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longitudinal vibration of pile have attracted extensive attention in recent decades [4-6].
Several analytical models have been proposed to discuss the longitudinal dynamic
characteristics of soil-pile interaction system [7-9]. The Winkler model has been widely used
due to its convenience, in which the soil is simplified into a series of spring-dashpot elements
[10-12]. Nevertheless, the Winkler model cannot consider the wave propagation within the
soils [13-15]. Novak [16] further presented a plane-strain model by assuming the soils as thin
layers. However, the Novak's plane-strain model was unsatisfactory in a certain
high-frequency range for neglecting the vertical wave propagation between thin layers [17].
Subsequently, Nogami et al. [18] developed a three-dimensional (3D) continuum model that
considered the variations of vertical displacements, in both horizontal and longitudinal
directions. Furthermore, Hu et al. [19] and Wu et al. [20] proposed more rigorous 3D
continuum models of soil to discuss the longitudinal dynamic characteristics of solid pile.

In previous research, pile was commonly considered as a one-dimensional Euler-Bernoulli
rod due to its simplicity [21-23]. In the Euler-Bernoulli rod-type model of pile, the
assumption of plane section can lead to non-ignorable inaccuracy when the slenderness ratio
of pile shaft is small [24]. In addition, some researchers [25-27] found that the Rayleigh-Love
model of pile could improve the computational accuracy for longitudinal vibration problem under
low-frequency excitation, by comparing with the Euler-Bernoulli rod model. Therefore, Wu et al.
[28] presented their corresponding complex impedance solution for a tapered pile in soil by
combining the Rayleigh-Love rod model and the plane-strain soil model, to take the
large-diameter effect of pile on longitudinal vibration into account. Lu et al. [29, 30] considered
both the 3D wave effect of soil and the large-diameter effect of pile shaft to discuss the coupled
longitudinal dynamic characteristics of pile in longitudinal layered soils. Afterward, Li et al. [31]
conducted further studies on the longitudinal dynamic characteristics of a large-diameter pile
in layered soils with radial inhomogeneity. Zheng et al. [32] and Li et al. [33] also examined
the longitudinal dynamic characteristics of pile in radially homogeneous and inhomogeneous
soils, respectively, by extending the Rayleigh-Love rod theory to pipe piles.

Although the Rayleigh-Love rod model can approximately consider the lateral inertia
effect comparing with the Euler-Bernoulli rod model, it is deduced from one-dimensional
wave theory and the radial variations of stress and displacement of material particles, i.e. the
3D wave effect in the pile shaft are ignored. Fei et al. [34] have discussed the 3D wave effect
on the reflected wave velocity of a large-diameter pipe pile under vertical low strain transient
based on the 3D finite element model. Hence, Liu and Ding [35] employed a simplified model
of large-diameter pipe rod with fixed support by assuming an even dynamic response along
the radial direction. Ding et al. [36] further proposed an analytical model for a large-diameter
pipe rod with fixed supports to investigate the 3D wave effect on dynamic response of rod

shaft. Moreover, Liu et al. [37] proposed an analytical solution for a longitudinal dynamic
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interaction system of end-bearing pipe pile and soils with fixed supports, which considered
both the 3D wave propagation within pile shaft and soils. However, due to the assumption of
the fixed supports beneath pile toe and soils, this proposed solution cannot be applied into the
longitudinal dynamic analysis of a floating pipe pile in soils.

Based on a wide-ranging literature review, it is evident that little attention has been
attracted to the longitudinal vibration of a large-diameter floating pipe pile in visco-elastic soil
considering the 3D wave effects within both pile shaft and soils. The primary aim of this
paper is to present a new approach based on the 3D continuum wave propagation theory, to
describe the longitudinal dynamic interaction system of a large-diameter floating pipe pile and
soils, considering the visco-elastic supports beneath pile toe and soils. The displacements of
both pile shaft and soils are to be determined by a derivation of the frequency transcendental
equation corresponding to different vibration modes. Then, the analytical complex impedance
solution for pile head is to be further derived by adopting the variable separation method and
the fully coupled conditions of pipe pile and soils, which is reduced to verify its validity by
comparisons with previous solutions. In addition, comparative analyses are to be conducted to
investigate the effects of Poisson's ratio of pile and complex stiffness of visco-elastic supports
on the longitudinal dynamic characteristics of coupled soil-pile system.

