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MINIMUM-ENERGY MEASURES FOR SINGULAR KERNELS

LUC PRONZATO∗ AND ANATOLY ZHIGLJAVSKY†

Abstract. We develop algorithms for energy minimization for kernels with singularities. This
problem arises in di�erent �elds, most notably in the construction of space-�lling sequences of points
where singularity of kernels guarantees a strong repelling property between these points. Numerical
algorithms are based on approximating singular kernels by non-singular ones, subsequent discretiza-
tion and solving non-singular discrete problems. For approximating singular kernels, we approximate
an underlying completely monotone (brie�y, CM) function with singularity by a bounded CM func-
tion with controlled accuracy. Theoretical properties of the suggested approximation are studied and
some numerical results are shown.

Keywords: energy minimization, singular kernels, Riesz kernel, Riesz potential,
space-�lling design
AMS subject classi�cations: 62K99, 65D30, 65D99.

1. Introduction: kernels and energies. This section introduces the main
concepts and formulates the most important results required for the following sec-
tions. It mostly follows [9], where the reader may �nd some proofs and more details.
Subsection 1.12 discusses the motivation behind this research and describes the struc-
ture of the rest of the paper.

1.1. Main notation.
X : a compact subset of Rd; d ≥ 1.
‖ · ‖: the Euclidean norm.
M : the set of �nite signed Borel measures on X .
M (q): the set of signed measures with total mass q, M (q)={µ∈M : µ(X )=q}.
M+(1): the set of Borel probability measures on X .
M+: the set of �nite positive measures on X .
K: a kernel; that is, a continuous symmetric function K : X ×X → R∪{∞}; K

is (uniformly) bounded if K(x,x) <∞ for all x ∈X ; K is singular if K(x,x) = +∞
for at least one x ∈X . Further conditions on K will be speci�ed in Section 1.2.

EK(ν), ν ∈M : the energy of ν,

EK(ν) =

∫
X 2

K(x,x′) ν(dx) ν(dx′) . (1.1)

MK : the set of measures with �nite energy,

MK = {ν ∈M : |EK(ν)| < +∞} . (1.2)

Pν(x) = Pν,K(x): the potential of ν ∈M at x,

Pν(x) =

∫
X

K(x,x′) ν(dx′) , x ∈X . (1.3)

γK(µ, ν): the MMD (Maximum-Mean Discrepancy) between measures µ, ν ∈M ,

γK(µ, ν) = E
1/2
K (ν − µ) =

(∫
X 2

K(x,x′) (ν − µ)(dx) (ν − µ)(dx′)

)1/2

. (1.4)
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CM (completely monotone) function: f : (0,∞) → R+ is CM if f ∈ C∞(0,∞)
and

(−1)kf (k)(t) ≥ 0 , ∀t ∈ (0,∞); k = 0, 1, . . . (1.5)

BF (Bernstein function): g : (0,∞)→ R+ is a BF if g ∈ C∞(0,∞) and g′ is CM;
see [13, p.15].

1.2. Kernels of interest.
De�nition 1.1. A kernel K is Strictly Positive De�nite (SPD) on M if K is bounded
and for all n ∈ N and all pairwise di�erent x1, . . . ,xn ∈ X , the matrix Kn with
elements {Kn}i,j = K(xi,xj) (i, j = 1, . . . , n) is positive de�nite.
De�nition 1.2. A kernel K is Integrally Strictly Positive De�nite (ISPD) on M if
EK(ν) > 0 for any nonzero measure ν ∈M .
De�nition 1.3. A kernel K is Conditionally Integrally Strictly Positive De�nite
(CISPD) on M when it is ISPD on M (0); that is, when EK(ν) > 0 for all nonzero
signed measures ν ∈M such that ν(X ) = 0.

An ISPD kernel is CISPD. A bounded ISPD kernel is SPD and de�nes an RKHS
(Reproducing Kernel Hilbert Space) HK . For CISPD kernels K, the energy EK(ν)
can be negative. As for singular kernels K the energy EK(·) can be in�nite, we may
have MK 6= M , where MK is de�ned in (1.2). If K is SPD, then MK = M and
the potential Pν(x), see (1.3), is well de�ned and �nite for any ν ∈ M and x ∈ X .
However, there always exists ν ∈ MK such that Pν(x0) is in�nite for some x0 ∈ X
when K is singular. A bounded kernel is CISPD if and only if it is characteristic; that
is, it de�nes a metric on M+(1).

1.3. Examples of kernels.
Example 1.1 (Kernels constructed through CM functions). We consider two general
ways of constructing kernels K(·, ·) via CM functions.

Let f(·) be a non-constant completely monotone (CM) function, see (1.5).
(a) For x, x′ ∈ R, de�ne

K(x, x′) = f(|x− x′|) . (1.6)

As follows from Theorem 2.4 of Section 2.1, if f(·) is CM and also belongs to
L1((0,∞)) then the kernel (1.6) is ISPD.

(b) For x,x′ ∈ Rd, de�ne

K(x,x′) = f(‖x− x′‖2) . (1.7)

The connection between K being SPD and f being CM is clari�ed in Theo-
rem 2.3 of Section 2.1. /

In (1.6) and (1.7), the values of f and its derivatives at 0 may not be de�ned; in
these cases, the function f is singular at 0 and hence the corresponding kernels K are
singular. Examples of univariate CM functions with singularity at 0 are provided in
Section 3.4.
Example 1.2 (Some important bounded ISPD kernels).

- The squared exponential kernel Kβ(x,x′) = exp(−β ‖x− x′‖2), β > 0.
- The isotropic Matérn kernels Kκ,β with shape parameter κ, in particular

K3/2,β(x,x′) = (1 +
√

3β ‖x− x′‖) exp(−
√

3β ‖x− x′‖) (Matérn 3/2)

and the exponential kernel K1/2,β(x,x′) = exp(−β‖x− x′‖), β > 0.
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- The generalized multiquadric kernel

Kα,ε(x,x
′) = (‖x− x′‖2 + ε)−α/2 , ε > 0 , α > 0 .

Example 1.3 (Bounded CISPD kernels). The kernels de�ned by

K(α)(x,x′) = −‖x− x′‖α , α > 0 , (1.8)

are CISPD for α ∈ (0, 2), see [19]; the related distance-induced kernels

K ′(α)(x,x′) = ‖x‖α + ‖x′‖α − ‖x− x′‖α , α > 0 ,

are CISPD for α ∈ (0, 2), but they are not SPD (in particular, K ′(α)(0,0) = 0). In
[19], EK′(α) is called energy distance for α = 1 and generalized energy distance for
general α ∈ (0, 2]. For α = 1 and X = [0, 1] the kernel K(x, x′) = 1 −K(1)(x, x′) =
1− |x− x′| is ISPD. /

Example 1.4 (Singular ISPD kernels). The Riesz kernels

K(α)(x,x
′) = ‖x− x′‖−α , α > 0 , (1.9)

are ISPD when 0 < α < d. When α ≥ d, EK(α)
(µ) is in�nite for any µ ∈M . /

Example 1.5 (Singular CISPD kernel). The logarithmic kernel

K(0)(x,x
′) = − log ‖x− x′‖ (1.10)

is sometimes considered as a member of the Riesz family of kernels (1.9), as α → 0.
Since K(0)(x,x

′) tends to −∞ when ‖x−x′‖ tends to +∞, it can only be used in the
case when X is compact. The kernel K(0) is CISPD, see [5, p. 80]. /

1.4. Strict convexity of energy.
Lemma 1.1.
(a) K is ISPD if and only if MK is convex and EK(·) is strictly convex on MK .
(b) Assume that K is bounded. Then, K is CISPD if and only if EK(·) is strictly

convex on M (1).

