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Abstract 10 

Characterisation of fracture networks at different scales is challenging and important to 11 

many fields of geoscience, especially when access to multiple resolution datasets is limited. 12 

Here, we develop an integrated analysis of fracture networks on carbonate platforms using 13 

three scales of observation: small (outcrop), intermediate (airborne LiDAR) and large (3D 14 

seismic). Statistical analyses and ternary diagrams of geometrical and topological data from 15 

Cariatiz (South East Spain) and Pernambuco (East Brazil) are used to understand the 16 

relationships and distribution of fracture networks between multi-scale datasets. A variety of 17 

fracture types at each scale of observation reveal how complex fracture networks are on 18 

carbonate platforms. Our results demonstrate that fracture network properties behave 19 

differently depending on the fracture size, and that transitional scale gaps between datasets 20 

constrain fracture characterisation. Airborne LiDAR maps show that intermediate-sized 21 

fractures appear to have a better controlled orientation and a lower connectivity than smaller 22 

fractures from the same area in Cariatiz. Fracture branch length distributions fit a negative 23 
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exponential or log-normal distribution for massive non-stratabound units. This work is 24 

important as it demonstrates that the use of outcrop data is a good approach to understand 25 

fracture complexity of carbonate platforms. Understanding sub-seismic fracture networks is 26 

therefore critical in quantifying fluid flow and permeability in carbonate reservoirs.  27 

1 Introduction 28 

Fracture networks control many physical properties in rocks, and their characterisation 29 

is important in many disciplines of geosciences and engineering, including oil and gas 30 

exploration (Nelson, 2001; Sarkheil et al., 2013), geothermal reservoir characterisation (Chen 31 

et al., 2018; TerHeege et al., 2018; Vidal and Genter, 2018; Doornenbal et al., 2019), carbon 32 

capture and storage projects (March et al., 2018), hydrogeology and environmental geology 33 

studies (Abotalib et al., 2019; Medici et al., 2019), as well as mining and tunnelling (Friedman, 34 

1975; Van As and Jeffrey, 2002; Zarei et al., 2012). Fracture networks have a significant effect 35 

on porosity, permeability and fluid flow of naturally fractured units. Well-connected open 36 

fractures can increase the natural permeability of rocks to provide active conduits for fluid flow 37 

(Laubach, 2003; Maerten et al., 2006; Strijker et al., 2012; Gutmanis et al., 2018). Conversely, 38 

closed or cemented fractures can act as barriers compartmentalising reservoirs, which is 39 

important for field delineation (Bourbiaux, 2010). Examples of fractured carbonate reservoirs 40 

can be found worldwide including the Cantarell complex in Campeche (Gulf of Mexico), the 41 

Haft Kel field in North Iraq (Middle East), and the Ekofisk complex in the North Sea 42 

(Dominguez et al., 1992; Key et al., 1999; Hermansen et al., 2000; Alavian and Whitson, 2005; 43 

Mandujano et al., 2005; Bourbiaux, 2010; Santiago et al., 2014; Galvis, 2018).  44 

A key aspect in reservoir characterisation is the need to analyse the interaction between 45 

individual fractures and fracture sets, which can be estimated by studying topological attributes 46 

such as branch and node types (Strijker et al., 2012; Sanderson and Nixon, 2015). Both 47 

geometrical and topological attributes affect the connectivity and permeability of a rock 48 
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volume. Moreover, natural fractures typically occur over several orders of magnitude; they 49 

range from microscopic fissures to kilometre structures such as fracture swarms or corridors 50 

(Bush, 2010). It is therefore crucial to understand the scale dependency of these distribution 51 

parameters to characterise sub-surface fluid flow patterns (Berkowitz, 2002; Tao and Alves, 52 

2019).  53 

Fractures can be described by quantifiable geometrical attributes such as their orientation, 54 

length, height, spacing, morphology, or some other form of classification involving fracture 55 

type and mineral fill (Odling et al., 1999). In this paper, we use the term fracture for any type 56 

of discontinuity (joints, faults, etc.) formed in different settings, such as during large-scale 57 

tectonic events, local uplift and erosion, slope instability or excess fluid pressure (Peacock et 58 

al., 2000, 2016; Berkowitz, 2002; Kim and Sanderson, 2005). The intention is to characterise 59 

an entire fracture network, including different fracture types of various sizes that interact 60 

between each other within a given rock unit, as all of them may contribute to the connectivity 61 

of the fracture network. Specific terms such as fault, joint, fracture swarm, etc. are only used 62 

where the fracture type and geological connotation are important to the analysis. 63 

1.1 Challenges and limitations 64 

One of the main challenges when characterising fracture networks is to obtain reliable 65 

data to analyse fracture networks at different scales. At present, it is still difficult to fully 66 

characterise fractures from a single dataset or by utilising data in which fractures of certain 67 

sizes cannot be observed due to limited data resolution. Integration of datasets and the 68 

knowledge of the capabilities for each type of data are key. Ideally, a carbonate platform with 69 

access to an exhaustive dataset, allowing mapping at different scales in both surface (e.g. 70 

outcrop mapping, drone imagery, airborne LiDAR) and sub-surface (e.g. cores, borehole, 71 

seismic), would provide a comprehensive setting to fully characterise not just fracture 72 

networks, but also additional structural and sedimentological properties. However, availability 73 
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of such a perfect scenario is rare, and the necessity to work with limited datasets is a daily issue 74 

for geoscientists.  75 

Three-dimensional (3D) reflection seismic data is usually the main source of subsurface 76 

structural information in industry. Seismic surveys are generally acquired at a line spacing of 77 

25 to 50 m and, depending on the resolution of the seismic volume, faults with throws smaller 78 

than 10 to 30 m cannot be resolved (Needham et al., 1996; Lohr, 2004; Maerten et al., 2006). 79 

Faults and fractures of sizes below seismic resolution, referred to as sub-seismic, can only be 80 

determined using borehole data (e.g. wireline logs, cores, well log images), leading to 81 

underestimations of fracture volumes (Maerten et al., 2006). Fracture downscaling or upscaling 82 

using discrete stochastic methods is a common practice to populate fractures with a scale that 83 

cannot be observed directly from the studied dataset, for example between seismic and 84 

borehole data (Cacas et al., 2001; Chilès, 2005). Similarly, fractal analyses have been 85 

undertaken to characterise fracture properties (Needham et al., 1996; Nicol et al., 1996; Bonnet 86 

et al., 2001). However, their scale invariance is still subject to controversy (Cowie et al., 1996; 87 

Needham et al., 1996; Nicol et al., 1996; Gillespie et al., 2001; Guerriero et al., 2010), and 88 

extrapolations with limited reliable statistics can lead to important uncertainties (Maerten et 89 

al., 2006).  90 

Outcrop analogues play an important role in the evaluation of small- and intermediate-91 

scale fracture parameters that cannot be quantified from seismic and borehole data (e.g. Eberli 92 

et al., 2005; Gutmanis et al., 2018, Fig.4). Field analogues can guide the development of 93 

conceptual reservoir models and provide spatial and statistical data to understand inter-well 94 

fracture property populations, as techniques are available to cover all scales of observation 95 

(Nelson, 2001; Strijker et al., 2012; Gutmanis and Ardèvol i Oró, 2015; Sanderson, 2016). In 96 

such analyses, it is important to carefully choose valid field analogues to calibrate them with 97 

reservoir data (Cacas et al., 2001; Laubach et al., 2009; Kleipool et al., 2017). If there is 98 
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sufficient exposure of fracture data, and sampling is undertaken carefully using appropriate 99 

methodologies (e.g. circular scanlines), field analogues can provide valuable information to 100 

characterise 3D fracture networks in multi-scale scenarios (Bertotti et al., 2007; Strijker et al., 101 

2012). 102 

This study is not an exception of the challenges associated to data limitations; in fact, we 103 

aim to emphasise the issues associated when characterising multi-scale fracture networks. For 104 

this reason, an integrated methodology is explained in detail, utilising three scales of 105 

observation from two carbonate platforms with similar settings. This approach allowed us to 106 

characterise fractures at sub-seismic (centimetre to metre) and seismic (kilometre) scales.  107 

The Cariatiz carbonate platform in the Sorbas Basin, SE Spain, which has a unique 3D 108 

exposure, was used to analyse the geometry and topology of fracture networks at two sub-109 

seismic scales from outcrop mapping (small scale) and airborne LiDAR (Light Detection and 110 

Ranging) maps (intermediate scale) (Fig. 1). Correlating the two datasets, covering the same 111 

carbonate platform, allowed us to predict trends of fracture properties at different scales. In 112 

addition, three-dimensional (3D) seismic studies from the Pernambuco carbonate platform in 113 

East Brazil were used to analyse km-long fracture networks (Fig. 2). Comparison between the 114 

two study areas (Cariatiz and Pernambuco) have limitations as they are not in the same region. 115 

However, they are of great importance to improve the understanding of multi-scale fracture 116 

networks (Fig. 3). Outcrop data provides the opportunity to understand sub-seismic fractures 117 

that can be used as conceptual models when only working with seismic data. In contrast, 118 

seismic data is useful to understand km-long fractures that are often poorly exposed, and can 119 

also be used as conceptual models for example, when working with borehole data or surface 120 

data. 121 
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This study is a novel approach to study multi-scale fracture networks. However, there is 122 

indeed the possibility and a call to continue future work to test and apply our observations and 123 

conclusions in similar carbonate platforms which might have a more robust dataset covering 124 

fracture sizes of several orders of magnitude in the same region.  This paper addresses the 125 

following research questions: 126 

a) How can we improve interpretation techniques combining fracture datasets with 127 

different resolutions to predict sub-seismic fractures? 128 

b) What is the importance of integrating geometrical and topological attributes in the study 129 

of fracture networks? 130 

c) What is the complexity of natural fracture networks at sub-seismic scales? 131 

d) Do fractures of distinct sizes observed at different scales present different attributes? 132 

In summary, this work analyses the relationship between fracture sizes to test if there is 133 

a correlation between their size and connectivity. It also aims to show a comprehensive 134 

methodology to characterise fracture networks by the use of geometrical and topological 135 

attributes of fractures at different scales of observation (outcrop, airborne LiDAR, seismic). 136 

2 Study areas and geological settings 137 

2.1 Cariatiz carbonate platform, SE Spain 138 

At outcrop, the focus of this study is on the Messinian carbonate platform of Cariatiz, 139 

which constitutes one of the pre-evaporitic Messinian sedimentary units in the Sorbas Basin 140 

