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Abstract 

Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since 

both varying hardware and software across different centers cause unavoidable data heterogeneity 

across centers, its impact on reliability in study outcomes has also drawn much attention recently. 

One fundamental issue arises in how to derive model parameters reliably from image data of varying 

quality. This issue is even more challenging for advanced diffusion methods such as diffusion 

kurtosis imaging (DKI). Recently, deep learning–based methods have been demonstrated with their 

potential for robust and efficient computation of diffusion-derived measures. Inspired by these 

approaches, the current study specifically designed a framework based on a three-dimensional 

hierarchical convolutional neural network, to jointly reconstruct and harmonize DKI measures from 

multicenter acquisition to reformulate these to a state-of-the-art hardware using data from traveling 

subjects. The results from the harmonized data acquired with different protocols show that: 1) the 

inter-scanner variation of DKI measures within white matter was reduced by 51.5% in mean kurtosis, 

65.9% in axial kurtosis, 53.7% in radial kurtosis, and 61.5% in kurtosis fractional anisotropy, 

respectively; 2) data reliability of each single scanner was enhanced and brought to the level of the 

reference scanner; and 3) the harmonization network was able to reconstruct reliable DKI values 

from high data variability. Overall the results demonstrate the feasibility of the proposed deep 

learning–based method for DKI harmonization and help to simplify the protocol setup procedure 

for multicenter scanners with different hardware and software configurations. 
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11. Introduction 

Diffusion magnetic resonance imaging (dMRI) is a promising technique for investigating tissue 

microstructure and neural networks in the brain. Recently, dMRI scans have been included in most 

national and international human brain projects[1–5]. In these projects, the MRI data are usually 

collected from multiple centers in considerations of needed sample size and diversity. For instance, 

the Adolescent Brain Cognitive Development study collected data on children and teenagers from 

varied racial and ethnic backgrounds in 21 sites[3], and the Alzheimer’s Disease Neuroimaging 

Initiative created a longitudinal imaging repository on subjects with normal cognition, mild 

cognitive impairment, and Alzheimer’s disease across more than 50 scanners[6]. However, the 

heterogeneity of MRI data among study centers became a critical issue[7]. In general, differences 

in both hardware and software can reduce the reliability of data across centers, and their effects have 

been observed in morphology[8,9], function[10–12], and diffusion studies. Especially in dMRI, 

scanner-induced biases can cause incoherence in the diffusion metrics[13–17], and our recent study 

revealed that between-scanner variations still exist even among very well-controlled hardware 

components and software protocols[18]. Although it is always possible to improve data reliability 

by minimizing differences in gradient and coil systems, as well as by using similar protocols, it is 

highly desirable to develop effective methods to harmonize multicenter dMRI data using widely 

varied settings. 

 

There have been studies discussing the harmonization of multicenter diffusion tensor imaging (DTI) 

data, for example, by normalizing histograms of diffusion-derived metrics[19,20] and then 

correcting the scanner- or subject-specific factors[21,22], such as ComBat method[20]. Other 

studies have also applied harmonization on diffusion signal to minimize features including rotation 

invariant spherical harmonic (RISH) [23–25] or spherical moment[26] across scanners. Recently, 

the capability of deep learning–based methods was demonstrated to efficiently reconstruct diffusion 

parameters, such as predict multishell diffusion signal from single-shell[27], generate high order 

diffusion models[28,29] or fiber orientations from few diffusion weighted signals[30], and reveal 

untapped histology-liked fiber information from subjects scanned in multiple scanners[31,32]. 

These methods make it possible to save data of low quality. Inspired by these approaches, deep 

 
1 Abbreviations: 

ACR - anterior corona radiata; AD - axial diffusivity; AK - axial kurtosis; ALIC - anterior limb of 

internal capsule; ANOVA - analysis of variance; BCC - body of the corpus callosum; CgC - cingulate 

gyrus cingulum; CP - cerebral peduncle; CSF - cerebrospinal fluid; CV - coefficient of variation; 

DKI - diffusion kurtosis imaging; dMRI - diffusion magnetic resonance imaging; DTI - diffusion 

tensor imaging; DWI - diffusion-weighted image; EC - external capsule; FA- fractional anisotropy; 

GCC - genu of corpus callosum; KFA - kurtosis fractional anisotropy; MD - mean diffusivity; MK 

- mean kurtosis; NRMSE - normalized root mean square error; PCR - posterior corona radiata; PLIC 

- posterior limb of the internal capsule; PTR - posterior thalamic radiation; RD - radial diffusivity; 

ReLU - rectified linear unit; RISH - rotation invariant spherical harmonic; RK - radial kurtosis; 

RLIC - retrolenticular part of internal capsule; ROI - region of interest; SCC - splenium of corpus 

callosum; SCR - superior corona radiata; SGM - subcortical grey matter; SLF - superior longitudinal 

fasciculus; SNR - signal-to-noise ratio; SS - sagittal stratum; TE - echo time; TR - repetition time; 

WM - white matter 
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learning networks were adopted to harmonize diffusion data from multiple scanners to a reference 

scanner[33,34]. At present, it remains to evaluate the harmonization performance on more high-

order models. 