2. The mechanical model

Fig.1 shows the 3D axisymmetric simplified mechanical model of the coupled dynamic
interaction system of a floating pipe pile and surrounding soils under harmonic excitation.
The length, inner, and outer diameters of the pipe pile are H, r,, and 1, respectively. The

iot

harmonic uniformly distributed excitation pressure is foe , where i=+/—1is the imaginary
unit and o is circular frequency. The corresponding constants of visco-elastic supports

beneath the pile toe and soils are k,5" and k°, 5%, respectively.

Large-diameter

2 r
s Y kS P s
5%]( P 55% 4 5{31{

Fig. 1 The simplified mechanical model
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The following assumptions are specified in the simplified mechanical model:

(1) The pipe pile is considered as a linear elastic continuum with an annular uniform
cross-section.

(2) The inner and outer soils are linear visco-elastic continuums with hysteretic-type material
damping [38], which neglect the variation of shear modulus and damping of the soil with
the shear strain level.

(3) The top surfaces of soils are free, namely, the normal stress and shear stress are zero. The
excitation at the pile head is uniform harmonic pressure.

(4) The visco-elastic supports beneath pile toe and soils are simplified as the Kelvin-Voigt
model [15].

(5) The intensity of excitation force at the pile head is low and the deformations of soil-pile
system are small. The interface sliding between the pile and soil is not considered [39-42].
It should be noted that, if the intensity of excitation force at the pile head is high, the
proposed analytical model may overestimate both the stiffness and damping of pile due to
the assumption of perfect bonding between pile and soil [43].

(6) The proposed analytical approach in this paper is suitable for PCC piles [44] where the
inner pipe is fully plugged [33, 45-47].

According to the wave propagation theory of 3D continuums, the 3D axisymmetric

governing equations of inner soil, outer soil, and pile shaft are established as follows.

2. S 2,,50
(B ) S VP = p (1a)
28 28
2 +,uS‘)aL2+,uS‘V2uS‘ =p¥ 0 uz (1b)
0z ot
o*u® o*u®
AF+G° +G"V" =p° 1c
( ) = L (Ic)

F L0, s

where sza > +_6 +? ;u”, u® and u® are the longitudinal displacements of pipe
r r or /4

pile, inner and outer soils, respectively; A%, 4% and p* are the Lame constant, complex
shear modulus, and density, respectively, of inner soil; A%, 4% and ,os1 are the Lame
constant, complex shear modulus and density, respectively, of outer soil; A*, G* and p"

denote the Lame constant, shear modulus, and density, respectively, of pipe pile. #", #* and

#* are the displacement amplitudes of pipe pile, inner and outer soils, respectively.

For the excitation force is harmonic, the vertical displacements of pipe pile, inner and outer

soils can be written as u” =", u* = e and u® ="', respectively. Then, Eq. (1a)~

Eq. (1c) can be expressed as the following forms, respectively,
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1+28% %™ @

So 7255 So - 2~y
A+2E°HVU™ + T —812 (VSO) u (2a)
cenes 14285 07aY @ -
S 2~5, — (N2
A+2&8)Vu™ + = _522 (Vsl) u (2b)
- 1 ou’ O -
va© + ToF o7 - _(F)zu P (2¢)

where &% and &% denote the hysteretic damping ratio of inner and outer soils, respectively.

