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Abstract 

In this paper, a new lamination parameter based method is proposed for the layup optimization of built-

up composite laminates with ply drop-offs. The optimization process is divided into two stages. In the 

first stage, the multilevel optimization feature of the exact strip software VICONOPT MLO is extended 

to use the lamination parameters and laminate thicknesses of each component panel as design variables 

to minimize the weight of the whole structure subject to buckling and lamination parameter constraints. 

For the second stage, instead of using the common heuristic optimization methods, a novel dummy 

layerwise branch and bound (DLBB) method is proposed to search the manufacturable stacking 

sequences to find those needed to achieve a blended structure based on the use of 0°, 90°, +45° and -

45° plies and having lamination parameters equivalent to those determined in the first stage. The DLBB 

method carries out a logical search to circumvent the stochastic search feature of heuristic methods for 

the determination of stacking sequences. This two-stage method is an extension of a previous highly 

efficient two-stage method for a single laminate [1]. The effectiveness of the presented method is 

demonstrated through the optimization of a benchmark wing box.  

Keywords: composite; optimization; lamination parameters; blending; branch and bound. 

 

1. Introduction 

The optimization of composite laminates has attracted great interest from researchers because of their 

outstanding mechanical performance and large number of application areas such as aerospace, 

automotive, marine and civil industries. Composite laminates can be designed to meet different loading 

conditions by tailoring their stacking sequences, which usually leads to a discrete optimization problem 

when the ply angles are limited to a set of values (e.g. 0°, 90°, +45° and -45°).  

To reduce weight or improve structural performance, the ability to vary the stiffness of laminated 

composite structures can be used to expand the design space by changing either the fiber orientations 

or the thicknesses of different laminates in different parts of the structure. In large scale built-up 

structures, such as an aircraft’s wings or fuselage, this results in changes in thickness and lay-up 

between adjacent panels, potentially leading to stacking sequence mismatches, causing stress 

concentrations as well as increasing the level of difficulty in the manufacturing process. Therefore, 

ensuring ply continuity between adjacent panels, which is commonly referred to as the blending 

problem, is essential [2].  Consequently, the blending constraint together with any layup design 

constraints (e.g. damage tolerance constraints, disorientation constraints, etc) related to each of the 

component laminates should be considered when designing multi-panel composite laminated structures 

in practice. 
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Genetic algorithms (GAs) have become the most popular method for blending optimization because of 

their effective performance in discrete processes. Soremekun et al. [3] presented a sublaminate-based 

method based on GAs for the optimization of a 3×3 array of sandwich panels and an 18-panel horse-

shoe structure in which the load for each panel was fixed. Following this, further concepts and methods 

based on GAs were developed to optimize blended structures. Adams et al. [4–6] proposed the guide-

based blending method, in which a template stacking sequence is used as a guide and the blended 

laminates are then obtained by inwardly or outwardly dropping plies from the guide. Irisarri et al [7] 

implemented a stacking sequence table (SST) approach with GAs, in which the stacking sequence of a 

thicker panel is obtained by adding plies to a thinner one, for optimizing blended composite laminates. 

In Fan et al.’s work [8], a GA which comprises a ply-composition and a ply-ranking chromosome for 

each individual was proposed for the blending optimization. Yang et al. [8] developed a ply drop 

sequence method (PDS) which is an extension of the guide-based method. Instead of dropping plies 

inwardly or outwardly, plies in the thicker panel could be dropped for the thinner panel. In the work of 

An et al [9], a shared-layer and mutation method (SLM) was proposed to obtain blended laminates. In 

this method all the layers of the current thinnest laminate are shared with its adjacent laminate, and a 

mutation operator is used to optimize the non-shared layers. Another popular heuristic algorithm, 

simulated annealing (SA) was implemented by Zeng et al. with multiple SSTs to obtain blended 

stacking sequences [11]. A more realistic approach, in which load redistribution within the structure 

due to changes made during the optimization process is considered, is taken for the case of a wing box 

by Liu and Haftka [10]. This uses a two-step optimization method, in which the ply orientations to be 

used are obtained at the first step and the layups for each panel are then obtained considering blending 

in the second step. Seresta et al. [11] developed a guide-based method with a parallel GA to implement 

the optimization of the same wing box, obtaining better laminate continuity. A further wing structure 

was optimized by Jing et al. [12] using the global shear-layer blending method (GSLB), with a blending 

design scheme using the SST approach also proposed. In their later work [13], the GSLB method was 

improved by adding a shape prediction algorithm and thickness evaluation technique. 

Many effective blending methods have therefore been developed. However, the large number of layers 

in blended composite structures leads to a large number of design variables, making the optimization 

inevitably time consuming. As an alternative to these approaches, lamination parameters have been 

proposed to implement the optimization. This reduces the number of design variables dramatically, 

since these parameters are independent of the number of plies in the laminate. The stiffness matrix can 

then be expressed as a linear function of the lamination parameters instead of the conventional set of 

equations with large numbers of ply orientations. Many optimization techniques [14–23] based on 

lamination parameters have been developed for a single composite panel. For more complex blended 

composite structures, IJsselmuiden et al. [24] proposed a multi-step optimization method. In this 

approach, the thickness and bending lamination parameters of each panel were optimized under a local 

buckling constraint to minimize the weight during the first step using a successive convex 

approximation scheme, following which a guide-based method incorporating GAs was conducted to 

obtain the blended stacking sequences in the second step. In the work of  Liu et al. [25], the first order 

optimization method available in the ANSYS finite element analysis (FEA) software was employed in 

the first stage to conduct a weight optimization where the bending lamination parameters and the 

number of plies of each angle were used as design variables. Then in the second stage, the blended 

stacking sequences of the whole structure were obtained based on the optimized lamination parameters 

using the shared layer blending (SLB) approach with a permutation GA. Macquart et al. [26] studied 

the blending constraint in lamination parameters space for the first stage of the optimization, which was 

then imposed in later works [27–29] where a gradient-based optimizer was employed to optimize 

lamination parameters and laminate thicknesses, and a guide-based GA was then utilized to search the 
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corresponding stacking sequences. In the work of Meddaikar et al. [30], a multipoint structural 

approximation was used in the two-stage optimization, with the mass of a composite structure being 

minimized by optimizing lamination parameters and laminate thicknesses in the first stage and blended 

stacking sequences obtained using GAs incorporated with SST in the second stage. Polar parameters 

can be used as alternatives to the lamination parameters in a two-stage optimization. Although polar 

parameters make the first stage optimization non-convex, they are true tensor invariants and have direct 

physical meaning, a characteristic which lamination parameters do not possess. In the work of Panettieri 

et al [31], a two-stage blending optimization method based on the use of polar parameters was developed. 

