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ABSTRACT  

Background: Huntington's disease is a rare, severe, inherited neurodegenerative disease in which we 

assessed the safety and efficacy of grafting human fetal ganglionic eminence intrastriatally. 

Methods: Patients with early-stage of the disease were enrolled in the Multicentric Intracerebral 

Grafting in Huntington’s Disease trial, a delayed-start phase II randomized study. After a run-in period 

of 12 months, patients were randomized at M12 to either the treatment group (transplanted at M13-

M14) or the control group, secondarily treated 20 months later (M33-M34). The primary outcome was 

total motor score compared between both groups at 20-month post-randomization (M32). Secondary 

outcomes included clinical, imaging and electrophysiological findings, and comparison of pre- and 

post-graft total motor score slopes over the whole study period (M0-M52) regardless of the time of 

transplant. 

Results: Of 54 randomized patients, 45 were transplanted; 26 immediately (treatment) and 19 delayed 

(control). Mean total motor score at M32 did not differ between groups (treated-controls difference in 

means adjusted for M12: +2.9 [CI95 -2.8 to 8.6]; P=0.31). Its rate of decline after transplantation was 

similar to that before transplantation. 27 severe adverse events were recorded in the randomized 

patients, 10 of which were related to the transplant procedure. Improvement of procedures during the 

trial significantly decreased the frequency of surgical events. 

We found anti-Human Leucocytes Antigen antibodies in 40% of patients. 

Conclusion: No clinical benefit was found in this trial. This may have been related to graft rejection. 

Ectopia and high track number negatively influence the graft outcome. Procedural adjustments 

substantially improved surgical safety. 
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INTRODUCTION 

HD is a rare inherited neurodegenerative disorder, which causes cognitive, behavioral, and motor 

deficits, often beginning in early adulthood. Genetic diagnosis is unequivocal for patients with more 

than 39 CAG repeats in the huntingtin gene.1 Despite intense pathophysiological research, disease-

modifying treatments remain elusive, and patients have a mean survival, with considerable dispersion, 

of 20 years after motor onset.2 Gene-silencing therapies are promising, but will probably be more 

effective for prevention than restoration. Multiple therapeutic strategies would presumably be required, 

particularly for individuals already displaying striatal degeneration.  

In HD, degeneration of neurons is particularly marked in the striatum, although not exclusive to this 

region.3 Striatal quinolinic acid (QA) lesions in experimental animals indicate that massive losses of 

striatal medium-sized spiny neurons, as occur in HD, can trigger progressive cortical projection neuron 

degeneration. Homotopic transplantation of cells derived from the ganglionic eminence (the fetal zone 

giving rise to the striatum) can replace the lost striatal neurons in rodent and non-human primate QA 

lesion models, partially restoring frontostriatal connections and striatal efferent links to output nuclei, 

and promoting recovery of cognitive and motor functions.4,5 Despite little neurodegeneration in R6/2 

transgenic mice,6 modest improvement in locomotion was recorded after ganglionic eminence grafting.7 

Functional improvement was also reported in transgenic models following stem cell-derived transplants 

(e.g.8,9). Since the 1990s, 70 HD patients10 have been enrolled in open-label, non-randomized, single-

center trials (1-16 participants) of striatum-reconstructing treatments. These studies were too 

heterogeneous (different cell sources, tissue preparations, and surgical protocols) and underpowered to 

be conclusive or to drive improvements for future trials. Nevertheless, some patients showed clear signs 

of sustained improvement.11–13 Graft-host connection was demonstrated in post mortem samples,14 with 

structures resembling normal striatum in the grafted region, cortical and nigral afferents from the host, 

and efferent to downstream pallidal nuclei and substantia nigra.15,16 International guidelines consider 

cell transplantation into the brain to be safe17,18 despite some reports of overgrowth, graft tissues ectopic 

to the target area,19,20 and subdural hematomas (SDHs).14 

We set up a phase II randomized controlled trial; Multicentric Intracerebral Grafting in Huntington’s 

Disease (MIG-HD), to assess the safety and efficacy of human fetal cell intrastriatal transplantation in 

patients with early-stage HD. This report summarizes the main study findings and key lessons learned 

during the course of the trial. We identified factors that may influence transplant functionality for 

consideration in future trials. 
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METHODS 

 