 

Diffusion kurtosis imaging (DKI) is one of the advanced high-order diffusion models, utilizing 

second and fourth order tensors involves 21 independent components[35,36]. Recent literature has 

found DKI useful in many physiological changes, including in the early detection of diseases like 

gliomas[37–39] and neural disorders[40,41], as well as in the discovery of neuronal patterns in 

development[42] and aging[43–45]. However, the estimation from diffusion signals is sensitive to 

scanning-related factors such as acquisition protocol, image noise, and artifacts, which can induce 

anomalous deviations in the derived metrics[46–48]. Therefore, the harmonization of DKI measures 

faces challenges in accuracy, which can be reduced from fitting failures. The large sample projects 

of the above-mentioned studies demand a specific approach to efficiently merge DKI data from 

different centers. 

 

In this study, a deep learning–based framework was designed for harmonization of DKI measures 

on two datasets with either different or identical protocols. For the reliability evaluation of 

harmonization, the DKI measures before and after harmonization were carefully compared in regard 

to the variance across different scanners and variance between each scanner and reference. This 

method was also compared with two existing harmonization methods of ComBat and RISH. 

Moreover, in consideration of the difference in data diversity between small training data and large-

scale multicenter data, additional tests were conducted for data reliability on different tissues.  

 

 

2. Methods 

2.1. Datasets, subjects, and data preprocessing 

The proposed method was evaluated in two independent datasets. In Dataset 1, five healthy traveling 

volunteers (25.4 ± 1.7 years of age, two males) were imaged using four 3T MRI scanners of different 

types (MAGNETOM Prisma/Skyra/Trio, Siemens Healthcare, Erlangen, Germany; Discovery MR 

750, GE Healthcare, Milwaukee, WI) and with different protocols. For each scanner, the diffusion 

sequence was optimized for the shortest echo time (TE) with the same voxel size, similar total scan 

time, and a b-table containing a minimum of two b-values with 60 directions in total. The diffusion 

protocols of all scanners are listed in Table 1. The T1-weighted images were acquired using clinical 

sequences (magnetization-prepared rapid acquisition with gradient echo on Siemens scanners and 

brain volume imaging on the GE scanner). For each scanner, all data were collected on the same 

day, and all scans were completed within six months. Data acquisition was conducted with approval 

from the local institutional review boards, and all volunteers had signed informed consent forms 

beforehand.  

 

Table 1. Diffusion protocols of the four scanners used in Dataset 1. 

Scanner 

Siemens Trio  

Scanner A 

Siemens 

Skyra  

Scanner B 

GE MR750  

Scanner C 

Siemens Prisma 

Scanner D 

(Reference) 

Gradient Strength 40 mT/m 45 mT/m 50 mT/m 80 mT/m 
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Slew Rate 200 T/m/s 200 T/m/s 200 T/m/s 200 T/m/s 

Head Coil 32ch 20ch 8ch 64ch 

Sequence SE EPI SE EPI SE EPI Multi-band SE EPI 

Matrix 110x110 110x110 110x110 110x110 

Resolution [mm3] 2x2x2 2x2x2 2x2x2 2x2x2 

TR/TE [ms] 9200/99 9300/94 9000/80 3000/75 

Bandwidth 

[Hz/Px] 
1684 1818 2272 2272 

Partial Fourier 6/8 6/8 4/5 6/8 

Acceleration GRAPPA 2 GRAPPA 2 none Multiband 4 

Repetitions 2 2 1 2 

Scan Time 11:14 11:56 10:12 10:18 

b-value [s/mm2] 1000, 2000 1000, 2000 1000, 2000 1000, 2000, 3000 

Directions 30, 30 20, 40 30, 30 30, 30, 30 

b0 Frames 6, 1 opp. PE* 6, 1 opp. PE* 6 6, 1 opp. PE* 

* Opposite phase-encoding (PE) direction. 

 

For preprocessing, the diffusion-weighted images (DWIs) of Dataset 1 were firstly denoised[49] 

and Gibbs-ring removed[50]. Then the images acquired from scanner A, C, and D with reversed 

phase-encoding were further corrected for distortion and motion using the TOPUP and EDDY tools 

in the FSL software[51,52]. It should be noted that the repetition scans were not combined after the 

preprocessing and were seen as repeated scans. 

 

Dataset 2 is an open benchmark dataset from the multi-shell diffusion MRI harmonisation challenge 

(MUSHAC) with an identical “standard” protocol on two scanners[33,53]. It consisted of diffusion- 

and T1-weighted data from two scanners of different models, the Siemens Prisma and the Siemens 

Connectom. On both scanners, the protocols were kept the same for a standard two -shell diffusion 

acquisition: isotropic resolution of 2.4 mm, TE = 89 ms, TR = 7200 ms, and 60 directions at b-value 

= 1200, 3000 s/mm2. The released data were preprocessed with distortion and motion correction. 

Among the participating 10 traveling subjects, one (marked as “G”) was excluded after manual data 

inspection due to the apparent lower image intensity on DWIs acquired in Connectom scanner. 