Although GAs are widely used for optimizing blended layups, the drawbacks of implementing a 

stochastic search and the fact that performance relies heavily on predefined parameters cannot be 

ignored. Therefore, efforts to develop alternative methods are valuable and continue to be made. Zein 

et al. [32,33] utilized a constraint satisfaction programming method (CSP) based on enumeration 

method, during which the number of layers for each ply angle was predefined, in order to optimize 

blended stacking sequences. Sanz-Corretge [34] developed another CSP method, in which blended 

laminates are obtained based on a incremental tree technology, adding plies to thinner laminates. A 

topology inspired method DMTO (Discrete Material and Thickness Optimization) was also developed 

by Lund in [35,36] for blending optimization. This is different to the other blending methods discussed 

above, in that it uses gradient-based optimization to obtain blended stacking sequences, avoiding the 

discreteness of layup design. However, as the blending constraint can be implemented directly and 

relatively easily in discrete optimization, the development of discrete optimization method is still 

attractive.  

Although the use of FEA in structural optimization provides versatility and is widely used, the 

computational cost is high. The highly efficient panel analysis and optimum design software, 

VICONOPT [37,38] which also includes lamination parameters as design variables [39] performs 

buckling analyses based on the exact strip method and the Wittrick-Williams algorithm [40,41] and 

provides a potential alternative. However, it is restricted to applications involving prismatic structures 

which precludes the optimization of more complex three-dimensional structures, To address this a 

multilevel optimization framework VICONOPT MLO [3,4] has been developed, in which a static FEA 

analysis is conducted for the whole structure to obtain load distributions, after which VICONOPT is 

used to optimize the constituent prismatic panels, combining the benefits of the two different types of 

methods whilst avoiding the drawbacks of each. 

The authors’ previous work [1] implemented a two-stage layup optimization for a single laminate in 

which VICONOPT was employed to optimize the lamination parameters and laminate thicknesses in 

the first stage, and then a highly efficient layerwise branch and bound method (LBB) which implements 

a logic-based search was used to obtain the manufacturable stacking sequences corresponding to these 

optimized lamination parameters in the second stage. In the present study, this two-stage optimization 

is extended to blended composite structures. This is achieved by extending VICONOPT MLO to use 

lamination parameters and laminate thickness as design variables instead of the layup itself and 

employing it in the first stage of the optimization. For the second stage, the logic based LBB is extended 

to the blending problem, for which a novel dummy layerwise branch and bound method (DLBB) is 

proposed and utilized to search the blended layups for the whole structure. The proposed method is 

applied to a wing box benchmark [42] to demonstrate its efficacy and potential. 

Section 2 of this paper outlines the basic procedures for the two-stage optimization. Section 3 describes 

the proposed two-stage method for blended laminates, Section 4 presents numerical results for the 

benchmark wing box, and brief conclusions are given in Section 5. 
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2. Outline of optimization procedure 

2.1 Optimization features of VICONOPT and VICONOPT MLO 

The exact strip software VICONOPT, which comprises the earlier programs VIPASA (Vibration and 

Instability of Plate Assemblies including Shear and Anisotropy) [44] and VICON (VIPASA with 

CONstraints) [45], performs buckling, postbuckling and free vibration analyses based on the Wittrick-

Williams algorithm. The major advantage of the exact strip method over FEA is its high efficiency, 

with VIPASA and VICON shown to be 1000 and 150 times faster than FEA for buckling analysis, 

respectively [37]. In continuous optimization problems, the method of feasible directions [46] is 

combined with a thickness factoring approach [37] to obtain just stable results during the iterative 

optimization process. Buckling constraints are evaluated by the highly efficient exact strip method with 

the corresponding sensitivities obtained using an accelerated finite difference technique [37]. Local 

linear approximations are applied to buckling constraints during the gradient-based optimization.  

VICONOPT MLO [42,43] is a software package providing a multilevel optimization framework based 

on the optimization features of VICONOPT for each component panel and FEA for the whole structure. 

A static analysis of the whole structure (system) is first performed by FEA. Then, optimization models 

are created for each component panel based on the results from the FEA (stress distribution, geometry, 

etc.) and a set of user-defined design variables. After these panels are optimized, the designs are 

incorporated into the system level finite element model and a new static analysis is performed to 

determine the updated load distributions. These newly obtained load distributions are then used at the 

panel level to re-optimize the component panels. This process is repeated until there is convergence of 

the total mass, as well as the individual mass and stress distribution for each panel. The optimum 

solution is thus reached in an efficient manner, shown to be around 4 times faster than the same 

optimization based purely on FEA [42]. 

2.2 Two stage optimization method for single laminate 

The authors’ two-stage method for layup optimization of a single laminate with consideration of 

practical layup design constraints using lamination parameters is given in [1]. Since the method 

proposed in this paper is an extension of the method for a single laminate, the parts which are also 

necessary for the new method will be repeated here. 

According to [47], four major layup design constraints need to be taken into account for composite 

laminate design. 

(1) Contiguity constraint: the maximum number of successive plies with the same orientation is 

limited to an integer 𝑛cont   to minimize edge splitting. 𝑛cont = 4 in this paper.  

(2) Disorientation constraint: the difference between two adjacent plies should be no greater than 

an angle 𝜃diff. This constraint is applied to avoid microcracking. 𝜃diff = 45° in this paper. 

(3) Minimum percentage constraint: each fiber orientation should comprise a proportion of at least 

𝑝𝑚 of the total layup to prevent the matrix from being exposed to direct loads and provide 

sufficient damage tolerance to the laminate. 𝑝𝑚 = 10% in this paper. 

(4) Damage tolerance constraint: putting 0° and 90° plies on the exterior surfaces of the laminate 

should be avoided to provide sufficient damage tolerance after impact. 

 

These four layup design constraints are all included in the second stage of the optimization using the 

logic-based method and constraint (3) is also imposed in the first stage of the optimization. 
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2.2.1 First stage optimization for single laminate 

2.2.1.1 Lamination parameters 

According to classical laminate theory [48], the stress-strain relationship for a composite laminate can 

be described by  
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M B D κ
 

 

(1) 

 

where 𝐍 and 𝐌 are vectors of in-plane forces and moments per unit width, 𝐀, 𝐁 and 𝐃 are membrane, 

coupling and bending stiffness matrices,  𝛆0 is a vector of in-plane strains and 𝛋 is a vector of mid plane 

curvatures. 

 

For symmetric laminates, the coupling matrix 𝐁 is null and will be ignored in this paper for simplicity. 

The membrane and bending stiffness matrices 𝐀 and 𝐃 can be expressed in terms of 8 lamination 

parameters 𝜉𝑗
𝑘 ( j=1,2,3,4; k=A, D) [49] and material stiffness invariants 𝐔:  
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where the material stiffness invariants 𝐔 and stiffness properties 𝐐 are: 

 

   
    

     
      
    

     
      

1

11

2

22

3

12

4

66

5

3 3 2 4

4 4 0 0
1
1 1 2 4

8
1 1 6 4

1 1 2 4

U
Q

U
Q

U
Q

U
Q

U

 

 

 

 

(4) 

 

  


 



 

2 2
11 11 11 22 12

2
22 11 22 11 22 12

12 12 22

66 12

/( )

/( )

Q E E E υ

Q E E E E υ

Q υ Q

Q G

 

 

 

(5) 

 



6 
 

𝐸11  is the longitudinal Young’s modulus, 𝐸22  is the transverse Young’s modulus, 𝐺12  is the shear 

modulus, 𝜐12 is the major Poisson’s ratio and  ℎ is the thickness of the laminate. 