(Martín and Braga, 1994; Braga and Martín, 1996). The Cariatiz platform is located on the 141 

northern margin of the Sorbas Basin, close to the village of Los Alías, SE Spain (Fig. 1). The 142 

Sorbas Basin is oriented E-W and it is bordered by the Sierra de los Filabres to the north and 143 

the Sierras Alhamilla and Cabrera to the south (Braga and Martín, 1996; Cuevas Castell et al., 144 

2007; Reolid et al., 2014; Nooitgedacht et al., 2018) (Fig. 1b). The formation of this Neogene 145 
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basin is linked to strike-slip (Jonk and Biermann, 2002) and extensional tectonism (Meijninger 146 

and Vissers, 2006), comprising strata of Middle Miocene to Quaternary ages (Martín and 147 

Braga, 1994; Reolid et al., 2014; Nooitgedacht et al., 2018). The geometry and stratigraphy of 148 

the Cariatiz Fringing Reef Unit have been subject of extensive research (Riding et al., 1991; 149 

Martín and Braga, 1994; Braga and Martín, 1996; Cuevas Castell et al., 2007; Sánchez-Almazo 150 

et al., 2007; Reolid et al., 2014; Nooitgedacht et al., 2018).  151 

The Cariatiz Fringing Reef Unit was chosen in this work because of its unique three-152 

dimensional exposure in which several fracture types with various sizes are recognised at 153 

different scales (Fig. 4). During platform development, the Sorbas Basin was affected by a 154 

regional tectonic uplift with a rate of ca 110 m/Myr, imposing a 3° dip to the Cariatiz platform. 155 

Different reef growth phases appear as clinoform bodies (Reolid et al., 2014) which, in addition 156 

to syn-depositional erosion, influenced the geometry of the platform (Cuevas Castell et al., 157 

2007). Sea-level changes have been reported as the governing mechanism controlling 158 

carbonate productivity, reef slope geometry and stacking patterns of the clinoform bodies 159 

(Kendall and Schlager, 1981; Braga and Martín, 1996; Reolid et al., 2014).  160 

The Messinian Fringing Reef Unit comprises six distinct depositional facies (Riding et 161 

al., 1991; Braga and Martín, 1996) (Fig. 4d). From the platform interior to the basin, these 162 

depositional facies are as follows: 163 

1. Lagoon – parallel beds of calcarenites and calcirudites with abundant gastropods, red 164 

coralline algae, foraminifera, and mollusc remains. Small coral patches of Porites occur 165 

near the reef crest. Siliciclastic grains are locally mixed with carbonate sediments. 166 

Lagoonal beds dip 3 to the southwest (N216E). 167 

2. Reef framework – a 20 m thick unit subdivided into three sub-facies from top to bottom: 168 



 

8 

 

a. Reef crest zone (4-0 m water depth) – laminar to contorted Porites colonies with 169 

stromatolitic crusts. Contains rudstones with echinoderms and molluscs fill 170 

cavities. 171 

b. Thicket zone (ca 4-10 m below the reef crest) – vertical corals and continuous 172 

lateral coral growth. 173 

c. Lower pinnacle zone (ca 10-15 m below the reef crest) – pinnacle morphologies 174 

formed by columnar Porites connected by vertical and laminar coral growth 175 

(Fig. 4e). Bioclastic matrix fills in remaining spaces. 176 

3. Reef talus slope (uppermost slope) – deposits of reef framework blocks and coral 177 

breccia with Halimeda, bivalves, molluscs, serpulids and coralline algae. Laminar 178 

Porites colonies encrusting bioclasts are frequent. 179 

4. Proximal slope (middle slope) – well-bedded deep water calcarenites and calcirudites 180 

with bioclasts of serpulids, coralline algae, molluscs and abundant Halimeda. 181 

5. Distal slope (lowermost slope) and basin – calcarenites, silty and sandy marls variably 182 

intercalated with basinal marls and diatomites (upper part of the Abad Member). 183 

6. Fan delta – episodic flows of fan delta sediments during carbonate platform growth, 184 

alternating with conglomerates and sandstones intervals that interfinger with the 185 

carbonate platform. 186 

2.2 Pernambuco carbonate platform, East Brazil 187 

At the seismic scale, our study focuses on the Pernambuco carbonate platform, which is 188 

part of the eastern portion of the Brazilian continental platform, an area of stretched continental 189 

crust forming the Pernambuco Plateau (Magalhães et al., 2014; Buarque et al., 2017) (Fig. 2). 190 

The Pernambuco Basin is part of the Borborema Province, consisting of a complex collage of 191 

continental masses (dos Santos et al., 2010; Buarque et al., 2017). This province was subject 192 

of a series of Precambrian orogenic events, prior to late Mesozoic rifting stages that culminated 193 
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in continental breakup during the Cretaceous (Darros de Matos, 1999; dos Santos et al., 2010; 194 

Buarque et al., 2017). The evolution of the basin was initially controlled by NE-SW and E-W 195 

Precambrian shear zones that were then reactivated during rifting as strike-slip and normal 196 

faults (Buarque et al., 2017). After that, the basin was controlled by NW-SE oblique transfer 197 

faults, in addition to N-S, WNW-ESE and NNW-SSE normal faults, during the Aptian-Albian 198 

(Buarque et al., 2017). 199 

Buarque et al (2017) recognised five seismic sequences offshore Pernambuco. Seismic 200 

Sequence 1 represents the beginning of a sag phase, comprising Aptian-Albian rift strata and a 201 

salt layer. Salt layers generated large halokinetic features, such as diapirs and salt domes that 202 

cross-cut Seismic Sequence 2, a unit composed of Cenomanian-Santonian post-rift strata 203 

(Buarque et al., 2016, 2017, Fig. 7). Offshore carbonate deposition developed during two main 204 

post-rift intervals: the Cretaceous post-rift Seismic Sequence 3 during the Campanian-205 

Maastrichtian, and the Lower Cenozoic post-rift Seismic Sequence 4 from Paleogene to Middle 206 

Miocene. Upper Miocene to Recent strata occur in Seismic Sequence 5, described as an Upper 207 

Cenozoic post-rift interval (Buarque et al., 2017 Figs. 4 and 5). 208 

Sequences 3 and 4 comprise the Pernambuco carbonate platform (Fig. 2c). This platform 209 

was chosen because of its distinctive km-long normal faults located along the platform margin 210 

and platform interior, revealing a similar setting to the fractures observed on the platform 211 

margin in Cariatiz, but at a larger scale (Fig. 2b and c). In addition, seismic characteristics 212 

(geometries and seismic facies) observed in Pernambuco present similarities to the depositional 213 

facies in Cariatiz (Fig. 2c). Four seismic facies are recognised in Pernambuco from the platform 214 

interior to the basin: 215 

1. Platform interior (lagoon) – semi-continuous to discontinuous, low- to medium- 216 

amplitude internal reflections capped by a high-amplitude reflector. 217 
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2. Reef framework – semi-continuous sub parallel reflections bounded by the 218 

platform margin, which coincides with a steep high-amplitude reflector. 219 

3. Talus slope – chaotic, steep reflections with low- to medium- amplitude. 220 

4. Slope and basin (including the proximal and distal slopes) – discontinuous, 221 

chaotic reflections with low- to medium- amplitude. 222 

3 Methods and datasets 223 

Outcrop data from the Cariatiz carbonate platform are interpreted in this study, including 224 

ten sampling sites and airborne LiDAR data covering an area of about 0.4 km2 (Figs. 4, 5 and 225 

6). Cariatiz is used as an outcrop analogue to understand the complexity of sub-seismic fracture 226 

networks as the platform displays a multi-scale system of fractures identified from airborne 227 

LiDAR maps down to the outcrop scale. The aim is to correlate fracture networks measured 228 

from both field datasets to investigate the relationship between small and intermediate scale of 229 

observations. In a later stage, a seismic dataset from the Pernambuco Basin in Brazil was used 230 

to analyse fracture networks at a large scale. The methodology used in this work is summarised 231 

in Fig. 3.  232 

The main rationale behind the use of datasets from two different localities, and with 233 

varied resolutions, was to investigate the effects of scale when characterising multi-scale 234 

fracture networks. As observed from platform to basin transects of both platforms, seismic 235 

facies and geometries from Pernambuco relate to depositional and structural settings at Cariatiz 236 

(Figs. 2c and 4d). In addition, fractures are observed along the platform margin in both 237 

Pernambuco and Cariatiz platforms (Figs. 2c and 4d). Nevertheless, each dataset has a 238 

distinctive resolution in which a range of specific fracture sizes can be observed. Centimetre-239 

long fractures can be measured from exposure outcrop mapping, whereas fractures with a few 240 

metres in length can be mapped from airborne LiDAR datasets, and kilometre fractures can be 241 

measured utilising seismic data. This approach allowed us to understand which geological 242 
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features can be observed at each particular scale. Our analysis does not intend to suggest that 243 

both platforms have the same fracture network properties, as they have different tectonic 244 

histories. In fact, our results demonstrate the differences of fracture network properties 245 

obtained from the two localities. However, the use of outcrop data can help to understand the 246 

complexity of fracture networks at different scales of observation, and the amount of detail that 247 

is lost due to data resolution. 248 

3.1 Topological sampling 249 

A fracture network is defined as a system of fractures developed within the same volume 250 

of rock, and may include different fracture sets that could interact by connecting individual 251 

fractures (Adler and Thovert, 1999; Sanderson and Nixon, 2015). An important part of our 252 

workflow is to consider the topology of fracture networks from the three studied datasets. 253 

Topology is the tool that allows geoscientists to properly characterise the connectivity (and 254 

relationships) of a given fractured unit, in addition to geometrical attributes (Manzocchi, 2002; 255 

Sanderson and Nixon, 2018). A combined analysis of fracture networks is the best practice, as 256 

geometrical data on its own is not sufficient to produce a model reflecting the connectivity of 257 

a fractured rock volume. In fact, two fracture networks with the same geometrical properties 258 

(orientation, length) can show different connectivity (Sanderson and Nixon, 2018). 259 

This work follows the models of Manzocchi (2002) and Sanderson and Nixon (2015) in 260 

which fracture networks are considered in terms of traces (lines) and nodes (fracture 261 

intersections and terminations) to form a system of branches between nodes (Fig. 7a). Fracture 262 

network topology is given by the analysis of node types (I: isolated, Y: abutting or splaying, 263 

X: crossing) and  branch types (I-I: isolated, I-C: partly connected, CC: doubly connected). It 264 

also involves resulting dimensionless parameters such as average number of connections per 265 

line (CL), average number of connections per branch (CB), and dimensionless branch intensity 266 

at percolation (B22C) (Manzocchi, 2002; Sanderson and Nixon, 2015, 2018) (Figs. 3 and 7a, 267 
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Table D1). In order to further differentiate fracture populations, nodal functions such as the 268 