 

2.2. DKI harmonization 

The harmonization was designed based on a three-dimensional hierarchical convolutional neural 

network, which was specifically built for parametric DKI reconstruction from diffusion signals 

[29,54]. This artificial neural network was comprised of an input layer as DWIs from one scan, 

hidden layers consisting of a convolutional layer and several fully connected layers, and two output 

layers to generate eight DKI maps. The kernel size in convolutional layer was 3x3x3 and in fully 

connected layer was 1x1x1. All the hidden layers consisted of 150 epochs and rectified linear unit 

(ReLU) activation function. A dropout regularization size of 10% was considered before the output 

layer to avoid overfitting. Three diffusivity measures were then derived from the shallow output 

layer, including the mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), 

whereas the fractional anisotropy (FA) together with the four DKI measures mean kurtosis (MK), 

axial kurtosis (AK), radial kurtosis (RK), and kurtosis fractional anisotropy (KFA) were derived 
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from a deeper output layer containing one more hidden layer. 

 

A scanner to be harmonized is termed target scanner, and the one representing the harmonization 

goal is termed reference scanner. Fig. 1 illustrates the schematic framework for harmonizing DKI 

from a target scanner. First, the data from several subjects were randomly chosen for training. The 

training labels of DKI measures from reference scanner were estimated using an iteratively 

reweighted linear least square method[55,56], and were non-linearly registered to the DWIs from 

same subject acquired on target scanner using the FNIRT tool of the FSL library[57]. Second, the 

matched DWIs and DKI labels were utilized to train and optimize the neural network. Third, in the 

testing phase, the target scanner DWIs of previously unused test subjects were input individually 

into the trained neural network to predict the harmonized DKI measures. Additionally, if repeated 

scans were acquired, another set of harmonized DKI measures was generated from the same trained 

neural network. To keep all harmonized DKI measures consistent for the whole dataset, DWIs from 

the reference scanner also went through the same framework except for the registration of DKI 

labels before the harmonization. 

 

 

Fig. 1. Framework for the harmonization of one target scanner. The target scanner is 

denoted by the symbol “#”. 

 

In this study, reference scanner was chosen as the device with highest signal-to-noise ratio (SNR) 

in each dataset. In the training phase, in order to have enough number of effective voxels for training, 

we used 40% of the subjects from the whole dataset to ensure harmonization performance. In other 

words, two subjects from Dataset 1 and four from Dataset 2 were selected for the training. As 

parameters of interest, MK, AK, RK, and KFA within the white matter (WM) were selected in this 

study. 
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2.3. Experiments and evaluations 

We conducted four types of evaluation experiments on Dataset 1, including harmonization 

performance, within-scanner repeatability, leave-p-out validation, and across-method comparison, 

as summarized in Table 2. On the other hand, on Dataset 2, the harmonization on two scanners was 

conducted with four subjects for training and the other five ones for testing, the effect of training 

size was examined by using a range of 1 to 8 randomly selected training subjects. 

 

Table 2. Brief summary of designed experiments on Dataset 1. 

Experiments Evaluation criteria  Training subjects Testing subjects 

(1) Harmonization on 4 

scanners 

Inter-scanner variance 
2 3 

Single scanner reliability 

(2) Repeated scans on 3 

scanners 

Intra-scanner 

reproducibility 
2 

3 (Two repeated 

scans) 

(3) 

Validation 

Training size 

Single scanner reliability 

1/2/3/4 1 

Leave-p-

subjects-out 
2/4 3/1 

Leave-one-

tissue-out 

2 (Without 

SGM/CSF) 
3 (Whole brain) 

(4) 

Comparison 

ComBat 

Inter-scanner variance 

5 5 

RISH 2 3 

DL 2 3 

 

2.3.1. Inter-scanner data variance 

Inter-scanner data variance was determined by variance of systematical bias across scanners. It was 

evaluated by inter-scanner coefficient of variation (CV) among all scanners on same subject for both 

datasets. The within-subject registration on DKI measures after harmonization was firstly processed 

using the FNIRT tool. Then the CVs within WM were calculated pixel-wisely on each DKI measure 

using the Matlab software.  

 

2.3.2. Data reliability on single scanner 

Data reliability on single scanner was determined for each target scanner by its variance of 

measurements to those from the reference scanner. It was evaluated within WM between each DKI 

measure from target scanner and the label from reference scanner by the within-subject normalized 

root mean square error (NRMSE), noted as NRMSE-to-reference. For Dataset 1, the first scans on 

three test subjects from all four scanners were selected for this evaluation, whereas for Dataset 2, 

the scans on five test subjects from both scanners were assessed. The NRMSEs-to-reference were 

calculated within 15 WM regions of interest (ROIs), which were labeled individually according to 

the ICBM-DTI-81 WM atlas[58]. 

 

For the repeated scans in Dataset 1, the intra-scanner reproducibility was evaluated by within-subject 

NRMSE between two repetitions. Comparison among 15 ROIs were also performed. 

 

2.3.3. Validation on data reliability 
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The harmonization performance of the neural network was evaluated and validated by changing the 

training data. First experiment was designed by using different numbers and different combinations 

of subjects for the training data, meanwhile holding one subject in the testing phase for evaluation. 