 

The lamination parameters are obtained by the following integrals 
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where 𝜃 represents the ply angle at depth z below the mid-surface. 𝜉3
𝐴is zero for a balanced laminate 

and 𝜉4
𝐴,𝐷

 are zero if the ply angles are limited to 0°, 90°, +45° and -45°. 

2.2.1.2 Optimization for lamination parameters 

Lamination parameters have been introduced as design variables in VICONOPT [39], expanding the 

design space and reducing the number of design variables. During the first stage, lamination parameters 

and laminate thickness are optimized using the optimization features of VICONOPT subject to buckling 

and lamination parameter constraints. Each of the lamination parameters 𝜉𝑗
𝑘 lies between -1 and 1, and 

they are further restricted by 25 constraints [39,50] as follows. 

2|𝜉1
𝑘| − 𝜉2

𝑘 − 1 ≤ 0,   2|𝜉3
𝑘| + 𝜉2
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If the percentage of plies at each ply orientation level is required to be below a minimum value 𝑝𝑚, the 

feasible regions are further restricted as follows [1] : 
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Fig. 1. An example for the illustration of penalty method on feasible region 𝜉1,2
𝐷  (the original point V 

which is outside the feasible region is moved to the just feasible point S). 

 

These constraints which define feasible regions of the design space are essential for lamination 

parameter optimization. Violation of these constraints means the lamination parameter values cannot 

be achieved using the selected predefined ply angles [51]. The method of feasible directions with 

buckling constraints imposed by linear approximations based on the buckling load factors obtained 

using exact strip analysis is used to optimize the design variables. These non-linear lamination 

parameter constraints are imposed using a penalty function method [39]. For cases where the lamination 

parameter constraints are violated, all lamination parameters 𝜉𝑗
𝑘 (𝑗 = 1,2,3; 𝑘 = 𝐴, 𝐵, 𝐷) are multiplied 

by a scalar α (0 < α < 1) which is determined by a bisection method, in order to move the outlying 

lamination parameters to the boundary of the feasible region, making the most critical constraint just 

satisfied. An example is shown in Fig.1, where it can be seen that point V is outside the feasible region 

of 𝜉1,2
𝐷  and violates the constraint (7), so the penalty function forces it to point S where the constraint is 

just satisfied. 

As well as the penalized lamination parameters α𝜉𝑗
𝑘 (𝑗 = 1,2,3; 𝑘 = 𝐴, 𝐵, 𝐷), the laminate thickness ℎ 

is also replaced by αℎ in the stiffness calculation, so that infeasible configurations tend to violate the 

buckling constraints and hence appear unattractive to the optimizer. However, the laminate thickness ℎ 

is not penalized in the mass calculation, to ensure that the infeasible configuration will not have an 

artificially attractive objective function. 

2.2.2 Second stage optimization for single laminate 

A logic-based layerwise branch and bound method which combines a global layerwise technique with 

the branch and bound method was used to search the stacking sequences in order to match the optimized 

lamination parameters obtained in the first stage [1]. The decision tree of the branch and bound method 

is comprised of several levels of branches (i.e. choice options). The objective function 𝛤 is obtained by 

calculating the difference between the target lamination parameters and the actual lamination 

parameters of the real layup. In order to choose a branch which is close to the target lamination 

parameters, the branching process predicts the route to proceed with in the next level of the decision 

tree by considering bounds on the achievable 𝛤. The upper bound takes the value of the incumbent best 

solution, and the lower bound of each branch is calculated by subtracting the maximum achievable 
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contribution of the remaining levels from the exact value of 𝛤 obtained from the contributions of the 

preceding levels. In this way, branches whose lower bounds are higher than the current upper bound or 

which violate the layup design constraints can be discarded directly. A detailed example to illustrate 

this process can be found in [1]. Once the branching process reaches the bottom of the decision tree or 

the current branch cannot improve on 𝛤  regardless of which lower branches are chosen, the 

backtracking process starts to subsequently check the remaining possibilities in the decision tree to 

avoid missing the best result. The branch and bound process performs most efficiently on small 

problems or when there is a good incumbent solution.   

Therefore, a global layerwise technique is incorporated with the branch and bound method to improve 

the searching efficiency. Ply angles are optimized successively from the outer plies of the laminate. 

Initially only two plies are optimized at once. When there is no further improvement in 𝛤 , the 

optimization considers four plies at once, and so on until in the final cycle all the plies are optimized 

within one decision tree. The benefit of this approach is that the branch and bound method initially 

searches layups with small decision trees, meaning good incumbent solutions can be obtained quickly 

in the early stages. Afterwards, when searching layups with larger decision trees, the previous 

incumbent solution is used in the bounding process, enabling many branches to be pruned away without 

being searched. In this way, large reductions in solution time can be achieved using the global layerwise 

technique. 

3. Optimization procedure for blended laminates 

In this section, the two-stage layup optimization method presented in Section 2 is extended for the 

optimization of blended laminates. Instead of using VICONOPT, the first stage optimization uses 

VICONOPT MLO, which is improved in this paper by introducing lamination parameters as design 

variables. In the second stage, in order to impose the blending constraint in the logic-based method, a 

dummy layerwise branch and bound method is proposed to search the stacking sequences to match the 

target lamination parameters obtained in the first stage. 

3.1 First stage optimization for blended laminate 

The multilevel optimization features of VICONOPT MLO were introduced in Section 2.1. In its 

previous format, the stacking sequence of each panel was fixed during the optimization, the thickness 

of each layer was optimized continuously and no allowance was made for practical laminate design 

rules and layup design constraints. In this work, VICONOPT MLO is modified to perform layup 

optimization of blended composite structures and to obtain more manufacturable designs based on the 

use of lamination parameters as design variables. This new version of the software combines optimizing 

the lamination parameters for each component panel in VICONOPT using the new capability described 

in Section 2.2.1.2 with  static FEA of the whole structure using ABAQUS [52] to obtain load 

distributions, using stiffness matrices created based on lamination parameters and laminate thicknesses 

rather than specific layups. During the first stage, the optimized lamination parameters and laminate 

thicknesses of each component panel are determined. These are then used to obtain stacking sequences 

in the second stage. 

3.2 Second stage optimization for blended laminate 

In the second stage of the optimization process, a dummy layerwise branch and bound (DLBB) method 

illustrated in Fig. 2 is developed to search the stacking sequences for the whole structure. The optimized 
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lamination parameters obtained in the first stage are used as the target values for the DLBB which 

optimizes the stacking sequences to match these target values as closely as possible. Note that this 

second stage DLBB optimization can be used with VICONOPT MLO as well as any other optimizers 

which are able to optimize lamination parameters in the first stage optimization. Instead of searching 

the stacking sequence stochastically as in a heuristic algorithm, the dummy layerwise technique and the 

branch and bound method make DLBB a logical search based method. In this work blending and four 

layup design constraints are implemented through the DLBB.  