NB/NL ratio, proportions of connecting nodes (isolated: PI or connected: PC) and branches 269 

(isolated: PII, singly connected: PIC or doubly connected: PCC) are useful to our analysis (Table 270 

D1).  271 

Topological data and resulting dimensionless parameters are analysed using a series of 272 

equations and diagrams from Sanderson and Nixon (2015, 2018) (Table D1). A simple 273 

approach to assess the topology and connectivity of fracture networks consists of plotting nodal 274 

and branch data in ternary plots (Manzocchi, 2002; Sanderson and Nixon, 2015; Morley and 275 

Nixon, 2016). Results from each dataset vary between outcrop locations, zones or depths. An 276 

area covering the data variability is shown in ternary diagrams in addition to their average 277 

values (Fig. 11). In this work, we used the Ternary Plot Maker (2019) to plot our data. 278 

As suggested by Sanderson and Nixon (2015, 2018), dimensionless parameters such as 279 

CB, are useful measures to assess the connectivity of a fracture network. Values of CB range 280 

from 0-2. On a ternary diagram, low connected networks with CB values close to 0, plot towards 281 

the I-I corner, whereas high connected networks with CB close to 2, plot towards the C-C corner 282 

with a high proportion of interconnected branches. Furthermore, CB can be used with B22C to 283 

estimate the percolation threshold of a given network topology. Sanderson and Nixon (2018) 284 

demonstrated that most percolating systems have values of CB>1.56.  285 

3.2 Geometrical sampling 286 

Geometric parameters considered in this study are branch lengths and branch orientations 287 

(strike), as they can be measured at different scales from the three provided datasets. Sanderson 288 

and Nixon (2015, 2018) suggested that using branches instead of full traces is a better approach 289 

to characterise fracture networks as it can avoid or decrease sampling errors (Fig. 7 b-f). These 290 

errors can be related to (1) erroneous recognition, (2) censoring effects, and (3) truncation 291 
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effects (Manzocchi et al., 2009; Guerriero et al., 2010; Torabi and Berg, 2011 2011; Tao and 292 

Alves, 2019). 293 

Due to the complexity of fracture arrangements and the access limitation to entire fracture 294 

networks (censoring), it is a challenging task to define the full fracture trace (Fig. 7b). 295 

Erroneous recognition of the full fracture trace is common among interpreters as length and 296 

orientation measurements of fracture traces may differ between different interpretations (Fig. 297 

7b). Variations in the results (e.g. orientation and length) between interpreters can lead to 298 

distinct and contrasting conclusions about a given fracture network. Identifying shorter 299 

segments (branches) during interpretation is a consistent protocol to measure fracture 300 

geometries (Fig. 7c). Results obtained utilising fracture branches can lead to similarities 301 

between interpreters, avoiding the erroneous recognition bias, as the identification of the full 302 

trace is not required.  303 

Furthermore, censoring effects occur when a fracture extends beyond the sampling area 304 

and the frequency of large fractures is underestimated (Fig. 7e). This effect can be reduced by 305 

the use of fracture branches as the segment outside the sampling area is shorter (Fig. 7f). On 306 

the other hand, truncation effects occur when small fracture frequencies are underestimated as 307 

a result of resolution limitations that cannot be avoided due to data constraints (Fig. 7d). 308 

Therefore, we stress the use of fracture branches in all measurements collected in this paper as 309 

the obtained values can decrease uncertainties related to fracture sampling and provide more 310 

reliable information about the geometrical parameters (length and orientation) (Fig. 7). 311 

3.3 Cariatiz Platform 312 

3.3.1 Outcrop data – Field procedure 313 

Geometrical and topological attributes were measured from the Cariatiz reef framework 314 

zone (Fig. 4a, d) on 10 outcrop surfaces (a 2D view of a fracture network) using the enhanced 315 
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circular scanline methodology of Watkins et al. (2015) (Fig. 5). More than 400 fracture traces 316 

with 1000 fracture branches were measured and analysed (Fig. 5). Topological analyses and 317 

field procedures are similar to Sanderson and Nixon (2015) and Procter and Sanderson (2018) 318 

in which we defined nodes and branches in the field and used rectified outcrop photographs 319 

(Figs. 3, 5 and 7). 320 

The first stage in our workflow was to select key sampling localities prior to fracture data 321 

collection (Fig. 3). Sampling localities were initially chosen along the platform rim, within the 322 

reef framework facies, using aerial photographs and LiDAR maps with elevation and slope 323 

attributes (Fig. 6). This step was crucial to identify accessible areas where the fringing reef 324 

could be mapped along exposed outcrop surfaces. Field measurements were dependent on how 325 

clearly the fractures were exposed at the surface. Vegetation is preferentially localised within 326 

fractures, as these are zones of intense weathering where soil accumulates and moisture is 327 

retained, especially in arid conditions such as in Cariatiz (Boyer and McQueen, 1964; Aich and 328 

Gross, 2008). As a result, soil and vegetation was present at some localities, indicating the 329 

presence of open fractures (Fig. 5b, d). However, prior to fracture measurement, large 330 

vegetation was removed, and soil was cleared from the outcrop surface.  331 

The circular scanline sampling method was used to count the number of fracture 332 

intersections at the edge of the circle (n) and the number of fracture terminations within the 333 

circle (m) (Mauldon et al., 2001; Watkins et al., 2015) (Figs. 3 and 5). At each sampling 334 

locality, a circle of known radius was drawn onto the surface using a length of rope with a stick 335 

of chalk tied to the end (Figs. 3 and 5). The radius was chosen based on the minimum m and n 336 

count (30) of Rohrbaugh et al. (2002) and Watkins et al. (2015) to ensure reliable fracture 337 

estimates and identify individual fracture sets or data clusters (Fig. 3). Following the method 338 

of Procter and Sanderson (2018), every node and branch was marked with chalk of different 339 

colours, depending on their type, to help node and branch counting. A sketch of the fracture 340 
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network was drawn on the go to provide robust documentation of the measured data and to 341 

guide digital interpretation at a later stage.  342 

Once fracture nodes and branches were identified within the sampling circle, geometrical 343 

measurements were performed in the field. The workflow included measuring fracture branch 344 

orientation (strike, dip and dip direction), branch length, as well as identifying aperture and 345 

fracture fill. By completion of topological and geometrical measurements, a photograph of the 346 

locality was taken for a later use. Outcrop photographs of the circular scanline were rectified 347 

using the graphics suite of CorelDraw and Corel PaintShop Pro in order to remove distortions 348 

in 3D perspective (Fig. 5k, l). This process allows fracture attributes (branches, nodes) to be 349 

digitised as a vector graphic image, in order to provide a clear representation to scale of the 350 

outcrop fracture networks (Procter and Sanderson, 2018) (Fig. 5). Topological and geometrical 351 

attributes were also measured digitally using the vector lineaments to confirm the values taken 352 

in the field (Fig. 5). This process provides a good quality control of the measured data. 353 

Additionally, vector lineaments allow accurate calculations of average orientations and exact 354 

length measurements of irregular fracture branches. These latter measurements were the ones 355 

used in the subsequent statistical analyses.  356 

3.3.2 LiDAR data – GIS analysis 357 

Airborne LiDAR imagery from the Cariatiz carbonate platform permitted the collection 358 

of fracture measurements at an intermediate scale. Data was provided by the Instituto 359 

Geográfico Nacional (IGN) and the Centro Nacional de Información (CNIG) of Spain (Fig. 6). 360 

The airborne LiDAR map was acquired with a density of 0.5 points/m2 with a 5 m grid size. 361 

After processing for slope, a resolution of about 5 m is suggested for the airborne LiDAR 362 

dataset. As a result, fractures of less than 5 m (below the LiDAR resolution) are subject to 363 

truncation effects. Fracture branches ranging from a few metres to tens of metres in length can 364 

be resolved from this dataset.  365 
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Visualisation and interpretation were carried out using ArcGIS 10.5. A slope attribute 366 

was calculated from the LiDAR map to highlight intermediate-scale discontinuities (fractures 367 

and fracture swarms) at Cariatiz (Fig. 6). A 3D visualisation of the LiDAR map, the slope 368 

attribute map and aerial photographs were used simultaneously in our fracture interpretation to 369 

be confident that the lineaments were real geological fractures and no other elements such as 370 

footpaths or agriculture terraces related to abandoned olive fields (Fig. 6). The LIDAR map 371 

was divided into three zones in order to understand spatial fracture variability in Cariatiz (Fig. 372 

6b). 373 

Each fracture branch was digitised as a single polyline to preserve geometrical 374 

characteristics such as fracture branch length and orientation. Guidance from Nyberg et al 375 

(2018) was used during the interpretation of fracture branches to avoid topological 376 

inconsistencies such as erroneous short isolated fracture branches or overlapping fracture 377 

branches. The snapping tool from GIS was crucial in this task. Node counting was performed 378 

by digitising points at fracture terminations (I-nodes) or fracture intersections (Y-, X-nodes). 379 

Geometrical attributes (length and orientation) were calculated using the “linear directional 380 

mean” tool from the “spatial statistics tools” in ArcGIS. 381 

3.4 Pernambuco carbonate platform 382 

3.4.1 Seismic data 383 

A post-stack depth-converted 3D seismic volume from the Pernambuco Plateau, offshore 384 

East Brazil, was used in this study (Fig. 2). The seismic volume covers an area of 3,200 km2 385 

with a vertical penetration of almost 9 km. The seismic volume was provided by CGG and 386 

comprises 2700 inlines (IL) and 1899 crosslines (XL) with a 25 x 25 m line spacing and a 387 

vertical sampling interval of 5 m. The interpreted seismic data is in depth domain with SEG’s 388 

American polarity, and of good quality, allowing for the detailed analysis of fracture networks 389 

on the wide platform margin (Fig. 8). There are no exploration wells in the study area. 390 
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Seismic attribute calculation and fracture interpretation were completed using 391 

Schlumberger Petrel®. A variance cube was computed for the entire Pernambuco seismic 392 

volume to compare the similarity of traces and highlight seismic discontinuities such as faults 393 

and fractures (Chopra and Marfurt, 2007; Brown, 2011; Marfurt and Alves, 2015) (Figs. 3 and 394 

8). Eleven depth slices were analysed and interpreted from Z= -1020 to -2020 m at intervals of 395 

