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THE DISTRIBUTIONS OF FUNCTIONS RELATED TO
PARAMETRIC INTEGER OPTIMIZATION

TIMM OERTEL∗, JOSEPH PAAT† , AND ROBERT WEISMANTEL‡

Abstract. We create a framework for studying the asymptotic distributions of functions related
to integer linear optimization. Each of these functions is defined for a fixed constraint matrix and ob-
jective vector while the right hand side is treated as input. We provide a spectrum of probability-like
results that govern the overall asymptotic distribution of a function. We then apply this framework
to the IP sparsity function, which measures the minimal support of optimal IP solutions, and the IP
to LP distance function, which measures the distance between optimal IP and LP solutions. There
has been a significant amount of research regarding the extreme values that these functions can
attain. However, less is known about their typical values. Our results show that the typical values
are smaller than the known worst case bounds.
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AMS subject classifications. 90C10, 52C07

1. Introduction. Let A ∈ Zm×n with rank(A) = m and c ∈ Qn satisfy cᵀx ≤ 0
for all x ∈ Rn≥0 such that Ax = 0. We consider A and c to be fixed throughout the
paper. For every b ∈ Zm, define the integer program

IP(b) max{cᵀz : Az = b and z ∈ Zn≥0}.

The study of IP(b) as b varies is referred to as parametric integer programming. See
Papadimitriou [34] or Eisenbrand and Shmonin [19]. The motivation of this paper is to
understand IP(b) by studying functions f whose input is IP(b), or equivalently, whose
input is a vector b ∈ Zm. Such functions include the integrality gap function [4, 17, 26],
the optimal value function [21, 39], the running time of an algorithm as a function of
b [3, 32], and the flatness value [8, 22]. Other examples include the sparsity function
and the IP to LP distance function. Each of the previous functions, when properly
normalized, fit into the framework described in this paper. These functions are well
studied in terms of the worst case, e.g., their maximum values. However, little is
known about their distributions, e.g., expected values or how often the worst case
occurs. We believe that studying these distributions may lead to improvements in
dynamic programs for parametric integer programming, say in the average case.

Let f : Zm → R≥0 ∪ {∞}. We make the natural assumption that

(1.1) f(b) <∞ if and only if IP(b) is feasible.

In light of the assumption on A and c made in the beginning, we see that if IP(b)
is feasible, then there exists an optimal solution. Some choices of f are known to
have asymptotically periodic distributions. Examples include the optimal value func-
tion [21] and the sparsity function [6]. Underlying the proofs of periodicity is the
idea that these functions are well behaved on a family of lattices. By exploring these
lattice structures in more detail, we can quantify the occurrences of common values
of f(b). The goal of this paper is to provide lower bounds for these common values.
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2 T. OERTEL, J. PAAT, AND R. WEISMANTEL

We quantify common values of f(b) using lower asymptotic densities. For t ∈ Z≥1

and E ⊆ Zm, define

Prt(E) :=
|{b ∈ E : ‖b‖∞ ≤ t and f(b) <∞}|
|{b ∈ Zm : ‖b‖∞ ≤ t and f(b) <∞}|

.

The value Prt(E) is the probability of randomly selecting an integer program IP(b)
with b ∈ E among the feasible integer programs with b ∈ {−t, . . . , t}m. The lower
asymptotic density of E is

Pr(E) := lim inf
t→∞

Prt(E).

The value Pr(E) is the chance of randomly selecting IP(b) with b ∈ E among all
feasible integer programs. The term density is adopted from number theory, see [30,
Page xii and §16]. We use the term density rather than probability because Pr(·) is
not necessarily a probability measure. Indeed, it satisfies Pr(E) ∈ [0, 1] and Pr(F ) ≤
Pr(E) if F ⊆ E, but not necessarily Pr(E ∩ F ) + Pr(E ∪ F ) = Pr(E) + Pr(F ). We
choose to define Pr(E) as a lower density so that it is well defined for general f and
E. However, every limit inferior that we compute is actually a limit. Thus, we often
replace ‘lim inf’ by ‘lim’.

We are interested in densities of the form

Pr(f ≤ α) := Pr({b ∈ Zm : f(b) ≤ α}),

where α ∈ R≥0. Our first main contribution is Theorem 2.3, which is a set of condi-
tions to bound Pr(f ≤ α) for general functions f and values α. The formal result and
the intuition behind our proof are presented in Section 2 because they require some
preliminaries. The bounds in Theorem 2.3 are in terms of m and the determinants
of the submatrices of A. We denote the largest absolute value of these determinants
and their greatest common divisor by

(1.2)
δ := max {|det(B)| : B is an m×m submatrix of A} and

γ := gcd ({|det(B)| : B is an m×m submatrix of A}).

Our second main contribution is an application of Theorem 2.3 to bound the asymp-
totic densities for the sparsity and distance functions.

1.1. The sparsity function σ. For z ∈ Rn≥0, set supp(z) := {i ∈ {1, . . . , n} :
zi > 0}. The minimum sparsity of an optimal solution to IP(b) is

σ(b) := min{| supp(z)| : z is an optimal feasible solution to IP(b)}.

If IP(b) is infeasible, then σ(b) := ∞. The function σ has been used to measure
distance between linear codes [7, 38] and sparsity in combinatorial problems [14, 28].

It was shown by Aliev et al. [5, 6] that if σ(b) <∞, then

(1.3) σ(b) ≤ m+ log2(γ−1 ·
√

det(AAᵀ)) ≤ 2m log2(2
√
m · ‖A‖∞),

where ‖A‖∞ denotes the largest absolute entry of A. See also Eisenbrand and
Shmonin [18]. In general, there is not much room to improve (1.3). For any ε > 0,
Aliev et al. [5] provide an example of A and b such that

σ(b) ≥ m log2(‖A‖∞)1/(1+ε).
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If c = 0n, then σ(b) quantifies the sparsest feasible solution to IP(b). Upper
bounds on σ(b) under this assumption were studied in [2, 6]. Furthermore, Oertel
et al. [31] showed that asymptotic densities of σ can be bounded using the minimum
absolute determinant of A or the ‘number of prime factors’ of the determinants. If,
in addition, A has the Hilbert basis property (i.e., if the columns of A correspond
to a Hilbert basis of the cone generated by A), then bounds on σ(b) can be given
solely in terms of m. Cook et al. [15] showed that if σ(b) <∞, then σ(b) ≤ 2m− 1;
this was improved to σ(b) ≤ 2m − 2 by Sebő [36]. Bruns and Gubeladze proved
that Pr(σ ≤ 2m − 3) = 1 [12], and Bruns et al. [13] gave an example such that
σ(b) ≥ (7/6)m.

