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Abstract: A novel approach is presented to describe the dynamic interaction system of a 

large-diameter floating pipe pile and surrounding soils, taking the three-dimensional wave 

effects into account. The corresponding analytical solutions for longitudinal complex 

impedance are obtained and subsequently validated via comparisons with existing solutions. 

Comparative analyses are also performed to illustrate the difference between the present and 

previous solutions, concerning the wave propagation effect in the radial direction on the 

longitudinal dynamic vibration of pile shaft. Furthermore, the effects of Poisson’s ratio and 

visco-elastic support beneath the pile toe, on the longitudinal dynamic vibration of pile shaft, 

are investigated. It is indicated that the presented approach and corresponding solutions 

provide a more wide-ranging application for longitudinal vibration analysis of a 

large-diameter floating pipe pile, which can also be reduced to analyze the longitudinal 

vibration problems of large-diameter floating solid pile and fixed- end pipe pile. 
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1. Introduction  

Pile foundations are commonly adopted to support structures in civil, coastal and offshore 

engineering, etc. Longitudinal vibration of piled structures due to vertical ground motion of earthquake, 

traffic and vibrating machinery is of great practical engineering significance for dynamic foundation 

design, earthquake-resistance design and pile dynamic testing [1-3]. Hence, the studies of 
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longitudinal vibration of pile have attracted extensive attention in recent decades [4-6]. 

Several analytical models have been proposed to discuss the longitudinal dynamic 

characteristics of soil-pile interaction system [7-9]. The Winkler model has been widely used 

due to its convenience, in which the soil is simplified into a series of spring-dashpot elements 

[10-12]. Nevertheless, the Winkler model cannot consider the wave propagation within the 

soils [13-15]. Novak [16] further presented a plane-strain model by assuming the soils as thin 

layers. However, the Novak's plane-strain model was unsatisfactory in a certain 

high-frequency range for neglecting the vertical wave propagation between thin layers [17]. 

Subsequently, Nogami et al. [18] developed a three-dimensional (3D) continuum model that 

considered the variations of vertical displacements, in both horizontal and longitudinal 

directions. Furthermore, Hu et al. [19] and Wu et al. [20] proposed more rigorous 3D 

continuum models of soil to discuss the longitudinal dynamic characteristics of solid pile.  

In previous research, pile was commonly considered as a one-dimensional Euler-Bernoulli 

rod due to its simplicity [21-23]. In the Euler-Bernoulli rod-type model of pile, the 

assumption of plane section can lead to non-ignorable inaccuracy when the slenderness ratio 

of pile shaft is small [24]. In addition, some researchers [25-27] found that the Rayleigh-Love 

model of pile could improve the computational accuracy for longitudinal vibration problem under 

low-frequency excitation, by comparing with the Euler-Bernoulli rod model. Therefore, Wu et al. 

[28] presented their corresponding complex impedance solution for a tapered pile in soil by 

combining the Rayleigh-Love rod model and the plane-strain soil model, to take the 

large-diameter effect of pile on longitudinal vibration into account. Lu et al. [29, 30] considered 

both the 3D wave effect of soil and the large-diameter effect of pile shaft to discuss the coupled 

longitudinal dynamic characteristics of pile in longitudinal layered soils. Afterward, Li et al. [31] 

conducted further studies on the longitudinal dynamic characteristics of a large-diameter pile 

in layered soils with radial inhomogeneity. Zheng et al. [32] and Li et al. [33] also examined 

the longitudinal dynamic characteristics of pile in radially homogeneous and inhomogeneous 

soils, respectively, by extending the Rayleigh-Love rod theory to pipe piles. 

