S. Hodges, S. Taylor, N. Villar, J. Scott, D. Bial, P. Fischer, Prototyping
connected devices for the internet of things, Computer 46 (2) (2013) 26–
34.

[14] S. Khemakhem, K. Drira, M. Jmaiel, Semantic matching to achieve
software component discovery and composition, Tech. rep., Laboratory
for Analysis and Architecture of Systems, http://hal.archives-

ouvertes.fr/docs/00/79/62/46/PDF/paper12.pdf [Accessed on:
2013-02-05] (December 2012).

[15] K. Kritikos, D. Plexousakis, Requirements for qos-based web service de-
scription and discovery, IEEE Trans. Serv. Comput. 2 (4) (2009) 320–337.

[16] P. Leitner, W. Hummer, S. Dustdar, Cost-based optimization of service
compositions, Services Computing, IEEE Transactions on 6 (2) (2013)
239–251.

[17] E. Maximilien, M. Singh, A framework and ontology for dynamic web
services selection, Internet Computing, IEEE 8 (5) (2004) 84–93.

[18] S. Nath, J. Liu, F. Zhao, Sensormap for wide-area sensor webs, Computer
40 (7) (2007) 90–93.

[19] H. Noguchi, T. Mori, T. Sato, Automatic generation and connection of
program components based on rdf sensor description in network middle-
ware, in: Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, 2006, pp. 2008–2014.

[20] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, M. Musen,
Creating semantic web contents with protege-2000, Intelligent Systems,
IEEE 16 (2) (2001) 60–71.

[21] C. Pahl, An ontology for software component matching, in: Proceedings
of the 6th international conference on Fundamental approaches to soft-
ware engineering, FASE’03, Springer-Verlag, Berlin, Heidelberg, 2003,
pp. 6–21.
URL http://dl.acm.org/citation.cfm?id=1762980.1762984

[22] S. Patidar, D. Rane, P. Jain, A survey paper on cloud computing, in: Ad-
vanced Computing Communication Technologies (ACCT), 2012 Second
International Conference on, 2012, pp. 394 –398.

[23] C. Perera, A. Zaslavsky, P. Christen, M. Compton, D. Georgakopoulos,
Context-aware sensor search, selection and ranking model for internet of
things middleware, in: IEEE 14th International Conference on Mobile
Data Management (MDM), Milan, Italy, 2013, pp. 314–322.

[24] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Ca4iot: Context
awareness for internet of things, in: IEEE International Conference on
Conference on Internet of Things (iThing), Besanon, France, 2012, pp.
775–782.

[25] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Context aware
computing for the internet of things: A survey, Communications Surveys
Tutorials, IEEE 16 (1) (2013) 414–454.

[26] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Sensing as a ser-
vice model for smart cities supported by internet of things, Transactions
on Emerging Telecommunications Technologies (ETT) 25 (1) (2014) 81–

15

http://www.sics.se/realwsn05/papers/baggio05wireless.pdf
http://www.sics.se/realwsn05/papers/baggio05wireless.pdf
http://airccse.org/journal/ijcses/papers/0811cses07.pdf
http://airccse.org/journal/ijcses/papers/0811cses07.pdf
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://hal.archives-ouvertes.fr/docs/00/79/62/46/PDF/paper12.pdf
http://hal.archives-ouvertes.fr/docs/00/79/62/46/PDF/paper12.pdf
http://dl.acm.org/citation.cfm?id=1762980.1762984

93.
[27] C. Perera, A. Zaslavsky, M. Compton, P. Christen, D. Georgakopoulos,

Context aware sensor configuration model for internet of things, in: Pro-
ceedings of the 12th International Semantic Web Conference (Poster &
Demo) (ISWC), Sydney, Australia, 2013, pp. 253–256.

[28] D. L. Phuoc, M. Hauswirth, Linked open data in sensor data mashups, in:
In Proceedings of the 2nd International Workshop on Semantic Sensor
Networks (SSN09), vol. 522, CEUR Workshop at ISWC 2009, Washing-
ton DC, USA, 2009, pp. 1–16.
URL http://ceur-ws.org/Vol-522/p3.pdf

[29] D. L. Phuoc, H. N. M. Quoc, J. X. Parreira, M. Hauswirth, The linked
sensor middleware - connecting the real world and the semantic web, in:
International Semantic Web Conference (ISWC), 2011.