We show that σ(b) is often smaller than the best known worst case bound (1.3).

Theorem 1.1. For each k ∈ {0, . . . , dlog2(γ−1 · δ)e}, it holds that

Pr (σ ≤ m+ k) ≥ min

{
1,

2k

γ−1 · δ

}
.

In particular, Pr
(
σ ≤ m+ log2(γ−1 · δ)

)
= 1.

The Cauchy-Binet formula (see [25, Section 0.8.7]) shows that δ ≤
√

det(AAᵀ),
and the inequality is strict if A has at least two invertible submatrices. Hence, the
density bounds in Theorem 1.1 are often smaller than the worst case bound (1.3).
Our result can be refined when c = 0n. See Remark 4.1.

1.2. The distance function π. The IP to LP distance function measures the
distance between optimal solutions to IP(b) and optimal solutions to its linear relax-
ation

LP(b) max{cᵀx : Ax = b and x ∈ Rn≥0}.

Whenever we consider IP to LP distance we assume, for ease of presentation, that
the optimal solution to LP(b) is unique for all feasible b. Note that this can always
be achieved by perturbing c; see Remark 4.2 for more on this assumption and its
implications. Let x∗(b) denote the unique optimal solution to LP(b). Define the
distance function to be

π(b) := min {‖x∗(b)− z∗‖1 : z∗ is an optimal solution to IP(b)} .

If IP(b) is infeasible, then π(b) :=∞.
The distance between solutions to IP(b) and LP(b) is a classic question in IP

theory that has been used to measure the sensitivity of optimal IP solutions [10, 11, 16]
and to create efficient dynamic programming algorithms [20, 27]. Eisenbrand and
Weismantel [20] showed that if π(b) < ∞, then π(b) ≤ m(2m‖A‖∞ + 1)m. By
modifying their proof1, it can be shown that if π(b) <∞, then

(1.4) π(b) ≤ m(2m+ 2)mδ.

See [4, 10, 11, 16, 33, 40] for other bounds on π. It is not known if the bound in (1.4)
is tight. In the case m = 1, Aliev et al. [4] provide a tight upper bound on the related
distance function

π∞(b) := min {‖x∗(b)− z∗‖∞ : z∗ is an optimal solution to IP(b)} .

1The proof of (1.4) is the same as [20, Theorem 3.1] except the ‖ · ‖∞-norm is replaced by the
norm ‖x‖∗ := ‖B−1x‖∞, where B is an m×m submatrix of A satisfying | det(B)| = δ.
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Gomory proved that the value function of IP(b) is asymptotically periodic [21],
see also Wolsey [39]. Using his results along with Theorem 2.3, one can prove that
Pr(π ≤ (m + 1)γ−1 · δ) = 1. We provide a refined density analysis in Theorem 1.2
(a). Theorem 1.2 (b) bounds densities in terms of π∞.

Theorem 1.2. For each k ∈ {0, . . . , γ−1 · δ − 1}, it holds that

(a) Pr

(
π ≤ mγ−1 · δ · k

k + 1
+ k

)
≥ k + 1

γ−1 · δ
and

(b) Pr

(
π∞ ≤ γ−1 · δ · k

k + 1

)
≥ k + 1

γ−1 · δ
.

In particular, Pr(π ≤ (m+ 1)(γ−1 · δ − 1)) = 1 and Pr
(
π∞ ≤ γ−1 · δ − 1

)
= 1.

Theorem 1.2 (b) partially resolves Conjecture 1 in [33], which states that π∞

can be bounded in terms of the largest minor of A and independently of the number
of constraints m and the dimension n. Together with Hadamard’s inequality (see,
e.g., [25, Corollary 7.8.3]), Theorem 1.2 can be used to bound the typical distance
between solutions to IP(b) and LP(b) in terms of ‖A‖∞ rather than δ.

Corollary 1.3. The function π satisfies

Pr(π ≤ (m+ 1) · (
√
m‖A‖∞)m) = 1.

1.3. Outline and notation. Section 2 provides a general framework for upper
bounding Pr(f ≤ α) and proves the fundamental Theorem 2.3. Preliminaries about
optimal solutions to IP(b) are given in Section 3. We use these preliminaries in
Section 4 to prove Theorems 1.1 and 1.2.

We viewA as a matrix and as a set of column vectors in Zm, soB ⊆ AmeansB is a
subset of the columns of A. For K ⊆ Rm and d ∈ Rm, define K+d := {b+d : b ∈ K}.
The k-dimensional vector of all zeros is denoted by 0k, and the vector of all ones is
denoted by 1k. When multiplying a matrix B ⊆ Zm and a vector y ∈ RB as By, we
use yb to denote the component of y corresponding to b ∈ B. For P ⊆ Rm, we use
cone(P ) to denote the convex cone generated by P and int(P ) to denote the interior
of P . The dimension of P is the dimension of the affine hull of P .

A set Λ ⊆ Zm is a lattice if 0m ∈ Λ, b + d ∈ Λ if b,d ∈ Λ, and −b ∈ Λ if b ∈ Λ.
If b ∈ Zm and Λ is a lattice, then Γ = b + Λ is an affine lattice. The dimension of
Γ is the largest number of linearly independent vectors in Λ. The determinant of an
m-dimensional affine lattice Γ is det(Γ) := |det(B)|, where B ∈ Zm×m is any matrix
such that Λ = B ·Zm. An m-dimensional lattice Λ induces an equivalence relationship
≡Λ on Zm, where b ≡Λ d if and only if b−d ∈ Λ. The number of equivalence classes
induced by ≡Λ is det(Λ) [23, Page 22]. We refer to [35] and [9, Chapter VII] for more
on lattices.