For a proof, see Lemmas 3.1 and 3.2 in [9]. Lemma 1.1 does not cover the case of
singular CISPD kernels where a similar result can be proved. For instance, in view of
[12, Sect. I.3], the energy EK(·) is strictly convex on M (1)∩MK for the logarithmic
kernel (1.10).

In the remaining part of the paper we assume that K is such that EK(·) is
strictly convex on M (1) ∩MK , which is true in particular under the assumptions
of Lemma 1.1.

1.5. MMD as a Bregman divergence and a Jensen di�erence. For µ, ν ∈
MK , denote by FK(µ; ν) the directional derivative of EK(·) at µ in the direction ν:

FK(µ; ν) = lim
α→0+

EK [(1− α)µ+ αν]− EK(µ)

α
.

Straightforward calculation gives

FK(µ; ν) = 2

[∫
X 2

K(x,x′) ν(dx)µ(dx′)− EK(µ)

]
. (1.11)
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The strict convexity of EK(·) implies that EK(ν) ≥ EK(µ) + FK(µ, ν) for any
µ, ν ∈MK , with equality if and only if ν = µ.

The Bregman divergence (associated with the functional EK(·)) between measures
in MK and between probability measures in M+(1) ∩MK , is

BK(µ, ν) = EK(ν)− [EK(µ) + FK(µ, ν)] ;

see [8, 11] for a general de�nition of Bregman divergence. By direct calculation,
BK(µ, ν) = BK(ν, µ) = EK(ν − µ), which allows us to de�ne the squared MMD
γ2K(µ, ν) as the Bregman divergence BK(µ, ν).

The Jensen di�erence (associated with EK(·)) is

∆J(µ, ν) = (1/2)[EK(µ) + EK(ν)]− EK [(µ+ ν)/2] ,

see [10] for a general de�nition of Jensen di�erence. Direct calculation gives

γ2K(µ, ν) = EK(ν − µ) = 4 ∆J(µ, ν) .

When EK(·) is strictly convex on M (1)∩MK , γK(·, ·) de�nes a proper metric on
the space of signed measures M (1) ∩MK and on the space of probability measures
M+(1)∩MK . One may refer to [9] and the references therein for other interpretations
of the MMD γK(·, ·).

1.6. Minimum-energy probability measure. From (1.3) and (1.11), the po-
tential Pµ(x) associated with µ at x ∈X , can be written as

Pµ(x) =
1

2
FK(µ; δx) + EK(µ) , (1.12)

where δx is the delta-measure concentrated at x.
Theorem 1.1. [9, Th. 3.1] Assume that EK(·) is strictly convex on M+(1) ∩MK .
Then, (a) there always exists a unique minimum-energy probability measure, and (b)
µ+
K ∈M+(1) is the minimum-energy probability measure on X if and only if

∀x ∈X , Pµ+
K

(x) ≥ EK(µ+
K) .

Statement (a) follows from the fact that X is compact and therefore the set
M+(1) is vagely compact. Moreover, a measure µ+

K ∈M+(1) is the minimum-energy
probability measure if and only if FK(µ+

K ; ν) ≥ 0 for all ν ∈M+(1), or equivalently,
since ν is a probability measure, if and only if FK(µ+

K ; δx) ≥ 0 for all x ∈X . In view
of (1.12), this is equivalent to the statement (b) of the theorem.

Note that, by construction,
∫

X Pµ+
K

(x)µ+
K(dx) = EK(µ+

K), implying Pµ+
K

(x) =

EK(µ+
K) on the support of the minimum-energy probability measure µ+

K .

1.7. Minimum-energy signed measure.
Theorem 1.2. [9, Th. 3.2]When EK(·) is strictly convex on M (1)∩MK , µ

∗
K ∈M (1)

is the minimum-energy signed measure with total mass one on X if and only if

∀x ∈X , Pµ∗K (x) = EK(µ∗K) . (1.13)

For a proof we just need to note that µ∗K is the minimum-energy measure in
M (1) if and only if FK(µ∗K ; ν) = 0 for all ν ∈M (1) and this condition is equivalent
to FK(µ∗K ; δx) = 0 for all x ∈ X . In view of (1.12) this is exactly the condition
(1.13).
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The minimum-energy signed measure µ∗K may not exist, especially when the kernel
K is di�erentiable; such cases include the squared exponential kernel, the genealized
multiquadric kernel and isotropic Matérn kernels with shape parameter κ > 1, see
Example 1.2.

When K is bounded, the minimum-energy signed measure supported on a �-
nite set {x1, . . . ,xN} always exists and has weights w∗N given by (1.14). Suppose
that the N points xi are equally spaced in X = [0, 1] and consider the model with
observations Y (x) = β + Zx, where β ∈ R and Zx is a Gaussian random process

with zero mean and correlation E{Zx Zx′} = K(x, x′). Then, β̂N = (w∗N )>yN , with
yN = (Y (x1), . . . , Y (xN ))>, is the Best Linear Unbiased (BLUE) estimator of β.
When the process Zx has mean square derivatives of order 2 and higher, roughly
speaking, for large N the construction of the (discrete) BLUE mimics the estimation
of derivatives of Y (x) and the weights w∗i strongly oscillate between large positive and
negative values. Figure 1.1 shows the optimal weights (w∗i /|w∗i |)(log10(max{|w∗i |, 1}),
truncated to absolute values larger than 1 and in log scale, when xi = (i−1)/(N −1),
i = 1, . . . , N = 101. On the left panel, the kernel is K(x, x′) = (1 +

√
5|x − x′| +

5|x− x′|2/3) exp(−
√

5|x− x′|) (Matérn 5/2), so that Zx is twice mean-square di�er-
entiable; the construction of the BLUE mimics the estimation of the �rst and second
order derivatives of Y at 0 and 1; on the right panel, the kernel is the generalized mul-
tiquadric K(x, x′) = (|x− x′|2 + 0.01)−1. In both cases, there is no minimum-energy
signed measure for K, its existence being related to that of a continuous BLUE for
β. One may refer to [9] and [3, 4, 2] for more details.

