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Yang–Baxter endomorphisms

Roberto Conti and Gandalf Lechner

Abstract

Every unitary solution of the Yang–Baxter equation (R-matrix) in dimension d can be viewed
as a unitary element of the Cuntz algebra Od and as such defines an endomorphism of Od.
These Yang–Baxter endomorphisms restrict and extend to several other C∗- and von Neumann
algebras, and furthermore define a II1 factor associated with an extremal character of the infinite
braid group. This paper is devoted to a detailed study of such Yang–Baxter endomorphisms.

We discuss the relative commutants of the subfactors induced by Yang–Baxter endomor-
phisms, a new perspective on algebraic operations on R-matrices such as tensor products and
cabling powers, the characters of the infinite braid group defined by R-matrices, and ergodicity
properties. This also yields new concrete information on partial traces and spectra of R-matrices.

1. Introduction

This article is motivated by two circles of questions, one pertaining to the Yang–Baxter equation
(YBE) and one to endomorphisms of the Cuntz algebras and related operator algebras, which
are brought into contact by so-called Yang–Baxter endomorphisms. As the name suggests, these
are endomorphisms of various C∗- and von Neumann algebras, as explained below, defined by
unitary solutions of the YBE.

To introduce the subject, recall that the YBE is a cubic equation for an endomorphism
R ∈ End(V ⊗ V ) of the tensor square of a vector space V , namely

(R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R⊗ idV )(idV ⊗R). (1.1)

This equation and its solutions play a prominent role in many different areas of physics and
mathematics. It has its origins in statistical mechanics and quantum mechanics [4, 65], but is
long since known to also be closely connected to braid group representations and knot theory
[41, 61], von Neumann algebras and subfactors [40], and braided categories [24, 29, 49, 60].
Representations of quantum groups [21, 39] are a rich source of solutions for the YBE.

In many of these fields, one is mostly interested in the case that V is a finite-dimensional
Hilbert space and R is a unitary solution of (1.1). Also in the present article, we will only
be concerned with such R-matrices, henceforth always assumed to be unitary, and refer to
d := dimV as the dimension of R. The set of all R-matrices of dimension d is denoted by R(d).

Unitary R-matrices are of great interest in several applications to quantum physics. For
example, in topological quantum computation, they may serve as quantum gates [6, 43, 56],
and in the context of integrable quantum field theories on two-dimensional Minkowski space,
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unitary solutions of a more involved YBE involving a spectral parameter play the role of two-
particle collision operators [1]. Unitary solutions of (1.1), without spectral parameter, then
describe the structure of short-distance scaling limits of such theories [46].

Furthermore, as will be explained further below, R-matrices give rise to certain endomor-
phisms of von Neumann algebras that share many structural properties with endomorphisms
appearing in quantum field theories [19] with braid group statistics [26, 27, 49].

Despite this widespread interest in the YBE, only relatively little is known about its solutions,
and in particular about its unitary solutions, which are very difficult to find in general. In
dimension d = 2, all solutions are known [35] but already for d = 3, this is no longer the case.
For special classes of solutions, see, for example, [7, 31].

The only general class of R-matrices that seems to be under good control are the involutive
R-matrices (that is, R2 = 1) which have recently been completely classified by one of us [45] up
to an equivalence relation originating from algebraic quantum field theory [3]. This classification
relied crucially on the fact that involutive R-matrices define extremal characters of the infinite
symmetric group, a classification of which is known [59].

This situation provides one of our motivations for the present article: To develop tools
that help to understand the set of R-matrices in the vastly more general non-involutive
case. Although often times the braid group representations associated with an R-matrix are
emphasized, these are by no means the only interesting structure attached to an R-matrix, and
in this article, our focus is on certain endomorphisms and subfactors defined by R.

In order to introduce these endomorphisms, we recall some facts about the Cuntz algebras,
see Section 2 for precise definitions and details. The Cuntz algebras Od [16] are a family of
C∗-algebras that play a prominent role in various fields — for example, in superselection
theory and duality for compact groups [20], wavelets [5], and twisted cyclic cocycles in non-
commutative geometry [8], to name just a very few samples from different areas.

There are two fundamental features of Od that underlie the main concept of this article:
First, its unitary elements u ∈ U(Od) are in bijection with its (unital, ∗-) endomorphisms
λu ∈ End(Od) [17]. As Od is a simple C∗-algebra, these are automatically injective. Second,
the Cuntz algebra Od can be thought of as being generated by a d-dimensional Hilbert space V ,
namely it contains all linear maps V ⊗n → V ⊗m, n,m ∈ N0. In particular, there is a uniformly
hyperfinite (UHF) subalgebra Fd isomorphic to the infinite C∗-tensor product of EndV .

In view of these facts, we may view an R-matrix R, which is in particular a unitary
element of End(V ⊗ V ), as a unitary in Od (with d = dimV ) and consider the corresponding
endomorphism λR ∈ EndOd. They will be called Yang–Baxter endomorphisms, and their
analysis is the main subject of this paper.

The Cuntz algebra Od can be completed in a natural way to a type III1/d factor M, and its
subalgebra Fd completes to a type II1 factor N ⊂ M. Any endomorphism of the form λu with
u ∈ U(Fd) leaves the subalgebra Fd ⊂ Od invariant, extends to endomorphisms of their weak
closures M and N (all denoted λu), and thus provides us with the subfactors

λu(M) ⊂ M, λu(N ) ⊂ N . (1.2)

These and related subfactors have been studied by several researchers, often times with the
aim of determining their (Jones and related) indices [2, 13, 38].

Endomorphisms of Cuntz algebras have a very rich structure with many different facets [14,
15], and Yang–Baxter endomorphisms (that is, u = R ∈ R(d)) and their subfactors have further
more special properties. For instance, as an additional structure present in the Yang–Baxter
case, there is a von Neumann algebra LR ⊂ N generated by the braid group representation
associated with R, and λR restricts to the canonical endomorphism ϕ on LR. We will show
that LR is a factor, so that any R-matrix R provides us with yet another subfactor

ϕ(LR) ⊂ LR. (1.3)
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We are thus in a situation where to any R-matrix we may associate various operator-algebraic
structures, derived from their endomorphisms. On the one hand, these data provide interesting
invariants of R-matrices (such as Jones indices, commuting squares, fixed point algebras,
etc.) that go beyond the trivial spectral and dimension data of the R-matrix itself. On the
other hand, the analysis of Yang–Baxter endomorphisms contributes to the understanding of
endomorphisms of Od in general, which is an area in full swing on its own.

We now give an overview of the content of the paper and the main results.
Section 2 introduces R-matrices, Cuntz algebras, and the associated von Neumann algebras

LR ⊂ N ⊂ M in detail. We recall in particular that if one takes R to be one of the most basic R-
matrices, namely the tensor flip F , one obtains the canonical endomorphism ϕ = λF ∈ EndOd,
acting as a shift on the UHF subalgebra. Drawing on the interplay of λR and ϕ, we give three
different characterizations of Yang–Baxter endomorphisms (Proposition 2.3), two of which are
due to Cuntz [18] and one of us [12], respectively. A notable feature is that a Yang–Baxter
endomorphism is an automorphism if and only if R is a multiple of the identity (Corollary 2.4).

With the framework setup in this manner, we consider in Section 3 the three towers of
relative commutants of the subfactors (1.2) (for u = R ∈ R(d)) and (1.3). We give explicit
characterizations of all three relative commutants. The characterizations of the relative
commutants of (1.2) rely strongly on results from [2, 13, 50], but the characterization of
the relative commutant LR,n := ϕn(LR)′ ∩ LR (Proposition 3.4) is new: We characterize it
as an intersection of LR with a matrix algebra, and as the fixed point algebra of Lλϕn(R)

R ,
reminiscent of work of Gohm and Köstler in non-commutative probability [30].

The section concludes with a structural result about LR,n: For any n ∈ N, the diagrams

Fn
d ⊂ N
∪ ∪

LR,n ⊂ LR

ϕn(N ) ⊂ N
∪ ∪

ϕn(LR) ⊂ LR

(1.4)

are commuting squares (Theorem 3.5), where Fn
d is the subalgebra of Fd isomorphic to

EndV ⊗n. This implies in particular that the left inverses of λR and ϕ coincide on LR, and is
later used as a basic tool for computing braid group characters and invariants for R.

Section 4 discusses three algebraic operations on the set of all R-matrices: A tensor product,
Wenzl’s cabling powers [63], and a kind of direct sum. We relate these operations on R-matrices
R to operations on the endomorphisms λR. In particular, the tensor product of R-matrices turns
out to correspond to the tensor product of endomorphisms (on the level of the II1 factor N )
and the cabling power R(n) turns out to correspond to the n-fold power λn

R (on N ).
In Section 5, we introduce three equivalence relations on R-matrices R,S ∈ R(d), each of

which formalizes that one of their subfactors in (1.2) or (1.3) are equivalent. The equivalence
relation relating to the LR-subfactor (1.3), denoted by ∼, is taken from [45] and shown to
exactly capture the braid group character defined by R. We compare with the classification of
involutive R-matrices in Section 5.1 and prove that equivalent R-matrices R ∼ S have similar
partial traces. In this context, we also show that the left and right partial traces of an R-
matrix always coincide and are normal (Theorem 5.8), which provides direct information on
the R-matrices themselves.

Section 6: As a unital normal endomorphism of the type III factor M with finite-dimensional
relative commutant, a Yang–Baxter endomorphism can be decomposed into finitely many
irreducible endomorphisms of M, unique up to inner automorphisms (that is, as sectors in
quantum field theory language) [47, 48]. The main difficulty is that the decomposition of a
Yang–Baxter endomorphism does not respect the YBE, that is, its irreducible components
are no longer of Yang–Baxter form. Nonetheless, such a decomposition provides information
on the underlying R-matrix; for example, we find upper and lower bounds on the minimal
and Jones indices of the subfactors (1.2) in terms of spectral data of R and its partial trace
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(Corollary 6.2). Another corollary is that an R-matrix whose eigenvalues are concentrated in
a sufficiently small disk around 1 is necessarily the identity (Corollary 6.4). We also sketch a
reduction scheme of involutive R-matrices into irreducible components.

Section 7 is about fixed points of Yang–Baxter endomorphisms. Our first result in this
direction is that on the level of the type II factor N , the relative commutant L′

R ∩N
coincides with the fixed point algebra N λR (Proposition 7.1). Moreover, λR is ergodic as
an endomorphism of M if and only if it is ergodic in restriction to N (Proposition 7.3).
This structure enables us to obtain a clear picture of ergodicity and fixed point algebras for
Yang–Baxter endomorphisms which is not known for general elements of EndOd or EndM.
In particular, we give a complete characterization of ergodic Yang–Baxter endomorphisms in
Theorem 7.5 in terms of a condition that only involves the adjoint action of R on EndV .

The article concludes in Section 8, devoted to an analysis of the family of all R-matrices of
dimension d = 2. Strengthening a theorem of Dye [22] (building on Hietarinta’s classical [36]),
we show that R(2) is the disjoint union of four families that could be called trivial R-matrices,
diagonal R-matrices, off-diagonal R-matrices, and a special case (see Theorem 8.1 for details).
We use our previous results to analyze the properties of the corresponding endomorphisms in
detail. In particular, we discuss the special case, an R-matrix that has appeared in various places
in the literature (see, for example, [11, 25, 54]), explain why it is also special from the point
of view of endomorphisms, and compute its (infinite dimensional) fixed-point algebra N λR .

2. R-matrices and Cuntz algebras

The algebraic structures investigated in this article are all derived from unitary solutions of
the YBE, which we will refer to as R-matrices.

Definition 2.1. Let V be a finite dimensional Hilbert space. An R-matrix on V is a unitary
R : V ⊗ V → V ⊗ V such that

(R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R⊗ idV )(idV ⊗R). (2.1)

The dimension of R is defined as dimR := dimV . The set of all R-matrices on Hilbert spaces
of dimension d ∈ N is denoted by R(d), and the set of all R-matrices (of any dimension) is
denoted by R.

Many examples of R-matrices exist, but the general structure of R is not known. Very simple
R-matrices that can be produced in any dimension are multiples of the identity, R = q · 1 (such
R-matrices will be called trivial), and multiples of the tensor flip, that is, R = q · F , where
F (v ⊗ w) = w ⊗ v, v, w ∈ V . Here, q lies in T, the unit circle in the complex plane.

As is well known and will be recalled later, any R ∈ R defines representations of the braid
groups. However, this is by no means the only interesting algebraic structure attached to an
R-matrix, and in this article, we emphasize certain endomorphisms and subfactors defined by
R. To introduce these, we have to recall some well-known facts about Cuntz algebras.

The Cuntz algebra Od is the unital C∗-algebra generated by d � 2 isometries S1, . . . , Sd

such that S∗
i Sj = δij1 and

∑d
i=1 SiS

∗
i = 1 [16]. Using standard notation for multi indices

μ = (μ1, . . . , μn), we set Sμ := Sμ1 · · ·Sμn
and refer to |μ| := n as the length of μ.

The subalgebra Fn
d := span{SμS

∗
ν : |μ| = |ν| = n} is naturally isomorphic to the n-fold

tensor power M
⊗n

d of the full matrix algebra Md, and we will suppress this isomorphism in
our notation. In particular, we may view R-matrices R ∈ R(d) as elements of F2

d ⊂ Od. The
norm closure of the increasing family Fn

d ⊂ Fn+1
d ⊂ . . . is a UHF algebra of type d∞ which we

denote by Fd.
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An important feature of Od that we will rely on throughout is that its unitary elements
u ∈ U(Od) are in bijection with its (unital) endomorphisms λu ∈ EndOd [17]. On generators,
the endomorphism λu corresponding to u ∈ U(Od) is defined by λu(Si) := uSi and every
endomorphism of Od is of this form.

Definition 2.2. A Yang–Baxter endomorphism of Od is an endomorphism of the form λR,
R ∈ R(d).

An important example is the so-called canonical endomorphism ϕ := λF given by the
flip F =

∑d
i,j=1 SiSjS

∗
i S

∗
j , which takes the explicit form ϕ(x) =

∑d
i=1 SixS

∗
i , x ∈ Od. This

endomorphism satisfies Six = ϕ(x)Si for all x ∈ Od and i = 1, . . . , d, and restricts to the one-
sided shift x 	→ idMd

⊗x on the infinite tensor product UHF algebra Fd 
 Md ⊗Md ⊗ . . .,
which indicates its relevance for R-matrices in view of (2.1). In fact, the YBE takes the form
Rϕ(R)R = ϕ(R)Rϕ(R) when R is viewed as an element of F2

d ⊂ Od.
Without further mentioning, we will often use two basic consequences of the definition of λu

(for general unitary u ∈ U(Od)) and ϕ: The composition law

λuλv = λλu(v)u, u, v ∈ U(Od), (2.2)

and an explicit formula for the action of λu on Fn
d : Given arbitrary unitary u ∈ U(Od) and an

integer n � 1, we define two elements of Fn+1
d ,

un := uϕ(u) · · ·ϕn−1(u), nu := ϕn−1(u) · · ·u = (u∗
n)∗ (2.3)

and see that

λu(x) = (adun)(x) for x ∈ Fk
d , n � k, (2.4)

λu(x) = lim
n→∞(adun)(x) for x ∈ Fd. (2.5)

The latter limit exists in the norm topology of Od [18], and we note that for u ∈ Fd, the
endomorphism λu leaves Fd invariant, λu(Fd) ⊂ Fd.

Yang–Baxter endomorphisms can be characterized as follows. The easy proof of (i) ⇔ (iv)
is omitted.

Proposition 2.3. Let R ∈ U(F2
d ). The following conditions are equivalent:

(i) R ∈ R(d), namely Rϕ(R)R = ϕ(R)Rϕ(R),
(ii) λR(R) = ϕ(R) [18],
(iii) R commutes with every element x ∈ λ2

R(Od) [12], and
(iv) λ2

R = λϕ(R)R.

It is a natural question to ask whether Yang–Baxter endomorphisms can be automorphisms,
that is, surjective. While it is well known that for u ∈ F1

d , the associated endomorphism λu

is an automorphism (called quasi-free [23]), with inverse λ−1
u = λu∗ , the problem to recognize

which endomorphisms λu are automorphisms is delicate in general [15]. For Yang–Baxter
endomorphisms, the answer is, however, a straightforward consequence of Proposition 2.3(iii)
[12] because the Cuntz algebra has trivial centre.

