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Abstract: 

Electroencephalography (EEG) based biomarkers have been shown to correlate with 

the presence of psychotic disorders. Increased delta and decreased alpha power in psychosis 

indicate an abnormal arousal state. We investigated brain activity across the basic EEG 

frequencies and also dynamic functional connectivity of both intra and cross-frequency 

coupling that could reveal a neurophysiological biomarker linked to an aberrant modulating 

role of alpha frequency in adolescents with schizophrenia spectrum disorders (SSDs). 

A dynamic functional connectivity graph (DFCG) has been estimated using the 

imaginary part of phase lag value (iPLV) and correlation of the envelope (corrEnv). We 

analyzed DFCG profiles of electroencephalographic resting state (eyes closed) recordings of 

healthy controls (HC) (n=39) and SSDs subjects (n=45) in basic frequency bands 

{δ,θ,α1,α2,β1,β2,γ}. In our analysis, we incorporated both intra and cross-frequency coupling 

modes. Adopting our recent Dominant Coupling Mode (DοCM) model leads to the 

construction of an integrated DFCG (iDFCG) that encapsulates the functional strength and the 

DοCM of every pair of brain areas.  

We revealed significantly higher ratios of delta/alpha1,2 power spectrum in SSDs 

subjects versus HC. The probability distribution (PD) of amplitude driven DoCM mediated by 

alpha frequency differentiated SSDs from HC with absolute accuracy (100%). The network 

Flexibility Index (FI) was significantly lower for subjects with SSDs compared to the HC 

group.  

Our analysis supports the central role of alpha frequency alterations in the 

neurophysiological mechanisms of SSDs. Currents findings open up new diagnostic pathways 

to clinical detection of SSDs and support the design of rational neurofeedback training.  

 

Keywords: EEG; multiplexity; chronnectomics;  schizophrenia spectrum disorders; 

cross-frequency coupling 

  

 

Highlights: 

• Ratios of delta/alpha1,2 relative power spectrum were significantly higher in SSDs 

subjects compared to HC 

• Probability distribution (PD) of amplitude driven DoCM mediated by alpha frequency 

differentiated SSDs from HC with 100% 

• Network Flexibility index (FI) was significantly lower for subjects with  SSDs 

compared to HC group.  
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Abbreviations 

psychotic-like experiences PLEs 

Schizophrenia Spectrum Disorders SSDs 

dynamic functional connectivity graph DFCG  

imaginary part of phase lag value iPLV  

 correlation of the envelope corrEnv 

integrated dynamic functional connectivity graph iDFCG 

dominant coupling mode model DoCM 

probability distribution PD 

Flexibility Index  FI 

relative power spectrum RSP 

cross-frequency coupling CFC 
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1. Introduction 

Psychosis is characterized by hallucinations and delusions or other positive symptoms 

which have been seen as the prevalent clinical markers of psychotic disorders like 

schizophrenia. However, psychotic symptomatology can be seen in both general and clinical 

populations. Recent research has considered psychosis as a continuum process rather than a 

categorical ‘on/off’ clinical state. This dimensional clinical status of psychosis includes 

psychotic-like experiences, schizotypal symptoms, risk at mental states etc (Van Os et 

al., 2000; Yung et al., 2003). A recent meta-analytic plan suggests that the predominance of 

psychotic symptoms in the general population lies at 7% (Linscott and van Os, 2013). These 

experiences are transitory in 80% of cases, in 20% they are persistent and in 7% they predate 

the onset of a psychotic disorder (Kaymaz et al., 2012; Linscott and van Os, 2013; Zammit et 

al., 2013).  

Psychotic symptoms within the schizophrenia spectrum comprise of childhood-onset 

schizophrenia with an age of onset ≤ 12 years like schizoaffective, schizotypal, and 

schizophreniform disorder. It is more than evident that psychotic symptoms are differentiated 

between children and adolescents in terms of repetition, intensity and these include anxiety, 

obsessions etc (Courvoisie et al., 2001). Schizophrenia Spectrum Disorders (SSDs) and 

subclinical symptoms on the psychosis continuum share cognitive demographic characteristics, 

cognitive levels and etiological risk factors (van Os et al., 2009; Linscott and van Os, 2013). 

The aforementioned findings supported that psychosis is a phenotype with persistence 

symptomatology and an increased severity correlated with clinical symptomatology (van Os 

and Linscott, 2012). From the current literature, there are no consistent findings to characterize 

the phenotype of sub-clinical psychosis (Kapil and Barrantes-Vidal, 2015; Rössler et al., 2015). 

The majority of clinical research over sub-clinical psychosis focused mainly on SSDs probably 

because of their consistency in the clinical symptomatology of psychosis onset  (Tandon et 

al., 2012). Various types of experiences have not been differentiated on SSDs  (Yung et 

al., 2009). Further, psychotic-like experiences (PLEs) which include hallucinations and 

delusions are quantitatively similar to clinical psychotic symptoms (DeRosse and 

Karlsgodt, 2015). However, only a few studies attempted to explore whether psychotic 

symptoms like auditory hallucinations of non-clinical populations are or not phenotypically 

similar to clinical populations (Hill et al., 2012). 

Cortical dis-/dysconnectivity theory of schizophrenia (Friston et al., 2016) has also been 

explored with electrophysiological methods. The analysis of multichannel electro (EEG) and 

magneto-encephalography (MEG) signals provides unique information for a functional 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B71
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B81
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B34
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B84
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B72
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B70
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B60
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B68
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B83
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431212/#B20
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interaction between neural oscillations characterizing brain activity of specific areas within the 

same frequency (intra-frequency coupling) and between frequencies (cross-frequency 

coupling;  Dimitriadis et al., 2017b,2018c) at high temporal resolution  (Canolty and Knight, 

2010; von Stein and Sarnthein, 2000; Lisman and Buzsaki, 2008; Dimitriadis et al., 2017b, 

2018c). These functional interactions are altered in schizophrenia (Allen et al., 2011). The 

analysis of EEG at rest demonstrated an increased connectivity pattern in δ (1 – 4 Hz), θ (4 – 

8 Hz) and β (13 – 30 Hz) frequencies complementary to a decreased pattern in α frequency 

within the frontal cortex (“hypo-frontality”) in schizophrenic patients relative to controls 

(Ragland et al., 2007 ; Mitchell et al., 2015 ; Mubarik and Tohid, 2016). An additional potential 

biomarker for schizophrenia is abnormal brain asymmetry (Oertel-Knoechel et al., 2012; Gotts 

et al., 2013; Ribolsi et al., 2014; Miyata et al., 2012). 

 A recent EEG study at resting-state explored aberrant static functional brain connectivity 

induced by schizophrenia adopting three connectivity estimators, alternative network metrics,  

and two reference systems (Olejarczyk and Jernajczyk, 2017). The whole connectivity analysis 

focused on five frequencies: 2–4 Hz (δ), 4.5–7.5 Hz (θ), 8–12.5 Hz (α), 13–30 Hz (β), 30–45 

Hz (γ). The authors revealed the inter-hemispheric asymmetric group-difference using Directed 

Transfer Function granger causality estimator at resting-state. Another study proposed a 

methodology of selecting the best set of EEG sensors based on their connectivity profile with 

the rest of EEG sensors to design an optimal classifier for the discrimination of healthy controls 

(twenty - five) from schizophrenic patients (twenty - five) (Dvey-Aharon et al., 2017). These 

authors conducted connectivity analysis based on the correlation between pair-wise time series 

in a broadband frequency of 0.1 Hz-30 Hz. They reported a classification performance of 

93.8%. The main disadvantage of both studies was the use of a static connectivity analysis 

approach versus a more dynamic one that has the advantage of harnessing the high temporal 

resolution of the EEG modality. Moreover, only the first study explored static connectivity 

analysis within specific frequencies while both did not explore any cross-frequency 

interactions, missing important parts of the rich information contained in the human EEG/ 

MEG (Dimitriadis et al., 2015a, 2016a,b, 2018a,c,d). 