Although the Rayleigh-Love rod model can approximately consider the lateral inertia 

effect comparing with the Euler-Bernoulli rod model, it is deduced from one-dimensional 

wave theory and the radial variations of stress and displacement of material particles, i.e. the 

3D wave effect in the pile shaft are ignored. Fei et al. [34] have discussed the 3D wave effect 

on the reflected wave velocity of a large-diameter pipe pile under vertical low strain transient 

based on the 3D finite element model. Hence, Liu and Ding [35] employed a simplified model 

of large-diameter pipe rod with fixed support by assuming an even dynamic response along 

the radial direction. Ding et al. [36] further proposed an analytical model for a large-diameter 

pipe rod with fixed supports to investigate the 3D wave effect on dynamic response of rod 

shaft. Moreover, Liu et al. [37] proposed an analytical solution for a longitudinal dynamic 
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interaction system of end-bearing pipe pile and soils with fixed supports, which considered 

both the 3D wave propagation within pile shaft and soils. However, due to the assumption of 

the fixed supports beneath pile toe and soils, this proposed solution cannot be applied into the 

longitudinal dynamic analysis of a floating pipe pile in soils.  

Based on a wide-ranging literature review, it is evident that little attention has been 

attracted to the longitudinal vibration of a large-diameter floating pipe pile in visco-elastic soil 

considering the 3D wave effects within both pile shaft and soils. The primary aim of this 

paper is to present a new approach based on the 3D continuum wave propagation theory, to 

describe the longitudinal dynamic interaction system of a large-diameter floating pipe pile and 

soils, considering the visco-elastic supports beneath pile toe and soils. The displacements of 

both pile shaft and soils are to be determined by a derivation of the frequency transcendental 

equation corresponding to different vibration modes. Then, the analytical complex impedance 

solution for pile head is to be further derived by adopting the variable separation method and 

the fully coupled conditions of pipe pile and soils, which is reduced to verify its validity by 

comparisons with previous solutions. In addition, comparative analyses are to be conducted to 

investigate the effects of Poisson's ratio of pile and complex stiffness of visco-elastic supports  

on the longitudinal dynamic characteristics of coupled soil-pile system.  

2. The mechanical model 

Fig.1 shows the 3D axisymmetric simplified mechanical model of the coupled dynamic 

interaction system of a floating pipe pile and surrounding soils under harmonic excitation. 

The length, inner, and outer diameters of the pipe pile are H, 0r , and 1r , respectively. The 

harmonic uniformly distributed excitation pressure is ti
eF


0

~
, where 1i is the imaginary 

unit and   is circular frequency. The corresponding constants of visco-elastic supports 

beneath the pile toe and soils are P
k , P and S

k , S , respectively.  
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Fig. 1 The simplified mechanical model 
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The following assumptions are specified in the simplified mechanical model: 

(1) The pipe pile is considered as a linear elastic continuum with an annular uniform 

cross-section. 

(2) The inner and outer soils are linear visco-elastic continuums with hysteretic-type material 

damping [38], which neglect the variation of shear modulus and damping of the soil with 

the shear strain level. 

(3) The top surfaces of soils are free, namely, the normal stress and shear stress are zero. The 

excitation at the pile head is uniform harmonic pressure. 

(4) The visco-elastic supports beneath pile toe and soils are simplified as the Kelvin-Voigt 

model [15]. 

(5) The intensity of excitation force at the pile head is low and the deformations of soil-pile 

system are small. The interface sliding between the pile and soil is not considered [39-42]. 

It should be noted that, if the intensity of excitation force at the pile head is high, the 

proposed analytical model may overestimate both the stiffness and damping of pile due to 

the assumption of perfect bonding between pile and soil [43].  

(6) The proposed analytical approach in this paper is suitable for PCC piles [44] where the 

inner pipe is fully plugged [33, 45-47]. 

According to the wave propagation theory of 3D continuums, the 3D axisymmetric 

governing equations of inner soil, outer soil, and pile shaft are established as follows. 
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

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



 ; P
u , 0S

u  and 1S
u  are the longitudinal displacements of pipe 

pile, inner and outer soils, respectively; 0S , 0S  and 0S  are the Lame constant, complex 

shear modulus, and density, respectively, of inner soil; 1S , 1S  and 1S  are the Lame 

constant, complex shear modulus and density, respectively, of outer soil; P , P
G  and P  

denote the Lame constant, shear modulus, and density, respectively, of pipe pile. P~u , 0S~u and 

1S~u  are the displacement amplitudes of pipe pile, inner and outer soils, respectively. 