Figure 1.1: BLUE weights (w∗i /|w∗i |) log10(max{|w∗i |, 1}) for xi = (i − 1)/(N − 1),
i = 1, . . . , N = 101. Left: K(x, x′) = (1 +

√
5|x− x′|+ 5|x− x′|2/3) exp(−

√
5|x− x′|)

(Matérn 5/2); Right: K(x, x′) = (|x− x′|2 + 0.01)−1 (generalized multiquadric).

1.8. Su�cient conditions for the minimum-energy signed measure to
be a probability measure.
Theorem 1.3. [9, Th. 3.3] Assume that K is ISPD and translation invariant, with
K(x,x′) = F (x − x′) and F continuous, twice di�erentiable except at the origin,

with Laplacian ∆F (x) =
∑d
i=1 ∂

2F (x)/∂x2i ≥ 0, x 6= 0. Then there exists a unique
minimum-energy signed measure µ∗K in M (1), and µ∗K is a probability measure.

The weaker condition F (x−x′) = f(|x−x′|) with f(·) convex on (0,∞) is su�cient
when d = 1. When d ≥ 2 with F (x− x′) = f(‖x− x′‖), f(·) must have a singularity
at 0 to have ∆F (x) ≥ 0 for all x 6= 0. For the Riesz kernels K(α) of (1.9), we have
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∆(‖x‖−α) = α(α + 2 − d)/‖x‖α+2, x 6= 0. Therefore, the conditions of the theorem
are met when d > 2 and α ∈ (0, d − 2]. For the logarithmic kernel (1.10), we have
∆(− log ‖x‖) = (2− d)/‖x‖2, x 6= 0 and the conclusions of the theorem remain valid
for d = 1, 2, although the kernel is only CISPD.

1.9. Separable kernels. Consider the case of the so-called separable (tensor
product) kernels

K(x,x′) =

d∏
i=1

Ki(xi, x
′
i)

on X = X1 × · · · ×Xd, where the Ki are univariate bounded (C)ISPD kernels. The
following properties can be veri�ed.

- If each EKi(·) is strictly convex on M (1)∩MKi for Xi, then EK(·) is strictly
convex on M (1) ∩MK for X ; see [18].

- The minimum-energy probability measure µ+
K is the product of univariate

minimum-energy probability measures µ+
Ki
: µ+

K(dx) =
∏d
i=1 µ

+
Ki

(dxi).
- If the minimum-energy signed measure µ∗Ki for Ki on Xi exists for each i,
then the minimum-energy signed measure µ∗K for K on X exists and equals

µ∗K(dx) =
∏d
i=1 µ

∗
Ki

(dxi).
- If, for each i, the minimum-energy signed measure µ∗Ki for Ki on Xi exists

and coincides with µ+
Ki
, the minimum-energy probability measure for Ki on

Xi, then µ
∗
K for K on X exists and coincides with µ+

K , the minimum-energy
probability measure for K on X .

1.10. Numerical construction of minimum-energy signed measures for
bounded kernels: discrete case. Assume that the set X is discrete: X = XN =
{x1, . . . ,xN} and the kernelK is SPD (and thus bounded). Let 1N = (1, 1, . . . , 1)> be
the vector of ones of size N and K = (K(xi,xj))i,j=1,...,N . The energy of the measure
ζN that assigns weights wj to the points xj (j = 1, . . . , N) is then EK(ζN ) = Φ(wN ) =
w>NKwN , where wN = (w1, . . . , wN )>. The vector of weights corresponding to the
minimum-energy signed measure ζ∗N of total mass one can be easily computed:

w∗N = K−11N/
(
1>NK−11N

)
, (1.14)

giving

Φ(w∗N ) = min
w

Φ(w) = 1/
(
1>NK−11N

)
,

where the minimum is taken over all vectors w = (w1, . . . , wN )> such that 1>Nw =
w1 + . . . + wN = 1. The potential of ζ∗N is the vector with constant entries pw∗N

=

Kw∗N = 1N/
(
1>NK−11N

)
.

1.11. Numerical construction of optimal measures for SPD kernels:
general case. We approximate a general set X with a �nite set XN = {x1, . . . ,xN}
and in this way we approximate the original problem of �nding the optimal measure ζ∗

(either signed or probability) minimizing the energy EK(µ) with the discrete problem
of minimizing Φ(w) = w>Kw, where K = (K(xi,xj))i,j=1,...,N . In both classes of
discrete measures (signed or probability), this problem has a unique solution; in the
class of signed measures, this solution is given by (1.14). As shown below, in many
interesting cases the optimal (discrete) measure ζ∗N is a probability measure, and it
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is easy to construct an accurate approximation of the optimal continuous measure ζ∗

from ζ∗N ; for example, in the case X ⊂ R we can build either piecewise constant, or
continuous piecewise linear, approximations.

1.12. Motivation behind the research and structure of the rest of the
paper. The motivation behind this research is two-fold.

(1) For any PD kernel K and a probability measure ν, minus energy −EK(ν) is
the so-called Rao's quadratic entropy introduced and studied by C.R. Rao,
see e.g. [10, 11]. This entropy has wide-spread applications in many applied
�elds, especially in biology. Maximum-entropy (and hence minimum-energy)
measures are very natural objects to study for di�erent classes of kernels,
including singular ones. The authors have considered minimum-energy mea-
sures for the case of Riesz kernels in several previous papers, see for example,
[14, 15, 9]. The present paper broadly extends this research.

(2) Consider the MMD γK(µ, ν) de�ned in (1.4) in the case when the measure µ is
uniform on X . Methods for the approximate computation of MMD γK(µ, ν)
and the sequential minimization of this MMD (which is the energy for the
measure µ− ν) with respect to ν in the case of singular kernels is important
for the methodology of construction of space-�lling sequences of points, as
singularity of the kernel guarantees an automatic repelling property of these
points. This methodology is the subject of a recent paper [9] by the present
authors.

The structure of the rest of the paper is as follows. Section 2 contains the main
results and describes the principal algorithmic schemes. This section has �ve parts.

Section 2.1 summarizes properties of CM and Bernstein functions required later
on. It also relates CM functions to PD and ISPD kernels. In Section 2.2 we de-
velop our main approximation of a CM function with singularity at 0 by bounded CM
functions, and in Theorem 2.5 we study properties of this family of functions. In Sec-
tion 2.3, we discuss properties of a pre-Hilbert space associated with a singular kernel
and of the RKHS of the PD kernels constructed from CM functions of Theorem 2.5.
In Sections 2.4 and 2.5, we develop an algorithm for approximating minimum-energy
measures of singular kernels. This algorithm is based on the following: (a) the method-
ology developed in Section 2.2; (b) a discretization of the set X ; (c) the numerical
construction of minimum-energy signed measures for bounded kernels in the discrete
case, as formulated in Section 1.10; and (d) the use of piecewise constant functions for
approximating densities of the minimum-energy measures. In Section 3, the method-
ology of Section 2 is further detailed and numerically investigated in the case of Riesz
kernels on X = [0, 1].