A recent study revealed distinct electroencephalographic patterns of delta/alpha brain 

activity in psychotic disorders including schizophrenia, bipolar disorder, and 

methamphetamine-induced psychotic disorder (Howells et al., 2018). Delta synchronization is 

expressed with an increment of EEG delta activity, which has been reported in ScZ and bipolar 

disorder (Howells et al., 2018). Patients with schizophrenia have shown reduced delta wave 

activity also in sleep stages 3 and 4 (Sekimoto et al., 2010) and also during the perception of 
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neutral and emotionally salient words (Alfimova and Uvarova , 2008). Previous studies showed 

higher delta synchrony during resting eyes closed condition for ScZ when compared with 

controls (Borisov et al., 2005). Few studies in ScZ have reported relative delta synchronization 

during rest with open eyes or during the completion of a cognitive task (Basar et al., 2013a,b). 

We expect to see also delta synchronization (increased relative power) in SSDs subjects that 

will be studied here (hypothesis I). 

Alpha desynchronization is expressed via a decrement of alpha activity, has been reported 

in ScZ and bipolar disorder (Howells et al., 2018). In ScZ, alpha desynchronization is reported 

in un-medicated, medicated ScZ adolescent - onset ScZ and first-episode ScZ and (John et al., 

2002). Alpha synchronization is a marker of healthy resting wakefulness which reflects the 

readiness of the brain to process salient information (Klimesch et al., 1999). The exaggerated 

desynchronization of alpha activity at resting-state in psychotic disorders represents probably 

an inappropriate readiness to attend and process salient or not information, whether internal or 

external (Klimesch et al., 1999). We expect to see also alpha desynchronization (decreased 

relative power) in SSDs subjects that will be explored here (hypothesis II). Motivated by a 

recent study (Howells et al., 2018), we will estimate also the ratio of Relative Signal Power 

(RSP) between δ frequency and the two α subbands. 

A consistent decreased functional connectivity pattern in the α-frequency band  has been 

reported in ScZ (Di Lorenzo, et al., 2015 ; Tauscher et al.,1998). Interestingly, two studies 

reported a high correlation between functional connectivity at rest in the α-frequency band with 

symptoms of ScZ (Hinkley et al., 2011 ; Merrin and Floyd, 1996). Preliminary evidence 

suggests that β-band functional connectivity is influenced by illness progression and clinical 

symptomatology (Di Lorenzo, et al., 2015). However, no study that analysed also cross-

frequency coupling in conjunction with within frequencies coupling using EEG in SSD. 

We hypothesized that the construction of an integrated Dynamic Functional Connectivity 

Graph (iDFCG) with the incorporation of dominant intrinsic coupling modes (DoCM) which 

can be either intra or inter-frequency coupling estimations (cross-frequency couplings) will 

reveal significant features related to SSDs (Dimitriadis et al., 2017b, 2018c). iDFCG tabulates 

both the strength and the type of interaction between every pair of sensors at every temporal 

segment. Our analysis will focus on phase-to-phase/amplitude-to-amplitude within frequency 

couplings and phase-to-amplitude/amplitude-to-amplitude cross-frequency couplings. We 

expected that the probability distribution (PD) of DoCM related to cross-frequency interactions 

will be higher for SSDs patients than their healthy controls counterparts mostly in lower 

frequencies (Sharp and Hendren, 2007) (hypothesis III). The ratio of cross-frequency 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Uvarova%20LG%5BAuthor%5D&cauthor=true&cauthor_uid=18607745
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378362/#B54
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interactions versus the total number of existing functional interactions can be seen as a 

nonlinearity index of dynamic functional information flow indicator of resting-state. We also 

assumed that SSDs patients will demonstrate a less flexible global brain pattern based on the 

fluctuation of DoCM across experimental time compared to healthy controls (hypothesis IV). 

Our final hypothesis is that amplitude and phase-based DoCM will dissociate their distinct role 

in both groups (hypothesis V). Our hypothesis is supported by recent evidence about the 

sensitivity of phase-based intrinsic coupling modes in disorders with functional alterations 

while amplitude-based intrinsic coupling modes showed predominant sensitivity to structural 

alteration (Engel et al., 2013). Here, we attempted to detect consistent patterns of brain activity 

and connectivity in adolescents with SSDs with a non-invasive method, EEG, following for 

the very first time a multiplex scenario via our DoCM model. Our analysis will dissociate the 

role of amplitude-based and phase-based connectivity patterns under this framework in SSDs. 

 

2. Material and Methods 

2.1 Sample Characteristics 

The sample for this study is obtained from a public database 

(http://protein.bio.msu.ru/~akula/korsak/Korsak-eng.htm.). Clinical evaluation of these 

adolescents with disorders was provided by experts from the National Center of Mental Health 

of the Russian Academy of Medical Sciences. They were diagnosed according to ICD–10 in 

Mental Health Research Center, Moscow and it originally consisted of 125 boys 8–15 years 

old. The diagnosis was schizophrenia, childish type (F20), schizotypal disorder (F21), and 

schizoaffective disorder (F25).  

The sample is divided into a healthy group and a group with symptoms of schizophrenia. 

The subjects were adolescents who had been screened by psychiatrists and divided into a  

healthy group (n = 39) and a group with symptoms of schizophrenia (n = 45). Both groups 

included only two groups of Russian (Moscow) school children boys aged 10-14 year. The age 

of the group with schizophrenia spectrum disorders (SSDs) (schizophrenia (childhood-onset), 

schizotypic disorder, or schizoaffective psychosis) with comparatively homogeneous 

symptoms ranged from 10 years and 8 months to 14 years (12.3 ±1.2 years).  

The healthy control group included 39 healthy schoolboys aged from 11 years to 13 years 

and 9 months. The mean age of the healthy control group was (12.3±1.3 years). SSD group is 

recorded even before the pharmacological treatment appointments while subjects have been 

selected with the same severity. The two groups didn’t differ in their age. 

http://protein.bio.msu.ru/~akula/korsak/Korsak-eng.htm


8 
 

2.2 EEG Recordings 

EEG activity was recorded from 16 EEG channels at resting-state with eyes closed. The 

electrode positions are demonstrated in Figure 1. The 16 EEG electrodes were placed according 

to the international 10–20 system rules at the following locations: O1, O2, P3, P4, Pz, T5, T6, 

C3, C4, Cz, T3, T4, F3,F4, F7, and F8 and monopolar referenced to coupled ear electrodes. 

The sampling rate is 128 Hz and the recording time was 1 min giving a total of [60 secs x 

128] = 7,680 samples. EEG recordings can be downloaded from the website: 

http://brain.bio.msu.ru/eeg_schizophrenia.htm. EEG time series were re-referenced to the 

average reference electrode (Nunez and Srinivasan, 2006) before preprocessing steps. 

Parents of the participants have given their informed consent for the participation of 

adolescents in the original study. 

 The program of experiments has been approved by the local ethical committee of the 

Moscow Mental Health Scientific Center of the Russian Academy of Medical Sciences. 

For further details see the following article (Kulaichev and Gorbachevskaya, 2013). 

 

2.3 Artifact Reduction with Independent Component Analysis (ICA) and Wavelets 

EEG resting-state activity was corrected for artifacts via well-described procedure. We used 

the entire 1 min recordings of 7680 time points to the artifact correction pipeline. First, we 

removed line noise using a notch filter at 50 Hz and (Delorme and Makeig, 2004). We adapted 

independent component analysis (ICA) and the extended Infomax algorithm implemented in 

EEGLAB (Delorme and Makeig, 2004).  The outcome of this procedure is 16 independent 

components with a characteristic topography and time course. A given independent component 

(IC) time course from each IC was further decomposed with discrete wavelet transform and 

Daubechies wavelet filters. Wavelets decomposed every broadband activity of the IC time 

series into subcomponents with characteristic carrier brain frequency. Wavelet decomposition 

of IC time course has been realized in 60 temporal segments of 1 sec each to capture in more 

detail the contamination of an artifact. Artifacts could be detected on specific scalp locations 

contaminating one frequency or in broaden brain locations and contaminating more than one 

frequency. Every wavelet subcomponent of an IC is classified as real brain activity or 

artifactual activity that could be: ocular, muscle, or cardiac artefacts.  