P S
v, v

VP =JG"/p", v =G%/p® and V% =,G%/p® are the shear wave velocity of pile,

inner and outer soils, respectively. G™ = 1% /(1+2&%0) and G* = 1 /(1+2E%) are shear

S

and v» are Poisson’s ratio of pile, inner and outer soils, respectively.

modulus of inner and outer soils, respectively.
The boundary conditions of the simplified mechanical model are illustrated as follows:

The normal stresses at the free top surfaces of inner and outer soils are zero,

~S

wurl g (3a)
6Z z=H
~S,

Ou =0 (3b)
8z z=H

The boundary conditions at the bottom of inner and outer soils are shown as follows:

~5, S, . oS
ag +%ﬁsﬂ =0 (4a)
74
z=0
~5, S s oS
ag f O G g (4b)
Z E 0

where E* and E® are the elastic modulus of inner soil and outer soil, respectively. i

Sy

is a limited value when r=0. u™ diminishes to zero at infinity, namely,

]jn%zis‘) <o (5a)
lim % =0 (5b)

r—o

The boundary conditions of pipe pile are expressed as the following forms,

p2 2vp ot 7 (6a)
1-2v° 0z Z:H
out k' +iwo® -
gz ++E—lPuP =0 (6b)
z=0

where E® is the elastic modulus of pipe pile.

The shear stress equilibrium and displacements continuity conditions of soil-pile system are

ut = (7a)

r=n
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=] (7b)
77| (7¢)
A (7d)

where 77, 7% and 7% denote the shear stress of pipe pile, inner soil and outer soil,
respectively.
3. Solutions of the governing equations

3.1 Longitudinal vibration of soils

S and u% can be expressed as

Using the method of separation variables, u
i (r,2) =R (1NZ> () and u®(r,z)=R"(r)Z%(z), respectively. Then, Eq. (2a) and Eq. (2b)

can be rewritten as:

s . d*R% dzRSO 1+2&%; d’z% o
A2  orsa T s PV g =G (50
d*R% d2R51 1+2&8% d*z™
N —(—
-2 Far e o Vg G o
s . d*R% dZRSO 1+2&%; d*z% s . d’R%  d*R%
Thus, (1+2&%i) FopE rRsodr2 0o +1) 7547 , (1+2¢8 ‘l)( RS dr? Rs'drz) and

1+2&%  d*z%
S +1 S 2
1-2v7 Z7dz

255 255,
=—(h*)* as well as

are constants.

(

Setting =—(h®)? and substituting them into

ZSOdZZ 75 d12

Eqgs.(8a) and (8b), respectively, it yields:

(1+2E%)(2 = 2v™)

[ 1A% = (0)?

d’R*  d’R™ 1-2v>) 14 9
Sz s T S0 (9a)
R*dr®  rR>dr 1+2&>0
A+2E%)2-2v% )]( S (2 y2
d’R%  d°R¥ 1-2v") 14 o
Sy g,.2 + S 32 Sy » ( )
Rdr”  rR™dr 1+2&8™0
Therefore, Eqs.(8a) and (8b) can be further rewritten as:
2580
dz +(h*)*Z% =0
d’R* 1dR* . e
(@) RY =0
dr’ r dr @)
258,
d Z +(h*)’Z% =0
d’R% 1dRY | § ., (162}
(> RY =0
dr? r dr (@™
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So

where B ¢, K% and ¢* satisfy the following expressions.

1+2&500)(2=2v%
( i_l;(vso) 1% )](hSU )2_(Vas)0
1+2&%i

[ )

(¢>) = (11a)

A+2EM)2-2v") 500
(—20%) 1" —(

1+2&%

[0}
yS

[ )’

(¢ = (11D)

The general solutions of Egs. (/0a) and (10b) are obtained as

So — S So So gi So
{Z (z)=C™ cos(h*z) + D™ sin(h™z) (12a)

RY (r)=M> K (g*r)+ N*I,(qg>r)

N _ N N Si o Si
{Z (z)=C'cos(h’z)+ D' sin(h’ z) (12b)

R (r)=M>K,(¢* r)+N>1,(¢"r)
where C%, p%, Mm%, N%, 6 C%, D%, M®,and N* are all undetermined coefficients.
I,() and K,() are the first and second kind, respectively, modified Bessel functions of
order zero.
Thus, substituting Eq.(12a) into Eqgs.(3a) and (4a) as well as substituting Eq.(12b) into
Eqgs.(3b) and (4b), it yields:

K50

tan(h>°H) = — ey (13a)
K

tan(h>' H) = — oy (13b)

where K°® =k®+iwd®is the complex stiffness of viso-elastic supports beneath the pile toe;
K% =KSH/E* and K =K°H/E® are the dimensionless coefficient of viso-elastic supports
beneath the inner and outer soils, respectively.