  For the excitation force is harmonic, the vertical displacements of pipe pile, inner and outer 

soils can be written as ti
euu
PP ~ , ti

euu
00 SS ~ and ti

euu
11 SS ~ , respectively. Then, Eq. (1a)~ 

Eq. (1c) can be expressed as the following forms, respectively, 
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where 0S  and 1S  denote the hysteretic damping ratio of inner and outer soils, respectively. 

P
v , 0S

v  and 1S
v  are Poisson’s ratio of pile, inner and outer soils, respectively. 

PPP GV  , 000 SSS GV   and 111 SSS GV   are the shear wave velocity of pile, 

inner and outer soils, respectively. )21( 000 SSS
iG    and )21( 111 SSS

iG    are shear 

modulus of inner and outer soils, respectively. 

The boundary conditions of the simplified mechanical model are illustrated as follows: 

  The normal stresses at the free top surfaces of inner and outer soils are zero,  

0
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  The boundary conditions at the bottom of inner and outer soils are shown as follows: 
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where 0S
E  and 1S

E  are the elastic modulus of inner soil and outer soil, respectively. 0S~u  

is a limited value when 0r . 1S~u  diminishes to zero at infinity, namely, 




0S

0

~lim u
r

         (5a) 

0~lim 1S 


u
r

         (5b) 

The boundary conditions of pipe pile are expressed as the following forms,  

0

P
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where P
E  is the elastic modulus of pipe pile.  

  The shear stress equilibrium and displacements continuity conditions of soil-pile system are 

0

0SP ~~
rr

uu


         (7a) 
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where P~ , 0S~  and 1S~  denote the shear stress of pipe pile, inner soil and outer soil, 

respectively.  

3. Solutions of the governing equations 

3.1 Longitudinal vibration of soils 

Using the method of separation variables, 0S~u  and 1S~u  can be expressed as 

)()(),(~ 000 SSS
zZrRzru   and )()(),(~ 111 SSS

zZrRzru  , respectively. Then, Eq. (2a) and Eq. (2b) 

can be rewritten as: 
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Therefore, Eqs.(8a) and (8b) can be further rewritten as: 
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where 0S
h  0S

q , 1S
h  and 1S

q  satisfy the following expressions. 
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The general solutions of Eqs. (10a) and (10b) are obtained as 
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where 0S
C , 0S

D , 0S
M , 0S

N , 1S
C , 1S

D , 1S
M , and 1S

N  are all undetermined coefficients. 

)(0 I  and )(0 K  are the first and second kind, respectively, modified Bessel functions of 

order zero.  

Thus, substituting Eq.(12a) into Eqs.(3a) and (4a) as well as substituting Eq.(12b) into 

Eqs.(3b) and (4b), it yields:  
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where SSS ikK  is the complex stiffness of viso-elastic supports beneath the pile toe; 

00 SSS
EHKK  and 11 SSS

EHKK   are the dimensionless coefficient of viso-elastic supports 

beneath the inner and outer soils, respectively.  

  Then the eigenvalue 0S

nh and 1S

nh can be further determined by solving Eqs. (13a) and (13b), 

respectively. 

By combining Eqs.(5a), (5b), (13a) and (13b) 0S~u  and 1S~u  can be obtained as:  


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)cos()(~ 11111

n

nnnn HhzhrqKAu     (14b) 

where 0S

nA  and 1S

nA  are undetermined coefficients. 