The NRMSEs-to-reference were then calculated within WM between the harmonized data from 

each target scanner and labels from reference scanner on the testing subject. In Dataset 1, the training 

size was chosen from 1 to 4 subjects, and changed different combinations of subjects at each training 

size. In Dataset 2, the training size was chosen from 1 to 8 subjects. 

 

Second experiment was designed according to the leave-p-out cross-validation[59]. Two strategies 

of training, leave-three-subjects-out and leave-one-subject-out, were traversed among five subjects 

in Dataset 1. The NRMSEs-to-reference within WM on the test subjects were compared among 

different trainings. 

 

Moreover, to evaluate the feasibility of neural network’s application on data with potential high 

diversity, third experiment was designed by manually decreasing the diversity of training data but 

holding the testing data. Thus, the leave-one-tissue-out strategy with one tissue masked out in the 

training was conducted on Dataset 1. Before the training, one kind of tissue was removed from the 

DWIs and DKI labels of all training subjects, and the DWIs for testing still involved the whole brain. 

After the harmonization, the NRMSEs-to-reference were calculated and compared with those from 

the whole brain training. We selected two tissues for removal like subcortical grey matter (SGM) of 

low diffusivity and cerebrospinal fluid (CSF) of high diffusivity separately for two training 

experiments. Moreover, each training was repeated for 10 times without losing any stability of the 

network. 

 

2.3.4. Comparison with other harmonization methods 

To compare the proposed deep learning–based method with the two methods, ComBat and RISH, 

data reliability of the three approaches were evaluated on Dataset 1. For applying the Combat and 

RISH methods, additional processing steps on DWIs were conducted and described in detail below. 

The RISH method requires training and testing, where the training data on two subjects were set the 

same with the proposed deep learning–based method. For comparison, all the approaches generated 

the inter-center CV on one same subject. 

 

Since the ComBat method harmonizes voxel-wise DKI-derived data, the DKI metrics from all five 

subjects were firstly non-linearly registered into a template space using FSL. Then site effect was 

adjusted parametrically from each distribution, and four DKI measures were harmonized separately. 

Afterwards, the harmonized metrics were registered back to the individual space.  

 

The RISH algorithm can only harmonize single-shell DWIs. Firstly, the multi-shell DWIs should be 

reorganized into two single-shell data of 1000 and 2000 s/mm2. It should be noted that the data with 

b-value of 3000 s/mm2 from scanner D were left out. Secondly, each single-shell DWIs were 

harmonized from target scanner to reference scanner D of same b-value. Finally, the two single-

shell DWIs were assembled to generate the DKI measures, and the within-subject registration was 

performed before the CV calculation. 
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3. Results 

3.1. Quality assessment 

The SNR of a WM ROI the genu of corpus callosum (GCC) was measured for all scans and listed 

in table 3. The SNRs were generally highest on scanner D in Dataset 1, and on Connectom scanner 

in Dataset 2 respectively. The two scanners were then selected as the reference scanners. 

 

Table 3. Signal-to-noise ratio (SNR)* of all scans in two datasets. 

Subject 

No. 

 Dataset 1  Dataset 2 

 Scanner A  Scanner B  Scanner C  Scanner D  Prisma  Connectom 

1  23.51  24.28  23.06  30.21  24.51  27.98 

2  23.32  24.58  23.66  30.02  24.96  25.09 

3  22.14  24.16  24.96  30.66  20.36  22.23 

4  21.65  24.93  25.71  31.47  23.36  28.75 

5  20.44  21.89  21.17  25.85  23.31  26.94 

6  -  -  -  -  23.25  18.85 

7  -  -  -  -  23.25  21.68 

8  -  -  -  -  19.93  25.66 

9  -  -  -  -  22.59  25.81 

* All values are in unit of dB. 

 

3.2. Improvement of inter-scanner reliability 

Fig. 2 shows the parametric maps of four selected DKI measures from all scanners in two 

representative subjects of the two datasets. The variance among scanners can be seen before the 

harmonization, especially in the parameter KFA. After the harmonization, the parametric maps of 

all scanners were generally closer to each other as well as to that of the reference scanner. 
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Fig. 2. Parametric diffusion kurtosis imaging (DKI) maps from all scanners before and 

after harmonization. The two representative subjects shown are subject 3 for Dataset 1 and 

subject 4 for Dataset 2. The outlined DKI labels of the two datasets are reference scans 

from scanner D and Connectom, respectively. 

 

Fig. 3 presents the CV maps of the DKI measures from the same subjects shown in Fig. 2 before 

and after harmonization. In both datasets, the original scanner-related variances were considerable. 

These variances were substantially reduced after the proposed harmonization. In Dataset 1, the mean 

CVs within the WM were reduced from 13.6%, 17.3%, 24.4%, and 16.7% to 6.6%, 5.9%, 11.3%, 

and 9.4% in MK, AK, RK, and KFA, respectively. The CV changes in Dataset 2, which was 

generated using only one scanning protocol, were in general relatively moderate. The relevant 

reductions were 3.3%, 9.7%, 8.7%, and 5.4% for MK, AK, RK, and KFA, respectively. Similar 

reduction values were observed in the other subjects of the two datasets. 
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Fig. 3. Coefficient of variation (CV) maps of the DKI measures in two representative 

subjects before and after harmonization. Maps in the upper and lower rows are from 

subject 3 in Dataset 1 and from subject 4 in Dataset 2, respectively. The colored CV maps 

are overlaid on structural images of three different orientations. 