2. Approximation of a CM function with singularity at 0 by a sequence
of bounded CM functions.

2.1. CM functions and Bernstein functions (BF). As formulated in Sec-
tion 1.1, a function f : (0,∞)→ R+ is completely monotone (CM) if f ∈ C∞(0,∞)
and (1.5) holds. If f is a non-constant CM function, then the inequalities (1.5) are
necessarily strict for all t > 0 and all k = 1, 2, . . .; see [13, Remark 1.5].

In this section, we formulate several important auxiliary results on completely
monotone and Bernstein functions.
Theorem 2.1. [13, Th. 1.4] (Bernstein). f is a CM function if and only if it is
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the Laplace transform of a nonnegative Borel measure µ on [0,∞):

f(x) =

∫ ∞
0

e−tx µ(dt) . (2.1)

Theorem 2.2. [13, Th. 3.2] (Levy-Khinchine representation). A function g :
(0,∞)→ R+ is a BF if and only if

g(x) = a+ b x+

∫ ∞
0

(1− e−tx) ν(dt) (2.2)

where a, b ≥ 0 and ν is a nonnegative measure on (0,∞) with
∫∞
0

min(1, t) ν(dt) <∞.
The triplet (a, b, ν) uniquely determines g and vice versa.

If g is a BF of the form (2.2), then f = g′ is CM with the measure µ of (2.1)
being

µ(dt) = b δ0(dt) + t ν(dt) , (2.3)

where δ0(dt) is the delta-measure concentrated at 0. According to [13, Proposition
3.4], for a completely monotone function f with measure µ, there exists a BF g such
that f = g′ if and only if the measure µ of (2.1) satis�es∫ ∞

0

1

1 + t
µ(dt) <∞ . (2.4)

In this case, we can set g(t) =
∫ t
0
f(u) du.

The relation between non-constant CM functions and SPD kernels is characterized
by the following result, essentially proved by Shoenberg in [16].
Theorem 2.3. [20, Th. 7.13 & 7.14] Let ψ : [0,∞) → R be a non-constant bounded
function and de�ne the kernel K : Rd × Rd → R by K(x,x′) = ψ(‖x − x′‖2), where
‖ · ‖ is the Euclidean norm. Then ψ is CM if and only if the kernel K is SPD for any
d = 1, 2, . . .

Note that Theorem 2.1 and the fact that the exponential kernel K1/2,β(x,x′) =
exp(−β‖x−x′‖), β > 0, is ISPD, implies that if f is a non-constant, CM and bounded
function, then the kernel K(x,x′) = f(‖x−x′‖) is bounded and ISPD (and therefore
SPD). Also, as shown in [13], having the kernel K(x,x′) = −ψ(‖x−x′‖2) CISPD for
a continuous ψ requires ψ to be a BF.

We also have the following property for unbounded kernels constructed from CM
functions.
Theorem 2.4. [6, Corollary 8] Let f : (0,∞)→ R be an L1 CM function, possibly with
singularity at zero. Then the kernel K : R× R→ R de�ned by K(x, x′) = f(|x−x′|)
is ISPD.

Unlike Theorem 2.3, Theorem 2.4 deals with one-dimensional case only. The
authors are unaware of any generalization of Theorem 2.4 to kernels in Rd.

2.2. Approximating family. Assume that a non-constant function f is CM
with the measure µ of (2.1) satisfying (2.4). Then f = g′, where g(t) =

∫ t
0
f(u) du is

a BF. The value f(0) may be unde�ned; that is, f(0+) = limt→0+ f(t) ≤ +∞. Our
aim is to construct a family of CM functions fε such that fε(0+) = limt→0+ fε(t) <∞
for all ε > 0 and limε→0 fε(t) = f(t) for all t > 0.

The family is given by

fε(t) =

{
f(t) = g′(t) , ε = 0
1
ε

∫ t+ε
t

f(s) ds = 1
ε [g(t+ ε)− g(t)] , ε > 0 .

(2.5)
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It satis�es the following important properties.
Theorem 2.5. Let f be a non-constant CM function with the measure µ of (2.1)

satisfying (2.4). Consider the family of functions (2.5), where g(t) =
∫ t
0
f(u) du.

Then
(i) the functions fε are CM for all ε ≥ 0,
(ii) the functions fδ − fε are CM for all 0 ≤ δ < ε,
(iii) the functions εfε − δfδ are CM for all 0 < δ < ε.

Proof.
(i) Consider the form (2.2) for the function g. Then, for any ε > 0, the function fε
from (2.5) can be written as

fε(x) = b+
1

ε

∫ ∞
0

e−tx(1− e−εt) ν(dt) . (2.6)

Another form of (2.6) is

fε(x) =

∫ ∞
0

e−tx µε(dt) , (2.7)

where µε(dt) = b δ0(dt) + hε(t) ν(dt) and

hε(t) =

{
t for ε = 0 ,

1
ε (1− e−εt) for ε > 0 ;

(2.8)

the expression for h0(t) follows from (2.3). Since hε(t) > 0 for all ε ≥ 0 and t > 0,
Theorem 2.1 implies that the functions fε are CM for all ε ≥ 0.
(ii) Assume 0 < δ < ε and consider (2.7) and the similar representation for fδ. Then,
for all t > 0 we have

fδ(x)− fε(x) =

∫ ∞
0

e−tx [µδ − µε] (dt) , (2.9)

where

[µδ − µε] (dt) = [hδ(t)− hε(t)] ν(dt) . (2.10)

The measure [hδ(t)− hε(t)] ν(dt) is positive since, for any t > 0, we have hδ(t) −
hε(t) > 0. Indeed, for any �xed t > 0, the function hε(t), considered as a function of
ε ∈ (0,∞), is strictly positive and strictly decreasing; the former has been noted in
the proof of (i) and the latter follows from

∂hε(t)

∂ε
=

(1 + εt) e−εt − 1

ε2

and from the easily veri�able fact that the function ω(s) = (1 + s)e−s − 1 is strictly
negative for all s > 0.

Consider now the case δ = 0. The expressions (2.9) and (2.10) are still valid but
now we need to justify that

h0(t)− hε(t) = t− 1

ε

(
1− e−εt

)
=
tε+ e−εt − 1

ε

is positive for all ε > 0 and all t > 0. This follows from the fact that the function
ω0(s) = s+ e−s − 1 is strictly positive for all s > 0.
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(iii) Using (2.8), we obtain similarly to (2.9) and (2.10):

δfδ(x)− εfε(x) =

∫ ∞
0

e−tx [δµδ − εµε] (dt) ,

with

[δµδ − εµε] (dt) = b(ε− δ)δ0(dt) + [δhδ(t)− εhε(t)] ν(dt)

= b(ε− δ) δ0(dt) +
[
e−εt − e−δt

]
ν(dt) .