Once the first stage of the optimization is completed, the corresponding number of plies in each panel 

is determined and fixed. Before optimizing the stacking sequences in the second stage, all panels are 

ranked in terms of their number of plies. Then for each panel except the thickest one, dummy plies are 

added on top to give all panels the same number of plies as the thickest one, forming a dummy layerwise 

table as shown in Fig. 3. The aim of the DLBB is to minimize the objective function 𝛤 obtained by 

calculating the difference between the target lamination parameters and the actual lamination 

parameters related to the chosen ply orientations as follows 

𝛤 = ∑ 𝛤𝑝𝑎𝑛𝑒𝑙 𝑘

𝑛

𝑘=1
 

 

 
(15) 

𝛤𝑝𝑎𝑛𝑒𝑙 𝑘 = ∑ ∑ 𝑤𝑗

𝑗=𝐴,𝐷

3

𝑖=1

|𝜉𝑖(𝑘)(𝑎𝑐𝑡𝑢𝑎𝑙)
𝑗

− 𝜉𝑖(𝑘)(𝑡𝑎𝑟𝑔𝑒𝑡)
𝑗

| 
 

(16) 

 

where n is the number of panels, 𝑤𝐴,𝐷 are weighting factors, 𝜉1,2,3(𝑘)(𝑡𝑎𝑟𝑔𝑒𝑡)
𝐴,𝐷

 are the target lamination 

parameters for panel k, and 𝜉1,2,3(𝑘)(𝑎𝑐𝑡𝑢𝑎𝑙)
𝐴,𝐷

 are the actual lamination parameters of the chosen layup of 

panel k. 

As in LBB [1], the current best result is used as the upper bound in the branch and bound method, and 

the lower bound is obtained by subtracting the maximum achievable contribution of the remaining 

levels in the decision tree from the exact value of 𝛤 obtained by only considering the contributions of 

the chosen levels. Based on these bounds, the branching process selects the branches for the next level 

with the aim of minimizing the value of 𝛤.  

In this case however, dummy plies which are used to impose the blending constraint are added into the 

layerwise process. Since these dummy layers do not contribute to the stiffness of the laminate, they are 

not included in the branch and bound search. As illustrated in Figs. 2 and 3, the dummy layerwise 

technique consists of three loops: the cycle, pass, and case, which optimize the ply orientations 

successively, working inwards from the outer plies which make the most important contributions to the 

flexural lamination parameters 𝜉1,2,3
𝐷 . As shown in Fig. 3 for a symmetric layup, only two plies from 

each panel are optimized at once in the first cycle using the branch and bound method, then three, and 

so on until in the final cycle all the plies are optimized together. As the branch and bound process starts 

with small problems which only considers a few plies, good results can be obtained quickly, which are 

then used as upper bounds when searching the increasingly larger number of plies in subsequent cycles, 

and hence many branches can be discarded without being explored, reducing the searching time.  
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Fig. 2. Flowchart of the dummy layerwise branch and bound (DLBB) method. 
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Fig. 3. The dummy layerwise technique: starting layout of the dummy layerwise table. 

 

The blending process of the DLBB method is illustrated in Figs. 3-6 with the example of a blended 

structure comprising four panels whose symmetric layups contain 12, 8, 6 and 4 layers, respectively. As 

can been seen from Fig. 3, in the first case of the first cycle, only the two outer real layers in the thickest 

panel are optimized. A decision tree for a possible layup resulting from the branch and bound method 

is shown in Fig 4 (a). In order to impose the blending constraint, the order of layers for the branch and 

bound optimization in a case can be described by: 

 

𝑃𝑖.𝑗  

𝑖 = 1, 𝑗 = 𝑚 × 𝑛 − 𝑚 + 𝑛 for the first layer 

𝑖 = 𝑖 + 1 if the layer to the right is not a dummy layer 

𝑖 = 1, 𝑗 = 𝑗 + 1 if the layer to the right is a dummy layer or 𝑖 > 𝑖𝑚𝑎𝑥 

 

where 𝑃𝑖𝑗 is the position of the layer in the dummy layerwise table, 𝑖 and 𝑗 represent the column number 

and row number in the dummy layerwise table respectively, 𝑚 and 𝑛 are the cycle number and case 

number respectively, and 𝑖𝑚𝑎𝑥 is equal to the total number of panels. In Fig. 3, the order of the layers 

to be optimized in the first and second cases of the first cycle are shown in circles. In the first case, the 

position of the first layer to be optimized in the dummy layerwise table is 𝑃1.1. As the layer to the right 

is a dummy layer, the position of the next layer is 𝑃1.2. Similarly, for the second case, the positions of 

the layers to be successively optimized are determined as 𝑃1.3, 𝑃2.3, 𝑃1.4, 𝑃2.4, 𝑃3.4, based on which the 

blended layups can be obtained in the branch and bound search as described in the following paragraph.  

In the second case of the first cycle, the newly optimized layup of the first case is used as the starting 

layup. The corresponding decision tree for a possible layup, in which the branches at different levels are 

for different panels is shown in Fig. 4 (b). As can been seen from Fig. 3, the optimization starts from 

layer 1.3, then goes to layer 2.1 (note that the position of layer 2.1 in the table is 𝑃2.3). Since layers 1.1, 

1.2 and 1.3 have already been chosen, layer 2.1 can be chosen to match any of these. After that, layers 

1.4, 2.2 and 3.1 are selected. For layer 2.2, the choices available are the angles of the layers which are 

below the layer in the panel to its left that layer 2.1 has just been chosen to match. The rest of the choices 

for layer 2.2 in the decision tree are pruned directly by the bounding process. In addition, according to 

the chosen layup of the panel at the current level, the checking strategy developed in [1] is implemented 

to determine which ply is to be pruned to satisfy the layup design constraints applied for a single panel. 

In the same way, for layer 3.1 there are two choices, namely to match layer 2.1 or layer 2.2. Moreover, 

after layer 3.1 has been chosen, the branch and bound method will go back to check the rest of the 

possibilities remaining in the decision tree to avoid missing the best layup for the layers in the current 
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case. As a lower value of 𝛤 has been obtained in the current case, more branches in the rest of the tree 

can be pruned directly during this backtracking procedure. A benefit of the backtracking procedure and 

optimization order described above is that decisions regarding intermediate results are made based on a 

balance between all the panels for each case loop. 
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(b) 

Fig. 4. Decision trees with a possible determined layup: (a) in the first case of the first pass of the first 

cycle; (b) in the second case of the first pass of the first cycle. 



13 
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Layer 1.5 Layer 2.3 Layer 3.2 Layer 4.1

Layer 1.6 Layer 2.4 Layer 3.3 Layer 4.2 Case 3

Case 1

Case 2

S
Fig. 5. Layout changes after the first pass of the first cycle. 