We estimated kurtosis and skewness values in temporal non-overlapping windows of 1 sec 

for every wavelet subcomponent of an IC. The set of 60 values (60 temporal segments of 1 sec 

= 128 time points) for both metrics was further z-scored and temporal segments of 1s with 

zscoring values ±2 were classified as artifactual temporal segments (Dimitriadis et al., 2015). 

http://brain.bio.msu.ru/eeg_schizophrenia.htm
https://www.frontiersin.org/articles/10.3389/fnins.2017.00506/full#B25


9 
 

Then, we zeroed those particular temporal segments for specific wavelet subcomponents of an 

IC. Then, cleaned IC time courses were recomposed from their cleaned wavelet 

subcomponents. Finally, cleaned wavelet-ICA EEG activity was composed of the cleaned IC 

time courses.  

Apart from this automatic pipeline, we visually inspected IC and wavelet-based time-

courses and the related scalp topography of every IC to further validate the correction. Power 

spectrum analysis of every EEG time course before and after the correction revealed more 

pronounced characteristic peaks. The correlation of the original time course with its corrected 

wavelet+ICA version in the time domain was above 0.75 on average compared to the  ICA 

only corrected time series which was below 0.3 on average. So, wavelet-ICA maintains better 

the temporal structure of the broadband activity. 

We additionally validated the proposed scheme by estimating the signal-to-noise ratio 

(SNR). SNR was estimated by dividing the power spectrum in the frequency domain within 

every frequency range from the denoised time series with the power spectrum of the original 

noisy time series. The following equation defines the SNR: 

𝑆𝑁𝑅 =  
𝑆  

𝑁  
  (1)  

Where S is the power spectrum of the desired cleaned EEG time series and N the power 

spectrum of the noisy original time series. Before estimating N, we subtracted the power related 

to the noisy temporal segments detected with our wavelet+ICA method.   

 We adopted a wavelet-ICA approach for denoising EEG signals with the advantage of not 

zeroing a whole ICs but only specific temporal segments of 1 sec on wavelet decomposed 

subcomponents related to specific brain frequencies and extracted via a wavelet transform over 

each ICs.  Figure 1 illustrates the topology of the EEG sensors. 

 

[Figure 1 around here] 

 

 

2.4 Signal Power Analysis 

     We estimated the relative power spectrum (RSP) of every EEG sensor and frequency band 

in both groups. Welch’s algorithm was adopted using MATLAB function pwelch leading to 

the estimation of power spectrum per frequency band first and then their percentage across the 

total power spectrum leading to RSP. Group statistical analysis across sensors and frequency 

bands has been performed with Wilcoxon Rank Sum test (p < 0.05, Bonferroni corrected, p’< 
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p/(16*7) where 16 refers to EEG sensors and 7 is the number of the studying frequency bands 

). 

  Motivated by a recent study (Howells et al., 2018), we estimated also the ratio of RSP 

between δ frequency and the two α subbands. Group statistical analysis was performed with 

the Wilcoxon Rank Sum Test (p < 0.05, Bonferroni corrected, p’ < p/(16*2) where 16 refers to 

EEG sensors and 2 is the number of ratios). Characteristic individual alpha peaks were also 

estimated from the sensor’s spectrum profile of every EEG sensor (Corcoran et al., 2018; see 

supp.material).  

 

2.5 Dynamic imaginary part of phase locking value (iPLV)/ correlation of the envelope 

(corrEnv) estimates: the Integrated Dynamic Functional Connectivity Graph (IDFCG) 

based on iPLV and corrEnv (DIFCGiPLV/ DIFCGcorrEnv graph) 

 

Here, we describe our dominant intrinsic coupling model (DoCM) presented in the majority 

of functional neuroimaging modalities (Antonakakis et al., 2017a; Dimitriadis, 2017b, 

2018c,2018d). The goal of the DoCM model is to extract the dominant coupling mode between 

every pair of EEG sensors here and across temporal segments. DoCM model defines the 

dominant coupling mode across intra-frequency phase-to-phase coupling and inter-frequency 

phase-to-amplitude coupling modes.  

We studied dynamic functional connectivity across experimental time and the 16 EEG 

sensors within and between the seven studying frequency bands {δ, θ, α1, α2, β1, β2, γ} defined, 

respectively, within the ranges {0.5–4 Hz; 4–8 Hz; 8–10 Hz; 10–13 Hz; 13–20 Hz; 20–30 Hz; 

30–48 Hz}. EEG recordings were bandpass filtered with a 3rd order zero‐phase Butterworth 

filter using filtfilt.m MATLAB function. 

The width of the temporal window was set equal to  250ms (or 32 samples) and moved 

forward across experimental time every 46 ms (6 samples) which is adequate to capture both 

fast and slow oscillations (Dimitriadis et al., 2013a,b,2015a,b,2016a,b,c,2017a,b,2018b,c). 

Within frequency and between‐frequency (cross-frequency) interactions between every 

possible pair of frequencies were estimated for every temporal segment leading to a quasi-static 

Functional Connectivity Graph (FCG). This approach leads to 1275 temporal segments and to 

a dynamic functional connectivity graph (DFCG). 

Here, we adopted two connectivity estimators to quantify within frequency and cross-

frequency interactions: the imaginary part of phase-locking value (iPLV) and the correlation 

of the envelope (corrEnv).  
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To exemplify the notion of cross-frequency coupling estimates to the interested readers that 

are not familiar, we demonstrated an example between δ and α1 frequencies derived from F3 

and F4 EEG sensors from the first healthy control subject. Figure 2 demonstrates the 

algorithmic pipeline for estimating phase-to-amplitude coupling (PAC) with iPLV estimator. 

Figure 2 A,D illustrates the time course of the first 5 secs from the F3 and F4 EEG sensor 

activity, correspondingly. Figure 2B demonstrates the time course of δ activity from the F3 

sensor while Figure 2E shows the time source of α1 activity from the F4 sensor and the δ activity 

extracted from  α1 activity from the same sensor. δ activity was extracted from  α1 activity using 

the bandpass filters transfer function coefficients used to get δ activity from the F3 sensor. 

Figure 2F shows the δ activity within α1 activity from the F4 sensor while Figure 2G shows its 

phase temporal course extracted via Hilbert transform. The phase time course of δ activity from 

the F3 sensor is illustrated in Figure 2C while both targeted phase time series are shown in 

Figure 2H. The last sub-figure 2I presents the phase difference of the two targeted phase time 

series from which iPLV will quantify PAC strength. Intra-frequency coupling with iPLV is 

estimated using the phase difference time series as shown in Figure 2I derived from two time 

series with the same frequency content. The whole procedure is repeated for  21 cross-

frequency coupling estimates for both CFC estimators and in a dynamic fashion. The 7 within 

frequency couplings have been estimated between the phase temporal course from two times 

series with the same frequency content using iPLV. 

Figure 3 is devoted describing the algorithmic steps of amplitude-to-amplitude coupling 

(AAC) between pairs of frequencies as a second complementary cross-frequency coupling 

estimator.  Figure 3A,D refers to the same time courses as in Figure2A,D from the first 5 secs 

from F3 and F4 EEG sensors. Figure 3B illustrates the δ activity from the F3 sensor and its 

related envelope extracted via the Hilbert transform. Figure 3E illustrates the α1 activity from 

the F4 sensor and its related envelope extracted via the Hilbert transform. Figure 3C and F 

show the envelopes from F3 and F4 sensors, correspondingly while Figure 3G demonstrates 

both envelopes in a common plot. AAC is estimated between those time courses via a 

correlation envelope analysis (corrEnv). Intra-frequency coupling with corrEnv is estimated 

between pairs of envelopes extracted from time series with the same frequency content. The 

whole procedure is repeated for  21 cross-frequency coupling estimates for both CFC 

estimators and in a dynamic fashion. The 7 within frequency couplings have been estimated 

between the envelope temporal course from two time series with the same frequency content 

using corrEnv. 
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[Figure 2,3 around here] 

 

This procedure which is described in detail in our previous papers and also aforementioned 

(Dimitriadis and Salis, 2017b;Dimitriadis et al., 2018c), resulted in 7 DFCGiPLV/  DFCGcorrEnv 

per participant for within frequency bands and 21  DFCGiPLV/ DFCGcorrEnv per participant for 

each possible cross‐frequency pair. 7 DFCGiPLV/ DIFCGcorrEnv tabulate iPLV/corrEnv estimates 

between every possible pair of sensors. For each subject, two 4D tensors [frequencies bands 28 

× temporal segments × sensors x sensors] were constructed for each subject integrating 

spatiotemporal phase-based and amplitude-based interactions. The final outcome of this 

analysis is two 4D fully-weighted tensors per subject. However, not all connections exist. For 

that reason, we adapted a proper surrogate analysis. 