Corollary 2.4. For R ∈ R, λR is an automorphism if and only if R ∈ C is trivial.

With the help of the canonical endomorphism ϕ, we may also conveniently intro-
duce the previously mentioned braid group representations associated with R ∈ R(d). Let
Bn = 〈b1, . . . , bn−1〉 denote the braid group on n strands with its standard Artin generators bi,
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and let B∞ denote the infinite braid group, namely the inductive limit of the family Bn ⊂
Bn+1 ⊂ . . .. Given R ∈ R(d), the multiplicative extension of

ρR(bk) := ϕk−1(R) ∈ Fk+1
d ⊂ Fd, k ∈ N, (2.6)

is a group homomorphism ρR : B∞ → U(Fd). We will frequently consider the C∗-algebra
generated by ρR, namely

BR := C∗{ϕn(R) : n ∈ N0} ⊂ Fd, (2.7)

and the closely related C∗-algebras

AR := {x ∈ Od : λR(x) = ϕ(x)}, A(0)
R := AR ∩ Fd. (2.8)

Lemma 2.5. Let R ∈ R(d) and λR its corresponding Yang–Baxter endomorphism.

(i) BR ⊂ A(0)
R , that is,

λR(x) = ϕ(x), x ∈ BR. (2.9)
(ii) λR restricts to an endomorphism of Fd, Ad, A(0)

d , and BR.
(iii) For any n ∈ N, one has

λn
R = λ

nR = λρR(bn···b1), n ∈ N. (2.10)

Proof. We first prove that λR restricts to AR, and to this end, recall that for general
u ∈ U(Od), one has λu ◦ ϕ = adu ◦ ϕ ◦ λu. This implies that if x ∈ Od satisfies λR(x) = ϕ(x),
then

λR(λR(x)) = λR(ϕ(x)) = Rϕ(λR(x))R∗ = Rϕ(ϕ(x))R∗ = ϕ(ϕ(x)) = ϕ(λR(x)), (2.11)

where the next to last step follows from the general fact that Fn
d commutes with ϕn(Od).

This argument yields λR(AR) ⊂ AR. As R ∈ Fd, we also have λR(Fd) ⊂ Fd and therefore
λR(A(0)

R ) ⊂ A(0)
R as well.

Regarding BR, the argument (2.11) can be used to prove λn
R(R) = ϕn(R) by induction in

n ∈ N, the case n = 1 being settled by Proposition 2.3(ii). This implies, n ∈ N0,

λR(ϕn(R)) = λn+1
R (R) = ϕn+1(R) = ϕ(ϕn(R)).

As BR is generated by ϕn(R), n ∈ N0, we have shown both (i) and (ii).
For (iii), we note that nR = ϕn−1(R) · · ·R = ρR(bn · · · b1) by definition of nR and ρR, and

carry out another induction in n to show λn
R = λρR(bn···b1). In fact, λn+1

R = λRλρR(bn···b1) =
λλR(ϕn−1(R)···R)R = λϕn(R)···R = λρR(bn+1···b1). �

Any R-matrix defines several C∗-algebra inclusions, namely λR(Od) ⊂ Od, λR(Fd) ⊂ Fd,
λR(BR) = ϕ(BR) ⊂ BR, etc. We now recall further structure that will allow us to promote
these inclusions to subfactors of von Neumann algebras.

Trivial R-matrices R = d−it1, t ∈ R, define a 2π
log d -periodic one-parameter group of automor-

phisms σt := λd−it1 of Od, and we define the spectral subspaces

O(n)
d := {x ∈ Od : σt(x) = d−itnx}, n ∈ Z. (2.12)

Sometimes, it will be more convenient to work with a rescaled version of σ, namely the (2π)-
periodic gauge action αt := σ−t/ log d = λeit . One has O(0)

d = Fd, and E0 : Od → Fd, E0(x) :=
1
2π

∫ 2π

0
αt(x)dt is a conditional expectation onto the UHF subalgebra.

Viewing Fd as an infinite tensor product, we have the canonical normal normalized trace
state τ : Fd → C, and define ω := τ ◦ E0. This is a KMS state on Od with modular group σt

and we denote the von Neumann algebras generated by its GNS representation (πω,Hω,Ωω)

M := πω(Od)′′ , N := πω(Fd)′′ ⊂ M. (2.13)
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It is well known that M is a III1/d-factor and N is a II1-factor. We will use the same symbols
ω, τ , and E0 : M → N [33] for the extensions of these maps to the weak closures M and N .

For our purposes, it is important to note that for any u ∈ Fd (and in particular, for any
R-matrix), the corresponding endomorphism λu extends to a normal endomorphism of M
leaving ω invariant [50]. Also here, we will use the same symbol for the extension.

To complete the picture, we also introduce the von Neumann algebra LR generated by the
C∗-algebra BR corresponding to some R-matrix R ∈ R, that is,

LR := πω(BR)′′ ⊂ N ⊂ M. (2.14)

As an immediate consequence of (2.9), we observe λR|LR
= ϕ|LR

.
Further structural elements relevant for our analysis are conditional expectations and left

inverses. As λR commutes with σt, Takesaki’s theorem provides us with a unique ω-preserving
conditional expectation ER : M → λR(M), which is faithful and normal and has the form

ER = λR ◦ φR (2.15)

with φR the corresponding ω-preserving left inverse of λR. Recall that φR : M → M is a
completely positive normal linear map that satisfies

φR(λR(x)yλR(z)) = xφR(y)z, x, y, z ∈ M. (2.16)

These properties of φR and the limit formula (2.5) imply

φR(x) = w-lim
n→∞ Rn

∗xRn, x ∈ N . (2.17)

As Rn ∈ LR ⊂ N , this yields in particular

φR(N ) = N , φR(LR) = LR. (2.18)

The left inverse φR is usually difficult to evaluate explicitly. However, in the case of the flip
R = F , one finds φF (x) = 1

d

∑n
k=1 S

∗
kxSk, x ∈ M, which restricts to the normalized partial

trace on the first tensor factor on N ∼= Md ⊗Md ⊗ . . ., namely

φF (a1 ⊗ a2 ⊗ a3 . . . ) = τ(a1) · a2 ⊗ a3 ⊗ . . . , ai ∈ Md. (2.19)

We summarize these structures in terms of commuting squares of von Neumann algebras
[32].

Proposition 2.6. Let R ∈ R(d) and consider the diagram

λR(M) ⊂ M
∪ ∪

λR(N ) ⊂ N
∪ ∪

ϕ(LR) ⊂ LR.

(2.20)

(i) All von Neumann algebras in the diagram are hyperfinite factors.
(ii) Both squares in the diagram are commuting squares.

Proof. (i) All we need to show is that LR is a factor. So let x ∈ LR ∩ L′
R. Then x commutes

with Rn ∈ LR for all n ∈ N, and we have λR(x) = limn(adRn)(x) = x. But since λR restricts
to ϕ on LR, we get ϕ(x) = λR(x) = x. The canonical endomorphism ϕ is well known to have
only trivial fixed points, hence x ∈ C1.

(ii) By Takesaki’s theorem, the conditional expectation ER : M → λR(M) commutes with
the modular group. This implies that ER(N ) ⊂ N ∩ λR(M) = λR(N ), that is, the upper
square in the diagram is a commuting square.
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Recall that for x ∈ N , we have φR(x) = w-limn(adRn
∗)(x). As Rn ∈ LR, this directly gives

invariance of LR under φR, and therefore ER(LR) ⊂ λR(LR) = ϕ(LR). This shows that the
lower square in (2.20) is a commuting square. �

Remark 2.7. As just demonstrated, any R-matrix provides us with (at least) three
subfactors. Let us point out that the M- and N -subfactors contain only partial information
about R. For example, let R = F be the flip, u ∈ U(F1

d ) non-trivial, and α := λu ∈ AutM.
Then λRα = λS with S = ϕ(u)F . Diagonalizing u, it is easy to see that S is a diagonal
R-matrix (cf. Def. 2.8(ii)). Moreover, λR and α commute, and therefore λn

R(M) = λn
S(M),

λn
R(N ) = λn

S(N ) for all n ∈ N. But despite R and S defining identical M- and N -subfactors,
they are different from each other as R-matrices, for instance, R2 = 1 and S2 �= 1.

On the other hand, the subfactors generated by the braid group representations, ϕ(LR) ⊂ LR

and ϕ(LS) ⊂ LS , differ in this example. For instance, we will see later that the first one is
irreducible but the second one is not.

It is a natural question to ask what the indices of the subfactors in (2.20) are. Adopting
standard notation, we will write IndER

(λR) for the index of λR(M) ⊂ M taken with respect
to the ω-invariant conditional expectation, Ind(λR) for the minimal index of λR(M) ⊂ M [34,
44, 47], and [N : λR(N )], [LR : ϕ(LR)] for the Jones indices [40] of the type II1 subfactors
λR(N ) ⊂ N , ϕ(LR) ⊂ LR, respectively.

Independently of the YBE, it is known that IndER
(λR) = [N : λR(N )] � d2 [13, 47], and the

preceding commuting squares result implies [LR : ϕ(LR)] � [N : λR(N )] by a Pimsner–Popa
inequality [53]. We thus have

[LR : ϕ(LR)] � [N : λR(N )] = IndER
(M) � d2 < ∞. (2.21)

New results on indices will be presented in Section 6.
We close this section by presenting a large family of simple R-matrices.

Definition 2.8. (i) Let {pi}Ni=1 be a partition of unity in F1
d , that is, the pi are orthogonal

projections in F1
d such that pipj = δijpi and

∑N
i=1 pi = 1. Let cij ∈ T, i, j ∈ {1, . . . , N}. Then

R :=
N∑
i=1

cii piϕ(pi) +
N∑

i,j=1
i�=j

cijpiϕ(pj)F (2.22)

is an R-matrix. Such R-matrices will be referred to as simple.
(ii) If R ∈ R(d) is a simple R-matrix with only one-dimensional projections, that is,

τ(pi) = 1/d for all i, then there exists a unitary u ∈ U(F1
d ) such that pi = uSiS

∗
i u

∗, and

R = λu(DF ), D =
d∑

i,j=1

cijSiSjS
∗
j S

∗
i . (2.23)

Such R-matrices will be referred to as diagonal.

The straightforward verification of the claims made in this definition is omitted.
We will frequently use simple R-matrices as examples. Note that trivial R-matrices are simple

and the flip is diagonal (choose N = d, pi = SiS
∗
i , cij = 1 for all i, j). The term ‘simple’ should

not be understood in a mathematical sense — in fact, all non-trivial simple R-matrices define
reducible endomorphisms and can be decomposed into smaller R-matrices, as we shall explain
later. There exist (more interesting) R-matrices that are not simple.
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3. Towers of algebras associated with R-matrices

Having established the basic subfactors associated with R-matrices, we now turn to their
analysis, in particular of their relative commutants. As the basis of our following arguments,
we recall some known facts about relative commutants of localized endomorphisms (that is,
endomorphisms of the form λu, u ∈ Fd) of Cuntz algebras.

For any two endomorphisms λ, μ of M, we write

(λ, μ) := {T ∈ M : Tλ(x) = μ(x)T ∀x ∈ M}
for the space of intertwiners from λ to μ. In particular, (λ, λ) = λ(M)′ ∩M is the relative
commutant of λ(M) ⊂ M.

For an arbitrary unitary u ∈ U(Od), one has [50, Proposition 2.5]

(λu, λu) = {x ∈ M : ϕ(x) = u∗xu} = Madu◦ϕ. (3.1)

If, more specifically, u ∈ U(Fn
d ) for some n ∈ N, one furthermore has [13, Proposition 4.2]

(λu, λu) =
n−2⊕

k=−n+2

(λu, λu)(k), (3.2)

(λu, λu)(k) ⊂
{

(ϕn−1, ϕn−1+k) k � 0

(ϕn−1−k, ϕn−1) k < 0
. (3.3)

From this we see in particular

(λu, λu)(0) = λu(M)′ ∩N ⊂ (ϕn−1, ϕn−1) = Fn−1
d , (3.4)

(λu, λu) ⊂ F1
d , u ∈ U(F2

d ), (3.5)

and note that (3.5) occurs in particular for R-matrices u = R ∈ U(F2
d ).

Having recalled these facts, we now turn to study the subfactors given by λR and introduce
their relative commutants, n ∈ N0,

MR,n := λn
R(M)′ ∩M, NR,n := λn

R(N )′ ∩N , LR,n := ϕn(LR)′ ∩ LR.

Thus, MR,n = (λn
R, λ

n
R), but we prefer the notation MR,n in order to distinguish the three

different levels of relative commutants MR,n, NR,n, and LR,n.
We clearly have three ascending towers of algebras:

C = MR,0 ⊂ MR,1 ⊂ · · · ⊂ MR,n ⊂ MR,n+1 ⊂ · · · ⊂ M,

C = NR,0 ⊂ NR,1 ⊂ · · · ⊂ NR,n ⊂ NR,n+1 ⊂ · · · ⊂ N ,

C = LR,0 ⊂ LR,1 ⊂ · · · ⊂ LR,n ⊂ LR,n+1 ⊂ · · · ⊂ LR.

(3.6)

In the following, we will derive various relations/inclusions between these algebras, and
realize them as fixed point algebras for certain endomorphisms. In particular, it is not clear
from the outset if there are inclusions one way or the other between MR,n, NR,n, and LR,n.

We begin with the relative commutants at the highest level, that is, the MR,n.

Proposition 3.1. Let R ∈ R(d) and n ∈ N. Then

MR,n = Mad nR◦ϕ =
n−1⊕

k=−n+1

(M(k))ad nR◦ϕ, (3.7)

M(0)
R,n = λn

R(M)′ ∩ N = (Fn
d )ad nR◦ϕ = {x ∈ Fn

d : ϕ(x) = λR∗(x)}, (3.8)

and in particular for n = 1,

MR,1 = M(0)
R,1 = {x ∈ F1

d : ϕ(x) = R∗xR}. (3.9)
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Proof. Recall that λn
R = λ

nR (2.10) and nR = ϕn−1(R) · · ·ϕ(R)R ∈ Fn+1
d . Then the two

equalities in the first line immediately follow from (3.1) and (3.2).
In the second line, the first equality is the definition of M(0)

R,n and the second equality follows
by combining (3.1) with (3.4) and nR ∈ Fn+1

d . To get the last equality, note that for x ∈ Fn
d ,

λR∗(x) = ad(R∗)n(x) = ad(nR)∗(x),

and therefore, x ∈ (Fn
d )ad nR◦ϕ is equivalent to x ∈ Fn

d with ϕ(x) = ad(nR)∗(x) = λR∗(x). The
special case n = 1 now follows from the previous statements. �

As an example, we consider the structure of MR,1 for a class of simple R-matrices. Namely, if
R is a simple R-matrix (Definition 2.8(i)) with projections p1, . . . , pN ∈ F1

d and parameters cij ,
i, j ∈ {1, . . . , N}, such that cij = 1 for i �= j, then one finds by a straightforward but tedious
calculation that

MR,1
∼= C ⊕ . . .⊕ C︸ ︷︷ ︸

N−m terms

⊕Mm, (3.10)

where m = |{i ∈ {1, . . . , N} : τ(pi) = 1/d, cii = 1}|. In particular, these R-matrices are
reducible in the sense that MR,1 �= C unless R ∈ C (N = 1).

The relative commutants NR,n of the type II1 factors have been characterized before. Trans-
ferred to our setting, the following result can be extracted from [2] and [14, Proposition 2.3].

Proposition 3.2. Let R ∈ R(d) and n ∈ N. Then

NR,n =
⋂
k�0

(ad nR ◦ ϕ)k(Fn
d ) (3.11)

is the largest subalgebra of Fn
d that is globally stable under ad nR ◦ ϕ. In particular,

M(0)
R,n ⊂ NR,n, n ∈ N, MR,1 ⊂ NR,1 ⊂ F1

d . (3.12)

Remark 3.3. Let us give an example showing that in general, MR,1 �= NR,1. For later use,
we actually give two similar examples, both based on the flip F and a unitary u ∈ F1

d , namely

R := uF, S := uFu∗ = uϕ(u∗)F.

