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ABSTRACT

1. Individual-level traits mediate interaction outcomes and community structure. It is
important, therefore, to identify the minimum number of traits that characterise ecological
networks, i.e. their ‘minimum dimensionality’. Existing methods for estimating minimum
dimensionality often lack three features associated with increased trait numbers: alternative
interaction modes (e.g. feeding strategies such as active vs. sit-and-wait feeding), trait-
mediated ‘forbidden links’ and a mechanistic description of interactions. Omitting these
features can underestimate the trait numbers involved, and therefore, minimum
dimensionality. We develop a ‘minimum mechanistic dimensionality’ measure, accounting
for these three features.

2. The only input our method requires is the network of interaction outcomes. We
assume how traits are mechanistically involved in alternative interaction modes. These
unidentified traits are contrasted using pairwise performance inequalities between interacting
species. For example, if a predator feeds upon a prey species via a typical predation mode, in
each step of the predation sequence the predator’s performance must be greater than the
prey’s. We construct a system of inequalities from all observed outcomes, which we attempt
to solve with mixed integer linear programming. The number of traits required for a feasible
system of inequalities provides our minimum dimensionality estimate.

3. We applied our method to 658 published empirical ecological networks including
primary consumption, predator—prey, parasitism, pollination, seed dispersal and animal
dominance networks, to compare with minimum dimensionality estimates when the three
focal features are missing. Minimum dimensionality was typically higher when including
alternative interaction modes (54% of empirical networks), ‘forbidden interactions’ as trait-
mediated interaction outcomes (92%), or a mechanistic perspective (81%), compared to
estimates missing these features. Additionally, we tested minimum dimensionality estimates
on simulated networks with known dimensionality. Our method typically estimated a higher
minimum dimensionality, closer to the actual dimensionality, while avoiding the
overestimation associated with a previous method.
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4. Our method can reduce the risk of omitting traits involved in different interaction
modes, in failure outcomes, or mechanistically. More accurate estimates will allow us to
parameterise models of theoretical networks with more realistic structure at the interaction
outcome level. Thus, we hope our method can improve predictions of community structure

and structure-dependent dynamics.

ITEPIAHYH (Abstract in Greek)

1. Ta, aIVOTUTIKA YOPOKTNPICTIKG TOV OPYOVIGUMY GUVEIGOEPOLY GTIC EKPACEIC TV
OLKOAOYIK®MY QAANAETIOPAGE®Y Kol 6T SOUT TOV OIKOAOYIKOV KovoTtHT®V. Eival emopévog
OTUOVTIKO VO TPOGO10PIGTEL 0 EAGYIGTOG aPIOUOS YOPAKTNPIOTIKMY TOV EUTAEKOVTOL GE £VO,
0KOAOYIKS JiKTLO, ONANOT 1 «EAYIGTN dlacTactudTnToy. Ot vITapyovces uébodot yio, TNV
EKTIUNOT TNG EAAYIOTNG O10OTACIULOTNTOC OEV SLUBETOVY KOWVAMC TPELS 1O1OTITES TTOV
oyetiCovtal e TEPLIGGOTEPO. YOPUKTNPIOTIKA: EVAALOKTIKOVG TPOTOVG aAANAETIOpaoG (7.,
OTPOTNYIKES BN pevonc HEo® evepyng avalnTnong 1 EVESPOG), «ATOYOPEVLEVEC GUVOEGEID»
e€a1tiog YOPUKTNPICTIKMVY, KOl UNYOUVICTIKT TEPLYPOPT| TOV OAANAETOpacewy. H mapdietyn
OVTOV TOV WO10TATOV UTOPEL VO VITOTIUNGEL TOV APlORd TOV GUUUETEYOVTOV
YOPUKTNPICTIKMDY, KOl GUVETMG TNV EAUYIOTN S0OTACIUOTNTA. LTIV TOPOVCH EPYACI,
OVOTTOGGOVUE U0l LETPIKT] KEALYLOTNG UNYOVICTIKTG OOGTAGLUOTNTAGY, 1) Omtoio AapPdvet
VIOV QVTEG TIG TPELS 1010TNTES.