A particular lattice that we use throughout is

(1.5) Λ := A · Zn.

Note that det(Λ) = γ, where γ is defined in (1.2). For completeness, we give a short
proof. Let B ∈ Zm×m be such that Λ = B · Zm. Thus, |det(B)| = det(Λ). Let D be
any subset of m columns of A. There exists a matrix U ∈ Zm×m such that D = BU
because A ⊆ Λ. Thus, det(B) | det(D). It follows that det(B) | γ because D was
chosen arbitrarily. Conversely, there exists a matrix V ∈ Zn×m such that B = AV
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because Λ = A · Zn. The Cauchy-Binet formula states that

det(B) =
∑

I⊆{1,...,n}
|I|=m

det(AI) · det(VI),

where AI and VI denote the matrices formed by the columns of A and the rows of V
indexed by I, respectively. Thus, γ | det(B).

2. Asymptotic densities for general functions. Let f : Zm → R≥0 ∪ {∞}
satisfy (1.1), α ∈ R, and Λ = A · Zn. The key idea behind how we lower bound
Pr(f ≤ α) is to exploit potential local periodic behavior of f . We briefly outline
this idea below. We say that a right hand side b ∈ Zm is ‘good’ if f(b) ≤ α.
Assumption (1.1) implies that a good right hand side must be in Λ, so we may restrict
ourselves to consider b in Λ rather than in Zm.

First, we cover cone(A) by simplicial cones cone(A1), . . . , cone(As), where A1,
. . . , As ⊆ A. The density of good vectors in cone(A) is larger than the minimum
density of good vectors in any cone(Ai). Hence, it suffices to lower bound the density
of good vectors in each cone(Ai) individually. Not every b ∈ cone(Ai)∩Λ is feasible,
but one can show that there exists a vector di ∈ cone(Ai) ∩ Zm such that IP(b) is
feasible for all b ∈ [cone(Ai) + di] ∩ Λ. This phenomenon relates to the Frobenius
number, see [1, 37]. Motivated by these ‘deep’ regions, we use Ehrhart theory to show
that the density of good vectors in cone(Ai)+di is equal to the density of good vectors
in cone(Ai). See Lemma 2.2.

Next, we consider the sublattice Γi = Ai ·Zm, which serves as a natural candidate
for quantifying periodicity within cone(Ai). The lattice Λ is covered by the disjoint
affine lattices {Γi + g : g ∈ Λ/Γi}. Instead of computing the density of good vectors
in cone(Ai) + di, we count the number of disjoint affine lattices with the property
that all vectors in [cone(Ai) + di] ∩ [Γi + g] are good. See (2.3).

We now formalize the steps above. We say that matrices A1, . . . , As ⊆ A form a
simplicial covering of cone(A) if each Ai is invertible, i.e., cone(Ai) is simplicial, and

cone(A) =

s⋃
i=1

cone(Ai).

These coverings always exist due to Carathéodory’s theorem. The cones in a simplicial
covering may overlap nontrivially. In order to prevent double counting, we triangulate
the cones using the next lemma. We omit the proof as it follows from standard results
on triangulations and subdivisions. See [9, Page 332] or [41, Chapter 9].

Lemma 2.1. Let A1, . . . , As ∈ Zm×m be square matrices of rank m. There exist
m-dimensional rational polyhedral cones C1, . . . , C` ⊆ Rm such that

(a)
⋃s
i=1 cone(Ai) =

⋃`
j=1 C

j,

(b) int(Cj) ∩ int(Ck) = ∅ for distinct j, k ∈ {1, . . . , `}, and

(c) Cj ⊆ cone(Ai) or int(Cj) ∩ cone(Ai) = ∅ for all i ∈ {1 . . . , s} and j ∈ {1, . . . , `}.
For functions g, h : R>0 → R>0, we write

g ∼ h if lim
t→∞

g(t)

h(t)
= 1 and g - h if lim sup

t→∞

g(t)

h(t)
≤ 1.

For a q-dimensional set P ⊆ Rm, we denote the q-dimensional Lebesgue measure by
volq(P ). The next lemma will enable us to compare densities, and it is a variation of
classic results in Ehrhart theory. See [29, Theorem 7] and [24, Theorem 1.2].
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Lemma 2.2. Let P ⊆ Rm be a q-dimensional rational polytope and Γ ⊆ Zm an
m-dimensional affine lattice. There exists a constant ηP,Γ > 0 such that

|tP ∩ Γ| - ηP,Γ · tq.

If q = m, then ηP,Γ = volm(P )/det(Γ) and

|tP ∩ Γ| ∼ ηP,Γ · tm.

Define the lattices

(2.1) Γi := Ai · Zm ∀ i ∈ {1, . . . , s}

with corresponding equivalence relations ≡Γi . Observe that det(Γi) = |det(Ai)| and
that Γi is a sublattice of Λ for each i ∈ {1, . . . , s}. Hence, the relation ≡Γi induces a
quotient group Λ/Γi with cardinality

(2.2) |Λ/Γi| = det(Γi)/ det(Λ) = γ−1 · | det(Ai)|.

In other words, ≡Γi partitions Λ into γ−1 ·|det(Ai)|many different equivalence classes.
We are now prepared to formally state our first main result.

Theorem 2.3. Let f satisfy (1.1), α ∈ R, and A1, . . . , As be a simplicial covering
of cone(A). Set Λ = A · Zn . For each i ∈ {1, . . . , s}, let di ∈ cone(Ai) ∩ Zm, and
define Γi = Ai · Zm and

(2.3) βi :=

∣∣∣∣{g ∈ Λ/Γi : max

{
f(b) :

b ≡Γi g,

b ∈ cone(Ai) + di

}
≤ α

}∣∣∣∣ .
It holds that

(2.4) Pr (f ≤ α) ≥ min
i=1,...,s

βi
γ−1 · det(Γi)

.

Proof. It follows from (1.1) that if b ∈ Zm and f(b) <∞, then b ∈ Λ∩ cone(A).
Therefore,

Prt(f ≤ α) =
|{b ∈ Λ ∩ cone(A) : ‖b‖∞ ≤ t and f(b) ≤ α}|
|{b ∈ Λ ∩ cone(A) : ‖b‖∞ ≤ t and f(b) <∞}|

∀ t ∈ Z≥0.