Both R and S are R-matrices, as can be checked by direct verification of the YBE, or by
realizing that they are diagonal (Definition 2.8). For x ∈ F1

d , we have

(adR ◦ ϕ)(x) = RFxFR∗ = uxu∗,

(adS ◦ ϕ)(x) = SFxFS∗ = uϕ(u∗)xϕ(u)u∗ = uxu∗.

Thus, F1
d is globally invariant under adR ◦ ϕ and adS ◦ ϕ, and therefore NR,1 = NS,1 = F1

d .
But for u �∈ C, the above formula shows that not every x ∈ F1

d is a fixed point of adR ◦ ϕ or
adS ◦ ϕ, that is, MR,1 = MS,1 is a proper subalgebra of F1

d .

We now move on to the relative commutants LR,n on the level of the von Neumann algebra
LR generated by the B∞-representation ρR. In this representation, R represents the first
generator b1 ∈ B∞; in particular, LR = LR∗ .

The following result contains a fixed point characterization LR,n = Lλϕn(R)

R which is similar
to the work of Gohm and Köstler [30], where analogues of λϕn(R) are called ‘partial shifts.’
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Proposition 3.4. Let R ∈ R(d) and n ∈ N0. Then

(i) LR,n = Fn
d ∩ LR = Lλϕn(R)

R = MR,n ∩ LR, and all these algebras are invariant under
exchanging R and R∗.

(ii) C∗(ρR(Bn)) ⊂ LR,n, n � 1.

Proof. (i) We will demonstrate the inclusions

LR,n

(i)⊂ Lλϕn(R)

R

(ii)⊂ MR∗,n ∩ LR

(iii)⊂ Fn
d ∩ LR

(iv)⊂ LR,n.

Note the appearance of R∗ instead of R in the third algebra. Nonetheless, this chain of inclusions
implies the claimed equalities because we have LR = LR∗ and may thus run through the chain
of inclusions once more with R and R∗ interchanged, realizing that all algebras are invariant
under replacing R with R∗.
To begin with, we note that λϕn(R)(x), x ∈ N , can be written as

λϕn(R)(x) = lim
k→∞

ϕn(R) · · ·ϕn+k(R)xϕn+k(R∗) · · ·ϕn(R∗)

= ϕn−1(R∗) · · ·R∗λR(x)R · · ·ϕn−1(R) = n(R∗)λR(x)n(R∗)∗.

The first line shows that any x ∈ ϕn(LR)′ is fixed by λϕn(R), that is, we have inclusion (i).
Any x ∈ LR satisfies λR(x) = ϕ(x), and thus, the above calculation yields

Lλϕn(R)

R ⊂ {x ∈ LR : x = (ad n(R∗) ◦ ϕ)(x)} = MR∗,n ∩ LR,

where we have used Proposition 3.1. This shows the inclusion (ii).
As LR ⊂ N , we also have MR∗,n ∩ LR = M(0)

R∗,n ∩ LR ⊂ Fn
d ∩ LR by Proposition 3.1, showing

inclusion (iii). Inclusion (iv) is evident because Fn
d and ϕn(LR) commute in N .

(ii) By definition of ρR, we have C∗(ρR(Bn)) ⊂ Fn
d ∩ LR = LR,n. �

We have seen that the relative commutants satisfy

LR,n ⊂ M(0)
R,n ⊂ NR,n ⊂ Fn

d , n ∈ N. (3.13)

We furthermore note that λR and φR act on these three towers according to

λR(MR,n) ⊂ MR,n+1, λR(NR,n) ⊂ NR,n+1, λR(LR,n) ⊂ LR,n+1, (3.14)

φR(MR,n+1) = MR,n, φR(NR,n+1) = NR,n, φR(LR,n+1) = LR,n, (3.15)

and that R fits into these algebras via

R ∈ LR,2 ⊂ M(0)
R,2 ⊂ MR,2 ∩NR,2, (3.16)

φR(R) ∈ LR,1 ⊂ MR,1 ⊂ NR,1. (3.17)

This also implies that the inclusion C∗(ρR(Bn)) ⊂ LR,n in Proposition 3.4(ii) is proper in
general. For example, for n = 1, the group Bn is trivial, that is, C∗(ρR(B1)) = C, but LR,1

contains φR(R) which is non-trivial in general.
Our main results concerning the relative positions of ϕn(LR) and LR,n in N are stated in the

following theorem. The τ -preserving conditional expectation N → Fn
d will be denoted by En.

Theorem 3.5. Let R ∈ R and n ∈ N. Then the squares

Fn
d ⊂ N
∪ ∪

LR,n ⊂ LR

ϕn(N ) ⊂ N
∪ ∪

ϕn(LR) ⊂ LR

(3.18)

commute, that is, En(LR) = LR,n and φR(x) = φF (x), x ∈ LR.



12 ROBERTO CONTI AND GANDALF LECHNER

The proof splits naturally into two parts, one for each diagram. The proof for the left diagram
is given below. The proof for the right diagram requires more work and is best done after more
structure has been introduced. It is therefore postponed to Section 5 (p. 21).

Proof (first half). Let HR,n denote the τ -preserving conditional expectation of N λϕn(R) ⊂
N . As LR ⊂ N is invariant under λϕn(R) by Proposition 3.4, the map HR,n restricts to the
τ -preserving conditional expectation from LR onto Lλϕn(R) = LR,n = Fn

d ∩ LR.
Given x ∈ LR, we want to show that HR,n(x) coincides with En(x). Indeed, both HR,n(x)

and En(x) lie in Fn
d , so we only have to show τ(yHR,n(x)) = τ(yEn(x)) for all y ∈ Fn

d . But
Fn

d is clearly contained in the fixed point algebra N λϕn(R) . Thus, for x ∈ LR, y ∈ Fn
d ,

τ(yHR,n(x)) = τ(HR,n(yx)) = τ(yx) = τ(En(yx)) = τ(yEn(x)).

This shows En(x) = HR,n(x) ∈ LR,n, which is equivalent to the left square commuting. �

So far, we have concentrated on the ‘horizontal inclusions’ in (3.6). The ‘vertical inclusions’
LR ⊂ N , LR ⊂ M, are closely connected to fixed points of λR and will be discussed in Section 7.

4. Algebraic operations on R
Although the structure of the set R(d) of all R-matrices of dimension d is not known, a number
of symmetries of R(d) are known. For example, R 	→ R∗, R 	→ c ·R, c ∈ T, R 	→ (u⊗ u)R(u⊗
u)∗, u ∈ U(F1

d ), and R 	→ FRF with the flip F ∈ R(d), are bijections of R(d)†.
However, it is often more interesting to consider algebraic operations that exist only on

R =
⋃

d R(d) and do not preserve the spaces R(d) of R-matrices of fixed dimension d. In this
section, we will discuss three such structures: A tensor product R� S (with dim(R� S) =
dimR · dimS), Wenzl’s cabling powers R(n) (with dim(R(n)) = (dimR)n), and a sum operation
R� S (with dim(R� S) = dimR + dimS).

On the level of R-matrices, all these operations are known. What is new in our approach is
that we relate them to natural operations on the corresponding Yang–Baxter endomorphisms.

In the following, the dimension d will be explicitly indicated in our notation, that is, we
write Nd for the infinite tensor product of matrix algebras Md, and τd, ϕd for its canonical
trace and shift, Fd ∈ U(F2

d ) for the flip in dimension d, etc.

4.1. Tensor products of R-matrices

Let R ∈ R(d) ⊂ End(Cd ⊗ C
d), R̃ ∈ R(d̃) ⊂ End(Cd̃ ⊗ C

d̃) be R-matrices. The tensor product
of R, R̃ is defined as

R� R̃ := F23(R⊗ R̃)F23 ∈ End((Cd ⊗ C
d̃) ⊗ (Cd ⊗ C

d̃)), (4.1)

where F23 : C
d ⊗ C

d̃ ⊗ C
d ⊗ C

d̃ → C
d ⊗ C

d ⊗ C
d̃ ⊗ C

d̃ is the flip unitary exchanging the two
middle factors. Evidently R� R̃ is a unitary R-matrix of dimension dd̃, that is, R� R̃ ∈ R(dd̃).
We will refer to R� R̃ as the tensor product of R and R̃ (although it slightly differs from the
actual tensor product R⊗ R̃). It is also clear that (R� R̃)∗ = R∗ � R̃∗, and that if both R
and R̃ are involutive, then so is R� R̃.

From the point of view of the Cuntz algebras, we may consider R ∈ F2
d , S ∈ F2

d̃
, and R� R̃ ∈

F2
dd̃

. The following discussion will give us a precise relation between the associated subfactors.
Let Od and Od̃ be Cuntz algebras with canonical generators Si, 1 � i � d and S̃j , 1 �

j � d̃, respectively. Namely, all the Si and S̃j are isometries such that
∑d

i=1 SiS
∗
i = 1,

†The maps R �→ (u⊗ u)R(u⊗ u)∗ and R �→ FRF will be discussed in more detail in Section 5.
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∑d̃
j=1 S̃jS̃

∗
j = 1, and Od = C∗(S1, . . . , Sd), Od̃ = C∗(S̃1, . . . , S̃d̃). The tensor product C∗-

algebra Od ⊗Od̃ is generated by the elements Si ⊗ 1 and 1 ⊗ S̃j , 1 � i � d, 1 � j � d̃.† In
general, Od ⊗Od̃ is not a Cuntz algebra‡.

Consider also the Cuntz algebra Odd̃, with canonical generating isometries Uij , 1 � i � d, 1 �
j � d̃ such that

∑
i,j UijU

∗
ij = 1. Since, for every 1 � i � d and 1 � j � d̃, Si ⊗ S̃j is an isometry

in Od ⊗Od̃ and, moreover,
∑

i,j Si ⊗ S̃j(Si ⊗ S̃j)∗ = (
∑

i SiS
∗
i ) ⊗ (

∑
j S̃jS̃

∗
j ) = 1 ⊗ 1, there is

an injective ∗-homomorphism

ιd,d̃ : Odd̃ → Od ⊗Od̃ (4.2)

such that ιd,d̃(Uij) = Si ⊗ S̃j .
In order to simplify the notation, in the sequel, we will often drop the symbol ιd,d̃ and identify

accordingly Uij with Si ⊗ S̃j . All in all, we have thus identified a copy of Odd̃ inside Od ⊗Od̃,
as the C∗-subalgebra of the tensor product generated by the isometries Si ⊗ S̃j . Moreover, it is
not difficult to see that Odd̃ = (Od ⊗Od̃)

β , where β denotes the 2π-periodic ‘twisted’ R-action
βt := αt

d ⊗ α−t

d̃
= λeit1d

⊗ λe−it1d̃
[9, 52], and there exists a faithful conditional expectation

Od ⊗Od̃ → Odd̃ obtained by averaging β.
Under the identification of Odd̃ with (Od ⊗Od̃)

β , there are coherent identifications of Fn
dd̃

with Fn
d ⊗Fn

d̃
, n ∈ N, such that

Ui1j1Ui2j2 · · ·UinjnU
∗
i′nj′n

· · ·U∗
i′2j

′
2
U∗
i′1j

′
1

= (Si1 ⊗ S̃j1)(Si2 ⊗ S̃j2) · · · (Sin ⊗ S̃jn)(Si′n ⊗ S̃j′n)∗ · · · (Si′2 ⊗ S̃j′2)
∗(Si′1 ⊗ S̃j′1)

∗

= (Si1Si2 · · ·SinS
∗
i′n
· · ·S∗

i′2
S∗
i′1

) ⊗ (S̃j1 S̃j2 · · · S̃jn S̃
∗
j′n

· · · S̃∗
j′2
S̃∗
j′1

),

and thus of Fdd̃ = Oαdd̃

dd̃
with Fd ⊗Fd̃ = Oαd

d ⊗Oαd̃

d̃
.

For the following lemma, the YBE is not needed.

Lemma 4.1. (i) Let R ∈ U(Od) and R̃ ∈ U(Od̃). Then λR ⊗ λR̃ ∈ End(Od ⊗Od̃) restricts to

an endomorphism of Odd̃ if and only if R ∈ Fd and R̃ ∈ Fd̃.

(ii) Let R ∈ U(F2
d ), R̃ ∈ U(F2

d̃
). Then ιd,d̃(R� R̃) = R⊗ R̃, and

(λR ⊗ λR̃)|Odd̃
= λR�R̃. (4.3)

Proof. (i) On generators, the endomorphism λR ⊗ λR̃ ∈ End(Od ⊗Od̃) acts according to
(λR ⊗ λR̃)(Si ⊗ S̃j) = (R⊗ R̃)(Si ⊗ S̃j) for all i, j. Thus, λR ⊗ λR̃ restricts to Odd̃, that is
(λR ⊗ λR̃)(Odd̃) ⊂ Odd̃, precisely when R⊗ R̃ ∈ Odd̃, that is, precisely when αt

d(R) ⊗ α−t

d̃
(R̃) =

R⊗ R̃ for all t ∈ R. This latter condition is satisfied if and only if both R and R̃ are eigenvectors
for αd and αd̃, respectively, that is, R ∈ O(n)

d , R̃ ∈ O(n)

d̃
for some n ∈ Z. But this is easily seen

to be in conflict with the KMS condition for ω if n �= 0. Thus, R ∈ O(0)
d = Fd, R̃ ∈ O(0)

d̃
= Fd̃.

(ii) Note that the matrix elements of R� R̃ are (R� R̃)(αi)(βj)(γk)(δl) = Rαβ
γδ R̃

ij
kl, where α, β, γ, δ ∈

{1, . . . , d} and i, j, k, l ∈ {1, . . . , d̃}. Thus,

R� R̃ =
∑

Rαβ
γδ R̃

ij
klUαiUβjU

∗
δlU

∗
γk

ιdd̃	−→
∑

Rαβ
γδ R̃

ij
klSαSβS

∗
δS

∗
γ ⊗ SiSjS

∗
l S

∗
k = R⊗ R̃,

and the calculation in (i) shows (λR ⊗ λR̃)|Odd̃
= λR�R̃. �

†Since Od is nuclear, there is no ambiguity on the choice of the cross-norm on the algebraic tensor product.
‡However, it is well known that O2 ⊗Od � O2, for all d � 2, although none of these isomorphisms has been

concretely exhibited.
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Let us look at two special cases, the identity 1d ∈ Od and the flip Fd ∈ Od. Then 1d �
1d̃ = 1dd̃ and Fd � Fd̃ = Fdd̃. For the canonical 2π-periodic actions of R, this implies that
λeit1d

⊗ λeit1d̃
∈ Aut(Od ⊗Od̃) restricts to λe2it1dd̃

on Odd̃, and for the canonical shifts, this
implies that ϕd ⊗ ϕd̃ restricts to ϕdd̃. Indeed, for all i and j,

ϕdd̃(Si ⊗ S̃j) =
∑
i′,j′

(Si′ ⊗ S̃j′)(Si ⊗ S̃j)(Si′ ⊗ S̃j′)∗

=

(∑
i′

Si′SiS
∗
i′

)
⊗
⎛
⎝∑

j′
S̃j′ S̃jS̃

∗
j′

⎞
⎠ = ϕd(Si) ⊗ ϕd̃(S̃j).

Notice that the index of ϕd(Nd) ⊂ Nd is d2, so that in this example, we see immediately that
the index of the endomorphism associated to the tensor product Fd � Fd̃ is the product of the
indices of the endomorphisms given by Fd and Fd̃.

This is an instance of a general fact. Since Fdd̃ is identified with Fd ⊗Fd̃, the same holds on
the level of the weak closures, and

λR�R̃(Ndd̃) = (λR ⊗ λR̃)(Nd ⊗Nd̃) = λR(Nd) ⊗ λR̃(Nd̃). (4.4)

From here we readily get the multiplicativity of the Jones index under the tensor product.

Theorem 4.2. Let R ∈ U(F2
d ), R̃ ∈ U(F2

d̃
). Then the Jones indices of the type II1 subfactors

associated to R, R̃, and R� R̃ are related by

[Ndd̃ : λR�R̃(Ndd̃)] = [Nd : λR(Nd)] · [Nd̃ : λR̃(Nd̃)] . (4.5)

Since this result applies in particular to R-matrices, we see that the subset of the positive
real line R+ of all Jones indices arising from unitary solutions of the YBE (in any dimension)
is closed under taking ordinary products.