2. Ta pova dedopéva mov ypetdlerar n péBodAS pog eivar o exPfdoels ariniemidpdoemv
evog diktvov. Kdvovpe pia mopadoyn yio To Tmg To YopoKTNPLOTIKG EUTAEKOVTOL
UNYOVICTIKE HECH EVOAAUKTIKOV TPOT®OV aAANAETIdpacTg. AVt Ta apnpnuéva
YOPOKTNPIOTIKE cuyKpivovTon Katd (edyn LEC® OVIGOTHTMV GTNV €Ni000T TV
oAANAemOPpOVTIOV opyavicu®v. ['a mapddetypo, dv Kamolog Onpevtnc tpépetal pe Kdmoto
Aelo péom gvog Tumikov Tpdémov Onpevong, og kabe Prina g Bnpevticng daducaciog 1
emidoon Tov Onpevt Tpémel va givar peyaivtepn omd g Aelog. Koataokevdlovpe Eva
oLOTNUO OVIGOTNT®V and OAES TiG Tapatnpneices ekPacels, To omoio Tpoomabovpe va
AOCOVUE e KTO OKEPOLO YPALUIKO TPOYpappationd. O aptBuog Tov YopoKTPIoTIKOV 0V
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OTOTOOVTOL Y10 £VO, EMADGILO GVGTNUO OVIGOTHTOV EIVOL 1] EKTIUNGT LOG Y10 TV EAGYLOTN
dloToouoTTO.

3. Epapudoape ™ péBodo pog og 658 dNUOCIEVUEVO EUTEPIKA OIKOAOYIKA diKTLOL,
GUUTEPTAOUPAVOUEVDY SIKTVMOV KOTAVAAMGNG TOPUYDYDV, Aeloc—Onpenth, TOPAGLTIGHOD,
EMKOVINGONG, O106TOPAG CTEPUATMV KOl KUPLOPYIKOTNTOG G€ OUadEg CdmV, yia v GuYKPOet
LE EKTYMOELG EAAYIOTNG OL0GTAGILOTNTOC OTAV TOPUAEITOVTOL O TPELG OYETIKEC W10t TEC. H
EAMAYLOTN SLOGTAGIUOTNTO, HTAY TUTTIKMG LYNAOTEPT OTOV EVOOUATOCOUE EVUALUKTIKODS
TpOTOVG oANAeTidopacnc (54% TV EUTEPIKAOV SIKTO®V), KOTUYOPEVUEVEC OAANAETIOPAGELD)
e&outiag yopokmplotikdv (92%) 1 pa pnyovictikn tpocéyyion (81%), oe obykpion pe
EKTIUNGELS O TIG OToieg EAeumay avTég ot 1010t TeG. EmmAéoy, eléyEape ekTiUNoELS
EMAYLOTNG OLOOTAGILOTITOC GE TPOGOUOIUEVA diKTVA YVOGTAG dlaoTtaciuotntog. H uébooodg
LLOG TUTIKMG EKTIUNOE [0, VYNAOTEPT] EAAYIOTN SOCTACLOTITO, TTLO KOVTH GTIV TPOYUOTIKNY
SoTOCIUOTNTA, OTOPEVYOVTAGS TOPAAANAL VITEPEKTIUNCELS YOPUKTNPIOTIKEG UG
TponyovpevNg Lebodov.

4, H p1€60006¢ pog pmopel va petdoet Tov Kivouvo TapaAEyne YOPaKTPLOTIK®Y TOL
EUTAEKOVTOL GE JAPOPETIKOVG TPOTOVE AAANAETIOPOOTG, O OmoTLUYNUEVES eKPhoElg
oAMNAenidpaonc 1 pnyoviotikd. Ot mo axpiPeic eKTIuoel; Oa pog emiTpéyouy va
TOPOUETPOTOMGOVUE LOVTELD BEDPNTIKOV SIKTV®V TTLO EDA0YNG dOUNG GTO EMINESO TOV
ekPaocwv. 'Etot, ehmiCovpe 011 1 néBodog pog pmopet va cuveloépel oe PEATIOUEVEG

TPOPAEYELS TNG OOUNG KOl SUVAUIKNG TWV OLKOAOYIKMV KOWVOTITMV.

KEYWORDS
Cyclic rock—paper—scissors intransitive game, food web intervality, multilayer ecological

networks, mutualism, niche space, phenotype space, social networks, trophic interactions.