Study design and oversight 

MIG-HD was a multicenter randomized phase II study assessing the safety of intrastriatal human fetal 

cell transplantation and its effect on motor function in patients with early-stage HD. The study was 

conceived as a delayed-start design, where active treatment is sequentially provided to all participants 

over time, so that all patients could eventually benefit from the transplantation procedure21. The study 

was approved by the institutional review boards of Henri Mondor Hospital in France and Erasme 

Hospital in Belgium. It complied with the Helsinki Declaration, current Good Clinical Practice 

guidelines, and local laws and regulations. Written informed consent was obtained from patients at M0 

or M1.22 An independent safety committee monitored the study conduct, the collected data and any 

severe adverse events (SAEs). The protocol was registered at ClinicalTrials.gov (NCT00190450). 

Methodological details are provided in the supplementary methods. 

Participants 

Consenting patients with genetic diagnoses of HD underwent transplantation at six French and Belgian 

hospitals between 2001 and 2010; their follow-up to M52 was completed in 2013. The main inclusion 

criteria were: having manifest HD for ≥1 year, >36 CAG repeats in the huntingtin gene, age 18-65 years, 

total motor score (TMS) >5 on the Unified Huntington’s Disease Rating Scale (UHDRS), and total 

functional capacity (TFC) score >9. The main exclusion criteria were: Mattis Dementia Rating Scale 

(MDRS) score <120, and contraindication for surgery or magnetic resonance imaging (MRI) 

(supplementary methods). 

Randomization and masking 

After a one-year run-in period, designed to verify patients’ compliance and exclude unusual patterns of 

clinical deterioration, patients were randomly assigned at month 12 (M12) in a 1:1 ratio either to 

treatment (receiving transplant at M13-M14) or to the (initially untreated) control group, which were 

subsequently grafted 20-months later (M33-M34) (Figure S1). Randomization was computer-generated, 

with centralized allocation concealment. A randomisation list prepared at the Henri Mondor Clinical 

Research Unit with Nquery software (Statistical Solutions Ltd., Boston, USA) was used. Participants 

and investigators responsible for clinical follow-up were not blind to treatment allocation. However, the 

validity of the primary outcome (UHDRS TMS excluding rigidity) was assessed by video recordings at 

M12, M32 and M52 and scored by specialists not involved in patient follow-up and recruitment and 

blind to treatment allocation (Figure S2). 

Procedures 

Small blocks of whole ganglionic eminences from one to three 8.5- to 12-week-old fetuses (mean 

±standard deviation: 1.6±0.6) per grafting session were implanted stereotactically, within 48 hours of 

retrieval, into the striatum ipsilateral to the dominant hand. A mean of 2.45±3.03 months later, the 

contralateral striatum was grafted (supplementary methods). Cells were injected through six tracks 

(mean 4.91±1.46; range 3 to 6) within the head of the caudate nucleus (pre-commissural and 

commissural) and the putamen (one in each of pre-commissural and commissural, and two in post-

commissural putamen). This totalled a volume of 206.0±43.1 µL unilaterally, distributed as 8 deposits 

per track (mean 5.1±1.0 µL by deposit) with significant variations across centres. Two tracks were 

omitted after the first 29 grafting sessions, to avoid SDH in patients with major striatal atrophy. 

Cerebrospinal fluid leakage was limited by confinement to bed and hyperhydration for 48 h after surgery.  
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Immunosuppression was achieved with cyclosporine A, beginning three days before surgery (400 

mg/day, then adjusted to maintain blood concentrations between 100 and 150 mg/L), prednisolone (0.25 

mg/kg per day) and azathioprine (0.75 mg/kg per day) both initiated on the day of surgery. Cyclosporine 

A was stopped six months after the second transplantation, and prednisolone and azathioprine were 

stopped six months later. After the occurrence of acute graft rejection and the identification of Human 

Leucocytes Antigen (HLA) antibodies in 30% of the patients tested,23 guided by international experts in 

immunology, we established a new immunosuppression protocol for the last 20 patients. This involved 

monitoring HLA antibodies at each centre and prolongation of full immunosuppression for up to one 

year after the second graft. Azathioprine and prednisolone were continued for six additional months, and 

prednisolone was withdrawn gradually. Plasma HLA antibodies were then monitored locally at each 

hospital, and treatment was modified (withdrawal of cyclosporine or of prednisolone) on occurrence of 

any unusual signs. Oral immunosuppressive therapy was withdrawn if no HLA antibodies against the 

grafts were detected.  