The adopted surrogate analysis focuses on detecting ‘true’ brain interactions between every 

pair of sensors and at every temporal segment (snapshot of DFCG) and finally to detect the 

dominant type of interaction. For this purpose, we constructed 1,000 surrogate time‐series by 

cutting first at a single point at a random location around the middle of the original time series 

(between 25 s and 35 s), creating two temporal segments and then exchanging the two resulting 

temporal segments (Dimitriadis and Salis, 2017b ; Dimitriadis et al., 2018c). Surrogate time 

series was created on the 7 bandpass filtering time series in the amplitude domain and were 

employed for both connectivity estimators per subject.  

𝐷𝐹𝐶𝐺𝑆𝑢𝑟𝑟
𝑖𝑃𝐿𝑉  /   𝐷𝐹𝐶𝐺𝑆𝑢𝑟𝑟

𝑐𝑜𝑟𝑟𝐸𝑛𝑣 were estimated over the 1,000 surrogate time series for both 

within frequencies and between frequencies interactions, for each pair of sensors and for each 

temporal segment. 𝐷𝐹𝐶𝐺𝑆𝑢𝑟𝑟
𝑖𝑃𝐿𝑉  /   𝐷𝐹𝐶𝐺𝑆𝑢𝑟𝑟

𝑐𝑜𝑟𝑟𝐸𝑛𝑣 are 5D tensors where the 1st dimension refers 

to 1,000 surrogate values while the rest 2nd -5th dimensions are similar to the 4D tensors of the 

original DFCGiPLV/ DFCGcorrEnv. Comparing the original value for every EEG sensor pair, for 

every temporal segment and every coupling mode (28 in total) from the original DFCGiPLV/ 

DFCGcorrEnv with the 1,000 surrogates (1st dimension of 𝐷𝐹𝐶𝐺𝑆𝑢𝑟𝑟
𝑖𝑃𝐿𝑉  /   𝐷𝐹𝐶𝐺𝑆𝑢𝑟𝑟

𝑐𝑜𝑟𝑟𝐸𝑛𝑣), we 

assigned a p-value to every potential intrinsic coupling mode. We then correct for multiple 

comparisons the p-values related to the 28 (21 + 7)  possible DoCM in order to reveal a DoCM 

per pair of EEG sensors and for each temporal segment. There are three scenarios: 

1. a no p‐value survived the multiple corrections (p′ < p/28) 

where p = 0.05) 

     2.  we selected the DoCM with the maximum iPLV/corrEnv value if more than one 

survived, 
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     3. only one coupling mode survived the multiple corrections 

 

Figure 4A demonstrates how DoCMs are defined employing the first two temporal segments 

from a healthy control subject between F7 and F3 EEG sensors. The surrogate-based analysis 

revealed α2-γ phase-to-amplitude coupling (PAC) as the dominant coupling mode (DoCM) 

among the 28 potential coupling modes for the two very first temporal segments between F3-

F7 sensors. Matrices called comodulograms tabulate the strength measured with iPLV for 

within-frequency couplings (main diagonal) and between-frequencies (off-diagonal). Figure 

4B illustrates the fluctuation of DoCM across experimental time for the F3-F7 sensor pair. Y-

axis refers to one of the 28 potential coupling modes while the colour refers to the iPLV related 

strength. The coloured matrix on the right tabulated the probability distributions (PD) of every 

potential coupling mode across experimental time. α1-α2 is the CFC with the highest 

representation across experimental time for this EEG pair of sensors. Flexibility Index (FI) and 

PD are estimated from semantic time series as the one presented in Figure 4B for every pair of 

EEG sensors (see next section). 

After applying a multiple comparison correction, the strength and also the type of dominant 

coupling mode are tabulated  in 2 3D tensors of size [1275 x 16 x 16] called Integrated Dynamic 

Functional Connectivity Graph (IDFCG).  We used the term integrated to underline the 

information of DoCM tabulated within these IDFCGs. One keeps the strength of the coupling 

based on iPLV/corrEnv and the second tabulated the dominant coupling mode of interaction 

using integers from 1 up to 28:1 for δ, 2 for θ, …, 7 for γ, 8 for δ − θ, …, 28 for β2 − γ} (Figure 

4B). We followed the same procedure in the previous studies from our group (Dimitriadis and 

Salis, 2017b, Dimitriadis et al., 2017c,2018a,b,c,d).  

Figure 4B demonstrates the temporal evolution of DoCM (1st 3D tensor) and the related 

strength (2nd 3D tensor) across experimental time for F7-F3 EEG pair while the comodulogram 

on the right side tabulates the PD of the DoCM for this semantic time series. FI and PD will be 

estimated over the 2nd semantic 3D tensor. 

In the present study, we adapted the debiased version of PAC as presented in van Driel et 

al., (2015). 

 

[Figure 4 around here] 
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2.6 Semantic Features Derived from the evolution of DoCM 

This section describes the semantic features that can be extracted by analyzing the 2nd 3D 

tensor that preserves the DoCM across spatio-temporal dimensions. 

2.6.1 Flexibility Index (FI) 

We adopted a previously defined estimator called Flexibility index (FI) which quantifies the 

transition rate of DoCM between every pair of sensors across experimental time (Dimitriadis 

and Salis,2017b ; Dimitriadis,2018c). FI is estimated based on the 2nd 3D tensor of the DIFCG 

that tabulates the semantic information of DoCM across the brain and experimental time. This 

metric will be called hereafter FIDoCM which is defined as: 

𝐹𝐼𝐷𝑜𝐶𝑀 =
𝑛𝑜 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 − 1
 (2) 

 

We encountered a transition only between two consecutive temporal segments where a 

functional coupling exists. The term (temporal segments – 1) refers to the pairs of temporal 

segments where a functional coupling mode exists.  FI counts only the change of the DoCM 

and not the direction between specific pairs of frequency coupling modes. FIDoCM gets higher 

values for higher “jumps” of DoCM between a pair of EEG sensors across experimental time. 

Figure 4B illustrates how  FIDoCM is estimated for the F3-F7 EEG pair. 

This approach leads to a 16 x 16 matrix per subject or 162 =140 FI features. We estimated also 

the global FI by averaging the 16 nodal FI. FI is estimated from a semantic time series presented 

in Figure 4B. 

 

 

2.6.2 Spatiotemporal distribution of DoCM— Comodulograms 
 

Based on the 2nd  3D DIFCG that keeps the semantic information of the preferred dominant 

coupling mode, we can tabulate in a frequencies × frequencies matrix the probability 

distribution (PD) of observing each of the DoCM frequencies across 7 (intra-frequency) + 21 

(cross-frequency coupling) = 28 possible coupling modes and exploring their spatio-temporal 

distribution. 

The spatiotemporal PD tabulated in a matrix is called hereafter comodulogram and an 

example is demonstrated in Figure 4B (Antonakakis et al., 2016,2017a,b ; Dimitriadis and 
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Salis,2017b,c ; Dimitriadis,2018a,c,d). PD is a new vector of features with dimension 1 x 28 

possible DoCM. Figure 4B visualizes a PD matrix and demonstrates how it is computed. 

 

2.6.3 Nonlinearity Index (NI) based on DoCM 

When two brain areas communicate via within the same frequency (intra) then this 

interaction is linear. However, cross-frequency interactions are nonlinear pathways of 

information exchange via brain areas playing a pivotal role important role in inter-areal 

communication (Tallon-Baudry and Bertrand, 1999; Varela et al., 2001; Breakspear, 

2002; Darvas et al., 2006 ; Jensen and Colgin, 2007; Chen et al., 2009,2010). The dissociations 

between linear coupling (within-frequency coupling) and non-linear coupling (between-

frequency coupling) has been also proved via biophysical modeling (Chen et al., 2009,2010). 