100 m (Figs. 3 and 8). Fault interpretation was performed on a portion of the Pernambuco 396 

carbonate platform covering the shelf and slope. Faults were interpreted by visualising depth 397 

slices and seismic sections simultaneously to make sure that lineaments are real faults with a 398 

vertical displacement and avoid interpretation of artefacts (Fig. 2c). Data was then exported to 399 

Esri® ArcGIS Desktop where geometrical (branch length, orientation) and topological (nodal 400 

and branch counting) analyses were performed using the same methodology as with LiDAR 401 

data (Figs. 3 and 8). 402 

3.5  Statistics and data analyses 403 

A common practice to analyse geometrical attributes of a fracture network is to use rose 404 

diagrams and frequency distribution plots such as histograms and cumulative plots (Watterson 405 

et al., 1996; Odling, 1997; Nyberg et al., 2018). The geometrical data in this work is analysed 406 

by equal area rose diagrams and branch length-frequency plots. Branch length measurements 407 

were processed using Microsoft Excel, where histograms, box plots, a series of cumulative 408 

frequency plots, and tables with statistical data were compiled in order to identify distribution 409 

trends (negative exponential, log-normal or power law) in a similar way to Nyberg et al. (2018) 410 

(Fig. 9). 411 

Fracture orientation measurements were processed using the Matlab® version of MARD 412 

1.0 by Munro and Blenkinsop (2012). Rose diagrams were plotted using a bi-directional 413 

function with a weighted moving average and equal area. The weighting factor for all plots was 414 
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0.9 with a 9° aperture angle for data averaging (Figs. 10 a-c, B1 and B2). Visual analyses from 415 

these rose diagrams suggest that our data is multimodal with different fracture sets (Fig. 10). 416 

Numerical techniques were key in our workflow to define specific fracture sets. 417 

Multimodal orientation datasets were divided into clusters utilising the cluster analysis tool in 418 

Orient 3.11.1 (Vollmer, 1990, 1995, 2015) (Fig. 10 d-f). The cluster analysis method included 419 

axial data in which the number of clusters (from 2 to 9) is defined by the user. Every data 420 

sample was tested using different number of clusters in which the dominant sets were mostly 421 

defined regardless of the cluster counts. Visual interpretation of fracture sets based on equal 422 

area rose diagrams (Fig. 10 a-c) was useful in determining the final selection of the number of 423 

clusters (Fig. 10 a-c). For every fracture set, the axial mean was calculated using the Statistics 424 

Tool within Orient 3.11.1. 425 

4 Results – Fracture network characterisation 426 

4.1 Fracture complexity 427 

In this study, we recognised different fracture types depending on the scale of 428 

observation. At outcrop scale, fracture compartmentalisation, chaotic and curved stylolite 429 

surfaces, as well as vertical Porites on the platform edge, show how complex the structural and 430 

depositional attributes are on carbonate platforms like Cariatiz (Figs. 4 and 5). Open fractures 431 

(joints) and veins were recognised across the Cariatiz Reef Unit (Figs. 4 and 5g, h). Veins have 432 

calcite infill and can be observed in many of the circular scanlines analysed (Fig. 5g). Large 433 

vertical fractures are visible across the reef framework zone, extending from the reef crest down 434 

to the slope facies zone (Fig. 4a). These fractures create blocks and are related to slope 435 

instability.  436 

From airborne LiDAR imagery, the main structures comprise fracture swarms composed 437 

of clusters with closely spaced fractures. These fracture swarms are identified in the field (Fig. 438 
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4c) but can be better mapped and measured with slope attribute maps from airborne LiDAR 439 

data (Fig. 6). At the largest (seismic) scale of Pernambuco, normal faults are observed from 440 

different depth slices and profile sections (Fig. 8). These faults have variable throws ranging 441 

from a few tens of metres (reaching the data resolution) up to 300 m in some areas (Fig. 2c). 442 

These faults have regional and large-scale tectonic origins in contrast to those observed at 443 

outcrop. 444 

4.2 Fracture network geometry 445 

4.2.1 Fracture length 446 

4.2.1.1 Cariatiz platform – Outcrop data 447 

The length of fracture branches at Cariatiz displays a wide range of sizes (Figs. 9a, b and 448 

A1). However, every site has a similar distribution of fracture branch lengths with a positive 449 

skew (Fig. A1). Data gathered from the ten field sites also have a positive skew, showing that 450 

smaller fracture branches are the most abundant with centimetre lengths (Figs. 9a and A1). 451 

Higher frequencies are observed in fractures ranging from 9.4 cm to 33.8 cm with a medium 452 

value of 19.3 cm and a mean of 25 cm (Fig. 9b).  453 

Sites A and C present a unimodal distribution with a positive skew. The dominant lengths 454 

are 3 to 25 cm (Fig. A1a, c). Fracture branch length at Sites B and I show a multimodal 455 

distribution (Fig. A1b, i). There are two dominant peaks with ranges of 3 to 13 cm and 31 to 456 

41 cm (Fig. A1b, i). Sites D and G have a bimodal distribution with major fracture length 457 

frequencies ranging from 5 to 17 cm and 21 to 39 cm in length (Fig. A1d, g). Fracture 458 

distribution in Site E shows a large positive skew with the highest frequency observed in 459 

fractures ranging from 3 to 11 cm (Fig. A1e). Sites F and H present a major peak in fractures 460 

ranging from 9 to 21 cm in length (Fig. A1f, h). Site J has a positive skew distribution, with a 461 

highest peak representing fractures from 3 to 21 cm in length (Fig. A1j). 462 
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We plotted cumulative percentages of fracture branch lengths to determine if they fit a 463 

distribution trend such as negative exponential, log-normal or power-law distribution models 464 

(Figs. 9c, d, e). Outcrop data is best represented by a negative exponential or lognormal 465 

distribution (Fig. 9d). A deviation from this trend is observed for the longest branches due to 466 

truncation effects. 467 

4.2.1.2 Cariatiz platform – LiDAR data 468 

Airborne LiDAR imagery has a resolution of 5 m, implying that lineaments with sizes 469 

below this value, such as centimetre-long fracture branches mapped at outcrop (joints and 470 

veins), cannot be identified on the LiDAR map (Fig. 6). Instead, fracture swarms that are 471 

difficult to measure at outcrop (Fig. 4c), can be easily recognised and measured at this scale 472 

(Fig. 6). Areas that appear to be highly fractured at outcrop, such as Site C (Fig. 5c), appear as 473 

areas with no fractures on the LiDAR map (Fig. 6), a character related to the absence of fracture 474 

swarms in that section of the platform.  475 

The study area was divided into three different zones in order to understand fracture 476 

variability along the platform margin (Fig. 6b). Fracture branch length at the LiDAR scale 477 

ranges from 1.4 to 47 m. Data present a positively skewed distribution, similar to outcrop data 478 

(Fig. 9f, g). The higher concentration of fracture branches is observed from 5 m to 11.8 m, with 479 

a median value of 7.4 m and a mean of 9.2 m (Fig. 9f, g). Zones 1 and 3 have a positively 480 

skewed histogram (Fig. A1k, m). The dominant fracture branch length ranges from 4 to 11 m. 481 

Zone 2 has more variability with a less positive skewed histogram and dominant fracture 482 

branch lengths ranging from 6 to 20 m (Fig. A1l). 483 

Plots of cumulative percentage against fracture branch lengths display a similar pattern 484 

to the outcrop data, having the best fit with a negative exponential or log-normal distribution 485 
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(Figs. 9h, i, j). A power-law distribution is only representative with fracture branches longer 486 

than 10 m. 487 

4.2.1.3 Pernambuco platform – Seismic data 488 

Fractures (faults) in the range of hundreds of metres to a few kilometres predominate on 489 

seismic data from Pernambuco. These faults have throws ranging from a few metres up to 300 490 

m (Fig. 2c). In Pernambuco, the highest fracture frequency is represented by features between 491 

636 m to 1360 m with a median value of 926 m, and a mean of 1064 m (Fig. 9k, l). Due to its 492 

resolution, features that were observed in the field at the Cariatiz platform such as fracture 493 

swarms, joints and veins are not visible in seismic data.  494 

Fracture branch length distribution from depth slices at Z=-1020 m and Z=-1220 show a 495 

positive unimodal skew. The major peak is observed with branch lengths of 300 to 700 m (Fig. 496 

A2a, c). At a depth of -1120 m, fracture branch lengths have a multimodal distribution with a 497 

concentration of fractures between 500 to 600 m. Fault lengths range from 200 m to 2500 m 498 

(Fig. A2b).  499 

The variance slice at a depth of Z= -1320 m shows a multimodal distribution with length 500 

peaks at 700 m, 1100 m, 1400 m and 1700 m. Most of the data ranges from 200 m to 2600 m 501 

with a few outliers (Fig. A2d). At Z= -1420 m, a slight positive skew with unimodal distribution 502 

is observed (Fig. A2e). The dominant fracture branch length ranges from 600 m to 1200 m 503 

(Fig. A2e). Fracture branch length distribution at Z= -1520 m ranges from 300 m to 3100 m, 504 

with predominant fractures between 700 m to 1100 m (Fig. A2f). A unimodal distribution is 505 

recognised on the variance slices at Z= -1620m, -1720 m, -1820 m, -1920 m and -2020 m. 506 

Fracture branch lengths range from 300 m to 3500 m. At these depths, the dominant values 507 

range from 500 m to 1300 m. A positive skew with a long tail towards the larger values is 508 

observed in all histograms (Fig. A2g, h, i, j, k). A negative exponential or log-normal 509 
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distribution plot displays a reasonable fit over most of the data range at seismic scale. A poor 510 

fit is observed in longer faults (Fig. 9m, n, o).  511 

4.2.2 Fracture orientation 512 

4.2.2.1 Cariatiz platform – Outcrop data 513 

Fracture strike distributions from field measurements differ slightly from site to site with 514 

rose diagrams showing different orientations at each locality (Figs. 1c and B1). Data gathered 515 

from all localities display a multimodal distribution with fractures striking nearly in all 516 

directions with similar frequencies (Fig. 10a). However, four fracture sets are defined based on 517 

the cluster analysis (Fig. 10d). The first two sets strike NE and E-W with an axial mean of 518 

N51°E and S89°E, respectively.  The third set strikes SE (S38°E) followed by a fourth set 519 

striking N-S (S11°W). The axial mean of fracture set 1 is almost parallel to the orientation of 520 

the Cariatiz platform margin (Fig. 10d). 521 

Sites A and B contain fracture sets with a multimodal distribution (Figs. 1c and B1a, b). 522 