3.2 Vibration of the pipe pile 

Due to the non-homogeneous boundary condition at the head of pile, the corresponding 

general solution for the displacement of pipe pile shaft is rewritten as the following form: 
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),(~),,(~),,(~ P

2
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1

P  zurzurzu       (15) 

where ),,(~P

1 rzu  satisfies Eq.(16); ),(~P

2 zu  satisfies Eqs. (2c), (6a) and (6b). 
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Then, the general solution for Eq.(16) is obtained by: 
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where P

nA  and P

nB  are undetermined coefficients; PPP ikK  is the complex stiffness of 

viso-elastic supports beneath the pile toe; PPP
EHKK  denotes the dimensionless 

coefficient of viso-elastic supports beneath the pile toe; P

nh  can be determined by combining 

HhKHh
PPP )tan(  , PPP

EHKK  and PPP ikK  . 

  Thus, P

nq  can be further obtained from Eq.(18)  

2P2PPP2P )()]()21()22([)( Vhvvq nn      (18) 

Substituting ),(~P

2 zu  into Eq.(2c) yields: 
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where )22()21( PP
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P
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V
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
. 

The general solution of Eq. (19) is obtained as: 

)sin()cos(),(~ PPPPP
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where P
a  and P

b are undetermined coefficients. 

Substituting Eq.(20) into Eqs.(6a) and (6b) yields: 
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By combining Eqs. (15), (17), (20), (21a) and (21b), the general solution for P~u  can be 

expressed as: 
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Thus, the shear stress of soils and pile shaft can be expressed as: 
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By assuming PSS 10 KKK  , it gives 
nnnn hhhh  PSS 10 .  

Inserting Eqs.(14a) and (22) into（7a), and substituting Eqs.(14b) and (22) into（7b), 

respectively, the following expressions can be obtained 
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Inserting Eqs.(23a) and (23c) into (7c) and substituting Eqs.(23b) and (23c) into (7d), 

respectively, we have 
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Thus, multiplying both sides of Eqs.(24a) and (24b) by cos( )n nh z h H  and integrating it 

between the limits  H，0 ,respectively, it produces 
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By combining Eqs.(25a), (25b), (26a) and (26b), the corresponding undetermined 

coefficients P

nA  and P

nB can be determined as 
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Therefore, the longitudinal displacement function of pipe pile in frequency domain can be 

expressed by 
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Furthermore, the frequency response function for the longitudinal displacement can be 

written as: 
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The longitudinal complex impedance function for the pile head ),(d rK  is given as:  
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where ),(r rK  and ),(i rK  are the dynamic stiffness and damping, respectively. 

  For the convenience to perform further comparative analysis, with respect to the previous 

solutions which are derived from the Euler–Bernoulli model and the Rayleigh–Love model, 

the cross-sectional equivalent frequency response function of longitudinal displacement for 

pile head is defined by 
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Thus, the cross-sectional equivalent complex impedance for pile head can be easily 

defined by 

)()(
)(

1
)( ir

u
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

 KiK
H

K        (32) 

where )(r K  and )(i K  denote the cross-sectional equivalent dynamic stiffness and 

damping, respectively. 

4. Results and discussions 

In this section，numerical examples are illustrated to validate the obtained analytical 
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solutions via comparisons with previous solutions. Comparative analyses are also performed 

to illustrate the difference between the present and previous solutions, concerning the wave 

propagation effect in radial direction on the longitudinal dynamic characteristics of pile shaft. 

Furthermore, the effects of Poisson ratio and visco-elastic support beneath the pile toe, on the 

longitudinal dynamic characteristics of pile shaft, are investigated. Unless other specified, the 

mechanical parameters are used as follows:  

m6H ; GPa40P E ; -3P mkg2500 ; 35.0P v ; m3.00 r ; m6.01 r ; 35.001 SS  vv ;

02.001 SS  ; MPa2001 SS GG ; -3SS
mkg200001   ; 0.1PSS 10  KKK . 

4.1 Verification of the proposed solution  

The cross-sectional equivalent complex impedance written in Eq.(32) can be reduced to 

depict the longitudinal vibration of a pipe pile with fixed end supports by setting 

 PSS 10 KKK . Thus, the proposed solution can be validated by comparing it with the 

solution of Liu et al. [37] in the same parameter system. As can be seen from Fig. 2, the 

proposed solution for the cross-sectional equivalent complex impedance with different pile 

length H is in great agreement with that derived by Liu et al. [37]. Similarly, the proposed 

solution is also reduced to compare with the existing solution of Meng et al. [48] by 

setting 00 r , as shown in Fig.3. It is observed that the proposed solution for the 

cross-sectional equivalent complex impedance with different pile length H also agrees well 

with the previous solution of Meng et al. [48]. Hence, the validity of the proposed solution 

can be verified with the above independent comparisons.  