Layer 1.1 Layer 2.1 Dummy Dummy

Layer 1.2 Layer 2.2 Layer 3.1 Dummy

Layer 1.3 Layer 2.3 Layer 3.2 Layer 4.1

Layer 1.4 Dummy Dummy Dummy

Layer 1.5 Dummy Dummy Dummy

Layer 1.6 Layer 2.4 Layer 3.3 Layer 4.2

Case 1

Case 2

S
Fig. 6. A possible starting layup for the second cycle. 

 

The positions of the dummy layers in the dummy layerwise table are changed according to the layer 

choices after each case, enabling flexibility in determining the layer drop-off location. Once a layer has 

been chosen to match the layer which is located in the panel to the left in the former case, the layer in 

the current case will be dropped and moved up to the corresponding former case, and a dummy layer in 

the former case will be swapped to the current case. For example, if layers 2.1, 2.2 and 3.1 are chosen 

to match layers 1.2, 1.4 and 2.1, respectively, the dummy layers in the first case swap with the real 

layers in the second case as shown in Fig. 5. Hence, the layout of the dummy layerwise table and the 

optimized order of the layers are changed for the next pass. In the next pass loop, the layer moved up 

will be optimized in the same case with the layer it is chosen to match, so as to ensure the blending 

constraint is satisfied. Furthermore, after the dummy layers are swapped to the new case, they will be 

located from the top to the bottom in each case to provide more choices for the real layers.  

After the last case loop in a pass loop is completed, a new pass loop starts and repeats the process based 

on the newly obtained layup from the last loop until convergence to a constant 𝛤 is achieved. This 

current best result is then used as the starting layup for the next cycle loop where a larger number of 

layers can be optimized in a case loop. Fig. 6 shows a possible starting layout for the dummy layerwise 

table for the second cycle. As the new case contains the layers from the two cases in previous cycle, the 

dummy layers in each new case are relocated from the top to the bottom at the beginning of the new 

cycle.  As can be seen in Fig. 6, the positions of the real layers are more flexible in these cases of the 
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second cycle because more layers are allowed to be optimized together. Based on the process described 

above, the blended layup can be obtained logically by the branch and bound method embedded within 

the dummy layerwise technique. To generate the initial layup for the second stage optimization, the 

method described in [1] is used to create the layup for the thinnest panel. A multiple of a ply group of 

the four angles such as [-45/0/45/90]S, which can be used for laminates with numbers of plies equal to 

multiples of eight is first generated. For panels with other numbers of plies, combinations of the 

following three groups [-45/45]S, [90 or 0]S, [0] are added, adjacent to plies with the same orientation 

to avoid violating the disorientation constraint. Following this, the thicker laminates are successively 

obtained by adding combinations of the groups described above to ensure the blending constraints as 

well as other layup design rules are satisfied. Hence, the DLBB method starts with a blended layup 

which satisfies all the constraints, ensuring that all intermediate results and the final result satisfy these 

constraints.  

 

 

 

 

 

 

 

 

 

 

          (a) 

  

(b) 

Fig. 7. (a) Geometry of the wing box and the load case (dimensions in mm).  (b) Bottom panels, ribs 

and spars. 
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Fig. 8. Geometry of the component panels (dimensions in mm). 

 

 

4. Results 

The benchmark wing box structure used in previous work on VICONOPT MLO [42] is presented in 

this paper to validate the proposed two-stage method. As shown in Fig. 7, the wing comprises six panels 

on the top, six panels on the bottom, four ribs and three spars. The details of the skin panels are shown 

in Fig. 8. Each panel has three L-shaped stringers reinforcing longitudinal stiffness and increasing local 

buckling capability. All the components are assumed to be rectangular with uniform thickness, and are 

rigidly attached to each other. The wing is made of high strength carbon-epoxy and the material 

properties are given in Table 1. Three concentrated loads of magnitudes 50000 N, 30000 N and 15000 

N are applied at the rib at the free end, inducing upward bending and twisting of the wing. To model 

realistic boundary conditions, the wing is attached to a steel adapter clamped at its end instead of directly 

clamping the root of the wing.  

In this paper, only the panels on the top are considered in the layup optimization. The previously 

optimized configurations in [42] are taken as starting points for the optimization presented here. In the 

previous optimization the stacking sequences of the skin panels, ribs and spars were fixed as 

[-45/45/90/0]s and only the layer thicknesses were optimized. Table 2 shows the starting layup 

information for this optimization.  
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Table 1 Material properties  

Material properties Values 

Young’s modulus in the fiber direction 1, 𝐸11 140000 MPa 

Young’s modulus in the transverse direction 2, 𝐸22 10000 MPa 

Shear modulus 𝐺12 5000 MPa 

Poisson’s ratio 𝜐12 0.3 

Material density 𝜌 0.0016 g mm3⁄  

Ultimate longitudinal tensile strength 1500 MPa 

Ultimate longitudinal compressive strength 1200 MPa 

Ultimate transverse tensile strength 50 MPa 

Ultimate transverse compressive strength 250 MPa 

Ultimate in-plane shear strength 70 MPa 

 

 

 

Table 2 Starting layup and ply thicknesses (mm) 

Top Panels  Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 Panel 6 

Skin t(-45) 0.181 0.736 0.358 1.072 1.304 1.174 

 t(45) 0.181 0.125 0.839 0.631 1.500 1.372 

 t(90) 0.433 0.215 1.500 1.500 1.500 1.494 

 t(0) 0.537 1.500 1.500 1.500 1.500 1.500 

Web t(-45) 0.159 0.282 0.364 0.265 0.308 1.208 

 t(45) 0.188 0.282 0.503 0.221 0.308 1.395 

 t(90) 0.354 0.125 0.963 0.964 0.125 2.242 

 t(0) 0.817 1.500 2.000 2.000 0.125 2.499 

Flange t(-45) 0.280 0.593 1.500 1.500 1.467 1.173 

 t(45) 0.280 0.641 1.500 1.500 1.467 1.173 

 t(90) 0.559 0.236 1.500 1.500 1.545 1.448 

 t(0) 1.500 1.500 2.000 2.000 2.500 2.500 

Bottom Panels  Panel 7 Panel 8 Panel 9 Panel 10 Panel 11 Panel 12 

Skin t(-45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(90) 0.54 0.88 0.13 0.13 0.13 0.13 

 t(0) 0.13 0.14 0.25 0.32 0.55 0.7 

Web t(-45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(90) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(0) 0.13 0.13 0.19 0.15 0.13 0.13 

Flange t(-45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(90) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(0) 0.27 0.13 0.19 0.15 0.13 0.13 
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4.1 First stage optimization results 

In the first stage of the optimization, four-node quadrilateral S4R shell elements [53] are used, being 

close to those used in the previous study of a wing box [42]. The numbers of elements used to mesh the 

geometry for the skin, webs and flanges of each component panel are 450, 75 and 75, respectively. Note 

that this mesh density results in missing a small number of local buckling modes which occur at the 

root of panel 1. The reason for this compromise in terms of the mesh is because the exact strip method 

assumes sinusoidal behaviour in the longitudimal direction and so cannot recognize these modes in the 

VICONOPT optimization. This is clearly a limitation of the VICONOPT MLO approach, and hence 

any replication of the optimization should take the same number of elements. The top panels are mainly 

subjected to compressive loading because they are on the top surface of the wing box. There are 21 

design variables for each panel with the skin, web and flange having 7 variables each (i.e. 