In view of Theorem 2.2, b ≥ 0. As 0 < δ < ε, we have b(ε − δ) ≥ 0 and
e−εt − e−δt > 0 for all t > 0. Therefore, the measure [δµδ − εµε] (dt) is positive and
hence, by Theorem 2.1, the function δfδ − εfε is CM. �

One may notice that (2.6) implies that the Fourier transform of x ∈ R→ fε(|x|) ∈
R

+ is

λ ∈ R→ f̂ε(λ) = b δ(dλ) +

∫ ∞
0

2t (1− e−εt)
ε (t2 + 4π2λ2)

ν(dt) , ε > 0 ,

with ν the measure in (2.6) (and in agreement with [17, Th. 9], f̂ε(λ) > 0 for all
λ > 0, and the kernel Kε de�ned by Kε(x, x

′) = fε(|x− x′|) is characteristic).
Four simple examples of CM functions and approximating families are given be-

low. Note that in examples (a) and (b) the function f(t) is bounded at 0; 0 < α < 1
in examples (b)�(d).

(a) f(t) = e−βt, β > 0: fε(t) = cε,βf(t) with cε,β = (1− e−βε)/(βε).
(b) f(t) = 1/(1 + t)1+α: fε(t) = [(1 + t)−α − (1 + t+ ε)−α] /(α ε).
(c) f(t) = 1/t1−α: fε(t) = ((t+ ε)α − tα)/(αε).
(d) f(t) = 1/(t1−α(1 + t)1+α): fε(t) = [(1+1/(t+ε))−α−(1+1/t)−α] /(αε).

2.3. Pre-Hilbert space associated with a singular kernel. Let X = [0, 1]
and f be a non-degenerate CM function with singularity at 0. Assume, like in Sec-
tion 2.2, that the measure µ of (2.1) satis�es (2.4). De�ne the kernel K : X ×X → R
by K(x, x′) = f(|x− x′|), x, x′ ∈X .

Consider the family of functions {fε}ε>0 de�ned by (2.5). In view of Theorem 2.5
all these functions are CM and bounded. Using the construction of Theorem 2.4,
create the SPD kernels

Kε(x, x
′) = fε(|x− x′|) . (2.11)

Denote by H(Kε) the RKHS associated with Kε(·, ·), ε > 0. All these RKHS H(Kε)
are equivalent to H(K1) since, according to (ii) and (iii) of Theorem 2.5, fδ − fε and
(ε/δ)fε − fδ are CM functions for 0 < δ < ε, and, from [1, Th. 12], H(K) ⊂ H(K ′)
if and only if there exists a constant c > 0 such that cK ′ −K is positive de�nite.

Denote the scalar product in H(Kε) by 〈·, ·〉ε. For a function g ∈ H(Kε), consider
the norms ‖g‖ε =

√
〈g, g〉ε with ε > 0. Then, for any g ∈ H(K1) with 0 < ‖g‖1 <∞

and for 0 < ε′ < ε, we have (ε′/ε)‖g‖ε < ‖g‖ε′ < ‖g‖ε. Therefore, there exists a limit

‖g‖0 = lim
ε→0
‖g‖ε ,

with 0 ≤ ‖g‖0 < ‖g‖1. However, since K is unbounded, it does not de�ne an RKHS
HK0

= HK .
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For any ε > 0, we may nevertheless consider the set of potentials Pν,Kε(·), which,
for ν ∈ M , is dense in H(Kε). We then have ‖Pν,Kε‖ε = E

1/2
Kε

(ν), and, for any
ν ∈ M , ν 6= 0, and for 0 < ε′ < ε, EKε′ (ν) − EKε(ν) =

∫
X 2 fε,ε′(x, x

′) ν(dx) ν(dx′),
with fε,ε′(x, x

′) = fε′(|x − x′|) − fε(|x − x′|). Therefore, EKε′ (ν) − EKε(ν) > 0 since
fε′ − fε is CM; see Theorem 2.4. Denoting ‖ν‖ε = ‖Pν,Kε‖ε, ν ∈ M , we thus have
‖ν‖ε < ‖ν‖ε′ for 0 < ε′ < ε; there exists a limit

‖ν‖0 = lim
ε→0
‖ν‖ε ≤ ∞ ,

and the set of measures ν such that ‖ν‖0 < ∞ coincides with MK , the set of signed
measures with �nite energy, see (1.2). The set P(K) of potentials Pν,K(·) for ν ∈MK ,
equipped with the scalar product 〈g, g′〉0 = limε→0〈g, g′〉ε, de�nes a pre-Hilbert space
(P(K) is not a Hilbert space as it is not complete). Note that, unlike the spaces
H(Kε) with ε > 0, P(K) does not contain potentials of delta-measures δx, x ∈X .

2.4. Discrete approximations. In this section, we apply the methodology of
Section 1.10 and construct discrete approximations of minimum-energy signed mea-
sures of total mass one on X = [0, 1] for kernels Kε de�ned by (2.11) with fε con-
structed as in Section 2.2.

Take ε > 0 and an integer N . Choose N design points x1, . . . , xN in [0, 1]
(for example, set xk = (k − 1)/(N − 1), k = 1, . . . , N), form the matrix Kε,N =
(fε(|xi − xj |))i,j=1,...,N and compute the minimum-energy signed measure ζ∗ε,N in
M (1) supported on the xi. The optimal weights are given by (1.14),

w∗ε,N = w∗N (Kε) = K−1ε,N1N/
(
1>NK−1ε,N1N

)
, (2.12)

and the minimum value of the discrete energy Φε,N (w) = w>Kε,Nw for measures of
total mass one is

EKε(ζ
∗
ε,N ) = Φε,N (w∗ε,N ) = 1/

(
1>NK−1ε,N1N

)
.

For a �xed ε > 0, the kernel Kε is ISPD, see Section 2.1. Since the function fε is
convex, Theorem 1.3 implies that the minimum-energy signed measure µ∗Kε in M (1)
exists and is a probability measure, obtained as the solution of condition (1.13) in
Theorem 1.2. Therefore, if the design points xi are such that maxx∈[0,1] mini |x−xi| →
0 as N →∞, we have EKε(ζ

∗
ε,N )→ EKε(µ

∗
Kε

). This implies that

γ2Kε(ζ
∗
ε,N , µ

∗
Kε) = EKε(ζ

∗
ε,N − µ∗Kε)

= EKε(ζ
∗
ε,N ) + EKε(µ

∗
Kε)− 2

N∑
i=1

w∗ε,N i

∫
Kε(xi, x)µ∗Kε(dx)

= EKε(ζ
∗
ε,N )− EKε(µ

∗
Kε)→ 0 as N →∞ .

Moreover, when the xi are obtained from an in�nite sequence {x1, x2, . . .} satisfy-
ing maxx∈[0,1] mini |x − xi| → 0 as N → ∞, the convergence is monotone; that is,
γKε(ζ

∗
ε,N , µ

∗
Kε

) ↓ 0. However, for any �xed N , EKε(ζ
∗
ε,N ) = Φε,N (w∗ε,N ) tends to ∞

as ε→ 0. As discrete measures cannot be used for kernels with singularities, we shall
use an absolutely continuous version of ζ∗ε,N having weights (2.12). The construction
is described in the next section.
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2.5. Approximations with piecewise constant densities. Let 0 ≤ x1 <
. . . < xN ≤ 1 be the support points of a discrete probability measure ζN and wk ≥ 0
(k = 1, . . . , N) be the corresponding weights with

∑N
k=1 wk = 1. De�ne the N + 1

points zi by

zj = (xj + xj+1)/2, j = 1, . . . , N − 1 and z0 = 0, zN = 1 .