 

3.3. Improvement of data reliability on single scanner 

The data reliability of each target scanner was measured by the parameter NRMSE-to-reference 

(Table 4) within WM. After the harmonization, the NRMSEs-to-reference across the three scanners 

in Dataset 1 were mostly reduced by 40%. This reduction was found smaller in Dataset 2. It is 

notable that all test subjects in each dataset showed comparable NRMSEs-to-reference after the 

harmonization. 

 

Table 4. NRMSEs-to-reference of DKI measures on each scanner in all test subjects. 

Measure 

Subject 

No. 

 Dataset 1  Dataset 2 

 Scanner A  Scanner B  Scanner C Scanner D Prisma  Connectom 

 Before After  Before After  Before After  After  Before After  After 

MK 

1  0.19  0.11   0.18  0.10   0.22  0.14   0.09   0.20  0.18   0.08  

2  0.21  0.12   0.19  0.10   0.23  0.13   0.07   0.17  0.15   0.09  

3  0.22  0.11   0.19  0.11   0.26  0.17   0.08   0.18  0.14   0.09  

4             0.17  0.14   0.09  

5             0.17  0.14   0.08  

AK 

1  0.24  0.14   0.23  0.13   0.31  0.16   0.14   0.31  0.25   0.22  

2  0.27  0.14   0.22  0.12   0.29  0.15   0.12   0.27  0.21   0.21  

3  0.28  0.13   0.23  0.12   0.32  0.19   0.12   0.29  0.21   0.22  
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4             0.27  0.21   0.22  

5             0.26  0.20   0.21  

RK 

1  0.44  0.23   0.40  0.22   0.39  0.24   0.22   0.34  0.28   0.24  

2  0.47  0.25   0.43  0.23   0.44  0.24   0.20   0.35  0.29   0.26  

3  0.45  0.24   0.42  0.24   0.42  0.24   0.21   0.36  0.26   0.24  

4             0.36  0.29   0.26  

5             0.33  0.27   0.22  

KFA 

1  0.26  0.16   0.25  0.16   0.34  0.19   0.16   0.29  0.23   0.18  

2  0.27  0.17   0.24  0.16   0.34  0.20   0.14   0.24  0.21   0.16  

3  0.30  0.18   0.25  0.17   0.37  0.20   0.14   0.27  0.22   0.17  

4             0.26  0.21   0.17  

5             0.26  0.21   0.16  

 

Fig. 4 shows the NRMSEs-to-reference before and after harmonization in 15 ROIs for both datasets. 

In Dataset 1, the variance of DKI measures before harmonization varied much in different ROIs. 

For example, in scanners A, B, and C, their mean standard errors (SD) among all these ROIs in MK 

and KFA were 0.061 and 0.066, respectively. And after the harmonization, the NRMSEs-to-

reference were comparable among these ROIs, and the SDs were respectively reduced to 0.032 and 

0.030. The data reliabilities of three scanners were improved to be closer to those on the reference 

scanner, whose SDs were 0.024 and 0.017 in MK and KFA, respectively. In Dataset 2, the diversity 

of NRMSEs-to-reference in different ROIs from Prisma scanner was low before harmonization, the 

SDs in MK and KFA were 0.064 and 0.028, respectively. The data reliability of two scanners after 

harmonization were similar, which were respectively reduced to 0.050 and 0.026 in Prisma, and 

0.045 and 0.023 in Connectom. respectively. 
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Fig. 4. Circular diagrams for normalized root mean square errors-to-reference (NRMSEs-

to-reference) of DKI measures in 15 ROIs from representative subject 3 in Dataset 1 

(upper group) and subject 4 in Dataset 2 (lower group) are shown here respectively. Each 

scanner is coded in different color, and the bar chart displays the value before (in light 

color) and after (in dark color) harmonization for selected regions. These ROIs include: 

GCC, body of corpus callosum (BCC), splenium of corpus callosum (SCC), cerebral 

peduncle (CP), anterior limb of internal capsule (ALIC), PLIC, retrolenticular part of 

internal capsule (RLIC), posterior thalamic radiation (PTR), sagittal stratum (SS), external 

capsule (EC), ACR, superior corona radiata (SCR), posterior corona radiata (PCR), 

cingulate gyrus cingulum (CgC) and superior longitudinal fasciculus (SLF). 

 

The intra-scanner reliability of the scanners A, B, and D in Dataset 1 were estimated by NRMSE 

with a higher NRMSE value indicating a larger variance between two repeated scans on same 

subject, as shown in Table 5. For the scanners A and B, the harmonization greatly improved their 

reliability to a comparable level with that of the reference scanner D.  

 

Table 5. NRMSEs of DKI measures between two repeated scans in all test subjects. 