1 INTRODUCTION

Ecological networks are structured by different forces, including dispersal, habitat
filtering processes and species interactions (Bartomeus et al., 2016). Interaction outcomes are
determined by the relative performance of each organism’s traits, i.e. whether one individual
successfully exploits another (Bartomeus et al., 2016; Pichler et al., 2020). For example, a
nectarivory outcome can depend on the length of a nectarivore’s mouth part compared to the
depth of the plant’s corolla tube. Thus, the comparison of trait-mediated performance between
interacting exploiters and resources underlies interaction outcomes and, subsequently,
community structure (Arnold, 1983). Here, we develop a method which leads backwards from
the observed interaction outcomes to an estimate of the minimum number of traits involved in

that type of interaction, which we term ‘minimum dimensionality’.

Knowing the minimum dimensionality for a set of interaction outcomes focusses our
investigations on which traits underpin community structure (EkI6f et al., 2013). A set of
interaction outcomes can be represented by a network (Delmas et al., 2019), illustrating which
organisms achieve success in their interactions. They can be represented as unipartite
networks, where all participants are included in a single group, and interactions occur
between any group member, e.g. a food web; or bipartite networks, where participants are
assigned to either of two groups, and interactions can occur between different groups, e.g. a
plant—pollinator network. Estimating the minimum dimensionality of such networks before
deciding how many traits to investigate can prevent the omission of important traits. More
accurate prediction of interaction outcomes can then be made by combining information on
the minimum number of necessary traits with appropriate biological knowledge and methods
to investigate the contribution of specific traits (Pichler et al, 2020). Minimum dimensionality
can also inform theoretical network models about the minimum number of trait axes which

have to be included for the reproduction of realistic networks.



Since interaction networks are often characterised by traits, accurately estimating
minimum dimensionality will improve our understanding of interaction outcomes. Here, we
combine three relevant features for the first time, which we predict will increase the estimated
minimum number of traits involved in interactions. First, resources can be successfully
exploited via alternative strategies, which we term ‘interaction modes’. For example,
flowering plants use visual or olfactory signals to achieve pollination (Schiestl & Johnson,
2013), and zooplankton species exhibit feeding modes such as active predation and filter
feeding (Kierboe, 2011). These different trait combinations can modify the minimum
dimensionality. Second, failure to exploit a resource can be considered a trait-mediated
outcome of interaction, i.e. a ‘forbidden link’ or ‘forbidden interaction’ (Jordano, Bascompte,
& Olesen, 2003). Here, we assume that two organisms interact given their inclusion in the
network, even if they never actually meet, e.g. through temporal mismatch. Thus, traits
involved in failures can also be included, which may differ from traits involved in successes.
Third, to successfully exploit a resource via a given mode, an exploiter may have to succeed
in different ‘tasks’, each employing different traits. For instance, a predator must succeed in
all tasks of the predation sequence: encounter, detect, identify, approach, subjugate and

consume a prey (Endler, 1991).

Existing methods for estimating minimum dimensionality lack at least one of these
three features. The minimum dimensionality method of Eklof et al. (2013) estimates the
minimum number d of dimensions such that the trait values of each exploiter’s resources lie
in a contiguous volume of a d-dimensional space (also applied to each resource’s exploiters).
Alternative interaction modes are not considered because all d dimensions act in conjunction
to determine exploitation. Additionally, each dimension potentially accounts for multiple
traits. Thus, although their method tells about the niches of the exploiters and resources, it
does not address the issues of alternative interaction modes and tasks (see an illustrative
example in Fig. 1). Ignoring interaction modes and tasks places this method towards the

phenomenological end of a phenomenological-mechanistic continuum, where we consider
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mechanistic approaches in a proximate (ecologically motivated) rather than an ultimate
(evolutionarily motivated) sense. Dalla Riva and Stouffer (2016) adopted a more mechanistic
approach to minimum dimensionality, with a simple trait space representation for trophic
interactions. They explicitly modelled interaction network structure, comparing paired
exploiter—resource trait values. However, Dalla Riva and Stouffer (2016) model interactions
via a single interaction mode; the task outcomes act additively from each corresponding
exploiter—resource trait pair comparison. Finally, corresponding to forbidden links, it is
common for behavioural studies to employ predictor traits to explain only the observed
dominance events in a system, i.e. only the success outcomes (Chase & Seitz, 2011). Such
attempts can overlook relevant traits which might contribute only to the interaction failure

outcomes.

