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Transition	Metal	Free	a-C-Alkylation	of	Ketones	Using	Secondary	
Alcohols	
Mubarak	B.	Dambatta,	Joseph	Santos,	Robert	R.	A.	Bolt,	and	Louis	C.	Morrill*	

Cardiff	Catalysis	Institute,	School	of	Chemistry,	Cardiff	University,	Main	Building,	Park	Place,	Cardiff,	CF10	3AT,	U.K.	

ABSTRACT:	A	base-mediated	a-C-alkylation	of	ketones	with	
secondary	 alcohols	 has	 been	 developed.	 This	 transition	
metal	free	approach	employs	KOt-Bu	as	the	base	and	exhib-
its	 a	broad	 scope,	 allowing	a	 range	of	 commodity	 aliphatic	
secondary	 alcohols	 and	 1-arylethanols	 to	 be	 employed	 as	
alkylating	 agents.	 Aryl	 methyl	 ketones	 undergo	 selective	
mono-a-C-alkylation	 in	 high	 isolated	 yields	 (23	 examples,	
65%	average	yield).	

Alkylation	is	a	fundamental	transformation	in	synthetic	
chemistry	that	is	routinely	performed	across	the	entire	
spectrum	of	chemical	industries.1	Traditionally,	hazard-
ous	alkyl	 (pseudo)halides	are	 commonly	employed	 for	
alkylation	processes,	which	 can	 result	 in	 non-selective	
transformations	due	 to	multiple	alkylation,	whilst	gen-
erating	 stoichiometric	 waste	 products	 that	 must	 be	
separated	from	the	target	compound.2	As	such,	 the	de-
velopment	 of	 selective	 alkylation	 methodologies	 that	
employ	less	toxic	reagents,	whilst	generating	benign	by-
products,	 is	 an	 important	 goal	 for	 improving	 sustaina-
bility	within	the	synthetic	community.	
	 The	 borrowing	 hydrogen	 (BH)	 approach,	 which	

combines	a	transfer	hydrogenation	with	a	concurrent	reac-
tion	on	the	in	situ-generated	reactive	intermediate,	enables	
commodity	 alcohols	 to	 be	 employed	 as	 alkylating	 agents,	
with	water	generated	as	the	sole	by-product.3	In	comparison	
to	primary	alcohols,	the	use	of	secondary	alcohols	as	alkylat-
ing	 agents	 in	BH	processes	 is	 considerably	 less	 developed,	
which	 may	 partly	 be	 attributed	 towards	 competing	 self-
aldol	 processes	 (of	 the	 corresponding	 ketone).4	 In	 this	 do-
main,	several	groups	have	reported	catalytic	systems	for	the	
efficient	N-alkylation	 of	 amines	 using	 secondary	 alcohols.5	
However,	 only	 sporadic	 examples	 of	 the	 a-C-alkylation	 of	
ketones	with	 secondary	 alcohols	 have	 been	 reported,	 pre-
sumably	 due	 to	 competing	 ketone	 self-condensation	 pro-
cesses	 (Scheme	 1A).6	 A	 significant	 advance	 in	 this	 regard	
was	disclosed	by	Donohoe	and	co-workers,	who	developed	a	
general	iridium-catalyzed	approach	employing	Ph*	(C6Me5)-
substituted	ketones	 (Scheme	1B).7	The	Ph*	group	prevents	
ketone	self-aldol	processes	and	can	be	easily	cleaved,	via	a	
retro-Friedel-Crafts	 acylation,	 to	 access	 a	 range	 of	 alterna-
tive	 carbonyl	 derivatives	 including	 esters	 and	 amides.8	
Sundararaju,	Renaud	and	Maji	subsequently	reported	relat-

ed	 approaches	 employing	 earth-abundant	 transition	metal	
catalysts	based	cobalt,	iron,	and	manganese,	respectively.9		
Scheme	1.	a-C-Alkylation	of	ketones	with	secondary	al-
cohols.	