Measure Subject No. 
 Scanner A  Scanner B  Scanner D 

 Before After  Before After  Before After 

MK 

1  0.20  0.08   0.17  0.05   0.15  0.14  

2  0.21  0.08   0.17  0.04   0.09  0.08  

3  0.22  0.08   0.17  0.05   0.12  0.11  

AK 

1  0.29  0.07   0.24  0.04   0.16  0.12  

2  0.31  0.07   0.22  0.04   0.11  0.06  

3  0.32  0.06   0.23  0.04   0.12  0.09  

RK 

1  0.37  0.16   0.33  0.09   0.26  0.19  

2  0.41  0.15   0.33  0.08   0.21  0.15  

3  0.40  0.15   0.33  0.09   0.24  0.17  

KFA 

1  0.24  0.10   0.19  0.05   0.16  0.11  

2  0.24  0.10   0.19  0.04   0.13  0.09  

3  0.24  0.10   0.20  0.05   0.14  0.10  

 

To intuitively investigate the change of DKI measures in different regions, Fig. 5 shows the scatter 

distributions of these measures before and after harmonization for three representative ROIs, the 

GCC, the posterior limb of internal capsule (PLIC), and the anterior corona radiata (ACR). The DKI 

measures of the scanners A and B before harmonization were distributed dispersedly, but the 

harmonization helped to normalize their distributions to that of the reference scanner D, resulting in 

improved intra-scanner reliability. It is also notable that the aggregation of each cluster was 

improved, which means that the repeated scans were closer to each other, even for the KFA on 

scanner D in the GCC. However, the ROIs still displayed dots that were after the harmonization not 

near the equality line.  
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Fig. 5. Scatter distributions of diffusion measures in the regions of interest (ROIs) like 

genu of corpus callosum (GCC), posterior limb of internal capsule (PLIC), and anterior 

corona radiata (ACR) for the two repetition scans of subject 3. The auxiliary lines are the 

equality lines between the two scans. Each color represents one scanner type, and the 

reference is scanner D. 

 

3.4. Validation for data reliability 

In the first validation experiment, the NRMSEs-to-reference on subject 3 in Dataset 1 and on subject 

4 in Dataset 2 over training size are shown in Fig. 6. Comparing to the original DKI difference, the 

NRMSEs-to-reference after harmonization on all scanners were reduced significantly, indicating 

increased data reliability using the deep learning harmonization method. Although the data 

reliability was increased further with the training size increased, the tendency of all DKI measures 

slowed down. For Dataset 1, increase of training subject numbers from 1 to 2, the NRMSEs-to-

reference of MK on Scanner A was reduced by 7.6%, but only reduced by 5.2% further from 2 to 4 

training subjects. It was similar in Dataset 2, the NRMSEs-to-reference of MK on Prisma was 

reduced by 11.2% from 1 to 4 training subjects, but only reduced by 4.9% further from 4 to 8 training 

subjects. 
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Fig. 6. NRMSEs-to-reference of DKI measures trained from different number of subjects 

on all scanners. The left and middle columns show the values from four scanners on subject 

3 in Dataset 1 and the right column are from two scanners on subject 4 in Dataset 2. Mean 

values with SDs among all possible combinations are plotted in dots with error bars. 

 

In the leave-p-subjects-out cross-validation experiment, the NRMSEs-to-reference on all scanners 

before harmonization, from leave-three-subjects-out training, and from leave-one-subjects-out 

training in Dataset 1 were shown in Fig.7. In all scanners, the NRMSEs-to-reference in two training 

strategies were comparable, and the values among different trainings were similar, indicating the 

robustness of neural network to different training data. 
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Fig. 7. NRMSEs-to-reference on different subjects from leave-p-subjects-out training on 

four scanners in Dataset 1. Three columns show the original values on all subjects, the 

harmonized values on testing subjects from leave-three-subjects-out cross-validation 

(L3OCV), and from leave-one-subjects-out cross-validation (L1OCV), respectively. The 

grey squares indicate the training subjects, and the squares with different colors indicate 

the averaged NRMSEs-to-reference among all DKI measures on the relevant subjects. 

 

In the leave-one-tissue-out experiment, the predicted DKI values from the trainings with whole 

brain tissue, SGM removed, and CSF removed and their NRMSEs-to-reference on subject 3 from 

the Dataset 1 are shown in Fig. 8. The mean values and standard errors were calculated from 10 

outputs of repeated trainings within three interested tissues of WM, SGM, and CSF. Comparing 

different tissues, the WM was trained in all the trainings and show lowest variance. The SGM 

showed slightly higher NRMSEs-to-reference in the SGM removal training than the other two, 

especially in KFA. Likewise, the CSF showed higher NRMSEs-to-reference when the training 

excluded CSF. However, the DKI measures varied greatly among scanners in CSF for its low 

kurtosis character. 
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Fig. 8. The DKI measures and NRMSEs-to-reference within white matter (WM), 

subcortical grey matter (SGM), and cerebrospinal fluid (CSF) from three training 

experiments on subject 3 of Dataset 1. The mean values with standard errors are from 10 

repeated trainings of each experiment. The blue ones denote the DKI measures according 

to left axes, and the red ones denote the NMRSEs-to-reference according to the right axes. 