Short and full assessments were alternated for clinical examination (Figure S1). We used the complete 

UHDRS, cognitive tasks,24 back-and-forth hand-tapping, and electrophysiological assessments. When 

surgery could not be done on the scheduled date due to lack of foetus availability, preoperative 

assessments were repeated if the interval between them and the transplant exceeded three months. Brain 

imaging included MRI, 18F-fluorodeoxyglucose PET (FDG-PET) and, in patients not on neuroleptics, 

with 11C-raclopride PET (supplementary methods). 

Endpoints 

The primary outcome was the UHDRS-TMS compared between treatment and control groups at 20-

month post-randomization (M32). TMS is a composite score for chorea, dystonia, oculomotor 

movement, tapping, pronation/supination, palm/hand/fist sequence task, walking, tongue protrusion and 

rigidity, rated from 0 to 124 points, with higher scores indicating poorer performance. Secondary 

outcomes included clinical, imaging and electrophysiological findings, as well as comparison of pre- 

and post-graft TMS slopes over the whole study period (M0-M52) regardless of the time of transplant. 

Adverse events (AEs) were identified on clinical examination, according to the World Health 

Organization checklist, at all visits and between visits if spontaneously reported by patients (Table S1).  

Statistical analysis 

Sample size calculation relied on data from an observational cohort of early HD patients comparable to 

those included in the present trial and followed for up to 4 years,24 showing an average annual natural 

progression of +13.2±14.1 for the UHDRS-TMS. Hypothesizing a stable evolution as a clinically 

meaningful effect of the graft, inclusion of ≥18 subjects per group was required to achieve 80% power 

at a 2-sided 5% alpha level. To account for a prespecified subgroup analysis led in graft recipients with 

a metabolically active transplant based on FDG-PET imaging (60% expected like in 11), a sample size 

of 60 (30 per group) was targeted. 

For the primary outcome, patients were assessed according to randomized group under the modified 

intent-to-treat principle, including all patients from the control group and patients from the treatment 

group having received a transplant. The main planned primary endpoint analysis relied on the 

comparison of the TMS at M32 between treatment and control groups using analysis of covariance 

(ANCOVA) of the score at M32 with the initial value at M12 as a covariate. Supportive sensitivity 

analyses of the primary endpoint included: i) ANCOVA with further adjustment for centre and other 

covariates at M12 with prognostic value or showing evidence of a potential imbalance between study 

arms at the time of randomization and/or transplant; ii) comparing the absolute change in TMS from 

M12 to M32 between the two randomized groups and iii) assessing the graft effect on the evolution of 
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TMS over time (M0-M52) regardless of the randomized group using a piecewise two-part (before-after 

the first transplant) linear mixed model. 

Clinical and electrophysiological secondary endpoints were compared between randomized groups 

using ANCOVA of values at M32 with values at M12 as a covariate, adjusting for similar covariates as 

for the primary outcome, with the addition of the total motor score. Potential effect modifiers that could 

predict improved response to intrastriatal transplant were searched for from a preselected list of 21 

variables relating to patients and intervention, by testing for interactions between time after first graft 

and the candidate predictors in a piecewise linear mixed model (supplementary methods).  

All tests were two-tailed, with P<0.05 considered significant. Analyses were prespecified in the trial 

protocol and performed with Stata v15.1 (StataCorp, College Station, USA) and R-3.6.0 (R Foundation, 

Vienna, Austria). 

Following the discovery of immune rejection,23 detection of antibodies directed against HLA class I and 

class II antigens expressed by donor tissues was assessed in each center, using the locally available 

technique.  

 

MRI Analyses 

 

MRI was planned as part of the study design for safety only. We conducted a retrospective volumetric 

segmentation analysis using the Freesurfer software in patients scanned on the same machine for PET-

coregistration (supplementary methods). 
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Results 

 

Between January 2001 and May 2006, 66 patients met the inclusion criteria (M0-M1), 54 were 

randomized (M12), and 45 underwent transplantation (treatment group: 24 bilateral and 2 unilateral; 

and controls secondarily grafted: 17 bilateral and 2 unilateral) (Figure 1). Unilateral implantations 

were due to cancellation of the contralateral transplantation following serious surgical complications 

after the first transplant in two patients, and to the decision of two others not having a second 

transplant following several cancellations of surgery due to insufficient tissue collection. Demographic 

and baseline characteristics are shown in Table 1. Patient demographic and clinical characteristics 

were not significantly different between the two groups at the M12 randomization time point, except 

for a longer disease duration and a more severe 1-figure cancellation task for the treatment group. 