Then the eigenvalue 4 and £ can be further determined by solving Eqs. (13a) and (13b),
respectively.

By combining Egs.(5a), (5b), (13a) and (13b) #* and #* can be obtained as:

%= ZASOIO(qjﬂr) cos(h®z —h"H) (14a)
n=l

s = ZASI Ky (g3 r)cos(h® z—h* H) (14b)
n=1

where A% and A% are undetermined coefficients.
3.2 Vibration of the pipe pile

Due to the non-homogeneous boundary condition at the head of pile, the corresponding

general solution for the displacement of pipe pile shaft is rewritten as the following form:
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i (z,r,0) =0 (z,r,0) +ii, (z,0)

where ﬁlp(z,r, ) satisfies Eq.(16); ﬁzp (z,w) satisfies Egs. (2c), (6a) and (6b).

I g
V' + a ——[ﬁj u’

-2 a2 \v?
» 2—2v° o’ 0
: -
1-2v° 0z o
~P P . P
aLJr%glp =0
aZ E z=0

Then, the general solution for Eq.(16) is obtained by:

i = {71, (q5r)+ B} Iy(qyr)}cos(hyz — Iy H)
n=l1

(15)

(16)

(7

where A" and B! are undetermined coefficients; K" =k"+iws" is the complex stiffness of

viso-elastic supports beneath the pile toe; K' =K°H/E" denotes the dimensionless

coefficient of viso-elastic supports beneath the pile toe; s, can be determined by combining

tan(i"H)=—-K"/h"H, K* =K"H/E" and K" =k"+ia5".

Thus, ¢’ can be further obtained from Eq.(18)

(@) =[2-2")/1-20"1) —(w/V")

Substituting i, (z,®) into Eq.(2c) yields:

d’it;
—dzj +(d") iy, =0

where d° =V—a;\/(1—2vp)/(2—2vp) .

The general solution of Eq. (19) is obtained as:
iy (z,0) =a’ cos@d"z) +b"sin(d"z)
where a" and b are undetermined coefficients.
Substituting Eq.(20) into Egs.(6a) and (6b) yields:

oo HE,(v" -1)
2-2v")GP[K® cos(d"H)+d"H sin(d"H)]

WP KPE,(1-2vF)
Q2-2")G d"[K* cos(@"H) +d" Hsin(d"H)]

(18)

(19)

(20)

(21a)

(21b)

By combining Egs. (15), (17), (20), (21a) and (21b), the general solution for #" can be

expressed as:

HE,(2v" —1)[cos(d"z) - K

22)

i@ (zr,0) = Y (AL, (q)r) + BY Ky (g} r)ycos(h z— b H) +

n=1

Thus, the shear stress of soils and pile shaft can be expressed as:

2-2v")G?[KF cosd"H)+d"H sin(d"H)]
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7S = ﬂSOZqS"ASUI] (gr)cos(h’z—h " H) (23a)
n=1

F =" gy A K, () r)cos (Y z— ) H) (23b)
n=1
£ =G"Y AT (g}~ BIK, (g} r)}cosy =~y H) (23¢c)
n=1

By assuming K% = K%' = K", it gives h* =h" =h' =h,.
Inserting Eqgs.(14a) and (22) into ( 7a), and substituting Eqs.(14b) and (22) into ( 7b),

respectively, the following expressions can be obtained

0

D AV (g)ry)cos(h, z—h, H)
n=l1

- K’ (24a)
HF,(2v" ~)[cos(d"z) - T sin(d"2)]
2-2v")G'[K" cos(d"H)+d"H sin(d"H)]