We developed a novel method providing a different view on interaction networks by
combining alternative interaction modes, trait-mediated failures and mechanistically-based
tasks, in a minimum dimensionality measure. Our ‘minimum mechanistic dimensionality’
measure can be applied to a broad range of ecological networks, including animal dominance,
predator—prey, primary consumption, pollination, parasitism and seed dispersal networks. We
investigated how our minimum dimensionality estimate compares with previous approaches
across a range of empirical networks: under the assumption of alternative interaction modes
compared to a single mode; with failure outcomes taken into account instead of omitted; and
under a more mechanistic perspective compared to the minimum dimensionality under the
more phenomenological, niche approach of Eklof et al. (2013). We go on to estimate
minimum dimensionality on simulated networks with a known underlying number of
dimensions. Therefore, we test for potential underestimation of minimum dimensionality
across different scenarios which could lead to the omission of key traits and mechanisms

underlying interactions and community structure.

2 METHODS



We illustrate our approach with an empirical example of cyclic spatial replacement
among three competing marine invertebrates. While the minimum dimensionality of this
intransitive network equals one dimension following Eklof et al.’s (2013) method, since each
exploiter (resource) has a single resource (exploiter), our method estimates two dimensions,
providing a useful illustrative example. We describe the interactions in the context of
exploiter and resource roles, going on to define and calculate the minimum mechanistic
dimensionality of the network using inequalities. We then describe how we compared
competing minimum dimensionality estimates across 658 empirical networks—including
social hierarchies, mutualistic networks and food webs—and on simulated networks of known

dimensionality.

2.1 Minimum mechanistic dimensionality: an overview

Jackson and Buss (1975) described the cyclic spatial replacement of three encrusting
marine invertebrates: ectoproct species Stylopoma spongites (player A) replaces sponge
species Tenaciella sp. (player B); Tenaciella replaces the sponge Toxemna sp. (player C),
which in turn replaces the ectoproct player A. In our framework, a player (individual or
species) can adopt the role of an exploiter, a resource, or both. In the marine invertebrates
example, we consider any species both exploiter-and-resource of the other species,
representing the observed replacement outcomes of spatial competition with a unipartite
network (Fig. 1). Exploiters possess traits involved in achieving exploitation, whereas
resources possess traits working against exploitation. For task success, an exploiter’s
performance in a given trait, termed ‘power’, must be higher than the resource’s performance
in a corresponding trait, called ‘toughness’ (taken from the creature combat rules of the card
game Magic: The Gathering” in Garfield, 2017). Exploiter and resource are challenged in one
trait ‘dimension’ of their phenotype space, where the corresponding power—toughness trait
performance is directly compared to determine who succeeds in that task. Using Boolean
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logic terms, interaction modes can be represented as OR-associated clauses of AND-

associated tasks (see examples of one 2-dimensional mode and two 1-dimensional modes in

Fig.1). In logic, any structure of logical statements can be expressed in this ‘disjunctive

normal form’, which we term the ‘interaction form’, providing a systematic description of

how interactions occur.

+ Power of exploiter X: Py
* Toughness of resource Y: Ty

Exploiter X in a task: :
succeeded (Px > Ty): Py < Ty :
failed (Py = Ty): Px —Ty :

Impossible

One 1-dimensional mode

PalTa Task 1:
Overgrow

destructivel
Pc|Tcl—-P5|Tp y

Must satisfy:
for failures for successes
Py =Tc Tc < Pg
P =T, TA < PC
Pc=Tg Tg < P,

Pa=Tc<Pg=Ty<P-=sTg<P,

“~—__Impossible __—~

Observed
outcomes

Minimal

explanation Il

Minimal -
explanation |

One 2-dimensional mode Two 1-dimensional modes

2|3 2|3 0|0
Task 1:
f \, Overgrow (I \, OR
4|2=>3|1 12 3|1 1]0—0]1
Task 1: Task 1:
AND AND Overgrow  OR Destro
2| destructively allelochemically
Task 2:
Destroy