	
Whilst	 investigating	the	use	of	alternative	catalysts	 for	 this	
interesting	 and	 challenging	 transformation,	 control	 reac-
tions	 revealed	 the	 presence	 of	 a	 significant	 base-mediated	
background	reaction	in	the	absence	of	any	transition	metal	
catalyst.10,11	 To	 this	 end,	 herein	 we	 report	 the	 first	 base-
mediated	 transition	 metal	 free	 a-C-alkylation	 of	 ketones	
using	commodity	secondary	alcohols	as	alkylating	agents.	
To	commence	our	studies,	we	selected	 the	a-C-alkylation	

of	 commercially	 available	 ketone	 1	 with	 pentan-3-ol	 2	 (6	
equiv.)	 as	 a	 model	 system	 (Table	 1).12	 It	 was	 found	 that	
treatment	with	KOt-Bu	 (3	equiv.)	 in	xylenes	 ([1]	=	1	M)	at	
150	°C	for	24	h,	enabled	the	efficient	and	selective	mono- a-
C-alkylation	of	ketone	1,	providing	alkylated	product	3	in	>	
98%	NMR	yield	(entry	1).	Alternative	alkoxide	bases	(NaOt-
Bu	or	NaOt-Am)	proved	equally	as	effective	whereas	substi-
tution	of	KOt-Bu	for	KOH	or	K2CO3	resulted	in	no	observable	
formation	 of	 3	 (entries	 2-5).	 Reducing	 the	 equivalents	 of	
alcohol	(entries	6	and	7),	lowering	the	reaction	temperature	
(entry	8),	 or	 shortening	 the	 reaction	 time	 (entry	9),	 all	 re-
sulted	 in	 decreased	 conversion	 to	 alkylated	 product	 3.	
Pleasingly,	it	was	found	that	the	loading	of	KOt-Bu	could	be	
decreased	to	one	equivalent	without	significant	detriment	to	
conversion	(entries	10	and	11).	Using	one	equivalent	of	KOt-
Bu,	 the	alkylated	product	3	was	 formed	 in	91%	NMR	yield	
and	isolated	in	84%	yield.	
To	obtain	insight	into	the	reaction	mechanism,	the	a-C-		
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Table	 1.	 Optimization	 of	 the	 base-mediated	 a-C-
alkylation	of	ketones.a	

	
entry	 variation	from	“standard”	conditions	 yieldb	(%)	
1	 none	 >	98	
2	 NaOt-Bu	(3	equiv.)	instead	of	KOt-Bu	 >	98	
3	 NaOt-Am	(3	equiv.)	instead	of	KOt-Bu	 >	98	
4	 KOH	(3	equiv.)	instead	of	KOt-Bu	 <	2	
5	 K2CO3	(3	equiv.)	instead	of	KOt-Bu	 <	2	
6	 2	(4	equiv.)	 77	
7	 2	(2	equiv.)	 17	
8	 130	°C	 47	
9	 reaction	time	=	8	h	 42	
10	 KOt-Bu	(1	equiv.)	 91	(84)	
11	 KOt-Bu	(0.1	equiv.)	 13	

a	 Reactions	 performed	 using	 0.5	 mmol	 of	 ketone	 1	 and	 bench-grade	
xylenes.	[1]	=	1	M.	b	Yield	after	24	h	as	determined	by	1H	NMR	analysis	
of	the	crude	reaction	mixture	with	1,3,5-trimethylbenzene	as	the	inter-
nal	standard.	Isolated	yield	given	in	parentheses.	
alkylation	of	ketone	1	was	performed	using	 isopropanol-d8	
as	the	alkylating	agent	(Scheme	2A).	Analysis	of	the	alkyla-
tion	product	revealed	46%	D,	>95%	D	and	42%	D	incorpo-
ration	 at	 the	a-,	b-,	 and	 g-positions,	 respectively.	 The	H/D	
scrambling	 at	 both	 the	a-	 and	 g-positions	 result	 from	 car-
bonyl	acid-base	equilibria.	Adventitious	H2O	and/or	t-BuOH	
may	account	for	the	high	%	H	incorporation	at	the	a-	and	g-
positions.	The	>95%	D	recovery	at	 the	b-position	provided	
supporting	evidence	for	the	MPV-type	reduction	of	an	enone	
intermediate.	 Furthermore,	 during	 reaction	 optimization	
studies,	trace	quantities	of	the	secondary	alcohol	that	would	
be	generated	via	a	MPV-type	reduction	of	ketone	1	was	ob-
served,	which	 supported	 the	 initial	 Oppenauer-type	 oxida-
tion	 of	 secondary	 alcohol	 2.12	 In	 line	 with	 these	 observa-
tions,	 and	 previous	 related	 investigations,10,11	 a	 plausible	
reaction	mechanism	would	initiate	with	an	Oppenauer-type	
alcohol	 oxidation	 followed	 by	 a	 selective	 cross-aldol	 con-
densation	 to	 form	 an	 enone	 intermediate	 (Scheme	 2B).	 A	
subsequent	 Meerwein-Ponndorf-Verley	 (MPV)-type	 enone	
reduction	would	form	the	observed	alkylation	product.	
With	optimized	reaction	conditions	in	hand	(Table	1,	entry	