We first estimated a global PD of dominant coupling modes across space (EEG pairs) and 

time (temporal segments). This calculation yields a matrix of size 28 (potential coupling 

modes) x 1275 (temporal segments) per subject. From this global PD matrix, we estimated the 

sum of PD related to cross-frequency coupling (21 values) versus the sum of PD related to 

within frequency coupling (7 values). This ratio can serve as a nonlinearity index (NI) of the 

information flow between brain areas (equation 3). To untangle the role of α modulated 

frequency as a key driver of any significant group differences, we also estimated the ratio of 

the sum of PD of cross-frequency couplings between a modulated frequency and the rest of 

frequencies versus the PD of the within-frequency interactions on the modulated frequency 

was estimated. Particularly, we estimated the ratio of the sum of PDs between α1 and 

{α2,β1,β2,γ} and between α2  and {β1,β2,γ} with the sum of PDs related to α1 and α2 within 

frequencies interactions (equation 4). Τhe NI gets a positive value where the higher it gets the 

higher is the contribution of CFC to the dominant coupling modes and so the higher the 

nonlinearity of the communication within the complex system. For group comparisons, we 

adopted the Wilcoxon Rank-Sum test as a statistical test to compare the distributions of 

temporal NI. 

𝑁𝐼𝑇𝑂𝑇𝐴𝐿 =
∑ 𝑃𝐷𝐶𝐹𝐶# 𝑜𝑓 𝐶𝐹𝐶

𝑛=1

∑ 𝑃𝐷𝑤𝑖𝑡ℎ𝑖𝑛# 𝑜𝑓 𝑤𝑖𝑡ℎ𝑖𝑛
𝑘=1  

 (3) 

𝑁𝐼𝛼 =
𝑃𝐷𝑎1−𝑎2 + 𝑃𝐷𝑎1−𝛽1 +  𝑃𝐷𝑎1−𝛽2 +  𝑃𝐷𝑎1−𝛾 + 𝑃𝐷𝑎2−𝛽1 +  𝑃𝐷𝑎2−𝛽2 + 𝑃𝐷𝑎2−𝛾

𝑃𝐷𝑎1 + 𝑃𝐷𝑎2
 (4) 

 

 

 

https://www.jneurosci.org/content/30/25/8393#ref-41
https://www.jneurosci.org/content/30/25/8393#ref-43
https://www.jneurosci.org/content/30/25/8393#ref-2
https://www.jneurosci.org/content/30/25/8393#ref-2
https://www.jneurosci.org/content/30/25/8393#ref-16
https://www.jneurosci.org/content/30/25/8393#ref-6
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2.7 Inter-Hemispheric Group Differences of Dynamic Functional Connectivity Strength 

We explored how inter-hemispheric dynamic functional strength differed between the two 

groups. Dynamic functional connectivity strength is a time series of size 1275 that informs us 

of how functional connectivity strength changes over experimental time. Figure 5A illustrates 

an example of such a time series for iPLV estimator between F7-F8 EEG sensors from the first 

healthy control subject. Our analysis focused on functional connectivity strength between the 

following two sets of EEG sensors, one per hemisphere : Left hemisphere: { O1 P3 T5 C3 T3 

F3 F7}, right hemisphere: {O2 P4 T6 C4 T4 F4 F8}. The combination of both sets forms a set 

of 49 inter-hemispheric links. From every functional connectivity strength time series, we 

estimated the mean value and also its spectrum using Welch’s approach and the related function 

in MATLAB. For the spectrogram, we extracted the dominant frequency that is a descriptive 

statistic of the fluctuation of connectivity across experimental time (Figure 5B). 

  Group statistical analysis was performed with the Wilcoxon Rank Sum Test (p < 0.05, 

Bonferroni corrected, p’ < p/49 where 49 refers to the total number of inter-hemispheric links). 

 

[Figure 5 around here] 

 

 

2.8 Group Discrimination via a Machine Learning Approach 

We adopted the simplest k-NN classifier to enhance the quality of the features extracted 

with our DoCM model. PD and FI were integrated into a single feature vector of  284 features 

(28 : PD + 256 (16x16) : FI). 

We classified every subject with k-NN classifier (Knn = 10) following 5-fold cross-

validation (CV) scheme running 100 times. As a feature selection algorithm, the infinite 

feature selection algorithm was selected (Roffo et al., 2015). Feature selection has been 

applied within every fold of the 5 CV and across runs. From the ranking of 284 features 

within every fold, we kept the first 10 ranked features. We scored the features that were 

selected in the first 10th across the 100 runs and 5 folds. 

Our analysis was followed independently for iPLV/corrEnv derived PD and FI.  
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2.9  Software 

The analysis has been realized in the MATLAB environment (v2019b) using the signal 

processing toolbox. Fast ICA has been adopted from the fieldtrip toolbox. Dynamic 

functional connectivity has been based on in-house software provided on our github website: 

https://github.com/stdimitr/time_varying_PAC. 

 

 

3. Results 

Our results reported on cleaned EEG brain activity with a combination of ICA and wavelets. 

SNR values were higher than 6 while no group differences have been estimated at single-

channel comparisons (SFigure 1). The high SNR values further support current findings under 

the framework of connectivity analysis which is affected by SNR.   

 

3.1 Relative Signal Power in HC and SSDs subjects 

Statistical comparison of RSP between the two groups across EEG sensor space and 

frequency bands revealed significantly higher signal power in δ (increased synchronization) 

and also in θ frequency bands for SSDs compared to HC evaluating our first hypothesis. We 

found also significant lower RSP values for the SSD group compared to HC in the α2-frequency 

band supporting our second hypothesis of reduced alpha desynchronization in SSDs subjects. 

Figure 6 illustrates group-averaged RSP  in SSDs and HC groups. Comparison of group-

averaged Relative Signal Power (RSP) of δ versus RSP of α1 and  α2 across EEG sensor space 

in HC and SSDS patients revealed interesting trends. Our analysis revealed a significantly 

higher ratio RSP of δ / α1 for SSDS compared to HC in F7 and Cz EEG sensors. Significantly 

higher ratio RSP of δ / α2 for SSDS compared to HC was revealed in all the EEG sensors 

exception for channel T6 (Figure 7) (* Wilcoxon Rank Sum test (p < 0.01, Bonferroni 

corrected, p’< p/(16*2) where 16 refers to EEG sensors and 2 to the number of the ratios ). 

These results supported a distinct role of alpha subbands. 

Group-averaged alpha peaks were around 9.03 Hz across EEG sensors. Alpha peaks didn’t 

reveal any group differences trends  (SFigure 2). 

 

[Figure 6 and 7 around here] 

 

 

https://github.com/stdimitr/time_varying_PAC
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3.2 Contribution of  Semantic Features based on DoCM model for High Classification 

Performance of SSDs Subjects 

Our machine learning strategy revealed 10 consistent features among FI and PD of DoCM 

in both estimators. Consistent features refer to those features where their Score across 100 runs 

x  5 – fold CV equal to 500. Figure 8 (a-b) illustrates the spatial distribution of the FI across 

every possible pair of EEG sensors for the HC and SSDS group while Figure 8 (c-d) illustrates 

the comodulograms of the PD for the HC and SSDs group tailored to iPLV.  Similarly, Figure 

9 (a-b) illustrates the spatial distribution of the FI across every possible pair of EEG sensors 

for HC and SSDs group while Figure 9 (c-d) illustrates the comodulograms of the PD for HC 

and SSDs group tailored to corrEnv. Interestingly, the most discriminative features were the 

ones related to PD compared to FI. 

Figure 10 illustrates the most discriminative features which are PD for θ-γ, α1-α2 θ‐β2 cross-

frequency pairs. Every dot refers to a subject presented in a 3D feature space. Based on our 

findings, we evaluated hypothesis III. 

The classification performance based on selected FI+PD features was 74% for iPLV and 

100% for corrEnv.  The weighed discriminative score of features related to corrEnv was 10 

times higher than the features from iPLV which was reflected the absolute accuracy. Moreover, 

Figure 10 illustrates and evaluates the high classification accuracy between the two groups. 