The bars in white, light grey, and dark grey indicates three experiments that training with 

whole brain, with SGM removed, and with CSF removed, respectively. 

 

3.5. Comparison with other harmonization methods 

The original DKI measures from all scanners and the harmonized ones using three methods, together 

with the relevant histograms of inter-scanner CV are presented in Fig. 9. The DKI measures of each 

scanner harmonized by ComBat were generally smoother than the original ones, and the inter-

scanner variance were reduced apparently. Whereas the harmonized DWIs via RISH method 

produced the DKI maps disturbed by large signal dropouts, the inter-scanner CV was influenced 

thus decreased, especially on KFA. The proposed deep learning–based method harmonized all the 

DKI measures to a similar intensity level of the reference scanner D, and the CV within WM was 

overall lower than those in the other two methods. 
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Fig. 9. Original parametric DKI maps and harmonized ones using ComBat, rotation 

invariant spherical harmonic (RISH), and the proposed method (noted as DL) in all 

scanners on subject 3 of Dataset 1. The histograms of inter-scanner CV within WM are 

shown in the lower row. 

 

 

4. Discussion 

In this study, multicenter harmonization of DKI measures was facilitated by a deep learning–based 

method applied to a relatively small training dataset of traveling subjects. It demonstrated the 

effectiveness of the proposed method in harmonizing a high-order diffusion model of DKI measures 

from different types of scanners or acquisition protocols. The harmonization process used high-

quality images from one reference scanner and improved the reliability of diffusion kurtosis 

measures for all other scanners. This method jointly optimizes the network between the diffusion 

signals and the measures, consequently leading to reduced fitting errors in the derived DKI maps 

and increased noise tolerance in the DWIs. 

 

The harmonization of multicenter data aims to generate reliable parametric results from images 

acquired under inconsistent conditions. It has been noticed that variance of DTI or other measures 

become more substantial when the data are acquired by different scanner models or varied 

protocols[16,60,61]. In this study, Dataset 1 reflects such a situation, and the suggested 

harmonization was able to substantially reduce the WM variability among scanners, as well as to 

decrease their deviations from the reference scanner. Our results showed that in general , the inter-

scanner reliability after the harmonization was comparable to the original intra-scanner repeatability 

of the high-quality reference scanner. By contrast, in Dataset 2 with its consistent protocol between 

scanners, the WM variance of original DKI between the two scanners was already small, thus the 

reduction in variance after harmonization was less obvious. It is notable that the DKI measures in 

Dataset 1 and Dataset 2 were comparable after the harmonization, indicating the capability of the 

deep learning–based method for harmonizing data acquired with different protocols. 

 

The deep learning–based method with joint reconstruction and harmonization can also improve the 
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reliability in DKI measurements on single scanner. The traditional DKI fitting methods either using 

the constrained weighted linear least square or the iteratively reweighted linear least square 

algorithms could fail in some regions that leads to signal loss in the DKI measures, examples of 

which were shown in Figure 2. In such cases, the data reliability would worsen in a multicenter 

project if scanners with high noise levels were involved. In this work, the deep learning –based 

method was trained to eliminate these outliers and learn the reliable features from majority normal 

signals and their neighborhoods. Moreover, to generate stable predictions from DWIs with lower 

SNR in some scanners, the convolution kernel in the neural network was applied on each voxel with 

its neighborhoods to improve the robustness against noise[54]. 

 

The deep learning–based harmonization helps to relax the requirements on hardware and protocol 

setting in existing multicenter studies. The only requirement on the protocols across scanners are 

the same voxel size in consideration of measuring similar microstructures and avoiding redundant 

spatial information from convolution network. It is more convenient and practical to choose one 

reliable scanner with advanced deployment as the reference rather than to keep all scanners and 

protocols strictly identical for a multicenter project. Other pulse sequence parameters for different 

scanners are recommended to be tuned individually for the shortest TE value and optimal image 

quality, such as high SNR and low Nyquist ghost. Our results indicate that the high-repeatability 

DKI measures of the reference scanner can be reproduced on other scanners via the suggested 

harmonization procedure. Hence, the setup of protocols for each scanner would be potentially more 

flexible in a multicenter project.  

 

It should be noted that the DKI has optimized five b-values for standard measure[35] and fewer b-

values for rapid measure[62], however, in multicenter studies, not all scanners can generate same b-

values or finish same acquisition in similar time. Therefore, in Dataset 1, we used a compromised 

multi-shell acquisition with more b-values in reference scanner and reduced b-values in other 

scanners to achieve similar acquisition time. Besides, more diffusion directions would still produce 

better harmonization in some tissues, such as subcortical and crossing-fiber regions, and would be 

more flexible to reconstruct other high-order models as well.  

 

The RISH method that harmonize the diffusion signal from high-order RISH features makes the 

output DWIs flexible for diverse diffusion postprocessing. From our findings, however,  its 

limitation in harmonizing single-shell DWI could influences the data consistency between different 

b-values for multi-shell data. Furthermore, the DKI metrics after harmonization were easily 

influenced by the fitting errors using the traditional reconstruction methods. It was obvious that in 

the four scanners of Dataset 1, the DKI maps from deep learning–based method with less signal loss 

produced lower inter-scanner CV. Therefore, we believe the current deep learning–based 

harmonization is more robust and effective for the DKI analysis in the multicenter studies. 