Three fracture sets with high frequency are recognised. The first one strikes NE, while the 523 

second and third sets strike NW. Site C and D exhibit three fracture sets; the highest frequency 524 

coincides with a SW strike, followed by E-W fractures and a set striking to the SSW (Figs. 1c 525 

and B1c, d).  Outcrop surfaces at Sites E, F and G exhibit two main fracture sets: a first set with 526 

a NW strike, and a second set striking widely NE (Figs. 1c and B1e, f, g). Fractures at Site H 527 

exhibit three main fracture sets, with the most dominant striking NE. The second and third 528 

fracture sets strike to the WNW and to the NW (Figs. 1c and B1h). Fractures at Sites I and J 529 

show a dominant NE strike, followed by a NW strike (Figs. 1c and B1i, j). 530 

4.2.2.2 Cariatiz platform – LiDAR data 531 

The average orientation of the Cariatiz carbonate platform margin is N55°E, as observed 532 

from the aerial and LiDAR maps (Figs. 6 and 10b). Three fracture sets are recognised on 533 
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LiDAR data along the Cariatiz fringing reef (Fig. 10e). The dominant Set 1, with the highest 534 

frequency, strikes to the NE (N59°E), in a direction similar to the edge of the platform margin 535 

(Figs. 6, 10b and e, and B1k, l, m). The second and third minor fracture sets strike to the N-S 536 

(N02W) and SE (S71°E), respectively. The second fracture set is recognised in the three zones, 537 

but it is more predominant in Zone 1 (Fig. B1k). 538 

4.2.2.3 Pernambuco platform – Seismic data 539 

The orientation of the Pernambuco carbonate platform margin is N50°E as observed from 540 

seismic depth slices (Figs. 2b and 10c). Cluster analysis of fault orientation data from the eleven 541 

depth slices reveal a major set of faults (Set 1) aligned NE (N48E), a direction parallel to the 542 

platform edge (Fig. 10 c and f). Two minor fracture sets with lower frequencies, striking N-S 543 

and E-W, are also recognised with axial means of S09E and S77E, respectively (Fig. 10f).  544 

From each depth of observation, data can be summarised as follows. Fractures at Z=-545 

1020 m depth predominantly strike NW (Fig. B2b). Two secondary sets are also recognised 546 

with NE and NNW strikes. At depths of Z= -1120 m, -1220 m, -1320 m and -1420 m, there are 547 

similar fracture orientations with a dominant set striking to the NE, followed by two minor 548 

fracture sets striking NNW and WNW (Fig. B2c, d, e). A primary fracture set striking NE is 549 

recognised from Z= -1520 m to -2020 m (Fig. B2g, h, i, j, k, l).  550 

4.3 Fracture network topology 551 

4.3.1 Cariatiz platform – Outcrop data 552 

Abutting or Y nodes are the dominant type of nodes at the outcropping Cariatiz platform. 553 

Nodal data change slightly at each locality, which is observed as a zone of variability on the 554 

ternary plots (Figs. 11a, C1a). Based on our average results, the proportion of isolated nodes 555 

(PI) at outcrop is low with a value approaching 9%, whereas the proportion of connected nodes 556 

(PC) is 91% (Table D2). At Cariatiz, from outcrop scale, branch classification shows that 557 
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isolated branches (PII) are only 0.8%. The highest proportions are related to connected branches 558 

with 8.3% being singly connected (PIC) and 82.4% being doubly connected (PCC) (Table D2). 559 

The NB/NL ratio ranges between 2 to 4, but most values lie around 3, suggesting that small 560 

scale-length fracture networks are dominated by abutting or splaying fracture terminations 561 

(Figs. 11b, C1b, Table D2).  562 

From the connectivity analysis we determined that in Cariatiz, the average number of 563 

connections per line (CL) ranges from 2 to 5, with 50% of the data ranging between 3 to 4 (Figs. 564 

11c, C1c, Table D2). Moreover, 70% of the outcrop fractures at Cariatiz have a CB value 565 

ranging between 1.8 to 2 (Figs. 11d, C1d, Table D2), suggesting that the fracture network is 566 

well connected, mostly by Y nodes. High values of CB also indicate that fracture networks at 567 

Cariatiz are above the percolation threshold. The branch classification diagram plots values 568 

towards the C-C corner (Figs. 11e, C1e), stressing the high proportion of interconnected 569 

branches at Cariatiz, which can favour fluid flow. 570 

Fracture networks from localities B, C and I are less connected than most data and are 571 

typical of multimodal joint networks (see Procter and Sanderson, 2018) (Fig. C1a). These 572 

localities have tree-like geometries based on the average degree <d> value from Sanderson et 573 

al (2019). 574 

4.3.2 Cariatiz platform – LiDAR data 575 

LiDAR data indicates that on average, 51% of the nodes are of type I and 47% are of 576 

type Y, with only 2% of X nodes (Figs. 11a, Table D2). It suggests that fracture connectivity 577 

at a metre-scale is not as developed as at the centimetre-scale. At an intermediate scale, the 578 

proportion of isolated nodes (PI) is 25%, and connected nodes (PC) is 75% (Table D2). Branch 579 

classification reveals that proportions of isolated branches (PII) represent 6.5% of the network 580 
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and singly connected branches (PIC) comprise 19% of the network. Higher proportions relate 581 

to doubly connected branches (PCC) with 55.5% (Table D2). 582 

The NB/NL ratio has a value of 2, suggesting low proportions of connected branches at 583 

the metre-scale (Fig. 11b, Table D2). The average number of connections per line (CL) and per 584 

branch (CB) are also lower than at outcrop, with values of 2 and 1.5, respectively (Fig. 11c, d, 585 

Table D2). Despite the observed low values of branch connectivity, single and double 586 

connected branches dominate the fracture network at the metre scale (Fig. 11e, Table D2). 587 

These fracture networks are tree-like and multicomponent, which suggest that the fractures 588 

observed here are localised and therefore not part of a connected regional system (Sanderson 589 

et al., 2019). 590 

4.3.3 Pernambuco platform – Seismic data 591 

Fracture topology on the Pernambuco carbonate platform is represented on average, by 592 

39% of I nodes, 54% of Y nodes and 7% of X nodes (Figs. 11a, C1g, Table D2). The average 593 

proportions of having isolated nodes (PI) is 17%, and the proportion of connected nodes (PC) 594 

is 83% (Table D2). These proportions are similar to Cariatiz, as the proportions of connected 595 

nodes are higher than isolated nodes (Table D2). Regarding proportions of branches in 596 

Pernambuco, the proportion of isolated branches (PII) are 2.9% (PII) followed by singly 597 

connected branches (PIC) with 14%. Higher proportions are observed in doubly connected 598 

branches (PCC) with 69.1% (Table D2). 599 

The NB/NL ratio ranges from 2 to 3 (Fig. 11b, C1h, Table D2). The average number of 600 

connections per line (CL) is 2.64, with a range between 2 and 3. The average number of 601 

connections per branch (CB) has a wider range from 1.4 to 1.8 and a median value of 1.66, 602 

suggesting a moderate fracture connectivity at the seismic scale and networks close to the 603 

percolation threshold (CB = 1.56) (Sanderson and Nixon, 2018) (Fig. 11c, d; C1j, l; Table D2). 604 
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Doubly connected branches dominate the fracture network at seismic scale (Fig. 11e, C1k, 605 

Table D2).  606 

5 Discussion 607 

5.1 Fracture attribute relationships at different scales 608 

Previous studies have explored the idea of limitations due to data resolution and the 609 

effects of scale on the spatial arrangements of fault and fracture networks. For instance, studies 610 

such as Strijker et al. (2012) and Gutmanis et al. (2018) have examined the challenges of 611 

analysing sub-seismic fracture networks and the presence of an “intermediate” data gap 612 

between fractures observed from seismic and borehole datasets. Furthermore, extensive 613 

research including Odling (1997) and Watterson et al. (1996) have discussed scaling 614 

relationships of fracture networks and the uncertainties related to sampling effects. Pickering 615 

et al. (1997) and Nixon et al. (2012) have also suggested that resolution limitations of seismic 616 

data affect the estimation of fault network parameters such as connectivity, as this appears to 617 

change depending on the data resolution.  618 

This paper aims to perform a multi-scale analysis to understand the inherent complexity 619 

of natural fracture networks, the existing differences at each scale and their scale dependency. 620 

A way to understand sub-seismic features is by using outcrop analogues. For this reason, we 621 

utilised exposure mapping and airborne LiDAR maps from the Cariatiz carbonate platform in 622 

SE Spain. In parallel, seismic datasets such as the one from the Pernambuco carbonate platform 623 

in Brazil are important to study km-long subsurface features. It is recognised from geometrical 624 

and topological analyses of fracture networks from Cariatiz that they have different attributes 625 

depending on the scale of observation, which may also be related to the distinct fracture types 626 

observed at each scale (Fig. 12).  627 
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5.1.1 Fracture geometry 628 

5.1.1.1 Orientation 629 

The Cariatiz carbonate platform margin is oriented N55°E (Fig. 10). Fracture branch 630 

orientation data differ between centimetre scale-length (outcrop) and metre scale-length 631 

(LiDAR) fractures. Rose diagrams from each dataset have different distributions, implying that 632 

fracture development may vary depending on scale (Fig. 10). Equal area rose diagrams 633 

demonstrate a multimodal distribution of fracture orientations at outcrop (Fig. 10 a and d). 634 

These fractures are specifically recognised as open joints and calcite filled veins (Figs. 5g, h 635 

and 12a). Numerical methods of cluster analysis helped us to divide the data into four fracture 636 

sets with similar frequencies (Fig. 10d). Fracture set 1 is important as it strikes parallel to the 637 

Cariatiz platform margin with an axial mean of N51°E (Fig. 10d). 638 

At airborne LiDAR scale, the main lineaments comprise large fracture swarms that may 639 

be better related to gravitational instability at the edge of the platform margin (Figs. 4c, 6 and 640 

12a). Small centimetre-length fractures identified from the outcrop exposure mapping are not 641 

visible at LiDAR scale due to limitations in resolution, as the smallest features identified are 642 

about 5 m in length (Figs. 6 and 9g). Furthermore, the orientation distribution and cluster 643 

analysis of fractures observed from airborne LiDAR data show a clear dominant fracture set 644 

striking NE-SW, with an axial mean of N59°E (Fig. 10e). The orientation of the Cariatiz 645 

platform margin (N55°E) is similar to the dominant fracture set 1 identified from LiDAR data 646 

(Fig. 10e), suggesting that intermediate scale-length fractures are dependent on the geometry 647 

of the platform (Figs. 6 and 10e).  648 

The orientation of the Pernambuco platform margin is N50°E (Fig. 10f). Similarly to 649 