𝜉1
𝐴, 𝜉2

𝐴, 𝜉3
𝐴, 𝜉1

𝐷 , 𝜉2
𝐷, 𝜉3

𝐷, ℎ), hence a total of 126 design variables are specified in this optimization. Fig.9 

(a) shows a total mass comparison for the top panels. As can be seen, the final mass of the first stage 

converges on a value of 49.1 kg.  Compared with the optimized configuration in [42], a 4.9 kg reduction 

is achieved which represents a 9.1% saving over the previously optimized mass. It is observed that the 

design space is expanded by using lamination parameters as design variables. The mass change of each 

individual panel is shown in Fig.9 (b), where it can be seen that the majority of the mass saving of the 

whole structure is achieved in panels 2, 3 and 4 whose stacking sequences change significantly during 

the optimization. The mass reductions of panel 5 and 6 are relatively small, while the mass of panel 1 

remains almost constant. As expected, the panel mass increases from the tip to the root due to the 

increase in bending moment along the wing. The panels on the right are heavier than the adjacent panels 

on the left due to the twisting effect resulting from the way the loads are applied. Table 3 shows the re-

distributions of axial load and bending moment in each panel, obtained at the end of the multilevel 

optimization process based on the optimized structural configurations. Compared with the loading re-

distributions of the optimized configurations in [42], it is observed that the newly optimized panels are 

able to carry approximately the same loads with reduced laminate thicknesses. The optimized 

lamination parameters and laminate thickness for each panel are listed in Table 4. 

4.2 Second stage optimization results 

In the second stage of the optimization, the lamination parameters obtained in the first stage are used as 

target values in the DLBB method. Due to manufacturing requirements, the ply thickness is chosen to 

be 0.125 mm in this case. For each panel, the number of plies after rounding up to the nearest larger 

integer number n is shown in the last column of Table 4. Although this will not result in the lightest 

weight solution, it will always ensure a safe solution. After the rounding process, for a wing constructed 

with the target lamination parameters, the buckling load factor for the first buckling mode, which is 

local to panel 1, is 1.15. The second buckling mode is a global buckling of the whole top surface for 

which the buckling load factor is 1.17. 

 

Table 3 Re-distributions of axial load and bending moment after the multilevel optimization. 

Panel no.  1 2 3 4 5 6 

Axial load Ref. 42 113.03 122.97 423.57 470.88 719.53 799.38 

(kN) This paper 110.79 121.80 422.22 462.88 710.24 804.46 

Bending moment Ref. 42 1.1963 5.4909 76.048 86.356 219.09 249.36 

(kNm) This paper 1.1492 2.6543 68.508 57.671 180.41 251.92 
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                    (a)  

 
                   (b) 

Fig. 9. (a) Total mass comparison of the top panels. (b) Mass comparisons of each individual panel. 
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Table 4 Optimization results of the first stage 

Panel no.  𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 ℎ (mm) n 

1 Skin 0.0791 0.4552 -0.0006 -0.2559 -0.2245 -0.0959 2.674 22 

 Web 0.3032 0.5392 0.0173 -0.1470 -0.0817 -0.0240 3.047 25 

 Flange 0.3552 0.5678 -0.0035 -0.1069 -0.0247 -0.0612 5.257 43 

2 Skin 0.266 0.1988 -0.0758 -0.0890 -0.1208 -0.4364 3.646 30 

 Web 0.4225 0.4028 -0.0274 0.0512 -0.1266 -0.0589 3.598 29 

 Flange 0.3024 0.0878 -0.0197 -0.0823 -0.5315 -0.1410 4.918 40 

3 Skin -0.0729 0.1781 -0.0208 -0.4108 -0.1073 0.0478 7.469 60 

 Web 0.2158 0.4651 0.0019 -0.2970 0.0238 0.0132 7.101 57 

 Flange 0.0527 0.0527 0 -0.1779 -0.5253 -0.0548 12.203 98 

4 Skin -0.0444 0.1639 -0.0359 -0.2338 -0.4526 -0.0274 8.156 66 

 Web 0.2265 0.5485 -0.0131 -0.2851 0.2945 -0.0608 5.971 48 

 Flange 0.0708 0.0709 0 -0.1286 -0.6492 -0.1735 11.273 91 

5 Skin 0.0004 0.0338 0.0338 -0.1028 -0.7205 0.0384 11.027 89 

 Web 0 -0.4225 0 -0.0180 -0.9529 -0.4905 1.645 14 

 Flange 0.1368 0.1592 0 -0.1023 -0.6183 -0.2087 13.260 107 

6 Skin -0.0200 0.1013 0.0183 -0.1750 -0.4797 0.0114 10.761 87 

 Web 0.0131 0.2141 -0.0011 -0.2058 -0.4636 -0.0792 14.261 115 

 Flange 0.1537 0.2174 -0.0221 -0.1471 -0.4700 -0.1508 12.342 99 

 

4.2.1 Layup design without blending constraint 

In order to validate the DLBB method, in this section the stacking sequences are optimized using the 

LBB method presented in Section 2.2, without imposing the blending constraint. Table 5 shows the 

optimized stacking sequences considering only the four layup design constraints. Compared with the 

previous results in [42], the stacking sequences obtained here are more realistic and have more 

anisotropy. The lamination parameters related to the optimized stacking sequences together with their 

𝛤 are listed in Table 6. As can be seen, the values of 𝛤 are small, meaning the lamination parameters of 

the obtained stacking sequences are good matches for the target lamination parameters. The thicker 

laminates have relatively lower values of 𝛤, because they have a larger number of plies making their 

stacking sequences easier to match with the targets. After the stacking sequences are obtained, the 

optimized configuration is checked for buckling with ABAQUS. Results show that the local and global 

buckling load factors (i.e. the first and second buckling modes) are 1.09 and 1.15, respectively. 

Comparison of these buckling load factors obtained using the stacking sequences with those obtained 

using the target lamination parameters directly, shows that there is only a small decrease of buckling 

performance caused by the mismatch between the target lamination parameters and the actual stacking 

sequences. Therefore, the stacking sequences obtained separately based on the four layup design 

constraints in the second stage of the optimization have lamination parameters close to the optimized 

values obtained in the first stage. 