By Lemma 2.1, we can cover cone(A) by rational polyhedral cones C1, . . . , C` such
that int(Cj) ∩ int(Ck) = ∅ for distinct j, k ∈ {1, . . . , `} and either Cj ⊆ cone(Ai) or
int(Cj)∩cone(Ai) = ∅ for all i ∈ {1, . . . , s} and j ∈ {1, . . . , `}. For each j ∈ {1, . . . , `},
define the truncated cone P j := Cj ∩ [−1, 1]m. By Lemma 2.2, there exist positive
constants ηj and ηjk such that |Λ ∩ tP j | ∼ ηj tm and |Λ ∩ t(P j ∩ P k)| - ηjk t

m−1 for
any intersection P j ∩ P k satisfying j 6= k. Asymptotic densities are defined through
limits. Thus, we may neglect any low-dimensional intersections in the covering of
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cone(A) by C1, . . . , C` and instead treat the covering as a partition. We have

(2.5)

Pr(f ≤ α) = lim
t→∞

Prt(f ≤ α)

= lim
t→∞

∑̀
j=1

|{b ∈ Λ ∩ tP j : f(b) ≤ α}|∑`
k=1 |{b ∈ Λ ∩ tP k : f(b) <∞}|

≥ lim
t→∞

∑̀
j=1

|{b ∈ Λ ∩ tP j : f(b) <∞}|∑`
k=1 |{b ∈ Λ ∩ tP k : f(b) <∞}|

· |{b ∈ Λ ∩ tP j : f(b) ≤ α}|
|Λ ∩ tP j |

≥ lim
t→∞

min
j=1,...,`

|{b ∈ Λ ∩ tP j : f(b) ≤ α}|
|Λ ∩ tP j |

,

= min
j=1,...,`

lim
t→∞

|{b ∈ Λ ∩ tP j : f(b) ≤ α}|
|Λ ∩ tP j |

.

The second equation in (2.5) follows because C1, . . . , C` partition cone(A). The first
inequality in (2.5) follows because {b ∈ Λ ∩ tP j : f(b) < ∞} is a subset of Λ ∩
tP j ; thus, it has a smaller cardinality. The final equation in (2.5) holds because the
minimum is taken over a finite index set.

Consider a cone Cj , where j ∈ {1, . . . , `}. There exists an i ∈ {1, . . . , s} such that
Cj ⊆ cone(Ai). In what remains, we prove that

(2.6) lim
t→∞

|{b ∈ Λ ∩ tP j : f(b) ≤ α}|
|Λ ∩ tP j |

≥ βi
γ−1 · det(Γi)

.

The main statement (2.4) follows immediately after combining (2.5) and (2.6).
By Lemma 2.2, the proportion of vectors in tP j that are also in Λ is

(2.7) |Λ ∩ tP j | ∼ tm volm(P j)

det(Λ)
.

Similarly, for each g ∈ Λ/Γi, the proportion of vectors in tP j that are in the affine
lattice Γi + g is

(2.8) |[Γi + g] ∩ tP j | ∼ tm volm(P j)

det(Γi)
.

The vectors in Γi+g that are contained in tP j \ [tP j+di] lie on a finite number of hy-
perplanes parallel to the faces of Cj . The number of these hyperplanes is independent
of t. Thus, by Lemma 2.2, there exists a constant µ > 0 such that

(2.9) |[Γi + g] ∩ [tP j \ [tP j + di]]| - µ · tm−1.

Looking at the difference of (2.8) and (2.9), we obtain

(2.10) |[Γi + g] ∩ tP j ∩ [tP j + di]| ∼ tm volm(P j)

det(Γi)
.

Set

Xi :=

{
g ∈ Λ/Γi : max

{
f(b) :

b ≡Γi g,

b ∈ cone(Ai) + di

}
≤ α

}
.
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The equation βi = |Xi| holds because of (2.3). For each g ∈ Xi, it follows that

[Γi + g] ∩ tP j ⊇ {b ∈ [Γi + g] ∩ tP j : f(b) ≤ α} ⊇ [Γi + g] ∩ tP j ∩ [tP j + di].

Relations (2.8) and (2.10) show that the cardinalities of the first and last sets are
asymptotically equal. Thus,

(2.11) |{b ∈ [Γi + g] ∩ tP j : f(b) ≤ α}| ∼ tm volm(P j)

det(Γi)
.

Every b ∈ Λ ∩ tP j belongs to exactly one of the γ−1 · det(Γi) many equivalence
classes defined by the relation ≡Γi . Therefore,

|{b ∈ Λ ∩ tP j : f(b) ≤ α}| =
∑

g∈Λ/Γi

|{b ∈ [Γi + g] ∩ tP j : f(b) ≤ α}|.

Combining this equation with (2.7) and (2.11), we see that

lim
t→∞

|{b ∈ Λ ∩ tP j : f(b) ≤ α}|
|Λ ∩ tP j |

= lim
t→∞

∑
g∈Λ/Γi

|{b ∈ [Γi + g] ∩ tP j : f(b) ≤ α}|
|Λ ∩ tP j |

≥ lim
t→∞

∑
g∈Xi

|{b ∈ [Γi + g] ∩ tP j : f(b) ≤ α}|
|Λ ∩ tP j |

=
|Xi|
|Λ/Γi|

=
βi

γ−1 · det(Γi)
.

This proves (2.6).

3. Preliminaries for results on optimal IP solutions. The density bounds
derived in Theorem 2.3 depend on the choice of simplicial covering. We choose a
specific covering related to optimal LP bases in order to prove Theorems 1.1 and 1.2.
We say that an invertible matrix B ⊆ A is an optimal LP basis matrix if for all
b ∈ cone(B) ∩ Zm the problem LP(b) has an optimal solution x∗ satisfying {a ∈ A :
x∗a > 0} ⊆ B. This section collects properties of optimal LP basis matrices that we
will use when applying Theorem 2.3 to σ and π. We begin with a folklore result.