The next result is about the relative commutants given by the tensor product.

Proposition 4.3. Let R ∈ R(d), R̃ ∈ R(d̃). Then

MR,1 ⊗MR̃,1 ⊆ MR�R̃,1 ⊆ NR�R̃,1 = NR,1 ⊗NR̃,1. (4.6)

Proof. On the one hand,

MR,1 ⊗MR̃,1 = {x ∈ F1
d : λR∗(x) = ϕd(x)} ⊗ {y ∈ F1

d̃
: λR̃∗(y) = ϕd̃(y)}

⊆ {T ∈ F1
d ⊗F1

d̃
: (λR∗ ⊗ λR̃∗)(T ) = (ϕd ⊗ ϕd̃)(T )}

= {T ∈ F1
dd̃

: λ(R�R̃)∗(T ) = ϕdd̃(T )} = MR�R̃,1.

On the other hand,

MR�R̃,1 ⊆ NR�R̃,1 = {T ∈ F1
dd̃

: [T, λR�R̃(x)] = 0, x ∈ Fdd̃ }

= {T ∈ F1
d ⊗F1

d̃
: [T, (λR ⊗ λR̃)(x)] = 0, x ∈ Fd ⊗Fd̃}

=
(
λR(Fd) ⊗ λR̃(Fd̃)

)′ ∩ (F1
d ⊗F1

d̃

)
=
(
λR(Nd)′ ⊗ λR̃(Nd̃)

′) ∩ (F1
d ⊗F1

d̃
) = NR,1 ⊗NR̃,1. �
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Figure 1. Illustration of 3R3 = ϕ2(R)ϕ(R)R · ϕ3(R)ϕ2(R)ϕ(R) · ϕ4(R)ϕ3(R)ϕ2(R).

4.2. Cabling powers of R-matrices

The second algebraic operations on R that we want to discuss are cabling powers [55, 63].
Given d, n ∈ N, we define ‘cabling maps’ between type II1-factors, cn : Nd → Ndn , such that
cn(
⊗nm

i=1 Md) =
⊗m

i=1 Mdn for all m � 1, by linear and weakly continuous extension from
algebraic tensor products,

cn

(
nm⊗
i=1

xi

)
:=

(
n⊗

i=1

xi

)
⊗
(

2n⊗
i=n+1

xi

)
⊗ . . .⊗

⎛
⎝ nm⊗

i=(m−1)n+1

xi

⎞
⎠ , xi ∈ Md. (4.7)

It follows that cn is an isomorphism with the properties

cn(1) = 1, τdn ◦ cn = τd, ϕdn ◦ cn = cn ◦ ϕn
d , cn(Fkn

d ) = Fk
dn , k ∈ N.

To define the nth cabling power of R ∈ R(d), we also introduce

nRn := (nR)n = nR · · ·ϕn−1(nR)

= ϕn−1(R) · · ·R · ϕn(R) · · ·ϕ(R) · · ·ϕ2n−2(R) · · ·ϕn−1(R) = n(Rn).

Note that nRn is a unitary in F2n
d which satisfies (nRn)∗ = n(R∗)n. For low n, we have 1R1 = R

and 2R2 = ϕ(R)Rϕ2(R)ϕ(R). A graphical illustration of 3R3 is given in Figure 1.
Wenzl’s cabling powers of an R-matrix take in our setting the following form.

Definition 4.4. Let R ∈ R(d) and n ∈ N. The nth cabling power of R is

R(n) := cn(nRn) ∈ U(F2
dn) (4.8)

R(n) is an R-matrix in R(dn), and (R(n))∗ = (R∗)(n).

The proof that R(n) ∈ R(dn) can be found in [63].
We now show that at least on the level of the type II factor N , cabling powers of R-matrices

correspond to ordinary powers of their corresponding Yang–Baxter endomorphisms.

Proposition 4.5. Let R ∈ R(d) and n ∈ N. Then

(c−1
n λR(n)cn)(x) = λn

R(x), x ∈ Nd. (4.9)

In particular,

[Ndn : λR(n)(Ndn)] = [Nd : λR(Nd)]n. (4.10)

Proof. We calculate, k ∈ N,

c−1
n ((R(n))k) = c−1

n (R(n) · · ·ϕk−1
dn (R(n))) = nRn · ϕn

d (nRn) · · ·ϕn(k−1)
d (nRn)

= nR · · ·ϕn−1(nR) · ϕn(nR) · · ·ϕ2n−1(nR) · . . . · ϕn(k−1)(nR) · · ·ϕnk−1(nR). = (nR)kn.
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Hence, for any x ∈ Nd,

(c−1
n λR(n)cn)(x) = lim

k→∞
ad c−1

n ((R(n))k)(x) = lim
k→∞

ad((nR)nk)(x) = λ
nR(x) = λn

R(x).

As all the subfactors λk+1
R (N ) ⊂ λk

R(N ), k ∈ N0, are isomorphic, this implies (4.10). �

Remark 4.6. Let R �∈ C be non-trivial, and recall that λn
R is reducible for n � 2 in the

sense that MR,n �= C; namely R ∈ MR,2 ⊂ NR,2. Thus, Proposition 4.5 immediately implies
that λR(n) is reducible as an endomorphism of Ndn . This remains true on the level of the
III1/dn-factor because cn(R) ∈ MR(n),1.

The identity and the flip reproduce themselves under taking cabling powers, that is,
1(n)
d = 1dn and F

(n)
d = Fdn . For later reference, we note that this implies in particular

ϕdn = λF (n) ∈ EndNdn , φF (n) = cn ◦ φn
F ◦ c−1

n . (4.11)

4.3. Sums of R-matrices

The third operation on R that we want to discuss is additive on dimension. Given R ∈ R(d),
R̃ ∈ R(d̃), we define R� R̃ ∈ End((Cd ⊕ C

d̃) ⊗ (Cd ⊕ C
d̃)) by [45]

R� R̃ := R⊕ R̃⊕ F on (4.12)

(Cd ⊕ C
d̃) ⊗ (Cd ⊕ C

d̃) = (Cd ⊗ C
d) ⊕ (Cd̃ ⊗ C

d̃) ⊕ ((Cd ⊗ C
d̃) ⊕ (Cd̃ ⊗ C

d)).

In other words, R� R̃ acts as R on C
d ⊗ C

d, as R̃ on C
d̃ ⊗ C

d̃, and as the flip on the mixed
tensors involving factors from both, C

d and C
d̃.

If R, R̃ are R-matrices, then so is R� R̃ [45]. We also mention that we clearly have (R�
R̃)∗ = R∗ � R̃∗, and Fd � Fd̃ = Fd+d̃. The identity is, however, not preserved under this sum.
For example, we have 11 � 11 = F2.

Given R ∈ R(d), R̃ ∈ R(d̃), we get an endomorphism λR�R̃ ∈ End(Od+d̃). We currently have
no detailed picture of λR�R̃. However, it is clear that λR�R̃ is always reducible, as follows from
the following result.

Proposition 4.7. Let R ∈ R(d), R̃ ∈ R(d̃). Then

MR,1 ⊕MR̃,1 ⊂ MR�R̃,1; (4.13)

in particular, λR�R̃ is always reducible. The inclusion (4.13) is proper in general. We also
have

φR�R̃(R� R̃) = d
d+d̃

φR(R) ⊕ d̃
d+d̃

φR̃(R̃). (4.14)

Proof. Let x ∈ MR,1 ⊂ F1
d and x̃ ∈ MR̃,1 ⊂ F1

d̃
, that is, R∗xR = ϕd(x) and R̃∗x̃R̃ = ϕd̃(x̃).

We may view F1
d+d̃

as End(Cd ⊕ C
d̃), and define p := 1 ⊕ 0, p⊥ := 1 − p = 0 ⊕ 1 to be the

orthogonal projections onto the two summands. Then

(R∗ � R̃∗)(x⊕ x̃)(R� R̃) = (R∗ � R̃∗)(pxp + p⊥x̃p⊥)ϕd+d̃(p + p⊥)(R� R̃)

= pϕd(p)R∗xRpϕd(p) + p⊥ϕd̃(p
⊥)R̃∗x̃R̃p⊥ϕd̃(p

⊥)

+ϕd(pxp)p⊥ + ϕd̃(p
⊥x̃p⊥)p
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= pϕd(pxp) + p⊥ϕd̃(p
⊥x̃p⊥) + ϕd(pxp)p⊥ + ϕd̃(p

⊥x̃p⊥)p

= ϕd(pxp) + ϕd̃(p
⊥x̃p⊥) = ϕd+d̃(x⊕ x̃).

This proves x⊕ x̃ ∈ MR�R̃,1.
The second statement follows from Theorem 3.5: For each R-matrix R ∈ R(d), we have

φR(R) = φF (R) with F ∈ R(d) the flip, that is, φR(R) coincides with the normalized left
partial trace of R. The claim then follows from the fact that the non-normalized partial trace
maps � sums to direct sums [45, Lemma 4.2(iv)]. �

Remark 4.8. The sum operation � allows us to write down many examples of R-matrices
and is the concept behind the definition of simple R-matrices (Definition 2.8). Namely, we can
start from trivial R-matrices R = c · 1d ∈ R(d), c ∈ T, and build non-trivial ones by summation,
that is,

R = c11d1 � c21d2 � · · ·� cN1dN
∈ R(d1 + · · · + dN ), c1, . . . , cN ∈ T.

Note that we may describe such R-matrices equivalently as follows: There is a partition of unity
in F1

d , that is, pairwise orthogonal projections p1, . . . , pN ∈ F1
d such that p1 + · · · + pN = 1.

To each projection pi, we have associated a phase factor ci ∈ T. Then

R =
N∑
i=1

ci (pi ⊗ pi) + F

N∑
i,j=1
i�=j

(pi ⊗ pj), (4.15)

which we realize to be a special form of simple R-matrix (Definition 2.8). The more general
form (2.22) is obtained by a slightly more general form of sum �, involving the parameters cij ,
i �= j.

5. Equivalences of R-matrices

In the last section, we related natural operations on R-matrices to operations on their
endomorphisms. Conversely, one can start from a natural operation/relation on endomorphisms
and relate it to structure on the level of the underlying R-matrices. The most obvious
operation, namely composition of endomorphisms, does, however, not preserve the YBE, that
is, the product of two Yang–Baxter endomorphisms is usually not Yang–Baxter. Instead,
we will consider equivalence relations given by conjugation with automorphisms, and define
corresponding equivalence relations on R(d).

Definition 5.1. Let R,S ∈ R(d).

(i) R,S are M-equivalent if and only if there exists an automorphism α ∈ AutM such
that λR = α ◦ λS ◦ α−1, and we write R ∼∼∼ S in this case.

(ii) R,S are N -equivalent if and only if there exists an automorphism β ∈ AutN such that
λR|N = β ◦ λS |N ◦ β−1, and we write R ≈ S in this case.

(iii) R,S are equivalent if and only if there exists an isomorphism γR,S : LR → LS such that
γR,S(R) = S and ϕ(γR,S(x)) = γR,S(ϕ(x)) for all x ∈ LR, and we write R ∼ S in this case.

(iv) R,S have equivalent representations if and only if for each n ∈ N, the representations
ρ
(n)
R and ρ

(n)
S of the braid group Bn on n strands are unitarily equivalent.

It is clear that the subfactors λR(M) ⊂ M, λR(N ) ⊂ N , and ϕ(LR) ⊂ LR are equivalent
to λS(M) ⊂ M, λS(N ) ⊂ N , and ϕ(LS) ⊂ LS) if R ∼∼∼ S, R ≈ S and R ∼ S, respectively. It
is also clear that the relations ∼∼∼, ≈, ∼ are different from each other.
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The last equivalence relation (equivalence of representations) was originally introduced
in [3] and played a prominent role in the classification of involutive R-matrices [45]. It
essentially captures the character of an R-matrix, defined as the positive definite normalized
class function

τR : B∞ → C, τR := τ ◦ ρR. (5.1)

Equivalence of representations turns out to be the same as equivalence (∼):

Proposition 5.2. Let R,S ∈ R(d). The following are equivalent.

(i) R and S have equivalent representations.
(ii) R ∼ S.
(iii) R and S have the same character τR = τS .

Proof. (i) ⇒ (ii) If R and S have equivalent representations, there exist unitaries Yn ∈ U(Fn
d )

such that Ynϕ
k(R)Y ∗

n = ϕk(S), k ∈ {0, 1, . . . , n− 2}. This implies that for any x ∈ ρR(CB∞),

γR,S(x) := lim
n→∞YnxY

∗
n (5.2)

exists, and the so-defined map γR,S is an isomorphism ρR(CB∞) → ρS(CB∞) with
γR,S(ϕk(R)) = ϕk(S), k ∈ N0. Obviously γR,S preserves τ and extends to an isomorphism
LR → LS (denoted by the same symbol).

It remains to show ϕ(γR,S(x)) = γR,S(ϕ(x)) for all x ∈ LR. Indeed,

γR,S(ϕ(x)) = γR,S(λR(x)) = w-lim
n→∞ γR,S((adRn)(x))

= w-lim
n→∞ (adSn)(γR,S(x)) = λS(γR,S(x)) = ϕ(γR,S(x)).

Hence R ∼ S.
(ii) ⇒ (iii) Let R ∼ S. From the definition of this equivalence relation, we have an

isomorphism γR,S : LR → LS such that γR,S ◦ ρR = ρS , and the uniqueness of the trace implies
that γR,S preserves τ . Hence, for any b ∈ B∞,

τS(b) = τ(ρS(b)) = τ(γR,S(ρR(b))) = τ(ρR(b)) = τR(b).

(iii) ⇒ (i) Let R,S have coinciding characters τR = τS , and pick n ∈ N, x ∈ CBn. Then

τ(ρ(n)
R (x)∗ρ(n)

R (x)) = τR(x∗x) = τS(x∗x) = τ(ρ(n)
S (x)∗ρ(n)

S (x)),

and the faithfulness of τ yields ker ρ(n)
R = ker ρ(n)

S . So α : ρ(n)
R (CBn) → ρ

(n)
S (CBn), ρ(n)

R (x) 	→
ρ
(n)
S (x), is an isomorphism of finite-dimensional C∗-algebras. Furthermore, equality of

characters τR = τS implies τ ◦ α = τ on ρ
(n)
R (CBn).

But a trace-preserving isomorphism of finite-dimensional C∗-algebras represented on Hilbert
spaces of the same dimension is always implemented by a unitary between these Hilbert spaces,
that is, there exists a unitary Yn ∈ Fn

d such that YnρR(x)Y −1
n = ρS(x), x ∈ CBn. This shows

that R and S have equivalent representations. �

We mention as an aside that we may view τR as a state on CB∞, and that the von Neumann
algebra generated by the GNS construction of (CB∞, τR) is naturally isomorphic to the factor
LR. Thus, we see that τR is an extremal (or indecomposable) character, that is, an extreme
point in the convex set of positive normalized class functions, generalizing a result from [45]
to non-involutive R-matrices.
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In general, the character equivalence relation ∼ does not imply the ‘higher’ equivalences ≈,

∼∼∼, but sometimes γR,S : LR → LS extends to appropriate automorphisms of N or M. In the
following, we discuss three example scenarios that we will subsequently refer to as ‘type 1–3.’

Type 1. Let R ∈ R(d) and u ∈ U(F1
d ). Then S := uϕ(u)Rϕ(u)∗u∗ = λu(R) ∈ R(d) and

R ∼ S. One can choose the intertwiners as Yn := un, and easily verifies that λu is an
automorphism satisfying λS = λu ◦ λR ◦ λ−1

u . Since λu leaves N invariant, we have R ∼∼∼ S and
R ≈ S in this case, with the isomorphisms α, β, γR,S from the various equivalence relations all
being given by (restrictions of) λu.