Table 1 tabulates the performance of each set of features. 

 

[Figure 8,9 and 10  around here] 

                                                   [Table 1 around here] 

 

3.3 Global Network Flexibility Index (FI) 

 

By averaging the FI values across both dimensions of the matrix [16 x 16] per subject, we 

estimated the global network FI as a unique characterization of network flexibility. Group-

averaged FI did not reveal significant differences for the iPLV estimator (FIHC = 0.2104, FISSDs 

= 0.2085,pval = 0.0673). However, group-averaged FI revealed significant differences for 

corrEnv estimator (FIHC = 0.2466, FISSDs = 0.2123,pval = 0.00345 x 10-5). Our results supported 

our hypothesis IV. 
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3.4 Nonlinearity Index (NI) of Information Flow based on DoCM 

Figure 11 demonstrates the group-averaged Nonlinearity Index for iPLV (Figure 11.A) 

and corrEnv estimator (Figure 11.B). NI for corrEnv estimator was significantly higher for 

SSDs compared to HC following a Wilcoxon Rank Sum Test across experimental time (p = 

0.0001274 x 10-12).  In contrast, the Nonlinearity Index did not differ between the two groups 

for iPLV (p = 0.0669).  Statistical analysis has been applied over the temporal mean of NI 

time series.  

 

[Figure 11 around here] 

3.5 Inter-Hemispheric Group Differences of Temporal Functional Connectivity Strength 

     No group differences have been identified for the dominant frequency of dynamic 

functional connectivity strength of inter-hemispheric links with both connectivity estimators. 

However, we found group-averaged differences between the mean values of the following 

inter-hemispheric links:O1-P4 P3-O2 P3-T6 C3-T6 F3-O2 F3-C4 (Figure 12.A), for iPLV and 

C3-T6 C3-T4  for corrEnv (Figure 12.B). Group-averaged iPLV values were higher for SSDs  

while group-averaged corrEnv were higher for healthy controls.  

 

[Figure 12 around here] 

 

 

4. Discussion        

 Our DoCM model identified the dominant coupling modes across experimental time and 

between every possible pair of EEG sensors as a natural way to reveal the multiplexity of brain 

oscillations. We revealed a delta synchronization (increased signal power) and alpha 

desynchronization (decreased signal power) in SSDs subjects, which was also evidenced by a 

higher ratio of relative signal power of delta/alpha1,2 for SSDs compared to HC. The PD of 

DoCM untangled trends between the two groups with more pronounced results in amplitude 

driven dominant coupling modes. Machine learning results revealed absolute discrimination of 

SSDs from HC focusing on PD of cross-frequency interactions. This high discriminative power 

between the two groups is driven by features estimated over amplitude (activity) and alpha 

frequency driven DoCM (connectivity) which are significlyant higher in SSDs subjects 

compared to HC.  Focusing on DoCM, we defined a novel nonlinearity index of information 

flow as the ratio of cross-frequency interactions versus the total number of existing 
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functional interactions, we detected a significantly higher nonlinearity for SSDs compared 

to HC across the recording time only in the amplitude domain. This result was more 

pronounced when we focused on alpha frequency. The overall network flexibility was 

significantly lower in SSD patients compared to HC only in the amplitude domain. Finally, 

our analysis revealed significant findings for SSDs working with brain activity and the 

multiplex character of brain connectivity dissociating the distinct role of amplitude and 

phase coupling modes. 

Before disentangling one by one the main findings of this study, it is important to mention 

here that our denoising algorithm based on the combination of ICA and wavelets increased 

the SNR of EEG recordings. This result supports our findings based on signal power and 

also on brain connectivity where connectivity estimators are sensitive to SNR levels (see 

SFigure 1). 

Previous studies showed that patients with schizophrenia have reduced delta wave activity 

also in sleep stages 3 and 4 (Sekimoto et al., 2010) and also during the perception of neutral 

and emotionally salient words (Alfimova and Uvarova, 2008). Delta synchronization expressed 

with an increased EEG delta activity, has been reported in ScZ and bipolar disorders (Howells 

et al., 2018). Here, we confirmed such a delta synchronization in SSD patients compared to 

healthy controls (Figure 3). Increased delta activity (delta synchronization) is associated with 

central nervous system depression, observed during slow-wave sleep, in anesthesia and in com 

which are all conditions with characteristic decreased levels of consciousness (Englehardt et 

al., 1991; Hashemi et al., 2015).  A global delta increased activity has been linked to the 

subthreshold activity of GABAergic neurons originating from the thalamic reticular nucleus 

and lateral geniculate nucleus  (Ulrich et al., 2014;Herrera et al., 2016). Increased delta activity 

has been linked to lesions in basal forebrain during wakefulness (Fuller et al., 2011) combined 

with cholinergic and serotonergic blockade ( Vanderwolf and Pappas, 1980). Pharmacological 

models for delta activity have reported interesting findings. The use of an acetylcholinesterase 

inhibitor in Alzheimer’s disease decreases delta and theta power while it increases alpha power 

in the left insula following with a cognitive improvement (Gianotti et al., 2008).   

In ScZ alpha desynchronization (decreased alpha activity) is reported in adolescent-onset 

ScZ, first-episode ScZ and un-medicated, and medicated ScZ (John et al., 2002). We found 

alpha desynchronization in SSDs subjects compared to healthy controls (Figure 6). It is well-

known that desynchronization of alpha activity reflects diverse changes in thalamo-cortical and 

cortical network communication (Klimesch et al., 1999). Two key subnetworks underlie alpha 

desynchronization: a) the activation of the visual system, via the reticular activating system 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Uvarova%20LG%5BAuthor%5D&cauthor=true&cauthor_uid=18607745
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986529/#B46
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(Volavka et al., 1967) as they were revealed by looking at EEG activity recorded during a 

subject who opens his eyes (eyes-open resting-state) after an eyes-closed resting-state where 

there is a mass desynchronization of alpha activity and b) desynchronization of alpha activity 

reflects different changes in thalamo-cortical and cortico-cortical network communication 

(Klimesch et al., 1999).    Decreased alpha activity (alpha desynchronization) has been also 

associated with central nervous system depression as a consequence of long term use of 

alcohol, in anesthesia and vegetative states where all conditions demonstrated decreased levels 

of consciousness (Hoffman et al., 1995 ; Kaplan et al., 1985 ; Lehembre et al.,2012).  In healthy 

conditions, alpha synchronization is an indicator of healthy resting wakefulness and arousal to 

attend and also process salient information (Klimesch et al., 1999).  Our findings in alpha 

frequency could be attributed to a loss of alertness and arousal with a possible thalamo-cortical 

implication. Alpha is generated glutamatergic and muscarinic transmission within the thalamus 

(Hughes and Crunelli, 2005). Reduced alpha signal power has been seen in cholinergic (Olincy 

and Freedman, 2012), in glutamatergic (Javitt, 2010) and also in GABAergic (Gonzalez-

Burgos and Lewis, 2012) models in schizophrenia. 

Studying the ratio of delta/alpha1,2, we detected a significantly higher ratio for SSDs 

compared to HC group similarly to subjects with bipolar disorders and schizophrenia (Figure 

7 ; Howells et al., 2018). Our study is the first one that identified these biomarkers in SSDs 

subjects. Biophysical models on the source space will further evaluate the origin and the 

explanation of our observations based on delta and alpha relative signal power. 