Median follow-up was 56.9 months (interquartile range [IQR] 54.5-64.1) for the treatment group, and 

60.0 months (IQR 56.6-65.7) for controls.  

 

Safety 

We recorded 287 AEs from M0 to M52 in the 54 randomized patients over a period of 12 years (Table 

S1); 91% were not attributed to the procedure and 9% related to the procedure (immunosuppressant or 

transplant). Among those, there were 27 SAEs, of which 17 were considered unrelated to the procedure: 

one death by suicide, two suicide attempts, three fractures, one road accident, one acute fever, two 

gastrointestinal disorders, one pulmonary embolism, and six hospitalizations for psychiatric disorders. 

Ten SAEs were procedure-related: one intracranial empyema, three SDHs (two requiring surgical 

drainage), one putaminal hematoma resulting in hemiparesis and aphasia, one seizure, one graft 

rejection,23 and three intrastriatal cysts. Due to progressive cranial hypertension, one of these patients 

with an intra-graft cyst required cauterisation of aberrant choroid plexus within the graft. Following this, 

the patient improved clinically and in terms of his striatal metabolism (ipsilateral to the cyst) compared 

to pre-surgery. Surgical and postoperative procedures were modified to prevent further hematomas in 

the following 57 grafts, leading to significant improvement (Fisher’s test P=0.03).   

Despite cyclosporine monitoring and dose titration, eighteen of the 43 patients tested (39 during the 52-

month study and four subsequently) were positive for HLA antibodies. We did not find correlation 

between the clinical results and the presence of HLA antibodies.  

 

Efficacy 

M32 TMS scores did not differ significantly between treatment (50.8±17.3, N=26) and control groups 

(39.0±17.0, N=26; ANCOVA adjusted for M12: P=0.31, adjusted difference in means: +2.9 [CI95 -2.8 

to 8.6]). This was confirmed by supportive analyses after adjustment for disease duration (P=0.54), 

center (P=0.30), or multiple adjustment for both and other potentially influent covariates (i.e. 

independence scale, functional assessment scale, 1-figure cancellation, categorical fluency (1 min.); 

P=0.68), and in comparisons of mean absolute TMS change from M12 to M32 (+10.3±standard error 

2.3 [treatment] vs. +8.1±2.1 [controls], P=0.52, Table 2). A longitudinal analysis of graft effect on TMS, 

regardless of group randomization, found no difference between the pre-graft and post-graft progression 

slopes (piecewise linear mixed model, P=0.65; Figure 2A). The reliability of clinician-rated TMS, 

assessed by blind scoring on the 96 exploitable videos from M12 to M52, was excellent (intraclass-

correlation coefficient=0.92 with 95% CI [0.88;0.94] and P<0.001) (Figure S2).  

No significant striatal metabolic differences were observed in FDG PET-scans between M12 and M32 

in either treated (N=26) or control (N=19; Figure 3) patients. At M32, eight treated patients showed a 
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non-significant lower number of hypometabolic striatal voxels compared to M12 (means M12: 

1519.3±395.9 and M32: 1308.0±315.1). Their TMS (mean 49.8±10.7) was similar to that of control 

patients (ANCOVA adjusted for M12: P=0.46). As for clinical and electrophysiological secondary 

endpoints, no statistically significant differences were found between randomized groups between M12 

and M32, adjusted for potentially confounding covariates (i.e. M12 values of total motor score, 1-figure 

cancellation, categorical fluency (1 min.), independence scale, functional assessment scale and disease 

duration), except for Stroop word showing a more severe decrease in the treated, than in the control 

group (Table 2). 

Analyses of basal ganglia MRI volumes between M12 and M32 showed a significant  increase of the 

striatal volume in treated patients (N=13) compared to controls (N=16, P<0.001) without correlation 

with clinical scores (supplementary methods).  