Lemma 3.1. The set of all optimal LP basis matrices defines a simplicial covering
of cone(A).

Let B be an optimal basis matrix. Gomory showed in [21, Theorem 2] that IP(b)
is feasible if b is deep inside cone(B), that is if b is in the set2

(3.1) D(B) := {b ∈ Λ : B−1b ≥ 3δ · 1m}.

Furthermore, he showed that there exists an optimal solution z∗ to IP(b) whose
support is contained in B together with few additional non-basic columns N = A\B.
This fact is shown in Lemma 3.3. More precisely, z∗ = zB +zN , where {a ∈ A : zBa >
0} ⊆ B and |{a ∈ A : zNa > 0}| < |det(B)|. Set Γ := B · Zm. Observe that

b = Az∗ = AzB +AzN and {a ∈ A : zBa > 0} ⊆ B

2Gomory defines the set of deep vectors in terms of the distance from b to the boundary of
cone(B), and his set contains D(B). Our definition of D(B) is chosen to simplify our proofs.
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imply AzB ≡Γ 0m and AzN ≡Γ b. Hence, zN is the subvector of z∗ that ensures
Az∗ ≡Γ b. Gomory also argued that zN can be chosen to be a minimal subvector
with this property. By minimal, we mean that there does not exist a vector zN ∈ Zn
satisfying 0n ≤ zN � zN and AzN ≡Γ b. We denote the set of these minimal vectors
zN by

(3.2) N(B) :=

z ∈ Zn≥0 :

there exists b ∈ D(B) and zB ∈ Zn≥0 such that

(i) {a ∈ A : zBa > 0} ⊆ B,
(ii) zB + z is an optimal solution to IP(b),

(iii) Aw 6≡Γ Az for all 0n ≤ w � z

 .

Next, we show that each z ∈ N(B) is not too large and that the coordinates of
Az in the coordinate space defined by B are not too large either. These results only
rely on condition (iii) in (3.2).

Lemma 3.2. Let B ⊆ A be an optimal LP basis matrix and z ∈ Zn≥0. If Aw 6≡Γ Az
for all 0n ≤ w � z, then

(3.3) ‖z‖1 < γ−1 · | det(B)|

and

(3.4) ‖B−1Az‖∞ ≤ ‖B−1A‖∞ · ‖z‖1 < γ−1 · δ.

Consequently, if w ∈ Zn and b ∈ D(B) satisfy 0n ≤ w ≤ z and Aw ≡Γ b, then

(3.5) B−1(b−Aw) ≥ (3− γ−1)δ · 1m ≥ 0m.

Proof. For two vectors y,y′ satisfying 0n ≤ y � y′ ≤ z we claim that Ay 6≡Γ

Ay′. Otherwise, we obtain the contradiction Aw ≡Γ Az and 0n ≤ w � z for the
vector w := z − y + y′. Consider any sequence of ‖z‖1 + 1 many vectors satisfying
0n = y1 � . . . � y‖z‖1+1 = z. Each Ayi is distinct modulo Γ. By (2.2), there are
γ−1 · |det(B)| many equivalence classes modulo Γ. Hence, ‖z‖1 + 1 ≤ γ−1 · |det(B)|.

Inequality (3.4) follows from (3.3) and

‖B−1A‖∞ ≤
δ

|det(B)|
.

If the latter inequality is false, then there exists a ∈ A and d ∈ B such that y := B−1a
and yd > δ/|det(B)|. However, |det(B ∪ {a} \ {d})| = |yd| · |det(B)| > δ, which
contradicts the definition of δ.

It is not hard to see that, for every g ∈ Λ/Γ, there exists at least one vector
zg ∈ N(B) such that Azg ≡Γ g, which also follows from Gomory’s work. The
result [21, Theorem 2] of Gomory can now be stated in terms of D(B) and N(B): If
b ∈ D(B), then there exists a vector z ∈ N(B) such that zB+z is an optimal solution
to IP(b) for some zB ∈ Zn≥0 satisfying {a ∈ A : zBa > 0} ⊆ B. The following lemma
shows a stronger statement: any vector z ∈ N(B) can be extended to an optimal
solution to IP(b) in this way for any b ∈ D(B) equivalent to Az. Furthermore, if
z ∈ N(B) and 0n ≤ w ≤ z, then w ∈ N(B).

Lemma 3.3. Let B ⊆ A be an optimal LP basis matrix, z ∈ N(B), and w ∈ Zn
satisfy 0n ≤ w ≤ z. For all b ∈ D(B) such that Aw ≡Γ b, there exists an optimal
solution to IP(b) of the form wB + w, where wB ∈ Zn≥0 and {a ∈ A : wB

a > 0} ⊆ B.
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Proof. Define wB ∈ Rn component-wise to be

wB
a :=

{
[B−1(b−Aw)]a if a ∈ B

0 if a ∈ A \B.

Note that wB ∈ Zn because Aw ≡Γ b. Since z ∈ N(B), we may apply Lemma 3.2 to
conclude ‖B−1A‖∞ · ‖z‖1 < γ−1 · δ. Together with ‖w‖1 ≤ ‖z‖1 this yields

‖B−1Aw‖∞ ≤ ‖B−1A‖∞ · ‖w‖1 ≤ ‖B−1A‖∞ · ‖z‖1 ≤ γ−1 · δ.

By (3.5), wB is nonnegative. Thus, wB + w is feasible for IP(b).
It remains to show that wB + w is optimal for IP(b). We use an exchange

argument to prove this. The first step is to compare w to a vector derived from
an optimal solution to IP(b). There exists an optimal solution y∗ to IP(b) because
the problem is feasible and bounded. Choose y ∈ Zn≥0 minimizing ‖y‖1 such that
Ay ≡Γ b and y ≤ y∗. The vector y must satisfy the assumptions in Lemma 3.2.
Otherwise, ‖y‖1 was not minimized. Thus,

‖B−1Ay‖∞ < γ−1 · δ.

Because Aw ≡Γ Ay, there exists a vector u ∈ Zn such that {a ∈ A : ua 6= 0} ⊆ B
and A(w − y + u) = 0m. Furthermore,

(3.6) ‖u‖∞ = ‖B−1A(w − y)‖∞ ≤ ‖B−1Aw‖∞ + ‖B−1Ay‖∞ ≤ 2γ−1 · δ.