We partition the interval [0, 1) into N non-intersecting intervals Ij = [zj−1, zj) (j =
1, . . . , N), with respective lengthes lj = zj − zj−1. We have lj > 0 for all j = 1, . . . , N
and

∑
j lj = 1. De�ne the piecewise constant function

pN (t) =

{
wj/lj if t ∈ Ij for some j = 1, . . . , N ,

0 if t /∈ [0, 1) .
(2.13)

We have pN (t) ≥ 0 for all t,
∫ 1

0
pN (t)dt =

∑N
j=1 wj = 1, and therefore pN is a

probability density function. We shall use it as a continuous approximation of ζN .
Note that if xj = (j − 1)/(N − 1), j = 1, . . . , N , then l1 = lN = 1/[2(N − 1)] whereas
li = 1/(N − 1) for i = 2, . . . , N − 1.

Denote by ζ̃N the measure having the density (2.13). Then its energy (1.1) for
K(x, y) = f(|x− y|) can be written as

EK(ζ̃N ) =

∫ 1

0

∫ 1

0

K(x, y)pN (x)pN (y) dx dy

= 2

N∑
i=2

wi
li

∫
Ii

i−1∑
j=1

wj
lj

∫
Ij

f(x− y)dy

 dx+

N∑
i=1

w2
i

l2i

∫
Ii

∫
Ii

f(|x− y|) dx dy

= w>NK̃NwN ,

where wN = (w1, . . . , wN )> and K̃N is symmetric with

(K̃N )i,i =
1

l2i

∫ zi

zi−1

[∫ x

zi−1

f(x− y)dy +

∫ zi

x

f(y − x)dy

]
dx and

(K̃N )j,i =
1

lilj

∫ zi

zi−1

[∫ zj

zj−1

f(x− y) dy

]
dx for j < i .

We can therefore obtain EK(ζ̃N ) in closed-form when closed-form expressions for∫ b

a

[∫ t

a

f(t− s) ds
]
dt and

∫ d

c

[∫ b

a

f(t− s) ds

]
dt (2.14)

are available for any 0 ≤ a ≤ b ≤ c ≤ d ≤ 1. In that case, if there exists a minimum-
energy measure µ∗K ∈M (1) on [0, 1] for the kernel K, the minimum energy measure

ζ̃∗N of total mass one, for K, among those having piecewise constant densities pN (t)

on the partition above, gives an approximation of µ∗K . The optimal measure ζ̃∗N , with
density p∗N (t), is characterized by the weights

w̃∗N = w∗N (K̃) = K̃−1N 1N/(1
>
NK̃−1N 1N ) . (2.15)
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Also, developments similar to those in Section 2.4 give

γ2K(ζ̃∗N , µ
∗
K) = EK(ζ̃∗N )− EK(µ∗K) , (2.16)

which is well de�ned for singular kernels.
The potential P̃N (x) for the measure with density pN (t) can be computed in a

similar way for x in any Ij , j = 1, . . . , N . Indeed, for any x ∈ Ij = [zj , zj+1), we have

P̃N (x) =

∫ 1

0

K(x, y)pN (y) dy =

N∑
i=1

wi
li

∫
Ii

f(|x− y|) dy

=

j−1∑
i=1

wi
li

∫ zi+1

zi

f(x− y)dy +
wj
lj

∫ zj+1

zj

f(|x− y|) dy +

N∑
k=j+1

wk
lk

∫ zk+1

zk

f(y − x) dy

=

j−1∑
i=1

wi
li

∫ zi+1

zi

f(x− y) dy +

N∑
k=j+1

wk
lk

∫ zk+1

zk

f(y − x) dy

+
wj
lj

(∫ x

zj

f(x− y) dy +

∫ zj+1

x

f(y − x) dy

)
.

This expression for P̃N (x) can be used in particular to check how close the potential

P̃ ∗N (x) associated with p∗N (t) is to being constant for x ∈ [0, 1].
The construction above can be applied to the discrete approximations ζ∗ε,N of

Section 2.4. We denote by ζ̃ε,N the measure with piecewise constant density and

weightsw∗ε,N given by (2.12), and by ζ̃∗ε,N the measure with piecewise constant density

having weights w̃∗ε,N = w∗N (K̃ε) given by (2.15) with Kε(x, y) = fε(|x− y|), ε ≥ 0.
WhenK(x, x′) = f(|x−x′|) with f singular at zero and µ∗K exists, we can compute

the MMD discrepancies γK(ζ̃ε,N , µ
∗
K) and γK(ζ̃∗ε,N , µ

∗
K), see (2.16), and plot them as

functions of ε. This is done in the next section for the Riesz kernels; see Fig. 3.8.

3. Case study: Riesz kernels on [0, 1].

3.1. Riesz kernels and associated optimal measures. Consider the function
fα(t) = t−α (0 < α < 1) on t ∈ (0, 1], and the associated kernel

K(t, s) = fα(|t− s|) = |t− s|−α, t, s ∈ [0, 1] , t 6= s. (3.1)

In this case, the minimizing measure µ∗ = µ∗α for the energy functional (1.1) is known:
it is a probability measure with density

φα(t) = cα [t(1− t)](α−1)/2 , t ∈ [0, 1] , cα =
Γ(α+ 1)[
Γ(α+1

2 )
]2 . (3.2)

That is, µ∗ corresponds to the Beta-distribution with parameters (α+ 1)/2, (α+ 1)/2
on [0, 1]. We have∫ 1

0

K(t, s)φα(s) ds =

∫ t

0

1

(t− s)α
φα(s) ds+

∫ 1

t

1

(s− t)α
φα(s) ds

= cα
π

cos(πα/2)
= Φ∗α ,
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where

Φ∗α =
πΓ(α+ 1)

cos(πα/2)
[
Γ(α+1

2 )
]2 = min

µ∈M (1)
Φ(µ) .

Values of Φ∗α are plotted in Fig 3.1, left; normalized values (Φ∗α)
1−α

are plotted in
Fig 3.1, right.

Figure 3.1: Left: values of Φ∗α for α ∈ [0, 0.9]. Right: values of (Φ∗α)
1−α

for α ∈ [0, 1].

Note that for the kernel (3.1) we have the following exact formulas for (2.14):∫ b

a

[∫ t

a

(t− s)−α ds
]
dt =

(b− a)2−α

(1− α)(2− α)
;∫ d

c

[∫ b

a

(t− s)−α ds

]
dt =

(d− a)2−α + (c− b)2−α − (d− b)2−α − (c− a)2−α

(1− α)(2− α)
.