Exploratory analyses were performed on 10 parameters characterizing the patients’ pattern and 11 

procedural aspects to identify potential predictors of transplantation outcome 

(supplementary methods). Interaction analyses in the longitudinal linear mixed model detected two 

detrimental predictors of steeper decline in post-graft TMS: ectopia (interaction term -0.29 [CI95% -

0.58 to -0.002], P=0.049) and a trend for high number of tracks per side ≤5.5 (-0.25 [-0.51 to 0.047], 

P=0.067) (Figures 2B and 2C).   
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Discussion 

 

This randomized multicentre delayed-start phase II trial was designed to assess the safety and efficacy 

of the intrastriatal transplantation of human fetal cells in 54 patients in early to moderate stages of HD, 

of whom 45 were eventually grafted. A comparison of the treatment (N=26) and control groups (N=19) 

at M32 showed no improvement in TMS, even after restricting the analysis to the treated patients 

identified as having an increased striatal metabolism on FDG-PET-imaging. TMS slope was unaffected 

by transplantation. No benefit for secondary outcomes was observed (Table 2). We observed no increase 

in raclopride binding, suggesting no/little increase in striatal-like tissue, and no metabolic improvement 

in the striatum or frontal cortex post-transplantation in 80% of the grafted patients.25 This may have been 

due to implantation of insufficient quantities of tissue or poor tissue survival for a range of reasons 

including graft rejection, the latter according with the demonstration of transplant alloimmunogenicity23 

in 41% patients tested for HLA antibodies. 

Human fetal cells dissected from the developing striatum are theoretically good donor cells for 

transplantation in HD patients, but their availability is limited. This limitation necessitated a long study 

period (2001-2013) but did not affect the planned analyses, with repeated assessments for the 

comparison of treated and control (secondarily transplanted) patients. The high degree of consistency of 

blinded and investigator-attributed TMS scores demonstrates robustness (but possibly also insensitivity) 

of TMS scoring. Of note, an imbalance in TMS values at M12 was apparent between controls and treated 

patients, despite randomization. This observation most likely did not affect our findings based on 

between-groups comparisons adjusted for M12 values, with comparable results found in the longitudinal 

analysis of TMS in all grafted patients, regardless of initial group allocation.    

Deaths occurred even before randomization (Figure S1), highlighting the fragility of patients with HD. 

Where appropriate, protocol adaptations were made during the study to address AEs, improve patient 

safety and prevent transplantation-related SAEs (see methods), without modifying the statistical validity 

of the trial. The initial surgical procedure, which resulted in SDH or putaminal hematoma in 10% of 

transplant recipients, compared favourably with the 43% reported in some pilot studies of fetal cell 

transplantation in HD.14 This risk was eliminated by omitting the two posterior tracks in patients with 

marked atrophy, hyperhydrating patients and imposing 48 hours bed rest; no such events occurred in the 

subsequent 57 surgical implantations. We also successfully treated an expanding choroid cyst within the 

graft by endoscopic cauterisation of choroid cells. This strategy would likely be of value for future 

stereotaxic surgical trials. 

Only a few studies have reported unequivocal long-lasting transplant success, and little is known about 

the factors underlying graft failure.10 Graft-host connectivity has been demonstrated,15 but previous 

studies in small cohort of patients were unable to identify the key factors influencing transplant 

outcome.14,26–30 The MIG-HD trial, with 45 grafted patients at six centres, will help to advance cell 

transplantation practices for HD by identifying some key factors that need to be considered in future 

studies. The transition from single-centre to multicentre settings resulted in greater variability between 

centres than anticipated, particularly for surgery-related factors, resulting in substantial graft variability 

across the study. For example, larger numbers of injection tracks were expected to improve graft 

function, but our results suggest in contrast that slower deterioration of the TMS was associated with 

lower number of tracks. This observation might result from a combination of the number of foetuses 

(from 1 to 2), presence of HLA antibodies, patients’ gender, and duration of surgery; even if not proven 

statistically in these few individuals. It was unclear in the study by Paganini et al.30 whether ectopic 

grafts had a negative impact on graft function. In a blind analysis of MRI images, we show here that 

TMS deteriorated more in patients with ectopic transplants. Whereas we did not find any correlation 
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between striatal volume change measured using MRI and clinical evolution, recent MRI techniques 

should constitute a key marker in future trials.3 In contrast, given the difficulty to avoid neuroleptic 

intake in HD, alternative tracers in future longitudinal long-term studies should replace 11C-raclopride 

PET imaging. The number of hypometabolic striatal voxels correlated with TMS on FDG PET-scans, 

without allowing us to detect clinically responsive patients. This lack of consistent correlation of imaging 

and clinical response reproduces the results of other studies also reporting alloimmunisation processes 

against the graft.29,31 It might be the case that chronic inflammation due to alloimmunisation and 

transplant variability blurred the picture. Alloimmunization23 was unpredictable and changes in 

detection techniques during MIG-HD made it impossible to model the impact of HLA antibodies. 