 

 

 

 



20 
 

 

Table 5 Stacking sequences of top panels without blending constraint 

Panel no.  Stacking sequences 

1 Skin [45/-45/902/-45/04/45/90]S 

 Web [45/-45/902/-45/02/45/04/45]MS 

 Flange [45/-452/904/45/03/-45/04/45/04/-45]MS 

2 Skin [45/-45/902/-452/02/-45/04/45/90]S 

 Web [45/-45/902/-45/04/45/04/-45]MS 

 Flange [45/-454/90/452/90/45/03/-45/03/45/02]S 

3 Skin [45/-45/90/452/90/-45/902/45/90/-45/90/(-45/902) 2/-45/02/45/04/45/02]S 

 Web [45/-452/903/(45/90) 2/-45/902/45/04/-45/04/45/04/-45]MS 

 Flange [45/-454/90/454/90/-453/90/452/90/-453/90/45/903/45/02/45/902/45/04/ 

(-45/04) 2/45/90]S 

4 Skin [45/-454/90/454/90/-45/90/45/902/-45/904/45/04/-45/04/-45/90]S 

 Web [45/-45/904/-45/902/-45/(04/45) 2/03/-45]S 

 Flange [45/-454/90/-454/90/454/90/453/90/-45/904/(-45/04) 2/45/04/45/902/45/0/0]MS 

5 Skin [45/-454/90/454/90/-45/90/454/0/-453/0/-45/02/(45/904) 2/45/03/-45/04/-45]MS 

 Web [45/-453/90/45/0]S 

 Flange [45/-454/90/-454/90/-452/90/454/90/452/903/-45/0/45(04/45)2/904/-45/ 

(04/45) 2/0/0]MS 

6 Skin [45/-454/90/454/90/453/90/-453/90/-45/904/-45/03/45/04/45/904/-45/04/45]MS 

 Web [45/-454/90/454/90/-454/90/453/90/-453/902/45/904/-45/904/45/04/-45/ 

(04/45) 3/90/90]MS 

 Flange [45/-454/90/-453/90/454/90/45/90/-453/90/452/0/-45/904/(45/04)3/-45/04/-45]MS 

 

 

Table 6 Lamination parameters of the optimized stacking sequences without blending constraint 

Panel no.  𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

1 Skin 0.0909 0.2727 0 -0.1345 -0.1059 -0.0451 0.4857 

 Web 0.3200 0.2800 0.0400 -0.1009 -0.0886 -0.0245 0.3523 

 Flange 0.3256 0.3953 -0.0233 -0.1206 0.0802 -0.0601 0.3415 

2 Skin 0.2000 0.2000 -0.1333 -0.0809 -0.1342 -0.1890 0.3936 

 Web 0.4138 0.3793 -0.0345 -0.0044 0.0349 -0.0473 0.2680 

 Flange 0.3000 0 0 -0.0217 -0.5295 -0.1380 0.1755 

3 Skin -0.0667 0.2000 0 -0.3867 -0.1062 0.0482 0.0745 

 Web 0.1754 0.3333 0.0175 -0.2834 0.0286 0.0115 0.2079 

 Flange 0.0612 0.0204 0 -0.1707 -0.4474 -0.0544 0.1264 

4 Skin -0.0606 0.0909 -0.0303 -0.2273 -0.4123 -0.0259 0.1431 

 Web 0.2083 0.4167 -0.0417 -0.2852 0.2681 -0.0782 0.2225 

 Flange 0.0769 0.0330 0 -0.1390 -0.4555 -0.1711 0.2506 

5 Skin 0 -0.0112 0.0337 -0.1039 -0.4819 0.0349 0.2887 

 Web 0 -0.4286 -0.1429 -0.0525 -0.8834 -0.1603 0.5831 

 Flange 0.1402 0.1028 0 -0.1085 -0.3778 -0.2093 0.3071 

6 Skin -0.0230 0.0575 0.0115 -0.1660 -0.4450 0.0141 0.1001 

 Web 0.0087 0.0957 0 -0.2120 -0.3976 -0.0814 0.1983 

 Flange 0.1616 0.0505 -0.0303 -0.1465 -0.4302 -0.1498 0.2244 
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Table 7 Stacking sequences of skins with blending constraint. 

Panel 

no. 
Stacking sequences 

5 [45/−45/−452/−45/90/452/45/45/90/−45/−45/90/45/452/45/90/−45/90/45/90/−45/02/0/−45/903/90/

45/02/02/−45/02/02/45/90/90]MS 

6 [45/−45/−452/−45/90/452/45/45/90/−45/−45/90/45/452/90/−45/90/45/90/−45/02/0/−45/903/90/45/

02/02/−45/02/02/45/90/90]MS 

4 [45/−45/−452/90/452/45/90/−45/90/45/90/−45/902/−45/02/−45/903/45/02/−45/02/02/45/90]S 

3 [45/−45/90/452/90/−45/90/45/90/−45/90/90/−45/02/−45/903/45/02/−45/02/02/45/90]S 

2 [45/−45/−45/903/−45/04/−45/02/45]S 

1 [45/−45/903/−45/04/45]S 

 

Table 8 Stacking sequences of the left and right hand side flanges with blending constraint. 

Panel 

no. 
Stacking sequences 

 left hand side flanges 

5 [45/−45/−453/90/−45/−452/−45/90/45/452/90/−45/−45/90/453/902/45/90/−45/04/45/02/0/−45/02/45/02/

02/45/904/−45/03/45/0/0]MS 

3 [45/−45/−453/90/−45/−452/90/45/452/90/−45/−45/90/453/902/45/90/−45/04/45/02/−45/02/45/02/45/904/

−45/03/45/0]S 

1 [45/−45/90/−45/90/45/90/−45/04/45/04/−45/03/45]MS 

 right hand side flanges 

6 [45/−454/90/−454/90/452/452/90/45/45/90/−45/902/−45/0/45/0/03/−45/04/45/904/−45/02/02/45/04/45]MS 

4 [45/−454/90/−454/90/452/452/90/45/45/903/−45/0/45/0/−45/04/45/904/−45/02/02/45/04/45]MS 

2 [45/−454/90/452/90/45/02/−45/04/45/02]S 

 

Table 9 Stacking sequences of the left and right hand side webs with blending constraint. 

Panel 

no. 
Stacking sequences 

 left hand side webs 

3 [45/−45/−45/90/45/90/90/45/903/−45/03/0/45/02/−45/90/−45/04/45/0/0]MS 

1 [45/−45/902/−45/03/−45/90/45/0/0]MS 

5 [45/−453/90/45/0]S 

 right hand side webs 

6 [45/−45/−453/90/−45/90/453/90/45/90/−45/90/90/−45/903/−45/04/45/90/45/0/45/903/−45/03/0/45/902/ 

−45/03/−45/90/90/(45/02)2/02/−45]MS 

4 [45/−45/902/902/−45/90/−45/04/45/04/45/03/−45/90]S 

2 [45/−45/902/−45/04/45/04/−45]MS 

 