The second step in the exchange argument is to show that

(3.7) cᵀ(y∗ − y + u) ≤ cᵀwB

and

(3.8) cᵀ(w − y + u) = 0.

The combination of (3.7) and (3.8) shows that wB + w is optimal for IP(b):

cᵀy∗ = cᵀ(y∗ − y + u) + cᵀ(y − u) ≤ cᵀwB + cᵀw = cᵀ(wB + w).

To prove (3.7), define yB ∈ Zn component-wise to be

yBa :=

{
[B−1(b−Ay)]a if a ∈ B

0 if a ∈ A \B.

By (3.5), we see that yBa ≥ (3−γ−1)δ for all a ∈ B. Thus, yB ∈ Zn≥0. By Lemma 3.1,

yB is optimal for LP(b−AyB). The vector y∗ − y is also feasible for LP(b−AyB),
so cᵀ(y∗ − y) ≤ cᵀyB . The inequality yB + u ≥ 0n holds because

yBa + ua ≥ (1− γ−1)δ ≥ 0 ∀ a ∈ B.

This implies that yB + u is feasible for LP(b− Aw). By Lemma 3.1, wB is optimal
for LP(b−Aw). Therefore, cᵀ(yB + u) ≤ cᵀwB . This proves (3.7).

It remains to prove (3.8). As yB + u ≥ 0n and w ≥ 0n, it follows that

(yB + y) + (w − y + u) = (yB + u) + w
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is also nonnegative and feasible for IP(b). Note that

cᵀ(yB + y) ≤ cᵀy∗ = cᵀy + cᵀ(y∗ − y) ≤ cᵀ(yB + y).

Thus, yB + y is an optimal solution to IP(b) and cᵀ(w − y + u) ≤ 0. Because
z ∈ N(B), there exists bz ∈ D(B) and zB ∈ Zn≥0 such that {a ∈ A : zBa > 0} ⊆ B

and zB + z is optimal for IP(bz). By (3.5), zBa ≥ (3 − γ−1)δ for all a ∈ B. Hence,
zB −u ≥ 0n. Recall that y ≥ 0n, z−w ≥ 0n, and A(w−y+u) = 0m by definition.
Thus,

(zB + z)− (w − y + u) = (zB − u) + (z−w) + y

is feasible for IP(bz). This implies that cᵀ(w − y + u) ≥ 0.

The final lemma in this section shows that certain vectors in N(B) satisfy addi-
tional properties that we will use to prove Theorem 1.1. We notify the reader that
the proof of Lemma 3.4 is similar to the proof of Lemma 3.3 although the main
assumptions are different.

Lemma 3.4. Let B ⊆ A be an optimal LP basis matrix and b ∈ D(B). Assume
that z minimizes | supp(z)| over all z ∈ N(B) such that Az ≡Γ b. If w and y are
distinct vectors satisfying wa,ya ∈ {0, za} for each a ∈ A, then Aw 6≡Γ Ay.

Proof. Assume to the contrary that there exist distinct vectors w and y such that
Aw ≡Γ Ay and wa,ya ∈ {0, za} for each a ∈ A. We may assume that supp(w) ∩
supp(y) = ∅ by subtracting the vector of overlapping support. We assume without
loss of generality that w 6= 0n. Note that z − w + y ∈ Zn≥0, A(z − w + y) ≡Γ b,
and supp(z − w + y) is a strict subset of supp(z). We cannot apply Lemma 3.3 to
conclude z − w + y ∈ N(B), which would contradict that z had minimal support,
because z−w+y 6≤ z. Instead, we show that there exists a vector v ∈ N(B) satisfying
v ≤ z−w + y and Av ≡Γ b; this will yield the same contradiction.

Let v ∈ Zn minimize ‖v‖1 over the integral vectors such that 0n ≤ v ≤ z−w+y
and Av ≡Γ b. Condition (iii) in (3.2) is satisfied by v; otherwise, ‖v‖1 would not be
minimized. To show that Conditions (i) and (ii) in (3.2) hold, we define a suitable
vector vB . Define vB ∈ Rn to be

(3.9) vBa :=

{[
B−1(b−Av)

]
a

if a ∈ B

0 if a ∈ A \B.

By (3.5) in Lemma 3.2, we have vB ∈ Zn≥0. Also, {a ∈ A : vBa > 0} ⊆ B by
construction. Hence, Condition (i) in (3.2) holds.

It is left to show Condition (ii) in (3.2) holds, i.e., that vB + v is an optimal
solution to IP(b). By using the definition of vB , it follows that vB + v is feasible
for IP(b). It remains to show that vB + v is optimal. Lemma 3.3 applied to z and
b implies that there exists a vector zB ∈ Zn≥0 such that {a ∈ A : zBa > 0} ⊆ B and

zB + z is optimal for IP(b). Because Aw ≡Γ Ay, there exists u ∈ Zn such that

{a ∈ A : ua 6= 0} ⊆ B and A(w − y + u) = 0m.

The argument used to prove (3.8) in the proof Lemma 3.3 can be repeated to conclude
cᵀ(w − y + u) = 0. Hence,

cᵀ(zB + z) = cᵀ(zB + z)− cᵀ(w − y + u) = cᵀv + cᵀ[(zB − u) + (z−w + y)− v].
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If we can prove that

(3.10) cᵀ[(zB − u) + (z−w + y)− v] ≤ cᵀvB ,

then we will complete the proof that v + vB is optimal because

cᵀ(zB + z) ≤ cᵀ(vB + v).

By (3.5), zBa ≥ (3− γ−1)δ for each a ∈ B. Using the facts that w and y have disjoint
supports and that wa,ya ∈ {0, za} for each a ∈ A, we have ‖w − y‖1 ≤ ‖z‖1. Thus,

‖u‖∞ = ‖B−1A(w − y)‖∞ ≤ ‖B−1A‖∞ · ‖w − y‖1 ≤ ‖B−1A‖∞ · ‖z‖1 ≤ γ−1 · δ

and zB−u ≥ 0n. Moreover, (zB−u)+(z−w+y)−v ≥ 0n because 0n ≤ v ≤ z−w+y.
Finally, (zB − u) + (z−w + y)− v and vB are both feasible for LP(AvB) with vB

being optimal by Lemma 3.1. This proves (3.10).