LiDAR data from the Cariatiz platform, the dominant fracture set recognised from the equal 650 

area rose diagrams and cluster analysis, is parallel to the platform margin with an axial mean 651 

of N48°E (Fig. 10c and f). This result suggests that fractures at intermediate and large scales, 652 
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namely fracture swarms and kilometre faults respectively, are mainly controlled by the 653 

geometry of the platform margin (Figs. 8 and 10). Although there is a fracture set recognised 654 

at outcrop that also correlates to the Cariatiz platform margin, it is not the most dominant set 655 

at the cm scale. This suggests that at outcrop, fracture development is also highly controlled by 656 

other processes such as intense weathering, and the uplift of the platform, in addition to 657 

gravitational instability at the proximity of the platform edge. 658 

5.1.1.2 Scale gap 659 

Studies such as Strijker et al. (2012) have identified a scale gap between fractures 660 

resolved on seismic and borehole data. Outcrop data from this study are used to describe 661 

fractures that occur in this “intermediate” gap. Scale gaps are created by the limited resolution 662 

of the imaging methods, and resolution is given by the smallest feature that can be observed 663 

and measured in a specific dataset. We recognise that exposure mapping from outcrop data can 664 

be useful to identify joints and veins (Fig. 5g, h) covering three orders of magnitude with 665 

fracture branches ranging from 10-3 to 100 m in length (Fig. 12a). Airborne LiDAR data can 666 

cover two orders of magnitude with fracture branches ranging from 100 to 102 m in length (Fig. 667 

12a), with the main observed features being fracture swarms. Fracture branch length 668 

measurements from outcrop and LiDAR data at Cariatiz, show that the higher frequencies of 669 

branch lengths range from 10 to 34 cm and 5 to 12 m, respectively (Figs. 9b, g and 12).  670 

Fracture lengths in both datasets are below seismic resolution. Even the less abundant 671 

and largest fracture branches recognised on LiDAR, which are part of the outliers of the data, 672 

have lengths of less than 50 m. Given a line spacing of 25 x 25 m on a seismic dataset, these 673 

fracture lengths would be subject to truncation effects and not visible from seismic data (Figs. 674 

9g, d and 12). Moreover, the smallest fracture branch length recognised on seismic data is 100 675 

m (Figs. 9k, l and 12). As a result, a scale gap in terms of fracture branch length is observed 676 

with no overlap between datasets (outcrop-LiDAR and LiDAR-seismic) due to the fact that 677 
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resolution limits in the imaging methods constrain reliable fracture characterisation (Fig. 12a). 678 

A fundamental issue when measuring fractures from any source of data is the inherited 679 

limitation of the sampling bias due to censoring and truncation effects (Guerriero et al., 2010; 680 

Torabi and Berg, 2011 2011) (Fig. 7). These effects can cause under- or over- estimation of 681 

statistical parameters, compromising the results of fracture characterisation.  682 

 As observed in the field, fractures at the “transitional” scale do exist in nature, and the 683 

gap can be breached by the use of a dataset that can cover the resolution of those features. For 684 

instance, large vertical fractures are observed at the edge of the Cariatiz platform, creating 685 

compartmentalised blocks (Fig. 4a). Those fractures have high censoring effects at the outcrop 686 

scale as they extend outside the observable area, and at airborne LiDAR they are not identified 687 

due to truncation effects; therefore their presence is underestimated (Figs. 7d, e and 12a).  688 

The Pernambuco seismic data is useful to understand features (faults) that one can 689 

encounter when analysing large carbonate platforms such as Pernambuco’s, which is more than 690 

40 km wide and hundreds of kilometres long (Fig. 2). From our analysis we determined that at 691 

this scale, fracture branches can be observed and measured with a range of 102 to 104 m in 692 

length (Fig. 12a). However, when comparing large carbonate platforms with smaller structures 693 

such as isolated carbonate platforms (ICPs), these latter have dimensions ranging from 2 to 18 694 

km, such as those ICPs in the North West Shelf of Australia (Loza Espejel et al., 2019) and the 695 

South China Sea (Zampetti et al., 2004, Fig. 15). Internal fault branches within these structures 696 

are a few hundreds of metres long and cannot be fully resolved in seismic data. These types of 697 

faults would be part of the “transitional” gap that cannot be resolved by the use of datasets with 698 

comparable scales to either airborne LiDAR maps or seismic data (Fig. 12a). Only large, 699 

regional faults crossing the ICPs can be easily observed in seismic data. This is related to the 700 

size of the fractures as well as the seismic response in ICP facies. ICP facies are typically 701 

characterised by chaotic and low amplitude reflectors (Burgess et al., 2013; Loza Espejel et al., 702 
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2019). Any feature below this range is considered as sub-seismic and therefore additional data 703 

with higher resolution is required to be able to observe these faults (Fig. 12a). 704 

The problem of scale gaps between datasets is partly related to the fact that, in all datasets, 705 

the highest frequency of fracture branch lengths is concentrated at the smaller lengths of each 706 

resolution, which is observed from histograms in the form of a positive skew distribution (Figs. 707 

9). Even if there is a small overlap and fractures of similar length can be observed from two 708 

different scales of observation, those measurements are on the limit of the resolution of both 709 

datasets and therefore not representative due to censoring and truncation effects. The gap size 710 

will depend on the detail and parameters of the data acquisition for different datasets. 711 

In order to obtain a better controlled model of the fracture network characterisation, it is 712 

critical to bridge those gaps and obtain datasets in which fracture observations considerably 713 

overlap from one dataset to another. This can be done by acquiring datasets with higher 714 

resolutions. For instance, to link outcrop observations with aerial LiDAR maps, high-resolution 715 

drone imagery or ground-based LiDAR mapping could be used (Fig. 12a). To link LiDAR and 716 

seismic datasets, changes to acquisition parameters of LiDAR maps and seismic volumes could 717 

be made to increase the data resolution; or if possible, an intermediate-scale high resolution 718 

seismic survey could be acquired to bridge the scale gap between the seismic and airborne 719 

LiDAR data (Fig. 12a). This is important, as higher resolution seismic data processed to image 720 

a certain depth (and frequency spectrum) can reveal fracture patterns that the original 721 

exploration surveys may not have imaged in the first place, as the original interest was to image 722 

the entire thickness of sediments on a basin. 723 

5.1.1.3 Branch length 724 

There has been much discussion on whether fracture trace length distributions are 725 

exponential or power-law (Needham et al., 1996; Nicol et al., 1996; Gillespie et al., 2001; Zeeb 726 
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et al., 2013; Liu et al., 2016). Studies such as Gillespie et al. (2001) and Strijker et al. (2012) 727 

have analysed fracture trace length distributions from different datasets and concluded that for 728 

massive, non-stratabound units, fracture trace lengths can be represented by a power-law 729 

distribution, while stratabound units can be represented by a lognormal distribution. Despite 730 

the wide range of published work on trace length distribution, there seems to be a lack of 731 

knowledge in the literature about branch length distributions.  732 

The Cariatiz platform has a complex geometry in which bedding cannot be observed at 733 

the reef framework; instead, massive rock units are intensely fractured to create large blocks 734 

and compartmentalise the carbonate unit (Fig. 4). Branch length analysis from outcrop and 735 

LiDAR data suggest that, for massive units like Cariatiz, a negative exponential distribution 736 

better represents the fracture distribution, with a deviation for longer trace lengths due to 737 

truncation effects (Fig. 12c). Such a trend can be expected to extend over longer fracture 738 

branches, as fracture distribution in Pernambuco with km-long fractures follows the same trend 739 

(negative exponential or log-normal distribution; see cumulative plot in Fig. 9n). This may 740 

suggest that, in order to predict smaller scale-length fracture branches when utilising seismic 741 

data, a negative exponential distribution can be used. This is of particular importance to 742 

reservoir characterisation in which prediction of sub-seismic fractures is key. 743 

5.1.2 Fracture topology 744 

Topology is a relevant aspect when characterising fracture networks as dimensionless 745 

parameters can be obtained to understand specific attributes such as connectivity (Sanderson, 746 

2016; Sanderson and Nixon, 2018). Exposed outcrops on the Cariatiz carbonate platform 747 

allowed a detailed analysis of fracture network distribution (Fig. 11). Outcrop results show a 748 

variability cloud with an average of high proportions of connected nodes (mostly Y) and low 749 

proportions of isolated nodes. Conversely airborne LiDAR results demonstrate that larger 750 

fracture branches at Cariatiz have less connected nodes with an almost equal proportion of I 751 
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and Y nodes (Figs. 11a, C1a and Table D2). The average number of connections per branch 752 

analysis (CB) demonstrates that outcrop data are better connected than LiDAR data with an 753 

average of 1.8 and 1.5, respectively (Figs. 11d, C1d and Table D2).  754 

Branch classification shows that outcrop scale fractures have high proportions of doubly 755 

connected branches and low proportions of singly connected branches with almost no isolated 756 

branches. LiDAR data is also dominated by doubly connected branches, but with lower 757 

proportions than the observed at outcrop as isolated branches have slightly higher proportions 758 

(Figs. 11e, C1e and Table D2). Branch classification thus suggests that smaller fractures have 759 

a higher probability to form connected branches (single and double) than larger fractures 760 

observed on the LiDAR map. This can be confirmed by the analysis of connections per branch 761 

and dimensionless intensity (Manzocchi, 2002; Sanderson and Nixon, 2018).  762 

Sanderson and Nixon (2018) suggested that dimensionless parameters such as the 763 

average of connections per branch (CB) and dimensionless branch intensity (B22C) are useful 764 

measures of connectivity. These measures are also related to percolation in which systems with 765 

CB > 1.56 can indicate percolation. Topological results from Cariatiz were plotted using Fig. 766 

10d from Sanderson and Nixon (2018) (Fig. 11f). From this diagram it is observed that fractures 767 

at outcrop are mostly plotted above the percolation threshold, whereas fractures from the 768 

LiDAR data plot just below the percolation threshold. When comparing the higher values of 769 

CB for outcrop data (CB=1.8) with those obtained by LiDAR (CB=1.5), the results suggest that 770 

small length scale fractures are better connected than intermediate length fractures (Fig. 11f). 771 

These results align with the observations from Nixon et al (2012, Fig. 14), suggesting that for 772 

carbonate platforms comparable to Cariatiz, fracture connectivity increases with increasing 773 

data resolution. Fault networks appear to be less connected at lower resolutions according to 774 

the latter authors. 775 
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If the connectivity trend recognised from outcrop and LiDAR continues towards larger 776 

fracture lengths, in a similar way to the trend observed by Nixon et al (2012, Fig. 14) as a 777 

function of data resolution, longer faults and fractures at Cariatiz, resolvable at seismic scale, 778 

would be expected to plot closer to the I node corner (Fig. 11d). These topological values 779 

expected at seismic scale would have lower values of CB and therefore be less connected (Fig. 780 