Type 2. Let R ∈ R(d) and u ∈ U(F1
d ) such that λu(R) = R (that is, R commutes with

uϕ(u)). Then S := ϕ(u)Rϕ(u)∗ ∈ R(d) and R ∼ S. One can choose the intertwiners as
Yn := uϕ(u2) · · ·ϕn−1(un). Hence in this case, γR,S is given by

Λu := lim
n→∞ ad(uϕ(u2) · · ·ϕn−1(un)), (5.3)

which trivially exists as an automorphism of
⋃

n Fn
d ⊂ N and extends to N . Clearly Λu restricts

to an isomorphism LR → LS matching the representations ρR and ρS = Λu ◦ ρR. For x ∈ Fn
d ,

we therefore have

Λu(λR(x)) = Λu(RnxRn
∗) = SnΛu(x)Sn

∗ = λS(Λu(x)).

Hence, in this case, we also have R ≈ S. Note that since ϕ(u)Rϕ(u)∗ = u∗Ru, so exchanging
u with u∗ we also have the N -equivalence R ∼ uRu∗, with isomorphism Λu∗ .

We give an example to show that Λu does in general not extend to M, that is, to an
M-equivalence R ∼∼∼ S.

Example 5.3. Let u ∈ F1
d and R := uFu∗. Since the flip F commutes with uϕ(u), we have

R ≈ F , and now show R �∼∼∼ F . In fact, if we had R ∼∼∼ F , then the type III subfactors given by
R and F would be equivalent, and in particular their relative commutants MR,1 and MF,1

would have the same dimension. Recalling MR,1 = {x ∈ F1
d : ϕ(x) = R∗xR} (3.9), we have

MF,1 = F1
d . But as shown in Remark 3.3, MR,1 = MS,1 �= F1

d if u �∈ C. Hence R �∼∼∼ F .

Type 3. The third type of equivalence is given by an R-matrix R and its ‘flipped’ version
FRF , where F is the flip [45]. The corresponding intertwiners are best described in terms of
the so-called fundamental braids Δn ∈ Bn [28], defined recursively by

Δ1 := e, Δ2 := b1, Δn+1 := b1 · · · bn · Δn. (5.4)

The fundamental braids satisfy [42]

Δnbk = bn−kΔn, k ∈ {1, . . . , n− 1}. (5.5)

Moreover, Δ2
n generates the center of Bn. In particular, ΔnbΔ−1

n = Δ−1
n bΔn for b ∈ Bn.

Lemma 5.4. Let R ∈ R(d). Then FRF ∈ R(d) and R ∼ FRF , and the intertwiners can be
chosen as

Yn := ρFRF (Δn)ρF (Δn), n ∈ N. (5.6)

Proof. We skip the straightforward proof of FRF ∈ R(d).
The representative ρF (Δn) ∈ End((Cd)⊗n) of the fundamental braid given by the involutive

R-matrix F acts by total inversion permutation of the n tensor factors. In view of the tensor
product structure of the representation ρR,

ρF (Δn)ϕk−1(R)ρF (Δn)−1 = ϕn−k−1(FRF ), k ∈ {1, . . . , n− 1}. (5.7)
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Using (5.5), this implies

YnρR(bk)Y −1
n = ρFRF (Δn)ρF (Δn)ϕk−1(R)ρF (Δn)−1ρFRF (Δn)−1

= ρFRF (Δn)ρFRF (bn−k)ρFRF (Δn)−1

= ρFRF (bk).

As b1, . . . , bn−1 generate Bn, this establishes the intertwiner property of Yn. �

We add a lemma that concerns the isomorphism γR,FRF : LR → LFRF , which extends to an
algebra closely related to the C∗-algebra A(0)

R introduced in (2.8).

Lemma 5.5. Let R ∈ R(d), n ∈ N, and x ∈ Fn
d such that ϕ(x) = λR(x) (this is satisfied in

particular by any x ∈ LR,n). Then

YmxY ∗
m = YnxY

∗
n , m � n, (5.8)

where Ym is the intertwiner (5.6). In particular, γR,FRF = limm adYm extends to such elements
x, and γR,FRF (x) = YnxY

∗
n for all x ∈ LR,n.

Proof. To prove this lemma, we first establish a recursion relation for the intertwiners Ym.
We claim

Ym+1 = Ym · ρF (b1 · · · bm)−1ρR(b1 · · · bm), m ∈ N. (5.9)

To show this, recall that we already know the identity

ρF (Δm)ρR(b)ρF (Δm)−1 = ρFRF (ΔmbΔ−1
m ), b ∈ Bm;

this was shown in the proof of Lemma 5.4. Thus, we may rewrite the intertwiners as
Ym = ρFRF (Δm)ρF (Δm) = ρF (Δm)ρR(Δm).

We furthermore note that ρR(Δm) ∈ LR,m, and therefore

ad ρR(b1 · · · bm)[ρR(Δm)] = λR(ρR(Δm)) = ϕ(ρR(Δm))

= ad(ρF (b1 · · · bm))[(ρR(Δm))].

Moreover, since F 2 = 1, we have ρF (Δm) = ρF (Δ−1
m ). Together with the recursion relation

Δm+1 = b1 · · · bmΔm, this gives

Ym+1 = ρF (Δ−1
m+1)ρR(Δm+1)

= ρF (Δ−1
m )ρF (b1 · · · bm)−1ρR(b1 · · · bm)ρR(Δm)

= ρF (Δ−1
m )ρF (b1 · · · bm)−1ϕ(ρR(Δm))ρR(b1 · · · bm)

= ρF (Δ−1
m )ρR(Δm)ρF (b1 · · · bm)−1ρR(b1 · · · bm)

= Ym · ρF (b1 · · · bm)−1ρR(b1 · · · bm),

proving (5.9).
Now let x ∈ Fn

d such that ϕ(x) = λR(x). Then ad(ρR(b1 · · · bm))[x] = λR(x) = ϕ(x) =
ad(ρF (b1 · · · bm))[x] for any m � n, and therefore ad(Yn+1)(x) = ad(Yn)(x). Clearly, this
implies adYm(x) = (adYn)(x) for all m � n.

The isomorphism γR,FRF is defined by the limit formula limm adYm on ρR(CB∞) and showed
that it uniquely extends to an isomorphism LR → LS . Thus, as limm(adYm)(x) exists and
equals YnxY

∗
n for x ∈ Fn

d as in the statement of the lemma, we find γR,FRF (x) = YnxY
∗
n as

claimed. �
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Let us emphasize that in general, it is not known whether the ∼ equivalence class of an R-
matrix is exhausted by the three cases listed above. Furthermore, in general, the equivalences
R ∼∼∼ S or R ≈ S do not imply R ∼ S (for example, R ≈ −R for all R, but usually R �∼ −R.)

Making use of the type 3 intertwiners, we can now also give the postponed second part of
the proof of Theorem 3.5.

Proof of Theorem 3.5 (second half). Let R ∈ R and S := FRF . We want to show that LR

is invariant under φF . As a preparation, we first show, n ∈ N,

ad ρF (Δn)(LR,n) = LS,n. (5.10)

In fact, we know from Lemma 5.5 that the intertwiner isomorphism γR,S coincides with adYn

on LR,n, with the intertwiners Yn = ρS(Δn)ρF (Δn) (5.6). Thus,

ad ρF (Δn)(LR,n) = ad ρS(Δn)−1(adYn(LR,n)) = ad ρS(Δn)−1(LS,n) = LS,n,

where the last step follows from ad ρS(Δn)−1 being an inner automorphism of LS,n.
Now let x ∈ LR,n+1, n ∈ N0. As φF (x) acts by tracing out the first tensor factor of x

(see (2.19)), and En(x) acts by tracing out the (n + 1)st tensor factor of x, we have

φF (x) = En(Fn
∗xFn) = En(ρF (b1 · · · bn)−1xρF (b1 · · · bn)). (5.11)

Using the recursion relation Δn+1 = b1 · · · bn · Δn for the fundamental braids and ρF (Δn) ∈
Fn

d , we have

φF (x) = En(ad ρF (ΔnΔ−1
n+1)(x)) = ad ρF (Δn)

[
En(ad ρF (Δ−1

n+1)(x))
]
.

In this formula, ad ρF (Δ−1
n+1)(x) ∈ LS,n+1 by (5.10) (note ρF (Δ−1

n+1) = ρF (Δn+1)), and thus
En(ad ρF (Δ−1

n+1)(x)) ∈ LS,n by the first part of Theorem 3.5. If we now apply (5.10) once more,
with the roles of R and S exchanged, we arrive at φF (x) ∈ LR,n.

Proceeding to general x ∈ LR, we have En(x) ∈ LR,n and En(x) → x weakly as n → ∞. As
we have just shown φF (En(x)) ∈ LR for all n ∈ N and φF is normal, it follows that φF (x) ∈ LR.

The uniqueness of the τ -preserving conditional expectation ER = λR ◦ φR of ϕ(LR) ⊂ LR

now implies that for any x ∈ LR,

ϕ(φR(x)) = ER(x) = EF (x) = ϕ(φF (x)),

and thus, φR(x) = φF (x). This shows that the right diagram in (3.18) is a commuting square
for n = 1, and the case n > 1 follows by composing several isomorphic commuting squares. �

Applications of Theorem 3.5 will appear in the next section.
We now describe a situation in which R ∼∼∼ S does imply R ∼ S.

Proposition 5.6. (i) Let R,w ∈ U(Od) such that α−1 := λw ∈ AutM. Then

α ◦ λR ◦ α−1 = λα(R) ⇐⇒ w ∈ Oλϕ(R)

d . (5.12)

(ii) In the same situation as in (i), assume in addition that R ∈ R(d) and S := α(R) ∈ F2
d .

Then S ∈ R(d) and S ∼ R.

Proof. (i) We write α = λv and compute

αλRα
−1 = λvλRλw = λvλλR(w)R = λλv(λR(w)R)v,

which coincides with λα(R) = λλv(R) if and only if λv(λR(w)R)v = λv(R). Applying λw to
both sides of this equation and observing that λwλv = id implies λw(v) = w∗, we see that
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α ◦ λR ◦ α−1 = λα(R) is equivalent to

w = (adR∗ ◦ λR)(w) = λϕ(R)(w), (5.13)

that is, w ∈ Oλϕ(R)

d .
(ii) We now assume that R ∈ R(d) is an R-matrix, and set S := α(R). Then, n ∈ N0,

α(ϕn(R)) = (αλn
Rα

−1)(S) = λn
S(S).

In particular, ϕ(α(R)) = α(ϕ(R)), which immediately implies ϕ(S)Sϕ(S) = Sϕ(S)S. Since S ∈
F2

d as well, S is also an R-matrix. Thus, λn
S(S) = ϕn(S), that is, we have α(ϕn(R)) = ϕn(S),

which shows that α restricts to an isomorphism LR → LS such that ϕ(α(x)) = α(ϕ(x)) for all
x ∈ LR. This verifies the definition of R ∼ S. �

We thus see that the enhanced form of ∼∼∼ equivalence spelled out in (5.12) is parameterized
by the fixed points of λϕ(R). The appearance of fixed points warrants a more systematic look
at fixed points and ergodicity of Yang–Baxter endomorphisms. This is done in Section 7.

5.1. Equivalent R-matrices and braid group characters

While a classification of all R-matrices seems out of reach, a more accessible (though still
challenging) question is to classify all Yang–Baxter characters, that is, all traces τR, R ∈ R,
on B∞. This amounts to classifying R-matrices up to the equivalence relation ∼.

In order to explain how our results can contribute to this problem, it is instructive to compare
this situation with the special case of involutive R-matrices (that is, R2 = 1, equivalently
R = R∗) which has been studied before. Note that for involutive R-matrices, τR can be viewed
as a character of the infinite symmetric group S∞ rather than the infinite braid group.

In preparation for the following, we define R-matrices of normal form to be special simple
R-matrices (Definition 2.8) with parameters cij = 1 for i �= j and εi := cii ∈ {+1,−1} for all i.
That is, normal form R-matrices are given by a partition of unity p1, . . . , pN in F1

d and signs
ε1, . . . , εN such that

R =
N∑
i=1

εi piϕ(pi) +
N∑

i,j=1
i�=j

piϕ(pj)F =
N

�
i=1

εi1di
, (5.14)

where di = dτ(pi) are the dimensions of the projections pi. These normal forms can be described
by a pair of Young diagrams with d boxes in total.

Theorem 5.7 [45].

(i) Let R,S ∈ R(d) be involutive. Then R ∼ S if and only if φR(R) ∼= φS(S) are similar,
that is, φR(R) = uφS(S)u∗ for some u ∈ U(F1

d ).
(ii) Each involutive R is equivalent to a unique R-matrix of normal form.
(iii) Let R be an R-matrix of normal form, with projections p1, . . . , pN and signs ε1, . . . , εN .

Define the rational numbers

αi := τ(pi), εi = +1, (5.15)

βj := τ(pj), εj = −1. (5.16)
Then the character τR(σ), σ ∈ S∞, takes the following form: If the disjoint cycle decomposition
of σ is given by mn cycles of length n, n ∈ N, then

τR(σ) =
∏
n

⎛
⎝∑

i

αn
i + (−1)n+1

∑
j

βn
j

⎞
⎠mn

. (5.17)

Furthermore, the signed parameters αi, −βj are exactly the eigenvalues of φR(R).
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The proofs of these facts rely crucially on the fact that ρR factors through the infinite
symmetric group. In particular, (i) a parameterization of all extremal characters of S∞ is known
from the work of Thoma [59] (in terms of the Thoma parameters αi, βj (5.15)), (ii) S∞ allows
for a disjoint cycle decomposition, and (iii) for involutive R-matrices, φR(R) is selfadjoint.

The results of Theorem 5.7 do not carry over to general (not necessarily involutive) R-
matrices. However, certain aspects can be generalized, which is the content of the following
theorem.

Theorem 5.8. Let R,S ∈ R(d).

(i) φR(R) = φF (R) = φF (FRF ) is a normal element of F1
d with norm ‖φR(R)‖ � 1. In

particular, R has identical left and right partial traces†.
(ii) τ(Rϕ(R) · · ·ϕn−1(R)) = τ(φR(R)n), n ∈ N0.
(iii) If R ∼ S, then φR(R) ∼= φS(S) (unitary similarity).

Proof. (i) By Theorem 3.5, we know φF (x) = φR(x) for all x ∈ LR, so in particular φF (R) =
φR(R). We also know that E1(R) = φF (FRF ) ∈ LR,1. Given arbitrary y ∈ F1

d , we compute

τ(yφF (FRF )) = τ(ϕ(y)FRF ) = τ(yR) = τ(λR(y)R) = τ(yφR(R)),

which shows φF (FRF ) = φR(R).
In general, left inverses/partial traces do not preserve normality, but in our situation, we can

show that φR(R) is always normal, that is, φR(R)φR(R)∗ = φR(R)∗φR(R). Since φR(R) ∈ F1
d ,

it is enough to compare traces against arbitrary elements x ∈ F1
d .

In the following computation, we use the property (2.16) of φR and τ ◦ φR = τ , the fact that
λR = adR on F1

d , and λR(R∗) = ϕ(R∗). This yields

τ(xφR(R)φR(R)∗) = τ(λR(xφR(R))R∗) = τ(xφR(R)R∗) = τ(λR(x)Rϕ(R∗))

= τ(Rxϕ(R∗)) = τ(xRϕ(R∗)).

On the other hand, using φR(R) = φF (FRF ) and φR(R) = φF (R) = φR∗(R) (this follows
because R ∈ LR = LR∗), we find

τ(xφR(R)∗φR(R)) = τ(xφF (FR∗F )φR(R)) = τ(ϕ(x)FR∗Fϕ(φR(R))) = τ(xR∗φR(R))

= τ(xR∗φR∗(R)) = τ(λR∗(x)ϕ(R∗)R) = τ(xRϕ(R∗)),

which coincides with the previous result. This proves that φR(R) is normal. The norm estimate
is a standard property of the conditional expectation ER = λRφR.

(ii) For k,m ∈ N0, define

tk,m := τ(ϕk(R)ϕk−1(R) · · ·R · φR(R)m). (5.18)

We will prove tk,m = tk+1,m−1, which implies the claim as tn,0 = t0,n.
As before, we use the four facts (i) xφR(y) = φR(λR(x)y), (ii) λR(a) = ϕ(a) for a ∈ LR, (iii)
τ ◦ φR = τ , (iv) λR(φR(R)) = RφR(R)R∗, and compute

tk,m = τ(ϕk(R) · · ·RφR(R)m−1 · φR(R)) = τ
(
φR

(
λR

(
ϕk(R) · · ·R · φR(R)m−1

)
R
))

= τ
(
ϕk+1(R) · · ·ϕ(R) ·RφR(R)m−1R∗R

)
= tk+1,m−1.