= > A1, (a)m) + B Ko (g, )} cosh, z—h, H) +
n=1

0

D AYK,(gy'r)cosh,z—h, H)
n=1

N %P (24b)
HF,(2v" = D[cos(d"z) - P sin(d"z2)]
2-2v")G'[K" cos(d"H)+d"H sin(d"H)]

= > {A71,(q;n) + By K (g} r)}cos(h,z—h, H)+

o
Inserting Eqs.(23a) and (23c) into (7c) and substituting Eqs.(23b) and (23c) into (7d),
respectively, we have
g AL () = G WL @) - BlK gl (25w)
1S AT K (G5 R) =GRl AT (g} )~ BUK () (25b)
Thus, multiplying both sides of Eqs.(24a) and (24b) by cos(h,z—h H) and integrating it
between the limits [0, H],respectively, it produces

HE,(2v" -1)

LnAns"Io(CIS‘]ro) =L, {Aflo(qrro)"'B:Ko(qr}:ro)}"‘ 2-2")G" #, (262)
HE, (2" -1
LAYK, (@) =L, {&10<qfn)+BfKo<qfn>}+Q§2—M¢n (26b)

cos(d"z) —sin(d* )K" /Hd"®
K" cos(d"H)+d"H sin(d"H)

H H
where L, =_[ cos’(h,z~h,H)dz, ¢,= cos(h 2~ h H)dz.
0 0

By combining Eqgs.(25a), (25b), (26a) and (26b), the corresponding undetermined

coefficients A, and B, can be determined as

o, —a HE, (2" -1
A==t HW D, 27a)
a0, — a0, (2-2v)G

B o A= HF,(2v" -1)
"y, —an,, (2-207)GT

9, (27b)
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LG q,1,(q,7)K,(q,'r)
12qy K (q3'n)

L,G"q, K (q,1)K (5" 1)
1O g K (g)'r)

where «,, = _LnKO(q;l:rl) s Uy =— _Lnlo(qu:rl)
LnGqult)IO(q:OrO)Il(qul)rO)

wg (g r)

L,G 4y 1,(g,°1)K (g, 77)
== Tas0 9n To/2idnTo ~L,Ky(q,n) 00, =

-L1I,(q'n).
1g T (g2 ) odnTo

21

Therefore, the longitudinal displacement function of pipe pile in frequency domain can be

expressed by
~ P
Q-G ) 28)
Z”:(a“ —a, ) (g r) +(ay, —a;,)Ky(gFr) 4 cos(H’z— ITH) + cos(d"z)— (K" /Hd")sin(d" z)
=t )0y — Oy ! ! ! K" cos(@"H)+d"Hsin(d"H)

Furthermore, the frequency response function for the longitudinal displacement can be

written as:

(e, - a21)10(q:r)
~p

P ®© P P P P : P
Hu(r,a)) — 5:H _ H(2V P_ 1)P Z + (azz _alz)KO(qn I’) ¢n + Co_slgd H) ; (K /I—id )Sm(dP H) (29)
F, QC-2)G |~ a,ay, - a0y, K" cos(d H)+d Hsin(d H)
The longitudinal complex impedance function for the pile head K,(r,®) is given as:
Kd(r,a)):%=Kr(r,a))+iKi(r,a)) (30)

where K, (r,w) and K,(r,w) are the dynamic stiffness and damping, respectively.
For the convenience to perform further comparative analysis, with respect to the previous
solutions which are derived from the Euler—Bernoulli model and the Rayleigh—L.ove model,

the cross-sectional equivalent frequency response function of longitudinal displacement for

pile head is defined by
_ 1 27 o
Hu(a)):mj; v[hHu(r,a))rdrd(/)
2¢n(all_aZl)[rlIl(q:r])_rt)ll(q:ro)] (3])
CHQ' -1 i @ (0,2 — 00, ) = 15) , cos@"H)~(K*/Hd" )sin(d"H)

=26 | 24, (e — @)K (@5n) 1K, (gfr)] K cos@"H)+d" Hsin(d"H)

G (@0, =0 )1 = 13)
Thus, the cross-sectional equivalent complex impedance for pile head can be easily

defined by

K, ()= =K, (0) +iK, (@) (32)

H, ()
where K,(w) and K,(w) denote the cross-sectional equivalent dynamic stiffness and

damping, respectively.

