
ORIGINAL RESEARCH
published: 30 July 2015

doi: 10.3389/fmicb.2015.00770

Frontiers in Microbiology | www.frontiersin.org 1 July 2015 | Volume 6 | Article 770

Edited by:

Dongsheng Zhou,

Beijing Institute of Microbiology and

Epidemiology, China

Reviewed by:

Karl Graham Wooldridge,

University of Nottingham, UK

Dennis Linton,

University of Manchester, UK

*Correspondence:

Mark Reuter,

Institute of Food Research, Norwich

Research Park, Colney Lane, Norwich

NR4 7UA, UK

mark.reuter@ifr.ac.uk

Specialty section:

This article was submitted to

Food Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 11 March 2015

Accepted: 14 July 2015

Published: 30 July 2015

Citation:

Reuter M, Periago PM, Mulholland F,

Brown HL and van Vliet AHM (2015) A

PAS domain-containing regulator

controls flagella-flagella interactions in

Campylobacter jejuni.

Front. Microbiol. 6:770.

doi: 10.3389/fmicb.2015.00770

A PAS domain-containing regulator
controls flagella-flagella interactions
in Campylobacter jejuni

Mark Reuter 1*, Paula M. Periago 2, 3, Francis Mulholland 1, Helen L. Brown 1, 4 and

Arnoud H. M. van Vliet 1

1 Institute of Food Research, Gut Health and Food Safety Programme, Norwich, UK, 2Departamento Ingeniería de Alimentos

y del Equipamiento Agrícola, Campus de Excelencia Internacional Regional “Campus Mare Nostrum,” Escuela Técnica

Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain, 3 Instituto de Biotecnología

Vegetal, Campus de Excelencia Internacional Regional “Campus Mare Nostrum,” Universidad Politécnica de Cartagena,

Cartagena, Spain, 4Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK

The bipolar flagella of the foodborne bacterial pathogen Campylobacter jejuni confer

motility, which is essential for virulence. The flagella of C. jejuni are post-translationally

modified, but how this process is controlled is not well understood. In this work, we

have identified a novel PAS-domain containing regulatory system, which modulates

flagella-flagella interactions in C. jejuni. Inactivation of the cj1387c gene, encoding a

YheO-like PAS6 domain linked to a helix-turn-helix domain, resulted in the generation

of a tightly associated “cell-train” morphotype, where up to four cells were connected

by their flagella. The morphotype was fully motile, resistant to vortexing, accompanied

by increased autoagglutination, and was not observed in aflagellated cells. The

1cj1387c mutant displayed increased expression of the adjacent Cj1388 protein,

which comprises of a single endoribonuclease L-PSP domain. Comparative genomics

showed that cj1387c (yheO) orthologs in bacterial genomes are commonly linked

to an adjacent cj1388 ortholog, with some bacteria, including C. jejuni, containing

another cj1388-like gene (cj0327). Inactivation of the cj1388 and cj0327 genes resulted

in decreased autoagglutination in Tween-20-supplemented media. The 1cj1388 and

1cj0327mutants were also attenuated in aGalleria larvae-based infection model. Finally,

substituting the sole cysteine in Cj1388 for serine prevented Cj1388 dimerization in

non-reducing conditions, and resulted in decreased autoagglutination in the presence

of Tween-20. We hypothesize that Cj1388 and Cj0327 modulate post-translational

modification of the flagella through yet unidentified mechanisms, and propose naming

Cj1387 the Campylobacter Flagella Interaction Regulator CfiR, and the Cj1388 and

Cj0327 protein as CfiP and CfiQ, respectively.
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FIGURE 5 | Inactivation of cj1387c increases autoagglutination, while

inactivation of cj1388 and cj0327 decreases autoagglutination in

media supplemented with Tween-20. AAG of cultures grown overnight in

Brucella broth was measured over an 8 h time period and after 24 h at room

temperature in air. The percentage of the initial A600 following 24 h (A) and

t1/2 of the steepest part of the AAG curve over the initial 8 h was calculated

and expressed as a percentage of the wild-type (B). Results show the mean

of at least three biological replicates. Significantly different results,

determined using either an unpaired t-test (A) or one-sample t-test (B) are

indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

is a known virulence factor (Lee et al., 1986; Szymanski
et al., 1995; Carrillo et al., 2004). Given that the Cj1387c-
1388 system affects AAG, which is dependent on functioning
flagella, we sought to assess the role of Cj1388 and Cj0327
on virulence using the Galleria mellonella virulence model
(Champion et al., 2010). The 1cj1388, 1cj0327, and 1cj1388-
cj0327 strains showed attenuation in Galleria larvae, with
the 1cj1388 strain showing the greatest level of attenuation
(Figure 7). The virulence phenotype of the 1cj1388 and 1cj0327
strains could be restored by complementation with their cognate
gene.