Table 10 Lamination parameters of the blended stacking sequences of skins  

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

5 −0.0112 0.0112 0.0449 −0.1595 −0.4716 0.0269 0.3624 

6 −0.0115 0.0345 0.0230 −0.1632 −0.4493 −0.0011 0.1346 

4 −0.0606 0.0909 −0.0303 −0.2286 −0.3262 −0.0419 0.2410 

3 −0.0667 0.2000 0 −0.2981 −0.1156 0.0596 0.1817 

2 0.2000 0.2000 −0.1333 −0.1556 −0.1271 −0.1890 0.4450 

1 0.0909 0.2727 0 −0.2923 −0.0428 −0.0225 0.4863 
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Table 11 Lamination parameters of the blended stacking sequences of left and right hand side flanges. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

left hand side flanges 

5 0.1215 0.0654 −0.0187 −0.0933 −0.3958 −0.1832 0.3848 

3 0.0612 0.0204 0 −0.1245 −0.4075 −0.1558 0.3131 

1 0.3721 0.3023 −0.0233 −0.0460 −0.0352 −0.0477 0.3870 

right hand side flanges 

6 0.1414 0.0909 −0.0303 −0.0898 −0.4050 −0.1720 0.2904 

4 0.0879 0.0549 −0.0110 −0.1250 −0.4365 −0.1695 0.2644 

2 0.3000 0 0 −0.0270 −0.5400 −0.1432 0.1760 

 

Table 12 Lamination parameters of the blended stacking sequences of left and right hand side webs. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

left hand side webs 

3 0.1579 0.2982 0 −0.2116 0.0219 0.0162 0.3170 

1 0.1200 0.2000 −0.0800 −0.1212 −0.0734 −0.0815 0.7114 

5 0 −0.4286 −0.1429 −0.0525 −0.8834 −0.1603 0.5831 

right hand side webs 

6 0.0174 0.2174 −0.0087 −0.2044 −0.1122 −0.0785 0.3687 

4 0.2083 0.4167 −0.0417 −0.1945 0.2412 −0.0786 0.3403 

2 0.4138 0.3793 −0.0345 −0.0044 0.0349 −0.0473 0.2680 

 

Table 13 Summary of the comparisons between LBB with GA in [1] 

Single laminate GAs (averaged for 10 runs)                   LBB 

 𝛤 after 300s  𝛤 after 300s Time to find this 𝛤 

Example 1 0.1053 0.0806 4.77s 

Example 2 0.0948 0.0892 3.76s 

 

Table 14 Change of 𝛤 during the DLBB optimization 

Blended laminates DLBB 

 Initial 𝛤 𝛤 after 300s 𝛤 after 1000s 𝛤 after 3000s 𝛤 after 10000s 

Skin 6.4431 2.4289 2.1264 2.0602 1.8508 

Right flange 3.1800 0.8355 0.7794 0.7646 0.7308 

Left flange 3.2350 1.0966 1.0954 1.0898 1.0849 

Right web 3.8704 1.0982 1.0763 1.0671 0.9770 

Left web 3.8335 1.8325 1.7140 1.6126 1.6115  

 

4.2.2 Layup design with blending constraint 

Tables 7-9 show the optimized stacking sequences obtained using the DLBB method, which satisfy the 

four layup design constraints and also the blending constraint. There are five separate blending 

problems including the skins of all of the top panels, the webs of the left hand side panels (i.e. panels 1, 

3 and 5) and the right hand side panels (i.e. panels 2, 4 and 6) respectively, and the flanges of the left 

and right hand panels respectively, the dropped plies are shown bold in Tables 7-9. In this paper, no 
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constraints are applied between the skin, webs and flanges, which are treated as independent laminates 

in the second stage. The related lamination parameters and the 𝛤 are summarised in Tables 10-12. As 

can be seen, the values of 𝛤 in Tables 10-12 are higher than those in Table 6 because the blending 

constraint narrows the design space and hence reduces the level of match between the target and 

obtained lamination parameters. For the five blending problems, with the exception of the webs on the 

left hand side, the increase in the value of 𝛤 for each laminate is acceptable. However, as the numbers 

of plies in the webs on the left hand side are small (which will not be the case in a more realistic aircraft 

wing design), the blending constraint causes an additional mismatch between the target and obtained 

lamination parameter for the web in panel 1 equal to 0.3591, with the majority of the mismatch being 

on 𝜉1,2
𝐴 . Since the stiffness of each panel is mainly provided by the skin and flanges, this mismatch only 

has a small effect on the load-carrying capability of the wing. When the obtained stacking sequences 

are checked by FEA using ABAQUS, results show that the local and global buckling load factors 

(corresponding to the first and second buckling modes) decrease to 1.08 and 1.14, respectively. It is 

observed that there is only a slight decrease in the buckling performance when adding the blending 

constraint, and that the optimized configuration still satisfies the buckling constraint. The performance 

of the DLBB method in optimizing blended stacking sequences to match the target lamination 

parameters from the first stage optimization is illustrated. Note that, due to the rounding process at the 

start of the second stage, the weight of the final optimized wing box is increased slightly to 49.7 kg as 

shown in Fig. 9. Compared with the results in [42], the stacking sequences of the optimized wing box 

presented here are more manufacturable, and the weight of the structure is reduced by 8.0%, which will 

lead to reductions in the material cost and fuel consumption of the aircraft.   

In [1] the logic-based method is proven to be more efficient than a stochastic search based on GAs. A 

summary of these comparisons is shown in Table 13. In this paper, the efficiency of the DLBB method 

is illustrated in Table 14 by showing the changes in 𝛤 for the five blending problems during the second 

stage optimization. As can be seen, the biggest reductions in the values of 𝛤 are achieved in the first 

300s after which the level of reduction is much smaller, especially for the blending problems comprising 

only a small number of plies. Good results can therefore be obtained efficiently at early stages of the 

application of the DLBB method, and for practical design the optimization can be stopped once an 

acceptable result is found (e.g. when 𝛤 is lower than a specific value). 

 

5. Conclusions 

This paper presents a two-stage layup optimization methodology using lamination parameters for the 

weight minimization of blended composite structures under buckling, lamination parameter, layup 

design and blending constraints. In the first stage, stacking sequences are replaced by lamination 

parameters and laminate thicknesses as design variables to permit the design of more manufacturable 

layups in the multilevel optimization software VICONOPT MLO. The optimized lamination parameters 

derived are then used as targets in the second stage in which, instead of the more commonly used 

heuristic methods for performing a stochastic search, a new logic-based DLBB method combining a 

dummy layerwise technique with the branch and bound method is proposed to search the stacking 

sequences which satisfy the blending and layup design constraints to match the targets. The 

effectiveness of the two-stage method for optimizing blended laminates is demonstrated by a 

benchmark problem based on an aircraft wing box. Comparison of the results obtained using the new 

method with the results in [42] shows a further weight reduction of 8.0% can be achieved over the 

previously determined wing weight even when more constraints are added, making the optimized 

structure more manufacturable and improving its performance. Nevertheless, in the current study, only 
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the four ply angles 0°, 90°, +45° and -45° are considered in the optimization. As a line of future research, 

the DLBB method could be extended by adding more permissible fiber orientations with the 

consideration of more layup design rules as well as expanding the complexity of the objective function 

to improve the efficiency. 
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