110} 111 underneath

FIGURE 1 Explaining the observed competitive outcomes in an empirical rock—paper—scissors system of spatial

replacement in three marine invertebrates. Each species was considered exploiter-and-resource of the others,

possessing a power|toughness trait pair per task. We illustrate three minimal explanations for the observed

outcomes: a 1-dimensional mode is mechanistically impossible, presuming a single trait pair for a single task, i.e.

one dimension; the other two attempts are feasible, requiring two trait pairs in two tasks, i.e. two dimensions. We

indicate hypothetical tasks, and power|toughness trait scores in arbitrary units of performance. The indicative

power|toughness values demonstrate that only the 2-dimensional minimal explanations are mathematically

feasible.

The only input our method requires is the set of observed interaction outcomes. We

then define an interaction form describing the number of interaction modes which produced

these outcomes, with each mode having a specific number of tasks. Since our aim is a

minimum dimensionality estimate, we start with the simplest interaction form of a single task.

In our example, we assumed that interactions occurred via the destructive overgrowth of a



rival invertebrate. For this task, a single pair of opposed, exploiter—resource power—toughness
traits is assumed for all species. For example, the body height of the invertebrates when
extending to an adjacent rival could be a trait for the power to overgrow destructively; and
their body height when defending against overgrowth by rivals could be a trait for the
toughness against destructive overgrowth. We then confront this trait pair in a system of
inequalities, to satisfy the observed task successes and failures which correspond to the
observed outcomes for this single-task interaction form. For task successes, the power of a
winning exploiter must be greater than the toughness of a defeated resource, e.g. the
exploiter’s body height must be higher than the defender’s. For task failures, the power of a
losing exploiter must be less than or equal to the toughness of an undefeated resource. In our
example, the resulting system of six inequalities creates a cyclic sequence of ever-increasing
power—toughness scores (the impossible ‘one 1-dimensional mode’ in Fig. 1). Thus, it is
impossible to explain the observed outcomes in this unipartite graph if we presume that

interactions occurred via a 1-dimensional interaction mode of a single task.

Our framework provides two alternative minimal mechanistic explanations for the
emergence of this rock—paper—scissors network. First, we can find feasible power—toughness
scores if we add a second task, i.e. another pair of power—toughness traits in the same mode
(minimal explanation I in Fig. 1). We explain the failure of players A and B as failure in the
first task (failure in overgrowth), and the failure of C as failure in the second task (failure to
destroy the rival, even if C can overgrow B). Alternatively, we can find solutions if we add a
second interaction mode with one task, i.e. another pair of power—toughness traits in a new 1-
dimensional mode (minimal explanation II in Fig. 1). In that case, A and B achieve success
via the first mode (destructive overgrowth), and C achieves success via a second mode
(allelochemical elimination). Since the addition of a second task (power—toughness trait pair)
leads to feasible power—toughness scores under both minimal explanations, the minimum
mechanistic dimensionality of the empirical network equals two dimensions in both cases.
This result, combined with biological insight from Jackson and Buss (1975), suggests that
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minimal explanation II is the more plausible one, since: player A replaces B via overgrowth,
player B replaces C via overgrowth, but player C replaces A via toxic effects. Appendix S1
presents the complete systems of inequalities for this network under minimal explanations I

and II, following the details presented next.

2.2 Minimum mechanistic dimensionality: formulating the inequalities

As illustrated above (Fig. 1), the mechanistic explanation of the interaction outcomes in
a network might require more than one pair of opposed exploiter—resource trait dimensions.
One method to find this minimum number of trait dimensions is by attempting to solve a
system of inequalities. If the system of inequalities is impossible, a simple strategy is to
increase the number d of dimensions by one, and retry (illustrated with pseudocode in Fig. 2).
Our minimum mechanistic dimensionality estimate is, therefore, the minimum d > 1 for a
feasible system of inequalities. In the marine invertebrates example, there were two types of
minimal explanation: additional trait pairs belonging to the same interaction mode (minimal
explanation I); or belonging to other, independent, 1-dimensional modes (minimal
explanation IT). We will illustrate these two extreme explanations, although tasks could be