4. Results and discussions

In this section , numerical examples are illustrated to validate the obtained analytical
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solutions via comparisons with previous solutions. Comparative analyses are also performed
to illustrate the difference between the present and previous solutions, concerning the wave
propagation effect in radial direction on the longitudinal dynamic characteristics of pile shaft.
Furthermore, the effects of Poisson ratio and visco-elastic support beneath the pile toe, on the
longitudinal dynamic characteristics of pile shaft, are investigated. Unless other specified, the

mechanical parameters are used as follows:
H=6m ; E* =40GPa ; p’ =2500kgm™ ; v* =0.35 ; 1, =0.3m ; r, =0.6m ; V"' =v* =0.35 ;
& =% =0.02;G% =G =20MPa ; p* = p™ =2000kgm™; K¥ =K¥ =K"=1.0.

4.1 Verification of the proposed solution

The cross-sectional equivalent complex impedance written in Eq.(32) can be reduced to
depict the longitudinal vibration of a pipe pile with fixed end supports by setting
K% =K% =K" 0. Thus, the proposed solution can be validated by comparing it with the
solution of Liu et al. [37] in the same parameter system. As can be seen from Fig. 2, the
proposed solution for the cross-sectional equivalent complex impedance with different pile
length H is in great agreement with that derived by Liu et al. [37]. Similarly, the proposed
solution is also reduced to compare with the existing solution of Meng et al. [48] by

setting r, >0, as shown in Fig.3. It is observed that the proposed solution for the

cross-sectional equivalent complex impedance with different pile length H also agrees well
with the previous solution of Meng et al. [48]. Hence, the validity of the proposed solution
can be verified with the above independent comparisons.

As the proposed solution is, the existing solutions above are also derived from the wave
propagation theory of 3D continuum for the whole pile-soil system. It is noted that the further
consideration of the vsico-elastic supports beneath pile toe (3D-continuum pile model) leads
to total differences in the vibration mode, eigenfunctions for displacement and orthogonality

of eigenfunctions, from those of the solution derived by Liu et al [37].
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Fig. 2 Comparison of the cross-sectional equivalent complex impedance in reduced form
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(r, —0) with the solution of Meng et al. [48]

4.2 Comparative analyses of the proposed solution

As for the Euler—Bernoulli rod model, the wave propagation effect of pile shaft in radial
direction is completely ignored. Approximately, the Rayleigh—Love model takes this radial
wave effect into account by introducing Poisson’s ratio to the governing equation. For the aim
to demonstrate the difference, between the present solution and previous solutions derived
from rod-type models of pile shaft, i.e., the Rayleigh—Love [32] and Euler—Bernoulli [49] rod
models, comparative analyses are performed.

Fig.4 and Fig.5 depict the difference between the present and previous solutions with H=

12m (H/r, =20 ) and H= 6m ( H/r; =10 ), respectively. Since the present solution considers the

3D wave propagation effect within the pile shaft, it is clear that the resonance frequency and
amplitude of complex impedance are both smaller than those corresponding to the
Rayleigh—Love and Euler—Bernoulli rod models, and this difference becomes more obvious
as the frequency increases. Furthermore, the solution from the Rayleigh—Love rod model is
closer to the present solution than that from the Euler—Bernoulli rod model. With the decrease
of pile slenderness ratio (i.e., to keep the cross-section of pile constant and decrease the pile
length from H=12m to H=6m), the difference between the present and previous solutions gets
greater, especially within high-frequency range. It indicates that, even though the
Rayleigh—-Love rod model can roughly consider the radial wave effect on pile vibration in
certain circumstances, it may lead to an overestimation of the pile's complex impedance,