 

The ComBat and the proposed deep learning–based method can both harmonize the measurements 

from diffusion model to reduce the inter-scanner variance for the same purpose. For comparison, 

the two approaches exist several differences in application and the results. First, the ComBat as a 

retrospective method should be applied until the parameter maps of all scans have been 

reconstructed. While the proposed method can process data after being scanned, the training only 
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requires a small-sample of data on several subjects, then the trained network can be used to 

reconstruct the harmonized DKI maps immediately on subsequently scanned subjects. Second, the 

quality of harmonized DKI metrics via ComBat was limited by the original scanner. From our results, 

the DKI maps from scanners A and B were still noisy using ComBat and lead to higher CV. Although 

the image quality varied among scanners in Dataset 1, the outputs of all scanners from the deep 

learning–based harmonization could be ‘improved’ to be closer to the reference scanner of high-

quality, and further reduce the inter-scanner variance. Generally, the proposed deep learning–based 

method introduced in this study is more suitable and effective for the DKI harmonization in some 

long-term and scanner varied multicenter studies. 

 

The diffusion parameters for deep learning–based harmonization is not limited to the DKI-derived 

metrics used in this study; the neural network can be adjusted to predict diffusion properties for 

different requirements. A wide range of multi-component and high-order diffusion models have 

been proposed and extended that relate diffusion signals to microstructural features, such as the 

neurite orientation dispersion and density imaging (NODDI)[63], the composite hindered and 

restricted model of diffusion (CHARMED)[64], and ActiveAx[65,66]. Similar to DKI, these 

measures are also likely to be affected by different TEs, diffusion times, b -factors, and SNRs, 

resulting in varied measures in multicenter studies. However, unlike the strict diffusion schemes 

required by these models, the input DWIs of the neural network are not limited by the use of a fixed 

protocol; it can potentially harmonize these diffusion measures across multiple scanner types with 

inconsistent protocols. Since the complexity of the derived parameters would be different, the 

harmonization performance remains to be tested for each model in future studies. 

 

It is worth noting that care should be taken in applying the deep learning–based harmonization in 

practice. Firstly, it is essential that the harmonization performance on a scanner depends on the 

quality of the reference scanner. In the current study, the DKI labels from reference scanner 

generated by the model fitting were of high reliability in the WM, and the harmonization results 

indicated high efficiency of the method. However, in the grey matter region of low kurtosis, the 

signal dropouts induced by model fitting were found distributed widely, especially in the AK and 

KFA. Therefore, the network would confuse these outliers with normal values, resulting in large 

variance in the grey matter after harmonization.  

 

The second problem is that the image imperfections of the acquired DWIs would also potentially 

affect the data validity after harmonization, such as the image noise and distortion. First, the overall 

high noise of DWIs in each voxel together with its neighbors throughout all diffusion frames could 

slow down the reduction of the cost function within finite epochs during the training phase of the 

network, resulting in unstable weightings of the network. Subsequently in the testing phase, the 

outcomes would reflect this network’s instability. Consequently, even with repeated training using 

the same subjects, the outcomes from the same test subject could still vary. In this study, the SNRs 

were high enough to produce results with low variance, and the variance caused by the network’s 

instability was lower than that between repetition scans on the reference scanner. Second, when the 

image distortion appears differently between the target and the reference scanner, the data validity 

relies on the registration accuracy between the DWIs and DKI labels. Otherwise, the spatial 

mismatched between diffusion signal and DKI measures would be misled in the training phase and 
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impede the optimization of the neural network. For the Dataset 1 in this study, the image distortion 

from Scanner C was obvious without any preprocessing correction. Therefore, nonlinear registration 

was used to minimize the registration error between the Scanner C and the reference scanner D.  

 

The last concern is that the size of the training dataset has an important impact on the effectiveness 

of the deep learning–based method. The outcome stability in the testing phase would improve if a 

large number of effective voxels were used in the training phase. Therefore, more traveling subjects 

should participate in the preparatory data collection of multicenter projects to obtain more training 

voxels. However, for the two datasets in the present study, the original coherence of the measures 

in Dataset 2 was higher than that in Dataset 1; however, the outcome stability of the harmonized 

measures was lower in Dataset 2. Moreover, the harmonization performance in four scanners in 

Dataset 1 varied even from same training data size. As a compromise between harmonization 

performance and collection costs, we used 40% of the subjects for training in this small-scale multi-

scanner study. Nevertheless, the recommended number of traveling subjects is supposed to be 

identical among scanners for consistent harmonization outcomes, and it remains to be established 

in future multicenter studies. 

 

 

5. Conclusions 

A framework for harmonization of multicenter DKI measures was designed and evaluated for its 

feasibility on two datasets with different or identical protocols. The results demonstrated the 

apparent improvements in reliability among different scanners and for each scanner for both datasets. 

This approach of relatively low cost and high efficiency may provide practical guidance for the 

protocol setup and harmonization in future large-scale multicenter projects. 
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