A consistent decreased functional connectivity pattern in the α-frequency band  has been 

reported in ScZ. In particular, decreased α connectivity estimated by coherence, lagged 

coherence and phase synchrony, has been reported at frontal (Di Lorenzo, et al., 2015 ; 

Tauscher et al.,1998), fronto-posterior (Di Lorenzo, et al., 2015, Lehmann et al., 2014) and 

parieto-temporal (Di Lorenzo, et al., 2015) brain areas (for different results see also Andreou 

et al., 2015;Kam et al., 2013;Winterer et al., 2011;Merrin and Floyd, 1996). Interestingly, two 

studies reported a high correlation between functional connectivity at rest in the α-frequency 

band with symptoms of ScZ (Hinkley et al., 2011;Merrin and Floyd, 1996). Contradicting 

evidence has been reported for fast oscillations in the β- (13– 30 Hz) and γ-  (30–200 Hz) 

frequencies at rest, including both elevated (Di Lorenzo, et al., 2015), reduced (Kam et al., 

2013) and intact (Lehmann et al., 2014, Andreou et al., 2015, Tauscher et al., 1998, Winterer 

et al., 2011) β-band connectivity. Preliminary evidence suggests that β-band functional 

connectivity is influenced by illness progression and clinical symptomatology (Di Lorenzo, et 

https://www.frontiersin.org/articles/10.3389/fnhum.2015.00371/full#B47
https://www.frontiersin.org/articles/10.3389/fnhum.2015.00371/full#B47
https://www.frontiersin.org/articles/10.3389/fnhum.2015.00371/full#B29
https://www.frontiersin.org/articles/10.3389/fnhum.2015.00371/full#B22
https://www.frontiersin.org/articles/10.3389/fnhum.2015.00371/full#B22
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al., 2015). For a systematic review tailored to functional connectivity evidence using EEG in 

schizophrenia see Maran et al. (2016). 

Here, we adopted our DoCM model to reveal the dominant coupling modes independently 

in the amplitude and phase domain. It is well-known the distinct role of amplitude-to-amplitude 

coupling and phase-to-amplitude coupling between frequencies (Hyafil et al., 2015). Many 

previous studies explored the contribution of both low and high-frequency oscillations to 

explain a range of cognitive deficits in schizophrenia modulated with specific frequency 

content (Moran and Hong,2011).  Here, we analyzed phase-to-phase (within frequencies) with 

phase-to-amplitude couplings (cross-frequencies) in the phase domain and amplitude-to-

amplitude couplings of the envelopes of either the same frequency (within frequencies) or of 

different frequencies (cross-frequencies). Phase based intrinsic coupling modes are band-

limited in specific frequency bands, are extended from local to large-scale coupling networks, 

and changed in disorders with structural or even functional network alterations (Engel et al., 

2013). Envelopes of Amplitude based intrinsic coupling modes display a typical frequency 

range on the ultra-slow spectrum below 0.15 Hz similar to BOLD activity. We typically 

estimated correlation of the envelope between frequency-dependent brain signals but the 

spectrum of the envelopes is within that frequency scale. Amplitude based intrinsic coupling 

modes are extended both locally and globally (network level) and might be severely affected 

in disorders with a predominant structural network alteration (Engel et al., 2013).   Structural 

brain changes in subtypes in schizophrenia could further support our findings in amplitude 

driven DoCM which are more sensitive in structural changes (Zhang et al., 2014). 

Comparing the findings of PD of DoCM with phase driven (Figure 8) and amplitude driven 

(Figure 9) frequency-interactions modes, we untangled a reconfiguration of DoCM in the latter 

case in SSDs subjects driven by alpha sub-bands. Attention can be allocated into a dorsal, top-

down network and a ventral, bottom-up network. The top-down network is responsible for 

attention to certain features while the bottom-up network is mainly stimulus-driven. These 

networks are identified in both task-based (Corbetta and Shulman, 2002) and resting-state 

neuroimaging paradigms (Fox et al., 2006) and are directly related to attentional functions that 

are active even at resting-state conditions. Both types of cross-frequency phase–amplitude 

coupling (PAC) and amplitude–amplitude coupling (AAC) are highly preserved in top-down 

and bottom-up networks in macaque auditory cortex (Marton et al., 2019). The most 

discriminative features of PD of DoCM supported an absolute accuracy of the two groups. 

Selected features revealed also a complementary role of theta modulating DoCM with higher 

frequency bands (beta/gamma), an observation that has been reported also in a resting-state 
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study in HC with MEG modality (Florin and Baillet, 2015). Additionally, we observed a 

significantly lower global FI in SSDs compared to HC only in amplitude driven DoCM. In a 

recent lifespan study with healthy controls, we found aberrant FI for two groups, a dyslexic 

group and a mild traumatic brain injury (Dimitriadis et al., 2019). FI can be seen as a global 

index of the normal multiplexity behavior of nested oscillations. DoCM, their PD, and other 

features, where some of them are presented here, are further needed to explain in more detail 

group differences between healthy controls and targeted groups.  

The Nonlinearity Index defined and reported here for the first time showed a higher 

nonlinearity of resting-state networks for SSDs subjects compared to HC only in the amplitude 

domain while in phase there was no group difference. Our findings have been consistent both 

using the whole repertoire of within and between frequencies couplings but also focusing on 

alpha sub-bands modulators (Figure 11). Our study first dissociates the potential different role 

of amplitude and phase driven intrinsic coupling modes in general and specifically in the target 

group of SSDs. These results are supported by findings of a recent study that underlined the 

complementarity of cortical phase and amplitude coupling patterns. This study revealed also 

the importance of amplitude coupling measures (Siems and Siegel, 2020). Our results 

untangled an interesting role of alpha frequency as the key frequency modulator that 

demonstrates a similar behavioral role in phase coupling modes in both groups and a distinct 

role in amplitude domain dissociating its role in SSDs from healthy controls. Further research 

is needed based on biologically inspired models like dynamic causal modeling that will attempt 

to explain this modulator role of alpha amplitude in SSDs under the spectrum of GABAergic 

inhibition and disinhibition that it is well known that modulate cortical synchrony in low brain 

frequencies (Xiao et al., 2012 ; Shaw et al., 2019). GABA neurotransmission is altered in 

schizophrenia playing a key role (Schmidt and Mirnics,2015). Overall, this finding can be seen 

as continuous and intense alertness of attentional systems in SSDs subjects (Klimesch et al., 

1999). Our analysis focused on the eyes-closed task, a condition that produced more uniform 

and consistent findings in psychiatric disorders (Newson and Thiagarajan, 2019) than eyes-

open resting-state. 

We found group differences in inter-hemispheric links between the following sensors pairs 

:O1-P4 P3-O2 P3-T6 C3-T6 F3-O2 F3-C4  for iPLV and C3-T6 C3-T4  for corrEnv. Group-

averaged iPLV values were higher for SSDs  while group-averaged corrEnv were higher for 

healthy controls. Our findings are in conjunction with a previous study using EEG resting-state 

in schizophrenia (Olejarczyk and Jernajczyk2017).    
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This study is the first one that explored simultaneously both intra-frequency and cross-

frequency interactions in both amplitude and phase domain in SSDs under DoCM model. 

Under this framework, we can decipher the multiplexity of complex electrophysiological 

aberrant connectivity observed in SSDs by integrating the available intrinsic coupling modes. 

Our DoCM model untangled the multiplexity of human brain dynamics recorded with EEG 

by integrated both within and between frequencies coupling modes under the same framework 

(Buzsaki and Watson, 2012). DoCM model hypothesizes that the fluctuation of DoCM can 

capture the complexity of functional brain connectivity during both spontaneous and cognitive 

tasks. The transitive nature of DoCM across experimental time can be quantified with FI which 

is a direct mearure of the brain’s multiplexity. FI can be seen as a reflex index that describes 

the readiness of the brain to respond to new stimuli.  

It would be interesting to follow the same methodology during cognitive tasks and also on 

the source level to get the advantage of animal models, pharmaco-based studies and fMRI 

studies that revealed the mechanistic explanation of aberrant networks in schizophrenia (Hunt 

et al., 2017). 

The whole study is unique, innovative, and pioneering in terms of the analytic pathway and 

scientific results. However, there are two basic limitations. The first refers to the interpretation 

of the results on the EEG surface level instead of virtual cortical sources. It would be interesting 

to follow the same methodological approach in an EEG study recorded healthy controls and 

SSDs using a large number of EEG net sensors that support the source reconstruction approach. 

The second drawback is the limitation of the free EEG database that involves only recordings 

without any access to neuropsychological assessment battery. This missing part prevented us 

to correlate the novel chronnectomic and semantic features with trivial neuropsychological 

estimates. 