(iii) Let R ∼ S, that is, τR = τS . Then part (ii) implies that φR(R)n and φS(S)n have the
same trace for any n ∈ N0. Thus φR(R) and φS(S) have the same characteristic polynomial,
and as they are normal by part (i), it follows that φR(R) and φS(S) are unitarily equivalent. �

†In matrix notation, φF (R) = d−1(Tr⊗ id)(R) and φF (FRF ) = d−1(id⊗Tr)(R) are the normalized left and
right partial traces of R.
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Remark 5.9. (i) This theorem states in particular that the spectrum of the (left or right)
partial trace of an R-matrix is an invariant for ∼. Since any normal matrix can be diagonalized
by conjugation with a unitary, we also see that given R ∈ R(d), there exists u ∈ U(F1

d ) such
that λu(R) ∼ R (‘type 1,’ see p. 18) and λu(R) has diagonal partial traces.

(ii) While it is known in the setting of involutive R-matrices that R ∼ S is equivalent to
φR(R) ∼= φS(S), the implication ⇐= does not hold in general. In fact, it is not difficult to
construct unitary R-matrices R,S such that φR(R) = φS(S) (and R ∼= S), but, for example,
τ(R2ϕ(R)) �= τ(S2ϕ(S)), that is, R �∼ S.

(iii) In the involutive case, it is furthermore known that φR(R) is always invertible. We
currently do not know whether this remains true in the general case.

(iv) Specializing to an involutive R, Theorem 5.8 recovers Thoma’s formula (5.17) for cycles.

6. Irreducibility, reduction, and index

In the following, we will call an R-matrix R irreducible if and only if λR is irreducible as an
endomorphism of M, that is, if and only if MR,1 = λR(M)′ ∩M = C. This does not necessarily
mean that λR is irreducible as an endomorphism of N : In view of (3.13),

LR,1 ⊂ MR,1 ⊂ NR,1 ⊂ F1
d , R ∈ R(d), (6.1)

and in general, the relative commutants LR,1, MR,1, and NR,1 are all different from each other.
It is therefore conceivable that there exist R-matrices such that, for instance, λR is irreducible
but λR|N is not, or that λR|LR

is irreducible but λR is not†. Our notion of irreducibility
always refers to λR ∈ EndM, and we will explicitly indicate whenever we consider λR as an
endomorphism of N or LR by restriction.

A Yang–Baxter endomorphism λR is a unital normal endomorphism of the type III factor M
with finite-dimensional relative commutant MR,1 ⊂ F1

d (6.1). We may therefore decompose it
into finitely many irreducible endomorphisms of M, unique up to inner automorphisms (that
is, as sectors). In the following, we will rely on results of R. Longo, see [47, 48] for the
original articles and [37] for a summary, to obtain information about λR and the minimal
index Ind(λR).

By a partition of unity in MR,n (for some n ∈ N), we will mean a family {pi}d1
i=1 ⊂ MR,1

of orthogonal projections such that pipj = δijpi and
∑d1

i=1 pi = 1. Note that since MR,n is
finite-dimensional, there always exist finite partitions of unity by minimal projections.

Square brackets [λ] denote the sector of λ, that is, [λ] = {adu ◦ λ : u ∈ U(M)}. The
following statement is a consequence of well-known facts, adapted to our context.

Proposition 6.1. Let R ∈ R, n ∈ N, and {pn,i}dn
i=1 a partition of unity in MR,n. Then

there exist isometries vn,i ∈ M such that as sectors

[λn
R] =

dn⊕
i=1

[μn,i], μn,i(·) = v∗n,iλ
n
R(·)vn,i. (6.2)

The minimal index of λR is bounded below by

d2/n
n � IndλR. (6.3)

In case vn,i ∈ Od, we have μn,i = λun,i
with un,i = v∗n,i · nRϕ(vn,i).

These estimates give concrete index bounds when applied to spectral decompositions.

†An example for the latter situation is given by R = F .



YANG-BAXTER ENDOMORPHISMS 25

Corollary 6.2. Let R ∈ R(d) and consider the spectra σ(R) of R and σ(φR(R)) of φR(R).
Denoting cardinality by | · |, we have

|σ(R)| � IndλR, |σ(φR(R))|2 � IndλR. (6.4)

Proof. The R-matrix R is a unitary in MR,2 (Proposition 2.3(iii)); hence, its spectral
projections define a partition of unity of d2 = |σ(R)| many projections in MR,2. For the second
bound, we recall that φR(R) is a normal element in MR,1 (Theorem 5.8(i)), hence its spectral
projections define a partition of unity of d1 = |σ(φR(R))| many projections in MR,1. �

As an example, we describe the decomposition of λR for diagonal R-matrices.

Lemma 6.3. Let R = DF ∈ R(d) be a diagonal R-matrix, D =
∑

i,j cijSiSjS
∗
j S

∗
i . Then

λR = λu ◦
d∑

i=1

Siλui
(·)S∗

i ◦ λ−1
u , ui :=

d∑
j=1

cijSjS
∗
j ∈ U(F1

d ) (6.5)

decomposes into a sum of d quasifree automorphisms. In particular,

[N : λR(N )] = IndER
(M) = d2. (6.6)

Proof. Let i, j ∈ {1, . . . , d}. It is clear that λui
is an automorphism, with λui

(Sj) =
cijSj and λui

(S∗
j ) = cijS

∗
j . One computes λR(Sj)Si = cijSiSj and λR(S∗

j )Si = cijSiS
∗
j . Hence

Siλui
(x) = λR(x)Si whenever x = Sj or x = S∗

j . This implies (6.5).
Since each automorphism has dimension 1, it follows that the minimal index is Ind(λR) = d2.

Since Ind(λR) � IndER
(λR) = [N : λR(N )] � d2, (6.6) follows. �

Similar to diagonal ones, also general simple nontrivial R-matrices are reducible. Irreducible
R-matrices do exist (and are, in fact, likely to be the most interesting ones), but a general
overview over irreducible R-matrices is currently not known. In Section 8, we will see
an example.

Regarding upper bounds on the index, we have the completely general bound [N : λR(N )] �
d2 on the Jones index [13] (and hence on the minimal index). In the special case that φR(R) =
τ(R)1 �= 0, then it was also shown in [13] that [N : λR(N )] � |τ(R)|−2. More generally, if
φR(R) is invertible† but not necessarily scalar, then

[N : λR(N )] � ‖φR(R)−1‖4. (6.7)

This bound is not necessarily sharper than the general bound d2, but has an interesting
consequence for R-matrices that we record here, following [13, Corollary 5.5]. It states that
the spectrum of a non-trivial R-matrix cannot be concentrated in a disc of radius less than the
universal bound 1 − 2−1/4 ≈ 0.159 (this value is probably not optimal).

Corollary 6.4. Let R ∈ R and μ ∈ T such that ‖R− μ‖ < 1 − 2−1/4. Then R is trivial.

Proof. Passing from R to μ−1R ∈ R we may assume μ = 1 without loss of generality.
By assumption, ‖φR(R) − 1‖ � ‖R− 1‖ < 1 − 2−1/4 < 1. Hence φR(R) is invertible, and

the inverse satisfies ‖φR(R)−1‖ � (1 − ‖R− 1‖)−1 < 21/4. Thus (6.7) implies [N : λR(N )] < 2,
that is, [N : λR(N )] = 1 and λR is an automorphism. This is only possible for trivial R
(Corollary 2.4). �

†For involutive R-matrices, φR(R) is known to be invertible [45]. We currently have no proof (but also no
counterexample) that this property remains true for general R ∈ R.
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Remark 6.5. Akemann showed in [2] that if the inclusion diagram

F1
d ⊂ F2

d

∪ ∪
λR(N ) ∩ F1

d ⊂ λR(N ) ∩ F2
d

(6.8)

is a commuting square, then the index [N : λR(N )] is an integer.
We remark here that one can show that for arbitrary R ∈ R,

F1
d ∩ λR(N ) = (F1

d )λR .

With the results of the next section, it is then easy to check that if λR is ergodic (that is,
N λR = C), then (6.8) commutes and hence [N : λR(N )] ∈ N. However, the square does not
commute for general R-matrices. Any simple R-matrix containing a projection of dimension
greater than 1 is a counterexample.

Presently, it is unknown whether [N : λR(N )] is integer† for any R ∈ R, and whether
{[N : λR(N )] : R ∈ R} = N.

Our considerations so far show that the decomposition of a Yang-Baxter endomorphism into
irreducible endomorphisms does not preserve the YBE. This can for example be seen from
the decomposition of the endomorphism of a diagonal R-matrix (6.5) which yields non-trivial
automorphisms λUi

.
In the context of Yang–Baxter endomorphisms, one rather wants to consider a different

reduction scheme that does preserve the YBE and works directly on the level of the R-matrix.
While the general form of such a reduction is the subject of ongoing research, we sketch here
how it works for the special class of involutive R-matrices.

So let R ∈ R(d) be involutive (that is, R = R∗) and reducible, namely there exist non-trivial
projections p ∈ MR,1 ⊂ F1

d . Then R∗(p⊗ 1)R = (1 ⊗ p) (cf. (3.9)). Taking into account that
involutive R-matrices are selfadjoint and unitary, it is then easy to see that R commutes with
the projections p⊗ p and p⊥ ⊗ p⊥, whereas R(p⊗ p⊥)R = p⊥ ⊗ p. Denoting the base space of
R by V , it follows that R can be restricted to two involutive R-matrices S : pV ⊗ pV → pV ⊗
pV and T : p⊥V ⊗ p⊥V → p⊥V ⊗ p⊥V , and restricts to a unitary U : pV ⊗ p⊥V → p⊥V ⊗
pV . By adapting the arguments in [45, Proposition 4.4], one can show that as far as the
character of R is concerned, one may replace U by the flip F . Namely, one has the equivalence
R ∼ S � T .

As S and T are also involutive R-matrices, this scheme can be applied repeatedly, yielding
R ∼ R1 � · · ·�Rn, where the Ri ∈ R(di) are involutive irreducible R-matrices (the superscript
is just a label, not a power). Involutive irreducible R-matrices are of the form Ri = ±1di

or
Ri ∼ ±Fdi

[45]. Decomposing also the flip parts according to Fdi
= 11 � · · ·� 11 (di terms)

then yields

R ∼
N

�
k=1

εk1Dk
, εk ∈ {±1},

N∑
k=1

Dk = d.

This is the normal form found in [45], on which we now have a new perspective from the
endomorphism picture. The above argument also identifies two simplifying features of the
involutive case: On the one hand, every involutive R is completely reducible in the sense
explained, and on the other hand, there exist only very few irreducible involutive R-matrices.

An investigation of these properties for general R-matrices is left to a future work.

†It is known, however, that [LR : ϕ(LR)] is typically not integer [58, 64].
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7. Ergodicity and fixed points

Fixed point subalgebras of automorphisms and endomorphisms of Od have not been inves-
tigated systematically but in few cases. For instance, Oϕ

d = C, but there exists an order
two quasi-free automorphism λf of O2, f = S1S

∗
2 + S2S

∗
1 , such that O2

λf 
 O2 [10]. More
interestingly, Oλ−1

2 
 O4, as it is the C∗-subalgebra of O2 generated by SiSj , 1 � i, j � 2. This
example is the fixed point algebra of the R-matrix R = −1 ∈ R(2).

In this section, we discuss fixed point algebras of Yang–Baxter endomorphisms λR at the
level of the C∗-algebras Od, Fd and the von Neumann algebras M, N . What is special in
the Yang–Baxter context is that fixed point algebras of λR are closely related to the relative
commutants LR ⊂ N , LR ⊂ M, as we demonstrate now.

Proposition 7.1. Let R ∈ R(d).

(i) MλR ⊂ ⋂
n�1

λn
R(M) ⊂ L′

R ∩M.

(ii) N λR =
⋂
n�1

λn
R(N ) = L′

R ∩ N .

(iii) Let i, j ∈ {1, . . . , d}. Then S∗
i MλRSj ⊂ MλR and S∗

i N λRSj ⊂ N λR .

Proof. (i) The first inclusion is trivial. For the second one, let x ∈ ⋂n�1 λ
n
R(M) and m ∈ N0.

Then x = λm+2
R (y) for some y ∈ M, and taking into account that R ∈ MR,2 = (λ2

R, λ
2
R), we

find

ϕm(R)x = λm
R (R)λm+2

R (y) = λm
R (Rλ2

R(y)) = λm
R (λ2

R(y)R) = xϕm(R).

Since m was arbitrary, this implies x ∈ L′
R ∩M.

(ii) Exactly as in part (i) we have the two ‘⊂’ inclusions, and it remains to show L′
R ∩N ⊂

N λR . Let x ∈ L′
R ∩ N , that is, [x, ϕn(R)] = 0 for all n ∈ N0. Then

λR(x) = lim
n→∞R · · ·ϕn(R)xϕn(R)∗ · · ·R∗ = x,

that is, x ∈ N λR .
(iii) Let x ∈ MλR . Taking into account that x commutes with R by part (i), we have

λR(S∗
i xSj) = S∗

i R
∗λR(x)RSj = S∗

i R
∗xRSj = S∗

i xSj . �

Remark 7.2. (i) In standard terminology, an endomorphism λ of a von Neumann algebra
N is called ergodic if N λ = C and a shift if

⋂
n�1 λ

n(N ) = C. We have thus shown that that
λR|N is ergodic if and only if λR|N is a shift. Furthermore, Proposition 7.1(ii) shows that λR|N
is ergodic if and only if LR ⊂ N is irreducible.

(ii) We will later discuss an example with dimN λR = ∞, that is, in particular [N : LR] =
∞.

(iii) All statements of this proposition hold without changes on the level of the C∗-algebras,
that is,

OλR

d ⊂
⋂
n�1

λn
R(Od) ⊂ B′

R ∩ Od and FλR

d =
⋂
n�1

λn
R(Fd) = B′

R ∩ Fd.

It is currently not clear if one has equalities in Proposition 7.1(i), or if MλR ⊂ N λR for all
non-trivial R. We next show that at least ergodicity of λR can be decided on the level of N .

For this and following results, we will make use of a (von Neumann version of) family of
linear maps En : M → N , n ∈ Z, introduced in [16], namely (n � 0)

En(x) =
∫
T

αz(xS∗
1
n), E−n(x) =

∫
T

αz(Sn
1 x), (7.1)
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where αz = λz·1 are the gauge automorphisms, integration is over the circle z ∈ T with respect
to dz

2πiz , and the choice of S1 as a reference generator is by convention. We also introduce the
closely related spectral components x(n) ∈ M(n) of x as

x(n) :=
∫

αz(x)z−n =

{
En(x)Sn

1 n � 0
S∗

1
−nEn(x) n < 0

. (7.2)

Recall that x = 0 is equivalent to x(n) = 0 for all n ∈ Z [33, 57]. Moreover, we clearly have
(x∗)(n) = (x(−n))∗ for all x ∈ M and all n ∈ Z.

For any unitary U ∈ U(Fd), the endomorphism λU commutes with the gauge action, so that
the fixed point algebra MλU is globally T-invariant and for any x ∈ MλU , also all its spectral
components x(n) are fixed points of λU . This applies in particular to R-matrices R ∈ U(F2

d ).

Proposition 7.3. Let U ∈ U(Fd). If FλU

d = C then OλU

d = C; if N λU = C then MλU = C.

Proof. If x ∈ OλU

d was nontrivial, it would not lie in Fd and would have a nonzero spectral
component. Without loss of generality, we may then assume that x(n) �= 0 for some n > 0, and
as remarked above, x(n) ∈ OλU

d . Now, both x(n)(x(n))∗ and (x(n))∗x(n) are fixed points in Fd

and thus positive scalars, say μ and ν. It follows immediately that ν must be equal to μ, and
thus x(n) is a multiple of a unitary. However, it is easy to see that this is in conflict with the
KMS condition (recall that λd−it1 is the modular group with respect to the state ω = τ ◦ E0).