4. Results about σ and π. Our remaining goal is to complete the proofs of
Theorem 1.1 and Theorem 1.2. We proceed as follows in both proofs. Define Λ :=
A · Zm. Let A1, . . . , As ⊆ A be the optimal LP basis matrices. By Lemma 3.1, these
matrices form a simplicial covering of cone(A). As in (2.1), (3.1), and (3.2), define

Γi := Ai · Zm, Di := D(Ai), and N i := N(Ai) ∀ i ∈ {1, . . . , s}.

In view of (3.1), we define the vectors di := Ai(3δ · 1m) for all i ∈ {1, . . . , s}.
Proof of Theorem 1.1. In accordance with equation (2.3) from Theorem 2.3, we

define the set

Xi :=

{
g ∈ Λ/Γi : max

{
σ(b) :

b ≡Γi g,

b ∈ cone(Ai) + di

}
≤ m+ k

}
and show that

(4.1) |Xi| ≥ min
{
γ−1 · | det(Ai)|, 2k

}
∀ i ∈ {1, . . . , s}.

Theorem 1.1 then follows from Theorem 2.3 with α = m + k and βi ≥ min{γ−1 ·
|det(Ai)|, 2k}.

Fix i ∈ {1, . . . , s}. We complete the proof of (4.1) in two cases.

Case 1. Assume that Λ/Γi = Xi. By (2.2), we have

|Xi| = |Λ/Γi| = γ−1 · | det(Ai)|.

This proves (4.1).

Case 2. Assume that Λ/Γi ) Xi. By the definition of Xi, there exists g ∈ Λ/Γi

such that

max

{
σ(b) :

b ≡Γi g,

b ∈ cone(Ai) + di

}
> m+ k.

Lemma 3.3 implies that for any b ∈ cone(Ai) + di and any zg ∈ N i with Azg ≡Γi g,
there exists an optimal solution to IP(b) whose support is bounded by m+| supp(zg)|.
Hence,

(4.2) min
{
| supp(zg)| : zg ∈ N i and Azg ≡Γi g

}
≥ k + 1.
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Choose g and zg ∈ N i as argument maximizers and minimizers, respectively, of the
problem

max
g∈Λ/Γi

min
{
| supp(zg)| : zg ∈ N i and Azg ≡Γi g

}
.

Inequality (4.2) implies that | supp(zg)| ≥ k + 1.
Define the sets

Zi := {z ∈ Zn : za ∈ {0, zga} for each a ∈ A and | supp(z)| ≤ k}

and
Hi := {h ∈ Λ/Γi : h ≡Γi Az for some z ∈ Zi}.

We show that Hi ⊆ Xi. Let h ∈ Hi and take b ∈ cone(Ai) + di such that b ≡Γi h.
There exists z ∈ Zi such that Az ≡Γi b. The definition of N i and Lemma 3.3 imply
that there exists an optimal solution to IP(b) of the form z+ zi, where {a ∈ A : zia >
0} ⊆ Ai. Hence,

σ(b) ≤ | supp(z + zi)| ≤ | supp(zi)|+ | supp(z)| ≤ m+ k.

This implies that Hi ⊆ Xi. As zg was chosen to have minimal support, it follows
from Lemma 3.4 that Zi and Hi have the same cardinality. Thus,

(4.3) |Xi| ≥ |Hi| = |Zi| =
k∑
j=0

(
| supp(zg)|

j

)
≥

k∑
j=0

(
k + 1

j

)
≥

k∑
j=0

(
k

j

)
= 2k.

Remark 4.1. If c = 0n, then σ(b) denotes the sparsest feasible solution to IP(b).
Under this assumption, every invertible matrix B ⊆ A is an optimal LP basis matrix,
and we can upper bound asymptotic densities of σ in terms of the smallest positive
determinant of all the submatrices of A. Define

η := min {|det(B)| : B ⊆ A is invertible},

and let B ⊆ A be a matrix that attains this minimum. Suppose A1, . . . , As ⊆ A form
a simplicial covering of cone(A). Provided b is deep in cone(Ai), one can express b
as b = Aiz + By, where z ∈ Zm≥0 and y ∈ Rm≥0. Following the proof of Theorem 1.1,
for every fixed vector z ∈ Zm, it holds that

Pr
(
{b ∈ Aiz + cone(B) : σ(b) ≤ 2m+ k}

)
≥ 2k

γ−1 · η
.

The term 2m+k comes from two places: m+k is from Theorem 1.1, and the extra m
comes from z ∈ Zm≥0. Because this bound holds for every z ∈ Zm≥0 and the basis matrix

Ai was arbitrarily chosen, we can let z vary to cover the deep regions corresponding
to every basis matrix. Thus,

Pr (σ ≤ 2m+ k) ≥ min

{
1,

2k

γ−1 · η

}
.

This is closely related to the results on the sparsity of systems of linear Diophantine
equations in [2].
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Proof of Theorem 1.2. We first prove Part (a). In accordance with (2.3) from
Theorem 2.3, we define the set

Xi :=

{
g ∈ Λ/Γi : max

{
π(b) :

b ≡Γi g,

b ∈ cone(Ai) + di

}
≤ mγ−1 · δ · k

k + 1
+ k

}
and show that

(4.4) |Xi| ≥ min
{
γ−1 · | det(Ai)|, k + 1

}
∀ i ∈ {1, . . . , s}.

The result then follows from Theorem 2.3. Fix i ∈ {1, . . . , s}.
Case 1. Assume that Λ/Γi = Xi. By (2.2), we have

|Xi| = γ−1 · | det(Ai)|.

This shows (4.4).