 

5. Conclusions 

In the present study, we adopted a holistic approach of exploring how brain activity and 

connectivity mediated by intra and cross-frequency interactions differentiate in SSDs subjects 

compared to HC. We untangled a reconfiguration of amplitude driven DoCM in SSDs subjects 

mediated by alpha activity. Our findings detected significant and novel findings that will help 

clinicians to detect SSDs with a low cost EEG device. Concerning results to alpha frequency, 

alpha signal power can be used as an objective evaluator of the positive outcome of a proper 

neurofeedback training.  Further analysis is needed to link our DoCM findings with the severity 

of symptoms in a cohort that will include a broader age distribution and female subjects. 
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Tables 

Table 1. Evaluation of Classification performance based the semantic features pool of PD 

and FI and on a multi - kernel SVM approach. 

 

 Accuracy Sensitivity Specificity 

PD+FI for iPLV 74.53 ± 2.11 72.21 ± 2.31 71.85 ± 1.89 

PD+FI for corrEnv 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 
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Legends 

 

Figure 1. Topology of EEG recording sensors. 
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Figure 2. Outline of the PAC algorithm. 

1.Preprocessing steps for F3 EEG sensor activity: 

A.  The time course of the first 5 secs from the F3 and F4 EEG sensor activity 

B. The time course of δ activity from the F3 sensor 

C. The phase time course of δ activity from F3 sensor  

 

2.Preprocessing steps for F4 EEG sensor activity: 

D. The time course of the first 5 secs from the F4 EEG sensor activity 

E. The time source of α1 activity from the F4 sensor and the δ activity extracted from  α1 

activity from the same sensor. δ activity was extracted from  α1 activity using the bandpass 

filtering transfer functions employed to extract δ activity from the F3 sensor 

F. The δ activity within α1 activity from the F4 sensor 

G.The phase temporal course of δ activity bandpass filtered from  α1 activity extracted via 

Hilbert transform 

 

3.Targeted Phase Time Series for The Estimation of PAC  

H. Common plot of the phase time course of δ activity from F3 sensor (C) and the phase 

temporal course of δ activity bandpass filtered from  α1 activity extracted via Hilbert transform 

(G) 

I. The phase difference of the two targeted phase time series from PAC strength will be 

quantified via iPLV estimator 
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Figure 3. Outline of AAC algorithm. 

1.Preprocessing steps for F3 EEG sensor activity: 

A.  The time course of the first 5 secs from the F3 and F4 EEG sensor activity 

B. The δ activity from the F3 sensor and its related envelope extracted via Hilbert transform 

C. The  time course of the envelope related to δ activity of F3 

 

2.Preprocessing steps for F4 EEG sensor activity: 

D. The time course of the first 5 secs from the F4 EEG sensor activity 

E. The α1 activity from the F4 sensor and its related envelope extracted via Hilbert transform. 

F. The time course of the envelope related to α1 activity of F4 sensor 

 

3.Targeted Phase Time Series for The Estimation of AAC  

G. Common plot of both envelopes time courses of δ activity from F3 sensor (C) and of  α1 

activity extracted via Hilbert transform (F). AAC is estimated between those time courses via 

a correlation envelope analysis (corrEnv).  
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Figure 4. Determining Dominant Intrinsic Coupling Modes (DoCM) based on iPLV.  

(A) A detailed schematic illustration of the adapted DoCM model showing the detection of 

dominant coupling mode between two EEG sensors (F3 and F7) for the first two consecutive 

temporal segment (ts1, ts2). For demonstration purpose, we adapted  imaginary Phase Locking 

(iPLV) which was employed for the estimation of both within frequencies (e.g., δ to δ) and 

between frequencies (cross-frequency) interactions (e.g., δ to θ). Surrogate analysis will reveal 

the DoCM for both temporal segments.  During ts1 the DoCM reflected significant phase 

locking between α2 and γ oscillations (indicated by red rectangles) while during in ts2 the 

dominant interaction was remain stable. 

(B) Burst of DoCM between the F3 and F7 sensors. This streaming of the basic elements of 

neural communication is encapsulated in the DoCM time series to form a neural “word.”, which 

can be interpreted as a spatio-temporal message in the macroscale level (Buzsaki & Watson, 

2012). The plot illustrates the fluctuation of DoCM across experimental time for F3-F7 sensor 

pair. Y-axis refers to one of the 28 potential coupling modes while the colour refers to the iPLV 

related strength. The first two temporal segment showed in A. revealed α2 - γ as DoCM. This 

observation is shown in the first samples of the time-source showed in B. FI is estimated based 

on such a semantic time series by counting how many times the DoCM changed between 

consecutive temporal segments divided by the total number of temporal segments -1. FI ranged 

within [0,1] where higher values are interpreted as higher flexibility. 

The comodulogram on the right demonstrates the probability distribution (PD) of the DoCM 

across temporal segments for the EEG sensor pair F7-F3. α1-α2 is the CFC with the highest 

representation across experimental time for this EEG pair of sensors 

The outcome of this approach is the construction of 2 DFCG represented as  3D tensors of size 

[1275 x 16 x 16] . 
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Figure 5. Inter-hemispheric fluctuations and the related dominant frequency 

A illustrates an example of a time series presenting the temporal functional strength between 

F7-F8 EEG sensors from the first healthy control subject. The spectrogram of this dynamic 

functional strength was extracted  and the related dominant frequency is assigned to this inter-

hemispheric pair as descriptive statistic of the fluctuation of connectivity across experimental 

time (B). 
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Figure 6. Group-Averaged Relative Signal Power (RSP) across EEG sensor space and 

frequency bands in HC and SSDS patients. 

Our analysis revealed significant higher δ RSP for SSDs compared to HC in O1 and O2 EEG 

sensors. 

( * Wilcoxon Rank Sum test (p < 0.01 , Bonferroni corrected, p’< p/(16*7) where 16 refers to 

EEG sensors and 7 to the number of the studying frequency bands ). 
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Figure 7. Group-averaged Ratio of Relative Signal Power (RSP) of δ versus RSP of α1 and  α2 

across EEG sensor space in HC and SSDs patients. 

Our analysis revealed significant higher ratio of RSP of  δ with α1 for SSDS compared to HC 

in F7 and Cz EEG sensors. 

Significant higher ratio RSP of  δ with α2 for SSDS compared to HC were revealed in all the 

EEG sensors with the exception of T6 EEG sensors. 

( * Wilcoxon Rank Sum test (p < 0.01 , Bonferroni corrected, p’< p/(16*2) where 16 refers to 

EEG sensors and 2 to the number of the ratios ). 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

 
 

Figure 8. Group‐Averaged Flexibility Index (FI) and Comodulograms that tabulate the PD of 

spatio-temporally DoCM based on iPLV estimator.  

(A-B) Group‐averaged FI for healthy control (HC) group (A) and group with schizophrenia-

spectrum disorders (SSDs) (B).  

(C-D) Group‐averaged comodulograms for HC and SSDs group, correspondingly 

Every FI and PD has been selected via the feature selection algorithm is denoted with ‘*’.  
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Figure 9. Group‐Averaged Flexibility Index (FI) and Comodulograms that tabulate the PD of 

spatio-temporally DoCM based on corrEnv estimator.  

(A-B) Group‐averaged FI for healthy control (HC) group (A) and group with schizophrenia-

spectrum disorders (SSDs) (B).  

(C-D) Group‐averaged comodulograms for HC and SSDs group, correspondingly 

Every FI and PD has been selected via the feature selection algorithm is denoted with ‘*’.  
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Figure 10. Discriminative power of PD for θ-γ, α1-α2 θ‐β2 cross-frequency pairs. Every dot 

corresponds to a single subject. 
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Figure 11. Group –averaged Nonlinearity Index across experimental time . 

A) NITotal for iPLV, 

B)  NITotal for corrEnv,  

C) NIα for iPLV 

D) NIα for corrEnv 

 

 

 

 

 

 

 

 

 



38 
 

 
Figure 12. We found group-averaged differences between the mean values of the following 

inter-hemispheric links :O1-P4 P3-O2 P3-T6 C3-T6 F3-O2 F3-C4 (Figure 12.A), for iPLV and 

C3-T6 C3-T4  for corrEnv (B). 
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