The proof for the von Neumann algebras M, N is identical. �

Proposition 7.3 implies that λR is ergodic if and only if λR|N is ergodic. In this case, we will
simply say that R ∈ R is ergodic.

Remark 7.4. (i) It is clear that the equivalence relations R ∼∼∼ S and R ≈ S (Definition 5.1)
provide automorphisms of M and N that identify the fixed point algebras of λR and λS . In
particular, the ‘type 1’ and ‘type 2’ cases of ∼ equivalences (see p. 5) preserve ergodicity.

(ii) R is ergodic if and only if R∗ is ergodic because

N λR∗ = L′
R∗ ∩ N = L′

R ∩N = N λR . (7.3)

We now turn to an explicit characterization of ergodicity. Let HR : N → N λR denote the
unique τ -preserving conditional expectation onto the fixed point algebra. As λR preserves τ ,
the ergodic theorem allows us to write HR as

HR(x) = s-lim
n→∞

1
n

n−1∑
k=0

λk
R(x), x ∈ N . (7.4)

Also recall that En denotes the τ -preserving conditional expectation N → Fn
d , which acts by

tracing out all tensor factors except the first n (in particular, E0 = τ). We will refer to the
condition in part (i) of the next theorem as ‘the ergodicity condition’ in the following.

Theorem 7.5. Let R ∈ R(d). The following are equivalent.

(i) E1(RxR∗) = τ(x) for all x ∈ F1
d .

(ii) En(ϕn−1(R)xϕn−1(R∗)) = En−1(x) for all n ∈ N, x ∈ Fn
d .

(iii) HR(x) = τ(x) for all x ∈ F1
d .

(iv) R is ergodic.

If R is ergodic, then so are all its cabling powers R(n), n ∈ N.
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Figure 2. The ergodicity condition in graphical notation. Note that this is trivially satisfied for
R = F , and trivially violated for R = 1.

Remark 7.6. (i) In matrix notation, the ergodicity condition reads as follows: Let (ek)dk=1

be the standard basis of C
d, and let Rij

kl := 〈ei ⊗ ej , R(ek ⊗ el)〉. Then the ergodicity condition
is equivalent to

d∑
n,m=1

Rim
knR

jm
ln = δij δ

k
l i, j, k, l ∈ {1, . . . , d}, (7.5)

as can be seen by choosing x as the matrix unit ekl ∈ Md. In the special case of involutive
R-matrices equivalent to the flip, Wassermann gave a proof of an analogue of Theorem 7.5
already in [62], also based on the condition (7.5).

(ii) The ergodicity condition is best understood in graphical notation Noting that E1 acts as
a normalized right partial trace on F2

d , we have a diagrammatic representation as in Figure 2.
(iii) The ergodicity condition also appears in [13], where it was shown to imply that the

left inverse φR is localized in the sense that for any n ∈ N, there exists a k ∈ N such that
φR(Fn

d ) ⊂ Fk
d .

Proof. (i)⇒(ii) We give a proof by induction in n, the case n = 1 being equivalent to (i).
For the induction step, note that the definition of En implies S∗

i En(·)Sj = En−1(S∗
i · Sj) for

any i, j. Thus, we have, i, j ∈ {1, . . . , d}, x ∈ Fn+1
d ,

S∗
i En+1(ϕn(R)xϕn(R∗))Sj = En(S∗

i ϕ
n(R)xϕn(R∗)Sj) = En(ϕn−1(R)S∗

i xSjϕ
n−1(R∗)).

As S∗
i xSj ∈ Fn

d , this simplifies by induction assumption to En−1(S∗
i xSj) = S∗

i En(x)Sj . Since
i, j were arbitrary, this finishes the proof.

(ii)⇒(iii) Let x ∈ F1
d , n ∈ N, and y ∈ Fn

d . Noting that ϕk−1(R) commutes with y for k − 1 �
n, we calculate

τ(yHR(x)) = lim
m→∞

1
m

m−1∑
k=0

τ(yλk
R(x)) = lim

m→∞
1
m

m−1∑
k=0

τ(yϕk−1(R) · · ·RxR∗ · · ·ϕk−1(R∗))

= lim
m→∞

1
m

{
n∑

k=0

τ(y kRx(kR)∗) +
m−1∑

k=n+1

τ(yϕn−1(R) · · ·RxR∗ · · ·ϕn−1(R∗))

}

= τ(yϕn−1(R) · · ·RxR∗ · · ·ϕn−1(R∗)). (7.6)

We now insert En into the trace and use (ii) iteratively to arrive at

τ(yHR(x)) = τ(yEn(ϕn−1(R) · · ·RxR∗ · · ·ϕn−1(R)∗))

= τ(yEn−1(ϕn−2(R) · · ·RxR∗ · · ·ϕn−2(R)∗)) = τ(yE0(x)) = τ(y)τ(x).

As n was arbitrary and τ is faithful, this implies HR(x) = τ(x), that is, we have shown (iii).
(iii)⇒(iv) To amplify (iii) to ergodicity, we will use the cabling maps cn and cabling powers

R(n), n ∈ N. The first step is to realize that if R satisfies the ergodicity condition, then so does
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R(n), that is,

Edn,1(R(n)cn(x)(R(n))∗) = τ(x), x ∈ Fn
d .

Applying c−1
n , this condition is seen to be equivalent to

En(nRn · x · n(R∗)n) = τ(x), x ∈ Fn
d ,

which can be proven by induction in n with the help of the ergodicity condition for R, expressed
as in (ii) (and is obvious in graphical notation).

Let n ∈ N and x ∈ Fn
d . Then cn(x) ∈ F1

dn , and since R(n) satisfies (i) and thus also (iii), we
have HR(n)(cn(x)) = τ(cn(x)) = τ(x) and therefore

τ(x) = (c−1
n ◦HR(n) ◦ cn)(x), x ∈ Fn

d . (7.7)

We now recall that c−1
n ◦ λR(n) ◦ cn = λn

R as endomorphisms of Nd (4.9). Expressing HR(n)

as an ergodic mean as in (7.4), we then see that HR,n := c−1
n ◦HR(n) ◦ cn is the τ -preserving

conditional expectation from Nd onto its fixed point subalgebra N λn
R

d .
Equation (7.7) states that HR,n acts as the trace on Fn

d . As clearly N λR

d ⊂ N λn
R

d , also the
conditional expectation HR acts as the trace on Fn

d . In other words, τ(yHR(x)) = τ(y)τ(x) for
all y ∈ Nd and all x in the algebraic infinite tensor product

⋃
n Fn

d . By continuity, this extends
to τ(yHR(x)) = τ(y)τ(x) for all x, y ∈ Nd, which is equivalent to ergodicity, HR = τ , by the
faithfulness of τ .

(iv)⇒(i) Let x ∈ F1
d . According to the calculation (7.6) in the proof of (ii)⇒(iii), specialized

to n = 1, we have for all y ∈ F1
d

τ(yHR(x)) = τ(yRxR∗) = τ(yE1(RxR∗)).

If λR is ergodic, we have HR(x) = τ(x). As E1(RxR∗) is an element of F1
d , and y ∈ F1

d was
arbitrary, we see that E1(RxR∗) = τ(x), that is, (i) holds. �

As an application of Theorem 7.5, we show that diagonal R-matrices (Def. 2.8) are ergodic.

Corollary 7.7. Diagonal R-matrices are ergodic.

Proof. A diagonal R-matrix is of the form R = λu(S) with u ∈ U(D1
d) and S ∈ R(d) of the

form Sij
kl = clkδ

i
lδ

j
k, i, j, k, l ∈ {1, . . . , d} with parameters clk ∈ T. It is straightforward to verify

the ergodicity condition (7.5) for S. Since R ∼∼∼ S (type 1), R is ergodic as well. �

Remark 7.8. Any non-trivial fixed point x = λR(x) = RxR∗ ∈ F1
d satisfies E1(RxR∗) = x

and therefore violates the ergodicity condition. Conversely, if some x ∈ F1
d violates the

ergodicity condition, then the argument in the proof (iv)⇒(i) of Theorem 7.5 shows that
HR(x) �= τ(x). That is, we have a non-trivial fixed point HR(x) ∈ N λR in this case. However,
typically HR(x) will not lie in F1

d or even Fd, but only in its weak closure N .
Thus, one might expect that the condition that λR has no non-trivial fixed points in F1

d ,

C
!= (F1

d )λR = {x ∈ F1
d : RxR∗ = x}, (7.8)

is strictly weaker than the ergodicity condition. We will prove this later by an example.

So far, we have not ruled out completely the possibility that OλR

d �⊂ Fd. The next result
shows that at least there are no algebraic fixed points outside Fd if R is non-trivial. It also
shows that (7.8) captures precisely the absence of non-trivial algebraic fixed points.

Here and in the following, we write 0Od ⊂ Od for the algebraic part of Od, that is,
the unital ∗-algebra of polynomials in the generators S1, . . . , Sd and their adjoints, and
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0Fd := 0Od ∩ Fd =
⋃

n∈N
Fn

d = 0N for the algebraic part of Fd. We also use the shorthand
notations 0OλR

d := 0Od ∩ OλR

d and 0FλR

d := 0Fd ∩ FλR

d .

Proposition 7.9. Let R ∈ R(d).

(i) If R �∈ C, then all algebraic fixed points of λR are contained in Fd, that is, 0OλR

d = 0FλR

d .

(ii) 0FλR

d = C if and only if (F1
d )λR = C.

Proof. (i) Let x ∈ 0Od be an algebraic fixed point of λR that is not contained in Fd, without
loss of generality assumed to be selfadjoint. As x �∈ Fd = O(0)

d , it has a non-zero spectral
component x(n), n > 0, which also lies in 0OλR

d . We may therefore express it as x(n) = En(x)Sn
1

with En(x) ∈ Fk
d for some k ∈ N0. Then, for all multi indices α, β of length |α| = |β| = k, we

have tα,β := S∗
αE

n(x)Sβ ∈ C.
Now define T := S∗

αx
(n)Sβ = S∗

αE
n(x)Sn

1 Sβ where we have chosen α, β such that T �= 0; this
is possible because x(n) �= 0. By virtue of Proposition 7.1(iii), T is a fixed point. Furthermore,
T can be expressed as

T = S∗
αE

n(x)Sn
1 Sβ =

∑
γ:|γ|=k

S∗
αE

n(x)Sγ S
∗
γS

n
1 Sβ =

∑
γ:|γ|=k

tα,γS
∗
γS

n
1 Sβ .

As the multi-indices β and γ have the same length k for all terms in the sum, we see that T
is a linear combination of products of n generators Si1 · · ·Sin . In particular, T is a (non-zero)
multiple of an isometry.
To conclude the proof, note that as a consequence of R being an element of F2

d , and in view
of the form of T , we have (T ∗)2RT 2 ∈ C. But as a fixed point, T commutes with R (cf.
Proposition 7.1(i)). Therefore,

C � (T ∗)2RT 2 = (T ∗)2T 2R,

and as (T ∗)2T 2 is a non-zero scalar, the triviality of R follows.
(ii) The implication ⇒ is trivial. For the reverse implication, let x ∈ (Fk

d )λR for some k ∈ N.
Then, by Proposition 7.1(iii), S∗

i1
· · ·S∗

ik−1
xSjk−1 · · ·Sj1 ∈ (F1

d )λR = C for all il, jl. Thus,

x =
k−1∑
l=1

d∑
il,jl=1

Sik−1 · · ·Si1

(
S∗
i1 · · ·S∗

ik−1
xSjk−1 · · ·Sj1

)
S∗
j1 · · ·S∗

jk−1
∈ Fk−1

d ,

and inductively it follows that x ∈ (F1
d )λR = C. �

We now compare the ergodicity condition and the condition (F1
d )λR = C in more detail. It

turns out that they have quite different behavior with respect to taking box sums.

Lemma 7.10. Let R,S ∈ R.

(i) R� S satisfies the ergodicity condition if and only if both R and S do.
(ii) λR�S has no non-trivial algebraic fixed points.

Proof. (i) Let us view R ∈ R(d) ⊂ End(V ⊗ V ), S ∈ R(d′) ⊂ End(W ⊗W ) with dimV = d,
dimW = d′, and pick orthonormal bases {ei : i = 1, . . . , d} of V and {fj : j = 1, . . . , d′} of W .
We denote the orthogonal projection from V ⊕W onto V and W by p and p⊥, respectively.
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Recall that E1 acts as the normalized right partial trace on End((V ⊕W ) ⊗ (V ⊕W )). Writing
U := R� S as a shorthand, we have, x ∈ End(V ⊕W ),

(d + d′)〈ei, E1(UxU∗)ej〉 =
d∑

k=1

〈ei ⊗ ek, UxU∗(ej ⊗ ek)〉 +
d′∑
l=1

〈ei ⊗ fl, UxU∗(ej ⊗ fl)〉

=
d∑

k=1

〈ei ⊗ ek, RpxpR∗(ej ⊗ ek)〉 + δij

d′∑
l=1

〈fl, p⊥xp⊥fl〉.

The ergodicity condition demands that for every x, this equals

(d + d′)〈ei, τ(x)ej〉 = δij

d∑
k=1

〈ek, pxpek〉 + δij

d′∑
l=1

〈fl, p⊥xp⊥fl〉.

Comparing the expressions, we see that the ergodicity condition for R� S implies the ergodicity
condition for R. Analogously, one shows that ergodicity of S is necessary for ergodicity of R� S.
To check that this is sufficient, we also have to consider the ‘mixed’ expectation values of
E1(UxU∗) between vectors in V and W , namely 〈ei, E1(UxU∗)fj〉. But since R� S acts as the
flip on mixed tensors, it follows that these necessarily vanish, in agreement with the ergodicity
condition. Hence ergodicity of R and S is also sufficient for ergodicity of R� S.

(ii) We need to show that the only x ∈ End(V ⊕W ) commuting with U = R� S are
multiples of the identity (cf. Proposition 7.9). We have

UxU∗(p⊗ p) = U(pxp⊗ p + p⊥xp⊗ p)R∗ = R(pxp⊗ p)R∗ + (p⊗ p⊥xp)FR∗,

x(p⊗ p) = pxp⊗ p + p⊥xp⊗ p.

As R commutes with p⊗ p, this implies p⊥xp = 0, and analogously pxp⊥ = 0.
Similarly,

UxU∗(p⊗ p⊥) = U(xp⊥ ⊗ p)F = U(p⊥xp⊥ ⊗ p)F = p⊗ p⊥xp⊥,

x(p⊗ p⊥) = pxp⊗ p⊥.

Taking partial traces, we find pxp = c · p, p⊥xp⊥ = c · p⊥ with c ∈ C. Thus x = c ∈ C, and
(7.8) is satisfied. �

This result gives us many R-matrices that are not ergodic but do not have any non-trivial
algebraic fixed points either. Consider an involutive R-matrix N of normal form, that is,

N =
n

�
i=1

εi1di
(7.9)

for some n ∈ N, with signs εi ∈ {±1} and dimensions di ∈ N,
∑n

i=1 di = d (see Theorem 5.7(ii)).
Then Lemma 7.10(ii) shows that N has non-trivial fixed points if and only if it is trivial, namely
n = 1 and N = ±1. We also know if d1 = · · · = dn = 1, then N is diagonal and hence ergodic
(Corollary 7.7). But all other normal forms N , and, in fact, all R-matrices R equivalent to
them, are not ergodic, as we show next.

Proposition 7.11. Let R be ergodic. Then

‖φR(R)‖2
2 = τ(R∗ϕ(R)) =

1
d2

. (7.10)

If R is ergodic and involutive, it is of diagonal type, that is, R ∼ N for a normal form (7.9)
with d1 = · · · = dn = 1.
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Proof. We consider the ergodicity condition (7.5) with i = k and j = l. Summing over i, j
gives

d−2 = d−3
d∑

i,j=1

δij = d−3
d∑

i,j,n,m=1

Rim
in (R∗)jnjm = τ(φF (R)φF (R∗)).

Recalling that φF (R) = φR(R), this gives ‖φR(R)‖2
2 = d−2 as claimed. Furthermore,

τ(φR(R)φF (R∗)). = τ(RλR(φF (R∗))) = τ(RφF (R∗)) = τ(ϕ(R)R∗).