[30] Z. Song, A. Cá andrdenas, R. Masuoka, Semantic middleware for the
internet of things, in: Internet of Things (IOT), 2010, 2010, pp. 1 –8.

[31] H. Sundmaeker, P. Guillemin, P. Friess, S. Woelffle, Vision and challenges
for realising the internet of things, Tech. rep., European Commission
Information Society and Media, http://www.internet-of-things-
research.eu/pdf/IoT_Clusterbook_March_2010.pdf [Accessed
on: 2011-10-10] (March 2010).

[32] K. Taylor, L. Leidinger, Ontology-driven complex event processing in
heterogeneous sensor networks, in: Proceedings of the 8th extended se-
mantic web conference on The semanic web: research and applications
- Volume Part II, ESWC’11, Springer-Verlag, Berlin, Heidelberg, 2011,
pp. 285–299.
URL http://dl.acm.org/citation.cfm?id=2017936.2017959

[33] T. Teixeira, S. Hachem, V. Issarny, N. Georgantas, Service Oriented Mid-
dleware for the Internet of Things: A Perspective, in: ServiceWave, Pro-
ceedings of the 4th European conference on Towards a service-based in-
ternet, Springer-Verlag, Poznan, Poland, 2011, pp. 220–229.
URL https://hal.inria.fr/inria-00632794

[34] Q. Wu, Q. Zhu, Transactional and qos-aware dynamic service compo-
sition based on ant colony optimization, Future Generation Computer
Systems 29 (5) (2013) 1112 – 1119, special section: Hybrid Cloud
Computing.
URL http://www.sciencedirect.com/science/article/pii/

S0167739X12002300

[35] A. Zaslavsky, C. Perera, D. Georgakopoulos, Sensing as a service and
big data, in: International Conference on Advances in Cloud Computing
(ACC-2012), Bangalore, India, 2012, pp. 21–29.

[36] Z. Zheng, Y. Zhang, M. Lyu, Investigating qos of real-world web services,
Services Computing, IEEE Transactions on 7 (1) (2014) 32–39.

Charith Perera is a Research Associate at The
Open University, UK. Previously he worked at
the Information Engineering Laboratory, ICT
Center, Commonwealth Scientific and Indus-
trial Research Organization (CSIRO). Perera
received his BSc (Hons) in Computer Science
from Staffordshire University, Stoke-on-Trent,
UK and MBA in Business Administration from
University of Wales, Cardiff, UK and PhD in

Computer Science from The Australian National University, Canberra,
Australia. His research interests include the Internet of Things, smart
cities, mobile and pervasive computing, context-awareness, and ubiq-
uitous computing. He is a member of both IEEE and ACM. Contact
him at charith.perera@ieee.org.

Athanasios V. Vasilakos is a professor at
Dept of Computer Science, Electrical and
Space Engineering, Lulea University of Tech-
nology, Lulea, Sweden. He has served as Gen-
eral Chair, and Techinical Program Commit-
tee Chair for many internation conferences. He
also served or is serving as Editor or/and Guest
Editor for many technical journals, such as
IEEE TNSM, IEEE TSMC-partB, IEEE TITB,
IEEE JSAC special issues of May 2009, Jan.

2011, March 2011, ACM TAAS and IEEE Communications Maga-
zine. He is founding Editor-in-Chief of the International Journal of
Adaptive and Autonomous Communications Systems (IJAACS) and
the International Journal of Arts and Technology (IJART). He is also
General Chair of the Council of Computing and Communications of
the European Alliances for Innovation.

16

http://ceur-ws.org/Vol-522/p3.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://dl.acm.org/citation.cfm?id=2017936.2017959
https://hal.inria.fr/inria-00632794
http://www.sciencedirect.com/science/article/pii/S0167739X12002300
http://www.sciencedirect.com/science/article/pii/S0167739X12002300

	1 Introduction
	1.1 Motivation
	1.2 Main Contributions

	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Research Challenges
	4 Architectural Design
	5 Description Generation Tool
	6 Implementation and Experimentation
	6.1 Testbed
	6.2 Methodology

	7 Results, Discussion and Lessons Learned
	7.1 Revisiting Challenges

	8 Conclusions and Future Work