11d). This observation is important as it suggests that topological results at the largest scale 781 

analysed (e.g. seismic), are expected to have lower values of connectivity than fractures 782 

analysed at small scale (e.g. outcrop), given that connectivity may increase as the resolution 783 

increases and smaller fracture branches are measured. This trend is expected to occur in 784 

carbonate platforms with similar settings to Cariatiz, in which connectivity decreases as scale 785 

is increased. Further research is however needed in order to accurately predict the exact range 786 

of topological values at a different scale. 787 

At seismic scale in Pernambuco the average proportions of connected nodes are 788 

considerably higher than the proportions of isolated nodes. Doubly connected branches have 789 

also higher proportions than singly connected and isolated branches. In Pernambuco, the 790 

average number of connections per branch (CB) is 1.66 (Table D2) and, when analysed together 791 

with the dimensionless branch intensity at percolation (B22C), it is observed that the values are 792 

on average, well connected and above the percolation threshold (Fig. 11l). As stated from the 793 

Cariatiz topological trend, topological results of large fracture branches from the Pernambuco 794 

carbonate platform analysed from seismic scale (large scale) are expected to have lower 795 

connectivity values than sub-seismic smaller fractures. Consequently, sub-seismic fractures in 796 

Pernambuco are expected to be better connected with values plotted closer to the Y node corner 797 

and higher values of CB (Fig. 11j).  798 
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5.2 Implications to naturally fractured reservoirs 799 

Fracture network characterisation plays an important role in hydrocarbon exploration and 800 

the development of naturally fractured reservoirs. It is known that the use of outcrop analogues 801 

is key to predict sub-seismic fracture networks, particularly when borehole data (e.g. well 802 

cores, image logs) are not available and there is the need to estimate the volume capacity and 803 

fluid flow of a given unit (Gutmanis et al., 2018). Outcrop analogues can provide valuable 804 

information on the behaviour of small (centimetre) and intermediate (metre) scale fracture 805 

networks by the combination of outcrop and LiDAR data, respectively. Predicting the geometry 806 

(orientation and length) and topology (dimensionless parameters) of fracture networks at sub-807 

seismic scales is crucial to increase the quality of fracture network characterisation. The study 808 

from Cariatiz demonstrates that fracture networks at a smaller scale (e.g. outcrop) have a higher 809 

level of connectivity than in a larger scale (e.g. LiDAR) with higher values of CB. We may 810 

predict that sub-seismic fractures have a better connectivity than seismic fractures. Topological 811 

parameters measured from seismic data represent lower values of connectivity compared to 812 

smaller fractures expected within the reservoir. Fracture network results obtained from 813 

fractures observed at seismic (km long) scale are not representative for the multi-scale fracture 814 

system, and only describe the parameters of km-long fracture branches. As a result, fracture 815 

reservoir models utilising topological parameters obtained from seismic fractures (km-long) 816 

may underestimate the presence of fractures at lower scales of observation. Areas that appear 817 

to have no faults on seismic data, might be highly fractured as observed in Cariatiz (Figs. 5 and 818 

6). Consequently, a potential reservoir could be ignored if proper studies are not performed. To 819 

fully characterise the fracture system at different scales, including the reservoir, topological 820 

and geometrical analyses like those presented for Cariatiz and Pernambuco should be 821 

performed. Furthermore, negative exponential or log-normal distribution trends can be used to 822 
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predict sub-seismic fracture branch lengths. It is advisable to use different resolution datasets 823 

such as borehole data and outcrop analogues to calibrate seismic results. 824 

Open small-scale fracture networks mostly control the permeability characteristics of a 825 

rock, developing the main conduits of fluid flow (e.g. Bush, 2010; Questiaux et al., 2010). 826 

Conversely, when closed or cemented, they can provide barriers or baffles to fluid flow and 827 

contribute to reservoir compartmentalisation (Damsleth et al., 1998; Steen et al., 1998; 828 

Laubach, 2003; Maerten et al., 2006; Strijker et al., 2012). As suggested by Sanderson and 829 

Nixon (2018), topological values of CB and B22C are important to understand parameters such 830 

as permeability in a reservoir as they are related to connectivity and percolation. The 831 

permeability of a rock and resulting fluid flow are mainly dependent on the fracture network 832 

with topological values above the percolation threshold, assuming that fractures are conductive 833 

(Fig. 11f, l). In contrast, permeability is dependent on the matrix where connectivity is below 834 

the percolation threshold and fracture conductivity is lower than the matrix (Fig. 11f, l).  835 

The analysis provided in this study is not limited to fractured reservoirs with hydrocarbon 836 

accumulations, as our results and methodology could also be applied to other geoscience 837 

disciplines such as geothermal reservoirs, hydrogeology, or carbon storage projects. 838 

6 Conclusions 839 

Carbonate platforms present complex multi-scale structural and sedimentological 840 

characteristics as observed in Cariatiz (Fig. 4). The integration of fieldwork data with outcrop 841 

exposure mapping and airborne LiDAR studies from Cariatiz, Spain, and 3D seismic data from 842 

Pernambuco, Brazil, allowed a better understanding of multi-scale fracture networks developed 843 

on carbonate platforms. These analyses reveal the complexity of fracture networks at different 844 

scales and are useful to predict sub-seismic fractures from seismic datasets that are widely used 845 
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in industry. Fractures at each scale of observation behave differently, having different 846 

geometrical and topological characteristics. 847 

a) This study presented an integrated geometrical (orientation and branch length) and 848 

topological (node, branch counting and dimensionless parameters) analysis of fracture 849 

networks using a methodology in which small-, intermediate- and large- scale datasets 850 

are combined.  851 

b) Multi-scale fracture networks in carbonate platforms are complex; different fracture 852 

types are identified at each scale of observation. At small scale, cm-long joints and 853 

veins are mostly recognised (Fig. 12a). Fracture swarms are the dominant type observed 854 

from airborne LiDAR, whereas km-long faults prevail at seismic scale (Fig. 12a). 855 

c) Transitional scale gaps of fracture branch lengths between three scales of observation 856 

(outcrop - airborne LiDAR, airborne LiDAR – seismic) are recognised. Fracture branch 857 

lengths with sizes falling in these “transitional” gaps cannot be resolved by the 858 

resolution of the analysed datasets. However, fractures of these lengths do exist in 859 

nature, although datasets such as drone imagery and higher resolution seismic are 860 

needed to bridge the gaps and allow fractures of all sizes to be measured (Fig. 12). This 861 

issue is related to censoring and truncation effects.  862 

d) Fracture branch orientation at intermediate (airborne LiDAR) and large (seismic) scales 863 

appear to be controlled by the dominant orientation of the platform margin. Dominant 864 

fracture sets observed in Cariatiz and Pernambuco strike parallel to the edge of the 865 

platform margin. Fracture branches at outcrop scale (< 1 m) strike in almost all 866 

directions, suggesting that different processes control the development of small 867 

fractures (Fig. 10).  868 

e) Fracture branch length distributions from Cariatiz and Pernambuco fit a negative 869 

exponential or log-normal distribution in a massive, non-stratabound unit (Fig. 12). 870 
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This trend may be useful to predict sub-seismic branch lengths when working with 871 

seismic datasets. 872 

f) Fracture connectivity changes as a function of scale as it appears to decrease as fracture 873 

length is increased (Fig. 11). This work complements the conclusions proposed by 874 

Nixon et al (2012) in which they studied changes in connectivity at different 875 

resolutions. Small-scale fracture branches measured at outcrop present higher 876 

connectivity than larger fractures observed in LiDAR data. Fracture networks measured 877 

from seismic data may show lower connectivity values compared to smaller fractures 878 

expected at reservoir scale. This suggests that sub-seismic fracture networks mainly 879 

control the permeability and fluid flow in reservoirs that are dominated by open 880 

fractures or, instead, may develop barriers to fluid flow and contribute to reservoir 881 

compartmentalisation when fractures are closed or cemented.  882 

g) Outcrop data are useful to investigate the complexity of fracture networks and fracture 883 

types that occur at sub-seismic scale. Understanding these sub-seismic parameters 884 

allow us to better characterise fractured reservoirs.  885 
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9 Figure captions 1139 

Figure 1. a) Location of the study area in SE Spain. b) Regional map of the Sorbas Basin 1140 

showing the Messinian Reef Unit, and the area of interest at Cariatiz. Modified after Reolid et 1141 

al. (2014). c) Topographic map showing the field sites where fracture network mapping was 1142 

performed using the augmented circular scanline method of Watkins et al. (2015). Rose 1143 

diagrams show the main fracture orientation at each site. 1144 

Figure 2. a) Location map of the study area in the Pernambuco Basin. b) Variance depth 1145 

slice (-1720 m) showing the area (yellow line) where fracture characterisation was performed. 1146 

c) Seismic section across the Pernambuco Platform showing its internal geometry and seismic 1147 

facies, as well as the presence of normal faults. *Sequence numbers after Buarque et al (2017). 1148 

Scale and exact location cannot be given due to data privacy.  1149 

Figure 3. Flowchart summarising the methodology used in this work to obtain fracture 1150 

data from different datasets. Three different input datasets with distinct scale-resolution were 1151 

utilised (outcrop: small scale, LiDAR: intermediate scale, seismic: large scale). *Consider 1152 

suggestions by Rohrbaugh et al. (2002) and Watkins et al. (2015) to determine the radius (r). 1153 

See more details in the text. 1154 

Figure 4. Outcrop images and facies model showing the complexity of structural and 1155 

depositional attributes in the Cariatiz fringing reef unit. a) Outcrop image showing large 1156 

fractures across the platform edge. b) Enlarged photo showing circular shapes of Porites on a 1157 

horizontal section. c) Fracture swarms along the platform margin. See Fig. 6a for location. d) 1158 

Facies model of Cariatiz, modified after Braga and Martín (1996) and Reolid et al. (Braga and 1159 