especially for piles with small slenderness ratio or high-frequency excitation.
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Fig.6 illustrates some typical points (i.e., P1, P2, and P3) at the pile head. As shown in
Fig.7, a comparison of the complex impedance solution at the typical points is performed. It
should be noted that a frequency interval (from 1078 to 1124 Hz) adjacent to the forth
resonance frequency is specified for the convenience to examine the radial wave effect on the
complex impedance of pile head. It can be found that the fourth resonance frequencies
corresponding to dynamic stiffness and dynamic damping are 1,116 Hz and 1,080 Hz,
respectively. In addition, substituting the fourth resonance frequency of dynamic stiffness and
damping into Eq. (30), it yields the cross-sectional contours of the complex impedance of pile
head as shown in Fig.8. It can be seen from Fig.7 and Fig.8, that there exists a significant
annular variance of complex impedance along the radial direction of the pile head.
Specifically, the dynamic stiffness increases first and decreases afterward, while the dynamic
damping keeps increasing, with the change of corresponding position from the inner to the

outer of the pile head.
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The effect of Poisson’s ratio on the cross-sectional equivalent complex impedance for

pile head is shown in Fig. 9. It can be observed that both the resonance amplitude and

frequency of complex impedance decrease with the rise of Poisson’s ratio. As the frequency

increases, this tendency becomes more obvious. Fig. 10 shows that the dimensionless

coefficient of visco-elastic support beneath the pile toe has a considerable effect on the phase

of the cross-sectional equivalent complex impedance for pile head. To be specific, the

resonance frequency of complex impedance decreases as the dimensionless coefficient of

visco-elastic supports increases, while the effect on the resonance amplitude can be ignored.
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5. Conclusions

A novel approach is presented to describe the longitudinal vibration system of a
large-diameter floating pipe pile and surrounding soils based on the wave propagation theory
of 3D continuum. The corresponding analytical solutions for longitudinal complex impedance
are obtained and subsequently verified by comparisons with existing solutions. Comparative
analyses are also performed to discuss the difference between the present and previous
solutions, which reveals the wave propagation effect in radial direction on the longitudinal
dynamic vibration of pile shaft. Furthermore, the effects of Poisson ratio and visco-elastic
support beneath the pile toe, on the longitudinal dynamic vibration of pile shaft, are examined.
The results indicate that:

(1) The resonance frequency and amplitude of the present solution are both smaller than
those corresponding to the Rayleigh-Love and FEuler—Bernoulli rod models, and this
difference becomes more obvious as the frequency increases.

(2) Even though the Rayleigh—Love rod model can approximately consider the radial
wave effect on pile vibration in certain circumstances, it may lead to an overestimation of the
pile's complex impedance, especially for piles with small slenderness ratio or high-frequency
excitation.

(3) Both the resonance amplitude and frequency of complex impedance decline with the
rise of Poisson’s ratio. Differently, the resonance frequency of complex impedance decreases
as the dimensionless coefficient of visco-elastic supports increases, while the effect on the
resonance amplitude can be ignored.

(4) The proposed approach and corresponding solutions provide a more extensive scope
of application for longitudinal vibration analysis of a large-diameter floating pipe pile, which
can also be reduced to analyze the longitudinal vibration problems of large-diameter floating

solid pile and fixed- end pipe pile.
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Fig.4(a)
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Fig.4(b)
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Fig.5(a)
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Fig.5(b)
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Fig.7(b)
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Fig.8(a)
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Fig.8(b)
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Fig.10(b)
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Research Hightlights

Highlights:

(1) A novel approach is presented to describe the vertical vibration system
of a large-diameter floating pipe pile and soils ,considering the
three-dimensional wave effects.

(2) The proposed approach and corresponding solutions provide a more
extensive scope of application and can be reduced for the vertical
vibration problems of large-diameter floating solid pile and fixed- end
pipe pile.

(3) The limitations of previous solutions derived from rod-type models
are demonstrated, which may lead to an overestimation of impedance,
especially for piles with small slenderness ratio or high-frequency
excitation.
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