Case 2. Assume that Λ/Γi ) Xi. Consider any g ∈ Λ/Γi, zg ∈ N i, and b ∈
cone(Ai) + di such that g ≡Γi Azg ≡Γi b. Lemma 3.3 implies that there exists an
optimal solution to IP(b) of the form zg +zi, where {a ∈ A : zia > 0} ⊆ Ai. Let x∗ be
the optimal vertex solution to the linear program LP(b) with {a ∈ A : x∗a > 0} ⊆ Ai.
The supports of x∗ and zi are contained in Ai while the support of zg ∈ N i is disjoint
from Ai by Condition (iii) in (3.2). Hence, the supports of x∗−zi and zg are disjoint.
From this and (3.4), we see that

(4.5)

π(b) = ‖x∗ − (zi + zg)‖1 = ‖x∗ − zi‖1 + ‖zg‖1 = ‖(Ai)−1Azg‖1 + ‖zg‖1

≤ m · δ

|det(Ai)|
· ‖zg‖1 + ‖zg‖1.

Because Λ/Γi ) Xi, there exists a particular g ∈ Λ/Γi such that

max

{
π(b) :

b ≡Γi g,

b ∈ cone(Ai) + di

}
> mγ−1 · δ · k

k + 1
+ k.

Let zg ∈ N i satisfy Azg ≡Γi g. By (4.5), we have

max

{
π(b) :

b ≡Γi g,

b ∈ cone(Ai) + di

}
≤ m · δ

|det(Ai)|
· ‖zg‖1 + ‖zg‖1.

If ‖zg‖1 < k, then the latter two inequalities imply that

m · δ

|det(Ai)|
· ‖zg‖1 + ‖zg‖1 > mγ−1 · δ · k

k + 1
+ k > mγ−1 · δ · ‖z

g‖1
‖zg‖1 + 1

+ ‖zg‖1,

or equivalently that ‖zg‖1 ≥ γ−1 · |det(Ai)|. However, this contradicts (3.3). Hence,
‖zg‖1 ≥ k and γ−1 · | det(Ai)| ≥ k + 1.

Let z ∈ Zn satisfy 0n ≤ z ≤ zg and ‖z‖1 = k. Consider the set

Hi := {h ∈ Λ/Γi : h ≡Γi Az for z ∈ Zn with 0n ≤ z ≤ z}.

We claim that Hi ⊆ Xi. Take h ∈ Hi and let z ∈ Zn satisfy 0n ≤ z ≤ z and
h ≡Γi Az. By Lemma 3.3, both z and z are in N i. Let b ∈ cone(Ai) + di be such
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that b ≡Γi h. Applying (4.5) to z, it follows that

π(b) = ‖(Ai)−1Az‖1 + ‖z‖1 ≤ m ·
δ

|det(Ai)|
· ‖z‖1 + ‖z‖1

≤ m · γ−1 · δ · k

k + 1
+ k.

Hence, h ∈ Xi and Hi ⊆ Xi. Because z ∈ N i, Condition (iii) in (3.2) implies that
Av 6≡Γi Aw for every v,w ∈ Zn satisfying 0n ≤ v � w ≤ z. Therefore,

|Xi| ≥ |Hi| ≥ ‖z‖1 + 1 = k + 1 ≥ min{γ−1 · | det(Ai)|, k + 1},

which completes the proof of (4.4) and proves Part (a) of the theorem.
The proof of Part (b) is almost identical to the proof of Part (a). One defines

Xi
∞ :=

{
g ∈ Λ/Γi : max

{
π∞(b) :

b ≡Γi g,

b ∈ cone(Ai) + di

}
≤ γ−1 · δ · k

k + 1

}
and shows that

|Xi
∞| ≥ min

{
γ−1 · | det(Ai)|, k + 1

}
∀ i ∈ {1, . . . , s}.

The key difference is that we replace (4.5) with

π∞(b) = max
{
‖x∗ − zi‖∞, ‖zg‖∞

}
= max

{
‖(Ai)−1Azg‖∞, ‖zg‖∞

}
≤ max

{
‖(Ai)−1A‖∞‖zg‖1, ‖zg‖∞

}
= ‖(Ai)−1A‖∞‖zg‖1

≤ δ

|det(Ai)|
· ‖zg‖1.

Remark 4.2. In Section 1.2, we made the assumption that the optimal solution to
LP(b) is unique for all feasible b. If this assumption is dropped, then the definition
of distance should be adapted as follows. Define the minimum distance between an
optimal LP vertex solution and an optimal IP solution to be

πmin(b) := min
x∗

min
z∗

{
‖x∗ − z∗‖1 :

x∗ is an optimal vertex solution to LP(b)
z∗ is an optimal solution to IP(b)

}
,

and the maximum of the minimum distance between LP optimal vertices and IP op-
timal solutions to be

πmax(b) := max
x∗

min
z∗

{
‖x∗ − z∗‖1 :

x∗ is an optimal vertex solution to LP(b)
z∗ is an optimal solution to IP(b)

}
.

If IP(b) is infeasible, then πmin(b) = πmax(b) := ∞. The value πmin(b) can be
bounded by considering only one solution to LP(b) while πmax(b) needs to consider
every optimal vertex of LP(b). It follows immediately from Theorem 1.2 that

Pr

(
πmin ≤ mγ−1 · δ · k

k + 1
+ k

)
≥ k + 1

γ−1 · δ
∀ k ∈ {0, . . . , γ−1 · δ − 1}.



16 T. OERTEL, J. PAAT, AND R. WEISMANTEL

It is not clear if πmax(b) can be bounded in the same way. However, for the extreme
case k = γ−1 · δ − 1 it can be shown that

Pr
(
πmax ≤ (m+ 1)(γ−1 · δ − 1)

)
= 1.

The proof of this equation is similar to the proof of Theorem 1.2, and it is omitted
here.

Remark 4.3. As a final remark, we want to point out that our proofs provide a
method for computing exact densities. Let us illustrate this by considering again the
sparsity function σ. Set c = (1m,0m) and A = [2I, I], where I denotes m×m identity
matrix. There is a unique optimal LP basis matrix, which is defined by the first m
columns. The asymptotic densities for k = 0, 1 . . . ,m are

Pr(σ ≤ m+ k) =
1

2m

k∑
i=0

(
m

i

)
,

which can be inferred from (4.3). Note that this coincides with Theorem 1.1 for k = 0.
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