Martín, 1996; Reolid et al., 2014). e) Outcrop photo showing vertical Porites. See Fig. 1c for 1160 

location.  1161 
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Figure 5. Rectified photographs of circular scanlines showing the fracture networks 1162 

collected at outcrop in Cariatiz. a-j) Digitised fracture networks showing the topological 1163 

parameters. Circular scanline (red line), fracture intersections with the sampling circle (yellow 1164 

circle), I nodes (green triangles), Y nodes (blue squares), X nodes (orange hexagons). k) Field 1165 

photograph showing the grid used to rectify the perspective of the circle. l) Rectified photo 1166 

where geometrical and topological analyses can be performed.  1167 

Figure 6. LiDAR map of the study area in the Cariatiz carbonate platform with the slope 1168 

attribute highlighting discontinuities. Fractures present high slope values. Site locations are 1169 

shown with red circles. a) Uninterpreted 3D visualisation of the LiDAR map, useful to locate 1170 

outcrop localities and perform fracture interpretation in the intermediate scale. b) Interpreted 1171 

map showing fracture branches as black lines as well as fracture nodes. The map was divided 1172 

into three zones to analyse fracture variability. 1173 

Figure 7. Schematic diagrams showing the topological analysis and sampling effects of 1174 

fracture networks. a) Fracture traces (A-B and C-D) and their node and branch association with 1175 

intersecting fractures (dashed lines). I-nodes (green circles); Y-nodes (blue triangles); X-nodes 1176 

(orange diamonds); I-I or isolated branch (I-I nodes with no fracture intersection); I-C or partly 1177 

connected branch (I-Y or I-X node intersection); and C-C or doubly connected branch (Y-Y, 1178 

Y-X, or X-X node intersection). Modified from Sanderson and Nixon (2015). b) Erroneous 1179 

recognition of fracture traces occurs as they can be interpreted differently depending on the 1180 

criteria used, leading to inconsistent trace lengths and orientations depending on the interpreter. 1181 

c) By utilising fracture branches as a result of topological analyses, the fracture segments can 1182 

be identified easier, resulting in reliable measurements of geometrical characteristics. d) 1183 

Truncation effects occur due to limits in data resolution, and it is present regardless of the use 1184 

of branches or traces. e) Censoring effects occur as the fractures extend the observable area. f) 1185 
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Censoring effects can be minimised by the use of fracture branches as they do not include the 1186 

entire trace; rather only one segment of the trace. 1187 

Figure 8. Seismic depth slices of the Pernambuco carbonate shelf on the variance attribute 1188 

computed in this work. Fracture interpretation was performed within an area of interest every 1189 

100 m in depth from Z=-1020 m to Z=-2020 m. Topological analyses were also carried out to 1190 

better understand the fracture network. Fractures are represented with continuous pink lines. I 1191 

nodes are represented by green triangles, Y nodes by blue squares, and X nodes by orange 1192 

hexagons. Seismic images are rotated and therefore not in their original orientation due to data 1193 

protection.  1194 

Figure 9. Statistical plots showing fracture branch length distribution from three scale 1195 

datasets. Outcrop data from the Cariatiz carbonate platform is plotted in yellow. LiDAR data 1196 

from the Cariatiz carbonate platform is plotted in green. Seismic data from the Pernambuco 1197 

carbonate platform is plotted in blue. a), f) and k) Histograms showing a positive skew 1198 

distribution. b), g) and l) Box plots showing the concentration of branch lengths. Q1, Q2 and 1199 

Q3 are the values for the lower quartile, median and upper quartile. Box represents the 1200 

interquartile range, thick solid grey line represents the minimum and maximum values 1201 

(whiskers), and dotted line shows the outliers of the data. c), h) and m) Cumulative percentage 1202 

plotted against fracture branch length; note good fit to a straight line for small branch lengths. 1203 

d), i) and n) Log (cumulative percentage) plotted against fracture branch length, with straight 1204 

line indicating negative exponential distribution. e), j) and o) Log (cumulative percentage) 1205 

plotted against log (fracture branch length), with straight line indicating power-law distribution. 1206 

Straight red line indicates a good fit. 1207 

Figure 10. Bi-directional moving average rose diagrams and numerical cluster analysis 1208 

showing fracture orientation and fracture sets from (a and d) outcrop, (b and e) LiDAR, and (c 1209 
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and f) seismic data. Rose diagrams were generated as equal area with a weighting factor of 0.9 1210 

and aperture of 9°. Equal area rose diagrams are used to visualise results from the cluster 1211 

analyses. 1212 

Figure 11. Triangular plots showing detailed topological analyses of nodes and branches 1213 

and resulting parameters from different scales of observation. a) to f) Outcrop and LiDAR 1214 

topological results from the Cariatiz Fringing Reef Unit. g) to l) Seismic topological results 1215 

from the Pernambuco carbonate platform. Yellow area represents the variation in results from 1216 

outcrop data. Green area represents the variation in results from LiDAR maps. Similarly, blue 1217 

area represents the variation in results from seismic data. *Purple area is an interpretation of 1218 

topological values expected with branch lengths observable at seismic scale in Cariatiz. 1219 

**Orange area is an interpretation of expected values at sub-seismic scale in Pernambuco 1220 

assuming that fracture connectivity increases at a smaller scale, similarly to the observed trend 1221 

in Cariatiz. a, g) Fracture network node classification. Yellow circle: average value from 1222 

outcrop data; green triangle: average value from LiDAR data; and blue square: average value 1223 

from seismic data. b, h) NB/NL ratio shows values of 3 for outcrop data, 2 for LiDAR data, and 1224 

2.5 for seismic data. c, i) Average number of connections per line (CL) shows a value of 3.4 at 1225 

outcrop level, a value of 2 from LiDAR data, and a value of 2.6 from seismic data. d, j) Average 1226 

number of connections per branch (CB) with a value of 1.82 at outcrop scale, 1.49 at LiDAR 1227 

scale, and 1.66 at seismic scale. e, k) Branch classification with I-I isolated branches, I-C partly 1228 

connected branches, and C-C doubly connected branches. f, l) Dimensionless intensity of 1229 

branches at percolation (B22C). 1230 

Figure 12. Multi-scale statistics of fracture branch lengths and figures showing different 1231 

fracture types with associated datasets depending on scale. a) Outcrop photos with associated 1232 

datasets and box plots showing the distribution of fracture branch lengths between different 1233 

datasets. It is observed from the box plots that there is no overlap between datasets (outcrop - 1234 
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airborne LiDAR and airborne LiDAR - seismic). Large fractures with a scale between outcrop 1235 

and airborne LiDAR were recognised in the field and can be mapped with the use of ground 1236 

LiDAR or drone imagery. Fractures observed at each scale are mainly of a different type. Veins 1237 

and joints can be mapped at outcrop; fracture swarms can be mapped with airborne LiDAR 1238 

maps; and large kilometre faults can be mapped by using seismic data. Fractures with a branch 1239 

size in between the scale of the three studied datasets can be mapped with data of different 1240 

resolution such as drone imagery and higher resolution seismic. b) Cumulative percentage 1241 

plotted against fracture branch length; note good fit to a straight line for small branch lengths. 1242 

c) Log (cumulative percentage) plotted against fracture branch length, with straight line 1243 

indicating negative exponential distribution. d) Log (cumulative percentage) plotted against 1244 

log (fracture branch length), with straight line indicating power-law distribution. Straight red 1245 

line represents a good fit. 1246 

10 Appendices’ captions 1247 

Figure A1. Fracture branch length histograms from the Cariatiz carbonate platform. a) to 1248 

j) Histograms from outcrop localities. k) to m) Histograms from LiDAR zones. 1249 

Figure A2. Fracture branch length histograms from seismic data (depth slices -1020 m to 1250 

-2020 m) in the Pernambuco carbonate platform. Fracture branches at seismic scale are in the 1251 

range of hundreds of metres. 1252 

Figure B1. Bi-directional moving average rose diagrams showing fracture orientation 1253 

from the Cariatiz carbonate platform. a) to j) Rose diagrams from outcrop localities. k) to m) 1254 

Rose diagrams from LiDAR zones. Rose diagrams were generated as equal area with a 1255 

weighting factor of 0.9 and aperture of 9°. 1256 

Figure B2. Bi-directional moving average rose diagrams showing fracture orientation 1257 

from our study area in the Pernambuco carbonate platform at different seismic slices from Z= 1258 
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-1020 m to -2020 m. Rose diagrams were generated as equal area with a weighting factor of 1259 

0.9 and aperture of 9°. 1260 

Figure C1. Triangular plots showing detailed topological analyses of nodes and branches 1261 

from outcrop localities and LiDAR zones at the Cariatiz Fringing Reef (a to f), as well as 1262 

seismic depth slices from the Pernambuco carbonate platform (g to l). Yellow, green and blue 1263 

shapes represent the range of node and branch values at outcrop, LiDAR and seismic scale, 1264 

respectively. a, g) Fracture network node classification. b, h) NB/NL ratio shows most of the 1265 

points lying over NB/NL ratio value of 3 within the range of 2 and 4. c, i) Average number of 1266 

connections per line (CL) showing that in Cariatiz, at outcrop level, values range from 2 to 5. 1267 

d, j) Average number of connections per branch (CB). e, k) Branch classification with I-I 1268 

isolated branches, I-C partly connected branches, and C-C doubly connected branches. f, l) 1269 

Dimensionless intensity of branches (B22C). 1270 

Table D1. Summary of topological parameters, notation, and key equations. Modified 1271 

from Sanderson and Nixon (2015, 2018). 1272 

Table D2. Fracture topological results from field data (outcrop and LiDAR) and seismic 1273 

data. 1274 
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Appendix A. Fracture branch length distribution histograms 1353 
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Appendix B. Rose diagrams showing fracture branch orientation  1358 
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Appendix C. Ternary plots showing detailed topological analyses of nodes and branches  1363 

Figure C1 1364 
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Appendix D. Fracture topological data  1366 

Table D1 1367 

Parameter Notation Equations 

Nodes I, Y. X Isolated, abutting or splaying, crossing 

Number of nodes NI, NY, NX  

Branches I-I, I-C, C-C Isolated, singly-, doubly-connected 

Total nodes NN NN = NI + NY + NX 

Total lines NL NL = (NI + NY) / 2 

Total branches NB NB = (NI + 3NY + 4NX) / 2 

Branches/Lines NB / NL NB / NL = (NI + 3NY + 4NX) / (NI + NY) 

Average connections/line CL CL = 2 (NY + NX) / NL) 

Average connections/branch CB CB = (3NY + 4NX) / NB) 

Branch dimensionless intensity at percolation B22C  

Probability of isolated nodes PI PI = NI / (NI + 3NY 4NX) 

Prob. connected nodes PC PC = (3NY + 4NX) / (NI + 3NY +4NX) 

Prob. of isolated branches PII PII = PI
2 

Prob. of singly connected branches PIC PIC = PI PC 

Prob. of doubly connected branches PCC PCC = PC
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