Discussion

The regulatory cascade controlling expression of flagellar genes
in Campylobacter is increasingly well understood; however,
there are fewer insights into the regulatory control of post-
translationalmodification of flagella. The paradigm of sensing the
environment followed by modulating behavior, enzyme activity,
or gene expression to adapt to those changes is well established.
Thus, it is not surprising that post-translational control of
flagella should also be subject to environmental control. In this
study we have identified a new PAS-domain-containing repressor
protein, which affects flagella-flagella interactions resulting in
higher levels of autoagglutination. Proteomics analysis suggests
that this regulatory protein represses expression of the adjacent
downstream gene encoding a dimeric effector protein Cj1388.
This protein, in concert with a homolog encoded in a different
region of the chromosome, affects autoagglutination and may
play a role in virulence. Homologs of Cj1387c and Cj1388 in other

organisms are always found linked suggesting that this system
always functions in concert.

PAS domains are known to sense diverse environmental
signals and participate in dimerization (Ma et al., 2008;
Slavny et al., 2010). Unlike the PAS domain found in other
Campylobacter proteins, the (YheO-like) PAS domain found in
Cj1387c is only found in bacteria and exhibits a very limited
architectural diversity. Very little is known about this member of
the PAS family; the sensed stimuli or signal, if any, for Cj1387c is
not known. The Cj1388 effector protein appears to be a dimer,
formed via a disulfide bridge between two monomers. This
suggests that there could be a link to redox control; indeed, redox
sensing in PAS domain sensors is well established (Hill et al.,
1996; Xie et al., 2010; Sousa et al., 2013).

Deleting 1cj1387c resulted in a clear “cell-train” morphology.
Ryu flagella staining suggested that the cells were connected
via flagella and accordingly, combining the cj1387c disruption
with a flaAB mutant abolished cell chain formation. Flagella
rotation, however, is dispensable for cell chain formation as the
cj1387c mutant in a paralyzed flagella background showed the
“cell-train” morphology and rapid AAG. The paralyzed flagella
mutant in strain 81–176 is known to show normal AAG (Guerry
et al., 2006) and we confirm this observation for the NCTC
11168 background. Interaction between flagella during AAG is
therefore most likely to occur via a physical interaction between
flagella filaments. Interestingly, cell chains are still motile, and
chains of up to three cells could be observed with rapid darting
motility. Given that flagella rotation is governed by CheY
and subject to chemotactic control, this raises the intriguing
question as to which cells in a cell-chain determine direction
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FIGURE 6 | Cj1388 forms a dimer via a disulfide bridge. Cj1388H6 or

Cj1388 H
CysSer
6

were cloned into pET28a and induced with IPTG.

SDS-PAGE in non-reducing conditions (B) shows the appearance of a protein

fragment twice the size of the purified protein (marked with an asterisk) not

visible in reducing conditions (A) or in samples containing Cj1388H
CysSer
6 .

and how does directional dominance arise? The role of these
cell chains in the normal physiology and survival of C. jejuni
is not known. The flagella-flagella interactions may merely be a
consequence of disrupting the normal flagella glycan decoration
pathways, which are known to be essential for flagella assembly
and function (Goon et al., 2003; Asakura et al., 2013). Clearly,
disrupting cj1387c-88 does not abolish glycosylation, as the cells
still possess flagella and are motile and no gross differences in
glycoprotein could be detected by Alcian Blue staining. Changes
in glycosylation decoration of the flagella are however the most
likely explanation for the changes in AAG observed in this study.
AAG is known to be important for microcolony formation at
the initiation of biofilm formation (Cole et al., 2004; Boddey
et al., 2006; Moreira et al., 2006), and in C. jejuni, flagella
are required for robust biofilm formation (Joshua et al., 2006;
Reuter et al., 2010). The biofilm phenotype of the 1cj1387c and
1cj1388 strains was not different from the wild-type as assessed
by microscopy and crystal violet staining.

Both Cj1388 and Cj0327 are small (13 kDa) proteins
consisting of single endoribonuclease L-PSP domain. This
domain was first characterized as liver perchloric acid-
soluble protein (hence L-PSP) from Rat liver and shown
to inhibit protein synthesis (cell free system using rabbit
reticulocyte lysate) and degrade in vitro transcribed mRNA
(Oka et al., 1995; Morishita et al., 1999). Non-reducing
SDS-PAGE and substitution of the single cysteine residue
in Cj1388 demonstrated that this protein likely forms a
disulfide stabilized dimer. A complement construct carrying the
Cys71Ser substitution also failed to complement the AAG-Tween
phenotype, suggesting that dimerization is required for function.
If indeed these proteins do function to degrade mRNA, this
suggests that post-transcriptional regulation may play a role in

FIGURE 7 | Strains lacking Cj1387c, Cj1388, and/or Cj0327 are

attenuated in the Galleria wax moth larvae model. Galleria larvae were

injected with 10µl of cells (1× 106 cells) harvested from Skirrow plates and

washed in PBS. Mock injection, injection with PBS, and injection with

heat-killed C. jejuni were included as negative controls. Results show the

mean of at least four biological replicates, each containing 10 larvae.