We now specialize to the case that R = R∗ is involutive. Then we may express τR(b1b2) =
τ(ϕ(R)R), the value of a three-cycle in the character τR, in terms of the Thoma parameters
αk, βl of R. Recall that dαk, dβl ∈ N are the dimensions di of the normal form of R, summing
to d. Thus, by (5.17),

d = d3τ(ϕ(R)R) =
∑
k

(dαk)3 +
∑
l

(dβl)3 =
n∑

i=1

d3
i �

n∑
i=1

di = d.

It follows that di = 1 for all i. �

We now want to demonstrate the fact hinted at earlier — there exist R-matrices R such that
λR is ergodic on the C∗-algebra Od, but not on the von Neumann algebra M (or, analogously,
ergodic on Fd but not on N ). For this, we need a result that improves the absence of non-trivial
algebraic fixed points (Proposition 7.9) to absence of non-trivial fixed points in Od.

The arguments in the following proof are generalizations of arguments given in [51]. Note
that the YBE is not used here.

Proposition 7.12. Let U ∈ U(Fd) and v ∈ U(F1
d ) such that there exists i ∈ {1, . . . , d} with

vSi = z · Si for some z ∈ T. If Si ∈ (λv, λU ), then OλU

d = C.

Proof. In view of Proposition 7.3, it is enough to show that FλU

d = C. Let x ∈ FλU

d be a
fixed point. Writing T := Si for the intertwiner, the assumption T ∈ (λv, λU ) implies

Tλv(x) = λU (x)T = xT ⇒ x = λ−1
v (T ∗xT ). (7.11)

Since λ−1
v (T ) = v−1Si = 1

z T , we see that λ−1
v commutes with adT ∗. We therefore have

x = T ∗λ−1
v (x)T , which we may iterate to

x = (T ∗)nλ−n
v (x)Tn, n ∈ N. (7.12)

We now show that this implies x ∈ C. Indeed, if x lies in Fm
d for some m ∈ N, then so does

λ−n
v (x), and thus T ∗nλ−n

v (x)Tn ∈ C for all n � m. This already shows that λU admits no
non-trivial algebraic fixed points.

If x ∈ Fd is a non-algebraic fixed point of λU , we consider a sequence (xk)k∈N ⊂ 0Fd

converging in norm to x. For any k, there exists n(k) ∈ N such that for all n � n(k), we have
T ∗nλ−n

v (xk)Tn = μk · 1 for an n-independent complex number μk. Given k, l ∈ N, we then have
for n � max{n(k), n(l)}

|μk − μl| = ‖T ∗nλ−n
v (xk − xl)Tn‖ � ‖xk − xl‖,

and it follows that μk converges to a limit μ as k → ∞.
To show that x = μ · 1, let n, k ∈ N be arbitrary. We have

‖x− μ‖ = ‖T ∗nλ−n
v (x)Tn − μ‖

� ‖T ∗nλ−n
v (x− xk)Tn‖ + ‖T ∗nλ−n

v (xk)Tn − μk‖ + |μk − μ|
� ‖x− xk‖ + ‖T ∗nλ−n

v (xk)Tn − μk‖ + |μk − μ|.
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Given ε > 0, we can choose k large enough such that ‖x− xk‖ < ε and |μ− μk| < ε. Choosing
n > n(k), we also have T ∗nλ−n

v (xk)Tn − μk = 0 and conclude ‖x− μ‖ < 2ε. �

As an aside, we mention that this proposition still holds when U is an arbitrary unitary in
Od. Since we will not need this stronger version, we refrain from giving the proof. Let us now
look at an explicit example.

Example 7.13. Consider the normal form R-matrix N := 12 � 11 ∈ R(3). We claim that

OλN
3 = C, N λN �= C. (7.13)

The non-ergodicity of λN on N , that is, N λN �= C, follows from Proposition 7.11 because N
is an involutive normal form with dimensions d1 = 2, d2 = 1.

To demonstrate ergodicity of λN on O3, we will verify the conditions of Proposition 7.12
with v = 1 and i = 3, that is, show that S3 is an intertwiner from id to λN . We have to show
S3Si = NSiS3 and S3S

∗
i = S∗

i NS3 for i = 1, 2, 3 (note that N = N∗).
The R-matrix is here N =

∑3
j,k,l,m=1 N

jk
lmSjSkS

∗
mS∗

l and its matrix elements satisfy
Nkj

3l = δj3δ
k
l = N jk

l3 by definition of N (note that N = FNF ). Thus, for i = 1, 2, 3, the
conclusion follows by a routine calculation.

In Section 8, we discuss another example in which the algebraic part of the fixed point
algebra is infinite-dimensional and can be described explicitly (Proposition 8.2).

8. Two-dimensional R-matrices

As a concrete family of examples, we consider in this section R-matrices in dimension d = 2. In
[35], all solutions to the YBE have been computed, including non-unitary and non-involutive
ones. In [22], the unitary solutions have been singled out: R(2) consists precisely of all those
matrices R which are of the form R = (Q⊗Q)Ri(Q⊗Q)−1, where Ri, i = 1, . . . , 4, is one of
the following R-matrices and Q ∈ End C

2 is invertible and satisfies certain restrictions, ensuring
that R is unitary†.

R1 = q · 1, q ∈ T, R2 =

⎛
⎜⎜⎝
p

q
r

s

⎞
⎟⎟⎠, p, q, r, s ∈ T, (8.1)

R3 =

⎛
⎜⎜⎝

p
q

q
r

⎞
⎟⎟⎠, q, p · r ∈ T, R4 =

q√
2

⎛
⎜⎜⎝

1 1
−1 1

1 −1
1 1

⎞
⎟⎟⎠, q ∈ T. (8.2)

Note that R3 is not always unitary because only |pr| = 1 is required, and also Q is not
necessarily unitary. For our purposes, it is better to present the elements of R(2) in the form
λu(Ri) ∼= (u⊗ u)Ri(u⊗ u)−1, where both u ∈ F1

2 and Ri ∈ F2
2 are unitary.

Theorem 8.1. A matrix R ∈ F2
2 lies in R(2) if and only if there exists u ∈ U(F1

2 ) and
i ∈ {1, . . . , 4} such that R = λu(Ri), where all parameters p, q, r, s appearing in the represen-
tatives R1, . . . , R4 have modulus 1.

†In this section (only), the notation Ri refers to the specific R-matrices listed here, and not to (2.3).
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Proof. The ‘if’ part of the statement follows by noting that when the parameters p, q, r, s
have modulus 1, then R1, . . . , R4 ∈ R(2). For the ‘only if’ statement, we first note that for
Q =

(
1 0
0 a

)
with a =

√|p|, the transformed matrix (Q⊗Q)R3(Q⊗Q)−1 is of the same form as
R3, but with all parameters having unit modulus. We may therefore without loss of generality
take all parameters to have unit modulus, that is, all representatives R1, . . . , R4 to be unitary.

Let now R = (Q⊗Q)Ri(Q⊗Q)−1 for some invertible Q ∈ End C
2 and Ri unitary. Then

R∗ = R−1 is equivalent to Ri commuting with |Q|2 ⊗ |Q|2, where |Q|2 = Q∗Q. Thus, Ri also
commutes with |Q| ⊗ |Q|. Proceeding to the polar decomposition Q = U |Q|, U ∈ U(F1

2 ), we
then have

R = (Q⊗Q)Ri(Q⊗Q)−1 = (U ⊗ U)(|Q| ⊗ |Q|)R(|Q|−1 ⊗ |Q|−1)(U−1 ⊗ U−1)

= (U ⊗ U)R(U−1 ⊗ U−1) = λU (Ri).

This establishes that R is of the claimed form. �

In Cuntz algebra notation, the representatives R1, . . . , R4 take the form

R1 = q · 1, (8.3)

R2 = pS1S1S
∗
1S

∗
1 + q S1S2S

∗
1S

∗
2 + r S2S1S

∗
2S

∗
1 + s S2S2S

∗
2S

∗
2 , (8.4)

R3 = pS1S1S
∗
2S

∗
2 + q S1S2S

∗
2S

∗
1 + q S2S1S

∗
1S

∗
2 + r S2S2S

∗
1S

∗
1 , (8.5)

R4 =
q√
2
(1 + (S1S

∗
1 − S2S

∗
2 )ϕ(−S1S

∗
2 + S2S

∗
1 )). (8.6)

By explicit calculations, one verifies that if R = λu(Ri), then also its adjoint R∗ and its flipped
version FRF are of this form, that is, R∗ = λu′(Ri) and FRF = λu′′(Ri) for suitable u′, u′′ ∈
U(F1

2 ), and the same† i. In particular, equivalences of type 1 and type 3 (see p. 18) leave the
families {λu(Ri) : u ∈ U(F1

d )} invariant.
However, type 2 equivalences can change the representative Ri. Indeed, λu(R3) = R3 for

u =
(
0 a
1 0

)
with a =

√
p/q, but ϕ(u)R3ϕ(u)∗ equals the second representative R2 after suitable

identification of parameters.
Below we give a table summarizing key features of the endomorphisms corresponding to

the R-matrices R = λu(Ri), i = 1, . . . , 4. Note that irreducibility and ergodicity of R do not
depend on u as both properties are invariant under type 1 equivalences. The index in the third
column is [N : λR(N )] = IndER

(λR).

# Representative MR,1 Ind. Fixed point algebras

1 q · 1 C (automorphism) 1 OλR
2

∼= F2 ord(q) = ∞
OλR

2
∼= O2ord(q)

2

⎛
⎜⎝

p
q

r
s

⎞
⎟⎠ M2 p = r, q = s

C ⊕ C else
4 NλR = C

3

⎛
⎜⎝

p
q

q
r

⎞
⎟⎠ C ⊕ C q2 = pr

C q2 
= pr
4 NλR = C

4
q√
2

⎛
⎜⎝

1 1
−1 1

1 − 1
1 1

⎞
⎟⎠ C 2 dimFλR

2 = ∞
see Proposition 8.2

†The only non-trivial thing to do is to find u ∈ U(F1
2 ) such that FR4F = λu(R4); here u = 1√

2

(−1 i
−i 1

)
works.
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Proof of the claims in the table. We go through families 1–4. The R-matrices in family
1 define automorphisms (hence IndλR = 1), and the form of the fixed point algebra is easy
to deduce.

For the diagonal R-matrices in family 2, Lemma 6.3 shows that λR decomposes into two
quasi-free automorphisms which are either equivalent (if p = r and q = s) or inequivalent (if
p �= r or q �= s). This implies the claimed form of the relative commutant and shows IndλR = 4
in both cases. Since R2 is diagonal, its ergodicity follows from Corollary 7.7.

For the ‘anti-diagonal’ R-matrices in family 2, one computes

MR3,1 = {x ∈ F1
2 : R∗

3xR3 = ϕ(x)} =

{
C q2 �= pr

C ⊕ C q2 = pr
.

In the second case, λR is equivalent to the direct sum of two inequivalent automorphisms,
and IndλR = 4. In the first case, λR is irreducible and R has the three distinct eigenvalues
q,
√
pr,−√

pr. As the cardinality of the spectrum is a lower bound for IndλR (6.4), and in d = 2,
the index of λR may only take the values 1,2, or 4 [13, Proposition 9.9], we see IndλR = 4 also
in this case.

Each member of family 3 is type 2 equivalent to a member of family 2, that is, R3 ≈ R2,
and the equivalence relation ≈ preserves ergodicity (Remark 7.4). Hence family 3 is ergodic
as well.

Due to the block form of the representative R4 for the last family, S1S
∗
1 ∈ F1

2 is seen to be
a fixed point of λR4 . Its fixed point algebra will be described in more detail below. It is easy
to see that λR4 is irreducible.

The R-matrix R4 (8.2) is special from various points of view: Up to applying quasi-free
automorphisms, R4 is the unique non-trivial R-matrix in R(2) for which λR is not ergodic, and
the unique R-matrix in R(2) with index 2. We also mention that R4 generates a representation
of the Temperley–Lieb algebra at loop parameter δ = 1

2 , and satisfies R4
4 ∈ C. Furthermore,

λR4(O2) is the fixed point algebra of an explicit order two automorphism α ∈ AutO2 [11]. The
images of the braid group representations ρR(Bn) are described in [25] in terms of extraspecial
2-groups, and its relevance for topological quantum computing is discussed in [43]. A variation
of R4 also appears in the exchange algebra of light-cone fields in the Ising model [54].

In view of this interest in R4, it might be useful to indicate how it can be obtained
systematically from the results of this article. We look for a non-trivial matrix R ∈ M2 ⊗M2

∼=
M4 that is a unitary solution of the YBE such that λR is irreducible and has non-trivial
fixed points in F1

d . Then we know that (a) R has trivial left and right partial traces φF (R) =
φF (FRF ) = τ(R), and (b) there is a one-dimensional projection p ∈ F1

d that commutes with R.
Choose a basis of C

2 such that p =
(
1 0
0 0

)
(this amounts to applying a quasi-free automorphism

to R). Then (a) and (b) imply that R is of the form⎛
⎜⎜⎝
a b
c d

d −b
−c a

⎞
⎟⎟⎠, (8.7)

with a, b, c, d ∈ C. At this stage, it is not difficult to implement the requirements that R is
unitary and solves the YBE. One finds that non-triviality requires b, c �= 0, and the YBE then
implies d = a and c = −a2/b. Implementing unitarity yields the form (8.2).

To conclude this discussion, we now describe the fixed points of λR4 in F2 in more detail. To
this end, we use the standard Pauli matrices σ0, . . . , σ3 as a basis for M2

∼= F1
2 , with σ0 = 1.

Proposition 8.2. An element x ∈ Fn
2 , n ∈ N, is a fixed point of λR4 if and only if it is a

linear combination of elements of the form σi1ϕ(σi2) · · ·ϕn−1(σin), where the following three
conditions are satisfied.
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(i) in ∈ {0, 3}.
(ii) If ik ∈ {0, 2} for some k ∈ {2, . . . , n}, then ik−1 ∈ {0, 3}.
(iii) If ik ∈ {1, 3} for some k ∈ {2, . . . , n}, then ik−1 ∈ {1, 2}.

We have dim(Fn
2 )λR = 2n and N λR = (0FλR

2 )′′.

Proof. The first step is to realize that the R-matrix R4 has the form R4 = q√
2
(1 + iσ3ϕ(σ2)).

Thus, x ∈ F2 is a fixed point of λR4 if and only if it commutes with ϕm(S), m ∈ N0, where
S := σ3ϕ(σ2) (cf. Proposition 7.1(ii)). Recall that the Pauli matrices satisfy σi = σ∗

i = σ−1
i

and

σiσjσi =

{
+σj j ∈ {0, i}
−σj else

. (8.8)

Let x be a linear combination of elements of the form σi1ϕ(σi2) · · ·ϕn−1(σin). In view of the
action (8.8), it follows that x is a fixed point if and only if each term in its expansion into this
basis is a fixed point, that is, we may take x = σi1ϕ(σi2) · · ·ϕn−1(σin) without loss of generality.

Since σ2
2 = 1, we have adϕn−1(S)(x) = σi1ϕ(σi2) · · ·ϕn−1(σ3σinσ3), which coincides with x

if and only if σ3σinσ3 = σin , that is, if and only if in ∈ {0, 3} as claimed in (i). Similarly,

adϕk−1(S)(x) = σi1ϕ(σi2) · · ·ϕk−1(σ3σikσ3)ϕk(σ2σik+1σ2) · · ·ϕn−1(σin),

which coincides with x if and only if either σ2σik+1σ2 = σik+1 and σ3σikσ3 = σik or σ2σik+1σ2 =
−σik+1 and σ3σikσ3 = −σik . By (8.8) this gives the listed conditions (ii) and (iii).

A dimension count gives dim(Fn
2 )λR = 2n. In view of the product form of σ3ϕ(σ2), it is easy

to see that N λR is invariant under the τ -preserving conditional expectations En : N → Fn
2 .

This invariance implies that any x ∈ N λR can be approximated weakly by the sequence of fixed
points {En(x)}n∈N, and hence, N λR = (0FλR

2 )′′. �

This result implies in particular that [N : LR4 ] = ∞.
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