To compute the potentials for measures µ = µN having the density (2.13) we use
the following formulas for x ∈ Ij = [zj , zj+1):

PµN (x) =

∫ 1

0

K(x, y)pN (y)dy =

N∑
i=0

wi
li

∫
Ii

fα(|x− y|)dy

=

j−1∑
i=0

wi
li

∫ zi+1

zi

(x− y)−α dy +
wj
lj

∫ zj+1

zj

|x− y|−α dy +

N∑
k=j+1

wk
lk

∫ zk+1

zk

(y − x)−α dy

=
1

1− α

[
j−1∑
i=0

wi
li

[
(x− zi)1−α − (x− zi+1)1−α

]
+
wj
lj

[
(x− zj)1−α + (zj+1 − x)1−α

]
+

N∑
k=j+1

wk
lk

[
(zk+1 − x)1−α − (zk − x)1−α

] .
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3.2. E�ciency of the uniform probability measure. Let µ0 be the uniform
probability measure on [0, 1]. We de�ne its e�ciency as

eff(µ0) =
Φ∗α

Φα(µ0)
=

(1− α)(2− α) cos(πα/2)
[
Γ(α+1

2 )
]2

2πΓ(α+ 1)
, (3.3)

where

Φα(µ0) = EK(µ0) =

∫ 1

0

∫ 1

0

|t− s|−α dt ds =
2

(1− α)(2− α)
(3.4)

is the energy of the uniform measure. For all values of α ∈ [0, 1) this e�ciency is quite
high, see Fig 3.2, left (the lowest value is ' 0.98135 which is achieved at α ' 0.36253).
The accuracy of the approximation of the energy of µ0 is therefore indicative of what
is happening in terms of approximation of the optimal measure µ∗α.

The potential of the uniform measure is

Pµ0;α(t) =

∫ 1

0

|t− s|−α ds =

∫ t

0

(t− s)−α ds+

∫ 1

t

(s− t)−α ds =
t1−α + (1− t)1−α

1− α
.

This potential and its average value Φα(µ0) =
∫ 1

0
Pµ0;α(t)µ0(dt) are plotted in Fig 3.2,

right, for α = 0.5. As can be seen from this �gure, despite µ0 has high e�ciency, there
is still room for improvement, since the potential of µ∗α is a constant function.

Figure 3.2: Left: e�ciency of the uniform measure computed by (3.3) for α ∈ [0, 1).
Right: Potential of the uniform measure Pµ0;α(t) and its average value Φα(µ0), see
(3.4), computed for α = 0.5.

3.3. Approximation of fα by fε,α. The Bernstein function associated with
fα(t) = t−α is g(t) = t1−α/(1− α), t ≥ 0, and the functions fε from (2.5) are

fε,α(t) =
(t+ ε)1−α − t1−α

ε(1− α)
, t ≥ 0. (3.5)
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We can also write

fα(x) =
1

Γ(α)

∫ ∞
0

e−tx tα−1 dt , x > 0 ,

fε,α(x) =
1

εΓ(α)

∫ ∞
0

e−tx (1− e−εt) tα−2 dt , x ≥ 0 ,

and fε,α(x) < fα(x) for all x > 0 and ε > 0 since (1 − e−z)/z < 1 for all z > 0.

Let f̂α(λ) and f̂ε,α(λ) respectively denote the Fourier transforms of the functions
x→ fα(|x|) and x→ fε,α(|x|), x ∈ R. They are given by

f̂α(λ) =
2 sin(απ/2) Γ(1− α)

|2πλ|1−α
,

f̂ε,α(λ) =
2

εΓ(α)

∫ ∞
0

(1− e−εt) tα−1

t2 + 4π2λ2
dt ,

with f̂ε,α(λ) < f̂α(λ) for all λ > 0 and ε > 0. Figure 3.3 presents fα(t) (red solid line)
and fε,α(t) (blue dashed lines) as functions of t ≥ 10−4, for α = 0.5 (left panel) and
α = 0.75 (right panel); the values of fε,α(0) are indicated by a dot, ε = 0.001 for the

dashed curve closest to fα and ε = 0.01 for the other. Figure 3.4 shows f̂α(λ) (red

solid line) and f̂ε,α(λ) (blue dashed lines) as functions of λ ≥ 10−2, for α = 0.5 (left

panel) and α = 0.75 (right panel); ε = 0.001 for the dashed curve closest to f̂α and
ε = 0.01 for the other.

Figure 3.3: fα(t) = t−α (red solid line) and fε,α(t) (blue dashed line, top: ε = 0.001,
bottom: ε = 0.01) as functions of t ≥ 10−4; fε,α(0) is indicated by a dot. Left:
α = 0.5; right: α = 0.75.

Denote by Hε,α = H(Kε,α) the RKHS associated with the kernel

Kε,α(t, s) = fε,α(|t− s|), t, s ∈ [0, 1] , (3.6)

where fε,α is given in (3.5). From Section 2.3, for a �xed α all Hε,α, ε > 0, are
equivalent to H1,α. Also, any function g ∈ Hε,α, with Fourier transform ĝ, satis�es

‖g‖2Hε,α =

∫ ∞
−∞

|ĝ(λ)|2

f̂ε,α(λ)
dλ > ‖g‖20,α =

∫ ∞
−∞

|ĝ(λ)|2

f̂α(λ)
dλ ,
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Figure 3.4: f̂α(λ) (red solid line) and f̂ε,α(λ) (blue dashed line, top: ε = 0.001, bottom:
ε = 0.01) as functions of λ ≥ 10−2. Left: α = 0.5; right: α = 0.75.

see Section 2.3. We have in particular

‖fε,α‖20,α =
1

Γ2(α)Γ(1− α) sin2(απ/2)

∫ ∞
0

∫ ∞
0

(1− e−εt)(1− e−εt′)(t′α − tα)

ε2tt′ (t′2 − t2)
dt dt′ .

The functions g such that ‖g‖0,α < ∞ must satisfy ĝ(λ) = o(λα/2−1) for λ → 0+
and λ→∞. Only the behavior of ĝ(λ) for λ→∞ is important when we restrict our
attention to functions g de�ned on [0, 1], and ‖g‖0,α < ∞ implies ‖g‖0,α′ < ∞ when
0 < α < α′ < 1.

Now we study the quality of approximation of the kernel (3.1) by the family of
kernels Kε,α in (3.6). The energies of the uniform measure with respect to kernels
(3.6) are

Φα,ε(µ0) =

∫ 1

0

∫ 1

0

fε,α(|t− s|) dt ds = 2
(1 + ε)3−α−ε3−α−(3− α)ε2−α−1

ε(1− α)(2− α)(3− α)
. (3.7)

Since fε,α(t) < fα(t) = t−α for all α ∈ (0, 1) and t > 0, we have Φα,ε(µ0) < Φα(µ0) for
all α ∈ (0, 1). Values of the ratio Φα,ε(µ0)/Φα(µ0) are plotted in Fig 3.5, left. We can
deduce from this �gure that if α is not very close to 1 (that is, when the singularity is
not very strong), then fε,α can be considered as an accurate approximation of fα, even
for ε not very small. Note that the case when the singularity of the kernel is strong
(when α is close to 1) is not very interesting when K is used to model the covariance
function of a random process, as this is very close to the case of no dependence (the
white noise case), for which the minimum energy measure is the uniform measure.