Significantly different results, determined using unpaired t-tests, are shown

using asterisks (*p < 0.05, ****p < 0.0001).

regulating flagella function. While both Cj1388 and Cj0327 score
as significant for a Ribonuclease L-PSP domain, they are only 36%
identical. Cj0327 has two cysteine residues, and it is unknown
if these contribute to inter- or intra-domain disulfide bridge
formation. Based on the levels of AAG in Tween-supplemented
media, disrupting either gene has the same consequence (reduced
AAG) and this phenotype is most extreme when both mutations
are combined. Degenerate function has been seen previously in
C. jejuni: the Cet energy taxis system can function with either
CetB and CetC (Reuter and van Vliet, 2013) and both FlaA and
FlaB flagella proteins are incorporated into the flagella filament
(Logan et al., 1987; Guerry et al., 1991). Moreover, C. jejuni strain
RM1221 contains three extra-cellular DNases (Gaasbeek et al.,
2010). The presence of two Ribonuclease L-PSP proteins in C.
jejuni is an example of functional redundancy, although C. coli
has only the single cj1387c-linked gene. Also, based on the String
analysis, Cj0327 homologs aremuch less common than the linked
cj1387c-88 system.

Disrupting both cj1388 and cj0327 genes resulted in
significant attenuation in the Galleria wax moth larvae model,
and virulence in this model was restored by constitutive in
trans expression of Cj1388. It is well established that changes
in glycosylation and AAG affect adhesion to and invasion of
human intestinal cells (Guerry et al., 2006). Although flagella
from Campylobacter and Helicobacter lack TLR5-recognition
sites (Galkin et al., 2008), the sheer size of the flagella
suggests that it will be highly antigenic. As part of the
insect immune system, N-acetylglucosamine-specific lectins are
known to facilitate phagocytosis by the haemocyte cells (insect
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FIGURE 8 | Model showing the effect of disrupting the

cj1387c-cj1388-cj0327 genes on autoagglutination (AAG). Strains are

shown ranked in the order in which AAG is decreased in media

supplemented with Tween 20 compared to un-supplemented media. Cj1388

expression is proposed to be de-repressed when cj1387c is inactivated

resulting in greater AAG, which cannot be disrupted by Tween. Deleting both

cj1388 and/or cj0327 results in a Tween-dependent decrease in AAG.

Complementation by Cj1388 rescues this phenotype, and this activity is

dependent on a single cysteine residue in Cj1388, which forms a dis-

sulfide-linked dimer in vitro. AAG is dependent on flagella glycan decoration,

suggesting that Cj1388 and Cj0327 have a role in mediating glycan

modification of flagella.

phagocytes) (Kavanagh and Reeves, 2004) and this process is
further augmented by the action of lysozyme, which degrades
bacterial peptidoglycan exposing lectin-specific molecules such
as teichoic acid and lipomannans (Wilson and Ratcliffe, 2000).
Therefore, changes in surface polysaccharides, on either the
flagella or cell might be expected to influence virulence in
an insect model. The Cj1388-Cj0327 proteins may therefore
represent hitherto unknown virulence determinants.

In summary, we have identified a novel system that affects
flagella-flagella interactions. We propose to designate the
Cj1387c repressor as CfiR (Campylobacter flagella Interaction
Regulator) and name the effectors as CfiP (Cj1388) and CfiQ
(Cj0327). Proteomics analysis shows that CfiP is repressed
by CfiR. We present a model whereby CfiPQ control flagella
glycan decoration, which influences cell aggregation and
virulence (Figure 8). Deletion of CfiPQ results in attenuation
in the Galleria model and a disruption of flagella-mediated
autoagglutination by the surfactant Tween-20; derepressed
expression of disulfide-linked CfiP dimers results in tightly
connected “cell-trains” mediated by the flagella, and increased
aggregation. CfiRP homologs are found in other bacterial
species, and always linked on the chromosome. Therefore, this
system, acting in concert, may control glycan modification
in other bacteria, which may influence virulence and

immuno-modulation in pathogens such as S. pyogenes, S.
enterica, V. parahaemolyticus, and Y. pestis.
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