10),	 the	 full	 scope	 of	 the	 base-mediated	 a-C-alkylation	 of	
ketones	with	secondary	alcohols	was	explored	(Scheme	3).	
Fixing	 pentan-3-ol	2	 as	 the	 alkylating	 agent,	 a	 selection	 of	
aryl	methyl	ketones	could	be	employed	as	 the	nucleophilic	
component	 to	access	 the	corresponding	alkylated	products	
in	high	isolated	yields	(Scheme	3A,	products	3−9,	69%	aver-
age	yield).	Within	the	aryl	methyl	ketone,	sterically	encum-
bered	 aryl	 units	 containing	 2,6-substitution	were	 required	
to	 prevent	 undesired	 ketone	 self-condensation	 processes.	
This	requirement	was	illustrated	by	the	complex	mixture	of	
unidentified	products	formed	when	the	Ph*	group	was	sub-
stituted	 with	 a	 1-Np	moiety	 (Scheme	 3B).	Within	 the	 aryl	
unit,	other	alkyl	substitution	addition	to	the	incorporation	of		

Scheme	2.	Mechanistic	considerations.	

	
pyridyl,	 aryl	bromide,	and	aniline	moieties.	Furthermore,	 a	
symmetrical	 diketone	 underwent	 bisalkylation	 to	 give	
product	 9	 in	 74%	 isolated	 yield.	 Employing	 an	 aryl	 ethyl	
ketone	as	 the	nucleophile	 resulted	 in	complete	 recovery	of	
starting	materials.	Fixing	ketone	1	as	the	nucleophile,	a	va-
riety	of	secondary	alcohols	could	be	employed	as	the	alkyl-
ating	agent	(Scheme	3C),	accessing	the	corresponding	alkyl-
ated	products	in	high	isolated	yields	(products	10−25,	63%	
average	yield).	A	selection	of	both	acyclic	and	cyclic	aliphatic	
secondary	 alcohols	 were	 employed,	 including	 4-(t-
butyl)cyclohexan-1-ol,	 which	 gave	 product	 13	 with	 86:14	
d.r.	 and	 in	 92%	 combined	 isolated	 yield.	 A	 selection	 of	 1-
arylethanols	could	also	be	employed	as	the	alkylating	agent,	
with	a	variety	of	heteroaryls	incorporated	into	products	22-
25	including	pyridyl,	furanyl	and	thiophenyl	moieties.	Start-
ing	 materials	 were	 recovered	 when	 1-indanol,	 1,3-
diphenylpropan-2-ol	and	diphenylmethanol	were	employed,	
which	may	 be	 attributed	 towards	 increased	 steric	 hinder-
ance.	 An	 attempted	 alkylation	 using	 pentane-2,4-diol	 also	
resulted	in	complete	recovery	of	starting	materials.	 	
In	conclusion,	we	have	developed	the	first	base-mediated	

transition	 metal	 free	 a-C-alkylation	 of	 ketones	 using	 sec-
ondary	 alcohols	 as	 the	 alkylating	 agent.	 Ketones	 undergo	
selective	 mono- a-C-alkylation	 with	 a	 variety	 of	 aliphatic	
secondary	 alcohols	 and	 1-arylethanols	 in	 high	 isolated	
yields	 (23	 examples,	 65%	 average	 yield).	 It	 was	 proposed	
that	 the	 reaction	 proceeds	 via	 an	 Oppenauer-type	 alcohol	
oxidation	 followed	 by	 selective	 cross-aldol	 condensation	
and	 Meerwein-Ponndorf-Verley	 (MPV)-type	 enone	 reduc-
tion.	 This	 base-mediated	 process	 offers	 an	 attractive	 and	
green	alternative	to	existing	transition	metal-catalyzed	bor-
rowing	hydrogen	processes.	
ASSOCIATED	CONTENT		
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Scheme	3.	Scope	of	the	base-mediated	a-C-alkylation	of	ketones.	

	
Reactions	performed	using	0.5	mmol	of	ketone	starting	material	and	bench-grade	xylenes.	All	yields	are	isolated	yields	after	chromatographic	puri-
fication.	a	As	determined	by	1H	NMR	analysis	of	the	crude	reaction	mixture,	major	isomer	shown.	
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