Compared to our pilot trial,11 the use of older fetuses, the pooling of ganglionic eminences from several 

fetuses to increase graft volume, and reducing the inter-graft interval from one year to about two months, 

may have increased the risk of alloimmunisation. Here, 40% of patients developed HLA antibodies 

against the graft. In contrast, none of our patients from the pilot trial, with one-year intervals between 

transplants, had antibodies against the transplant five years after surgery (unpublished data). In two 

studies with short inter-graft intervals (2-7 months), HLA antibodies were present in 50% of patients in 

the German branch of MIG-HD29 and 37.5% in the Firenze study.31 The results of the MIG-HD study 

suggest that better standardization and control of procedures, with improvements in atrophic structure 

targeting and cell injection methods, are required for future transplant studies. It should be possible to 

decrease the numbers of ectopic grafts and injection tracks, but it will be harder to control HLA antibody 

development. These antibodies were also present in patients on immunosuppressants despite a correct 

cyclosporine titration, suggesting suboptimal immunosuppression protocol. Yet, establishing the link 

between presence of HLA antibodies against the graft and its lack of functionality is difficult because, 

except in the case of acute rejection,23 alloimmunisation appears to be a long process. However, 

functional impact of alloimmunization, reported in monkeys,32 justifies better procedures to avoid 

alloimmunisation in future studies. The future use of stem cell-derived neural precursors should resolve 

many of the critical issues highlighted here, improving surgical intervention planning and facilitating 

the use of well-defined homogeneous cell therapy products effectively matched with the patient’s 

characteristics in advance. There are also some factors not considered here, such as tissue 

preparation,33,34 which could be addressed in further studies. Besides, in retrospect, the outcome 

measures lacked sensitivity (see35), which calls for new sensitive digitalised measures, as developed in 

the RepairHD program.  

In summary, it could be concluded that grafts cannot restore the fronto-striatal circuits despite the 

positive abundant animal literature,18 but we think that it would be premature to conclude this based on 

the MIG-HD study, which has highlighted many important questions that need to be addressed. It would 

also be premature to disregard the results of our previous pilot study, in which striking clinical 

improvement was seen in three patients across multiple outcomes analysed blindly to each other (clinics 

PET, electrophysiology, and digitalized movement analysis), including an increase of the metabolism in 

the frontal cortex,13,25,27 together constituting a proof of concept. We thus believe that a rational approach 

is to return to the bench to solve the issues raised here; if that can be achieved there may be a place for 

intracerebral transplantation, which is the only approach currently available with the potential to reverse 

the loss of striatal tissue. We propose that the lessons learned from MIG-HD could guide future 

transplant trials, whether for HD or other neurodegenerative diseases. 
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Figure captions 

 

Figure 1: Participant flow chart 

At the end of the study, 41 patients had undergone bilateral transplantation and 4 had undergone 

unilateral transplantation. 

DSMB: Data and Safety Monitoring Board; MRI: magnetic resonance imaging; HD: Huntington’s 

disease; TFC: Total Functional Capacity; MDRS: Mattis Dementia Rating Scale; UHDRS: Unified 

Huntington's Disease Rating Scale. 

 

Figure 2: Changes in UHDRS motor score in individual patients after the first transplant: 

results for the whole study population (A) and as a function of ectopia (B), and number of tracks 

per side (C)  

The black line shows the estimated progression of the MIG-HD cohort through the piecewise linear 

mixed model over the pre- and post-graft time periods. 

UHDRS: Unified Huntington’s Disease Rating Scale.  

 

Figure 3. SPM analysis at M32 comparing the treated patients and the control not yet treated 

groups at FDG scans  

Regions in which changes in metabolism relative to the M12 baseline differed significantly between 

the treated group and control not yet treated group at M32 (P<0.001). These regions, overlaid on a T1-

weighted brain MRI scan, correspond to the right angular gyrus and precuneus. Left: higher 

metabolism in the right angular cortex and precuneus in the treated patients. Right: lower metabolism 

in the left insula in the treated patients. No significant difference was observed in the striatum.  
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