As the proposed solution is, the existing solutions above are also derived from the wave 

propagation theory of 3D continuum for the whole pile-soil system. It is noted that the further 

consideration of the vsico-elastic supports beneath pile toe (3D-continuum pile model) leads 

to total differences in the vibration mode, eigenfunctions for displacement and orthogonality 

of eigenfunctions, from those of the solution derived by Liu et al [37]. 
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Fig. 2 Comparison of the cross-sectional equivalent complex impedance in reduced form 
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(  PSS 10 KKK ) with the solution of Liu et al. [37] 

0 200 400 600 800 1000 1200

-20

-16

-12

-8

-4

0

4

8

12

16

20

24

28  Present solution（ H=6m）
 Meng et al.[48]（ H=6m）
 Present solution（ H=10m）
 Meng et al.[48]（ H=10m）

K
r/

1
0

1
0
N
 

m
-1

f/Hz
0 200 400 600 800 1000 1200

0

4

8

12

16

20

24

28

32

36

40
 Present solution（ H=6m）
 Meng et al.[48]（ H=6m）
 Present solution（ H=10m）
 Meng et al.[48]（ H=10m）

K
i/
1
0

1
0
N
 

s 
m

-1

f/Hz  

(a) Cross-sectional equivalent dynamic stiffness (b) Cross-sectional equivalent dynamic damping 

Fig. 3 Comparison of the cross-sectional equivalent complex impedance in reduced form 

( 00 r ) with the solution of Meng et al. [48] 

4.2 Comparative analyses of the proposed solution 

As for the Euler–Bernoulli rod model, the wave propagation effect of pile shaft in radial 

direction is completely ignored. Approximately, the Rayleigh–Love model takes this radial 

wave effect into account by introducing Poisson’s ratio to the governing equation. For the aim 

to demonstrate the difference, between the present solution and previous solutions derived 

from rod-type models of pile shaft, i.e., the Rayleigh–Love [32] and Euler–Bernoulli [49] rod 

models, comparative analyses are performed.  

Fig.4 and Fig.5 depict the difference between the present and previous solutions with H= 

12m ( 201 rH ) and H= 6m ( 101 rH ), respectively. Since the present solution considers the 

3D wave propagation effect within the pile shaft, it is clear that the resonance frequency and 

amplitude of complex impedance are both smaller than those corresponding to the 

Rayleigh–Love and Euler–Bernoulli rod models, and this difference becomes more obvious 

as the frequency increases. Furthermore, the solution from the Rayleigh–Love rod model is 

closer to the present solution than that from the Euler–Bernoulli rod model. With the decrease 

of pile slenderness ratio (i.e., to keep the cross-section of pile constant and decrease the pile 

length from H=12m to H=6m), the difference between the present and previous solutions gets 

greater, especially within high-frequency range. It indicates that, even though the 

Rayleigh–Love rod model can roughly consider the radial wave effect on pile vibration in 

certain circumstances, it may lead to an overestimation of the pile's complex impedance, 

especially for piles with small slenderness ratio or high-frequency excitation. 
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Fig. 4 Comparison of the cross-sectional equivalent complex impedance obtained from 

different models (H=12m, 201 rH ) 
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Fig. 5 Comparison of the cross-sectional equivalent complex impedance obtained from 

different models (H=6m, 101 rH ) 

Fig.6 illustrates some typical points (i.e., P1, P2, and P3) at the pile head. As shown in 