Expanding the rhs in (3.7) into a series we obtain

Φα,ε(µ0) = Φα(µ0)
[
1− ε1−α + ε(1− α/2)

]
+O(ε2) , ε→ 0 .

The resulting approximation is very accurate for all α ∈ [0, 1), even if ε is not very
small. Already the very simple approximation

Φα,ε(µ0)/Φα(µ0) ' 1− ε1−α (ε ' 0) (3.8)

is quite accurate, as can be seen from Fig 3.5, right.
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The optimal density (3.2) and the approximation (2.13) obtained for the weights

w̃∗ε,N = w∗N (K̃ε) given by (2.15) on the uniform grid xk = k/N (k = 0, 1, . . . , N =
200) are presented in Figs. 3.6 and 3.7 for di�erent values of ε and α, illustrating the
accuracy of the approximation.

Figure 3.5: Left: ratios Φα,ε(µ0)/Φα(µ0) for ε = 10−k, k = 2, 4, 8. Right: quality of
approximation (3.8): values of Φα,ε(µ0)/

(
Φα(µ0)(1− e1−α)

)
computed for ε = 0.001

and α ∈ [0, 1).

Figure 3.6: Optimal densities (3.2), red, and numerically computed densities (2.13),
blue, on the uniform grid xk = k/N (k = 0, 1, . . . , N); N = 200, ε = 0.01. Left:

α = 0.1, e�ciency EK(µ∗K)/EK(ζ̃∗ε,N ) ' 0.99939. Right: α = 0.25, e�ciency

EK(µ∗K)/EK(ζ̃∗ε,N ) ' 0.99788.

We �nally consider the discrepancy γK(ζ̃N , µ
∗
K) given by (2.16) for di�erent mea-

sures ζ̃N with piecewise constant density built with the N -point grid {(k − 1)/(N −
18



Figure 3.7: Optimal densities (3.2), red, and numerically computed densities (2.13),
blue, on the uniform grid xk = k/N (k = 0, 1, . . . , N); N = 200, ε = 0.001.

Left: α = 0.5, e�ciency EK(µ∗K)/EK(ζ̃∗ε,N ) ' 0.99953. Right: α = 0.75, e�ciency

EK(µ∗K)/EK(ζ̃∗ε,N ) ' 0.99869.

1), k = 1, . . . , N}: ζ̃ε,N with weights w∗N (Kε) given by (2.12), ζ̃∗N and ζ̃∗ε,N with re-

spective weights w∗N (K̃) and w∗N (K̃ε) given by (2.15). Figure 3.8 shows γK(ζ̃∗N , µ
∗
K),

γK(ζ̃ε,N , µ
∗
K) and γK(ζ̃∗ε,N , µ

∗
K) as functions of N for ε = 0.001 (left panel) and as

functions of ε for N = 100 (right panel), for α = 1/2. Overall, we can see that ζ̃∗ε,N ,
based on the approximation fε,α, gives a fairly accurate approximation of µ∗K . Note

that the precision is better than for ζ̃ε,N , which uses the optimal weights of the dis-
crete approximation. Unsurprisingly, accuracy improves as N increases (left panel).
Numerical di�culties make the approximation less accurate for very small ε (right
panel); values of ε between 10−3 and 10−2 are seen to give satisfactory results.

Concluding this section we can state that if α is not too close to 1 (so that the
singularity of the kernel is not too severe) then fε,α accurately approximates fα if ε
is small enough. Due to their intrinsic repelling property, singular kernels have great
potential interest in the construction of sequences of nested space-�lling designs via
kernel herding, see Section 4.4 of [9]. However, singularity precludes the use of the
more e�cient minimum-norm-point variant, in which weights are optimized at each
iteration. The substitution of a separable kernel based on the approximation fε,α for

the singular separable kernel K(x,x′) =
∏d
i=1 fα(|xi− x′i|) appears very attractive in

this context.

3.4. Other examples. A long list of Bernstein functions can be found in [13,
Chapter 15]. In view of [7], among the �rst 50 Bernstein functions gi from this list,
in the following cases the corresponding CM function fi (proportional to g

′
i) has a

singularity at zero: 1, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 31, 33, 34, 36, 38, 40,
41, 42, 43, 44, 45.
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Figure 3.8: Discrepancy γK(ζ̃N , µ
∗
K) for the measure ζ̃N with piecewise constant den-

sity and weights w∗N (Kε) given by (2.12) (red F), w∗N (K̃) (black �) and w∗N (K̃ε)
(blue O) given by (2.15). Left: ε = 0.001, N ∈ {50, . . . , 200}; right: N = 100,

ε ∈ [10−4, 10−2] (log scale) � γK(ζ̃∗N , µ
∗
K) ' 0.0238 does not depend on ε.

Some of these functions are as follows (t > 0):

f1(t) = t−α, 0 < α < 1;

f8(t) =
t−α

(1 + t)2−α
, 0 < α < 1;

f11(t) =
αtα−1(1− tβ)− βtβ−1(1− tα)

(1− tα)
2 , 0 < α < β < 1 ;

f16(t) =
α1t
−α1−1 + . . .+ αnt

−αn−1

(t−α1 + . . .+ t−αn)
2 , 0 < α1, . . . , αn ≤ 1;

f19(t) =
(

1− (β
√
t− 1)e−β

√
t
)
/
√
t, β > 0;

f23(t) = t (1 + 1/t)
1+t

log (1 + 1/t) .

The families of functions fi,ε(t) = (gi(t+ε)−gi(t))/ε are constructed by (2.5). Below
we give expressions for gi. Note that there may be an extra multiplier and a di�erent
parametrization if these functions are compared against corresponding expressions in
[13]. Since all functions gi,ε are normalized so that gi(0) = 0 for all i, the values
fi,ε(0) are simply fi,ε(0) = gi(ε); for small ε > 0 these values are large.

g1(t) = t1−α/(1− α) , 0 < α < 1 ;

g8(t) =
t1−α

(1− α)(1 + t)1−α
, 0 < α < 1 ;

g11(t) = (tβ − tα)/(tα − 1), 0 < α < β < 1 ;

g16(t) = 1/
(
t−α1 + . . .+ t−αn

)
, 0 < α1, . . . , αn ≤ 1;

g19(t) = 2
√
t
(

1 + e−β
√
t
)
, β > 0;

g23(t) = t (1 + 1/t)
1+t − 1 .

Minimum-energy measures for the kernels constructed for all these (as well as many
other) CM functions has been numerically constructed by the authors. Results (and
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�gures of optimal densities) are quite similar to the ones provided above for the Riesz
kernel.
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