Fig.7, a comparison of the complex impedance solution at the typical points is performed. It 

should be noted that a frequency interval (from 1078 to 1124 Hz) adjacent to the forth 

resonance frequency is specified for the convenience to examine the radial wave effect on the 

complex impedance of pile head. It can be found that the fourth resonance frequencies 

corresponding to dynamic stiffness and dynamic damping are 1,116 Hz and 1,080 Hz, 

respectively. In addition, substituting the fourth resonance frequency of dynamic stiffness and 

damping into Eq. (30), it yields the cross-sectional contours of the complex impedance of pile 

head as shown in Fig.8. It can be seen from Fig.7 and Fig.8, that there exists a significant 

annular variance of complex impedance along the radial direction of the pile head. 

Specifically, the dynamic stiffness increases first and decreases afterward, while the dynamic 

damping keeps increasing, with the change of corresponding position from the inner to the 

outer of the pile head. 
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Fig. 7 Comparison of the complex impedance at the typical points of pile head 

The effect of Poisson’s ratio on the cross-sectional equivalent complex impedance for 

pile head is shown in Fig. 9. It can be observed that both the resonance amplitude and 

frequency of complex impedance decrease with the rise of Poisson’s ratio. As the frequency 

increases, this tendency becomes more obvious. Fig. 10 shows that the dimensionless 

coefficient of visco-elastic support beneath the pile toe has a considerable effect on the phase 

of the cross-sectional equivalent complex impedance for pile head. To be specific, the 

resonance frequency of complex impedance decreases as the dimensionless coefficient of 

visco-elastic supports increases, while the effect on the resonance amplitude can be ignored.  
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Fig.8 Cross-sectional contours of the complex impedance for pile head 
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Fig. 9 Effect of Poisson’s ratio on the cross-sectional equivalent complex impedance for pile 

head 
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5. Conclusions 

 

  A novel approach is presented to describe the longitudinal vibration system of a 

large-diameter floating pipe pile and surrounding soils based on the wave propagation theory 

of 3D continuum. The corresponding analytical solutions for longitudinal complex impedance 

are obtained and subsequently verified by comparisons with existing solutions. Comparative 

analyses are also performed to discuss the difference between the present and previous 

solutions, which reveals the wave propagation effect in radial direction on the longitudinal 

dynamic vibration of pile shaft. Furthermore, the effects of Poisson ratio and visco-elastic 

support beneath the pile toe, on the longitudinal dynamic vibration of pile shaft, are examined. 

The results indicate that: 

    (1) The resonance frequency and amplitude of the present solution are both smaller than 

those corresponding to the Rayleigh–Love and Euler–Bernoulli rod models, and this 

difference becomes more obvious as the frequency increases.  

    (2) Even though the Rayleigh–Love rod model can approximately consider the radial 

wave effect on pile vibration in certain circumstances, it may lead to an overestimation of the 

pile's complex impedance, especially for piles with small slenderness ratio or high-frequency 

excitation. 

(3) Both the resonance amplitude and frequency of complex impedance decline with the 

rise of Poisson’s ratio. Differently, the resonance frequency of complex impedance decreases 

as the dimensionless coefficient of visco-elastic supports increases, while the effect on the 

resonance amplitude can be ignored.  

(4) The proposed approach and corresponding solutions provide a more extensive scope 

of application for longitudinal vibration analysis of a large-diameter floating pipe pile, which 

can also be reduced to analyze the longitudinal vibration problems of large-diameter floating 

solid pile and fixed- end pipe pile. 
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Highlights: 

(1) A novel approach is presented to describe the vertical vibration system 

of a large-diameter floating pipe pile and soils ,considering the 

three-dimensional wave effects. 

(2)  The proposed approach and corresponding solutions provide a more 

extensive scope of application and can be reduced for the vertical 

vibration problems of large-diameter floating solid pile and fixed- end 

pipe pile. 

(3) The limitations of previous solutions derived from rod-type models 

are demonstrated, which may lead to an overestimation of impedance, 

especially for piles with small slenderness ratio or high-frequency 

excitation. 
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