distributed to interaction modes in other ways for cases requiring more than two tasks.
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obs_outc = read_observed_outcomes()
min_expl_type = read_type()
d=20 ]
system_feas = FALSE
while(system_feas == FALSE):
d=d+1#w : td
iflmin_expl_type == 1): # C
for each success of exploiter A vs. resource B in obs_outc:
for each task i from 1 to d:
formulate inequality (1) € k
for each failure of exploiter A vs. resource B in obs_outc:
for each task i from 1 to d:
formulate inequalities (2) and (3)
formulate inequality (4)
elseif(min_expl_type == 2): )
for each failure of exploiter A vs. resource B in obs_outc:
for each mode jfrom 1 to d:
formulate inequality (5)
for each success of exploiter A vs. resource B in obs_outc:
for each mode j from 1 to d:
formulate inequalities (6) and (7)
formulate inequality (8)

system_feas = solve_formulated_system() #
FIGURE 2 Pseudocode for estimating the minimum mechanistic dimensionality of an ecological network, from the

observed outcomes under minimal explanations I and I

When a new task is added to a single mode, permitting feasibility of the system of
equalities, the d exploiter—resource trait pairs (dimensions) must be involved in the same
mode (minimal explanation I, Fig. 1). On one hand, an observed success of exploiter A
against resource B must be the result of success in all tasks (e.g. player A succeeds in both
overgrowing and destroying B in Fig. 1). Specifically, the power P, > 0 of exploiter A in any
trait pair / must be greater than the toughness 7; > 0 of resource B in that trait pair: P,; > Tg;.
Since each trait pair i appears only in one task in our current formulation, we use the same
index i for both trait pairs and tasks. If success requires more than the marginal superiority of
the exploiter’s power, a superiority threshold can be added, 4 5; > 0, making the task success
requirement:

Ppi2Tpi+ tap,i. (1)
On the other hand, the observed failure of exploiter A against resource B must be the result of
failure in at least one task (e.g. player C failing at task 2 against B in Fig. 1). We can use a
binary variable as an indicator of failure in trait pair i, fy g; (Williams, 2013). If f 5, = 1, then

exploiter A fails against resource B in trait pair i; otherwise, f ,; = 0, representing exploiter
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success in the task. Finally, we include bounds for the power—toughness differences for
computational efficiency (Williams, 2013): a sufficiently negative lower bound m of the
exploiter’s power inferiority in case of task failure; and a sufficiently positive upper bound M,
of the exploiter’s power superiority in case of task success. Here, we set m =—200 and M =
200, but these limits were not reached in any of the empirical and simulated networks we
considered. Thus, for an observed failure, the following pair of inequalities must be satisfied
in any trait pair i:

Pri+ M fapi<Tpi+ M, (2)

Ppi—m fapi = Tpit tapi (3)
With an extra inequality for the observed failure, we can force at least one of the binary

indicator variables to equal one, i.e. failure in at least one task:
d
i Jasi> 1. “4)
With a task failure in trait pair i (fy 5; = 1), inequality (2) is the task failure requirement and
inequality (3) is the lower bound for the exploiter’s power inferiority. With a task success

(fap; = 0), inequality (2) gives the upper bound for the exploiter’s power superiority and

inequality (3) becomes a success requirement.

Adding a new 1-dimensional mode that creates a feasible system of inequalities
(minimal explanation II, Fig. 1), each of the d pairs of opposed exploiter—resource traits must
be involved in a different mode. Again here, each trait pair appears only in one mode j, so we
use the same index j for both trait pairs and modes. On one hand, the observed failure of any
exploiter A against any resource B must be the result of failure in any mode j of the d modes
(e.g. player A failing via both overgrowth and allelopathy against C in Fig. 1):

Paj<Ts; 5)
On the other hand, the observed success of exploiter A against resource B must come from
success via at least one mode (e.g. player C replacing A via allelopathy in Fig. 1). We now use

a binary variable, s4 5, to indicate success via mode j. Given the same bounds as in minimal
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explanation I, the following pair of inequalities must be satisfied to indicate exploiter success
in any mode j:
Pyj+msapj>Tpj+ tap;j+m, (6)
Poj—M sap;<Tgj. @)
With an extra inequality for the observed success, we can force at least one of the binary

indicator variables to equal one, i.e. exploiter success occurs via at least one interaction mode:

Yo Sani> 1. (8)

A complete system of inequalities takes into account all observed successes and
failures for all possible exploiter—resource pairs (Fig. 2). Such systems of linear inequalities,
with continuous trait values and integer indicator variables, can be formulated and attempted
to be solved as mixed integer linear programming problems (Williams, 2013). In both
minimal explanations (I and II), minimum mechanistic dimensionality is the minimum d

leading to a feasible system of inequalities.
2.3 Minimum dimensionality of empirical networks

We applied our method to 658 empirical systems, covering six different types of
ecological networks: animal social dominance networks, food webs excluding basal species,
basal-consumer interactions, plant—pollinator, host—parasite and seed dispersal networks
(Appendix S1). By assuming adequate sampling effort (e.g. no observed failures due to
rarity), we computed five dimensionality measures (Appendix S1). Four of the measures were
based on our framework: (@) a single, potentially multidimensional mode; (») one-or-more 1-
dimensional modes; (c) as b, but excluding observed failures; (d) as ¢, but with players
interacting via a common trait per dimension, rather than a power against toughness trait. To
compare our approach with another established dimensionality estimate in this first account,

we considered (e) EklIof et al.’s (2013) niche-based method. We asked three questions about
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our minimum mechanistic dimensionality (MMD) estimates; does MMD change: (1) under
the assumption of alternative 1-dimensional modes (dimensionality estimate b), compared to
the assumption of a single multidimensional mode (dimensionality a)? (2) with observed
failures taken into account (dimensionality b), or excluded (dimensionality c or d)? (3)

compared to the measure developed by Eklof et al. (2013) (dimensionality a versus e)?

The systems of inequalities for our four minimum mechanistic dimensionality measures
a—d were formulated and solved as mixed integer linear programming problems with the
Gurobi Optimizer (Gurobi Optimization and Inc., 2020). R and Python codes for formulating
and solving these are provided (see ‘DATA ACCESSIBILITY’). We computed the fifth
dimensionality estimate with code available in Ekl6f et al. (2013). The empirical networks
were retrieved from five data sources (Cohen, 2010; Ortega, Fortuna, & Bascompte, 2017;
Shizuka & McDonald, 2015; Stanko & Miklisova, 2014; Thompson & Townsend, 2004). We
provide the network characteristics and references, raw data from the five computed
dimensionality measures for each of the 658 empirical systems, and R code for plotting the

results (see ‘DATA ACCESSIBILITY”).

2.4 Minimum dimensionality of simulated networks with known dimensionality

We generated networks where we knew how many dimensions contributed to the
interaction outcomes, based on Santamaria & Rodriguez-Gironés’ (2007) ‘barrier’ traits
model with differences in exploiter-resource performance traits, in this first evaluation of our
method. We then estimated minimum dimensionality in these networks with our MMD
method and that of Eklof et al. (2013), testing which method performed better by comparing
minimum dimensionality estimates with the actual number of dimensions involved. We note
that a minimum dimensionality method does not estimate the actual dimensionality of a
network, but only the lower bound required to generate such a structure. For simplicity, we
generated each simulated network with species traits involved either in a single interaction
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mode, or with each trait dimension belonging to an alternative, single-task mode. We
generated unipartite and bipartite networks, to give four scenarios: single-mode unipartite, or

bipartite; multi-mode unipartite, or bipartite.

We generated unipartite networks with § = {3, 5, 10, 15, 20 or 25} species. This was
doubled for bipartite networks, where the number of exploiters was chosen randomly from a
uniform distribution in the range 1 to S — 1, and the remaining species were resources. Each
uni- or bipartite network had D dimensions, D = {2, 5, 10, 15 or 20}. The S—D combinations
were chosen in a fully factorial design, giving 30 unique combinations. For each combination,

we generated ten replicate networks, leading to 300 networks for each of the four scenarios.

Random values for power and toughness traits were drawn independently from distinct
normal distributions of equal variance (6% =0.01) for each replicated S—D combination. We
set the distance between the means of the two distributions such that networks of size S had a
wide range of connectance given the range of D (Appendix S1). R codes for simulating these

networks and plotting results are provided (see ‘DATA ACCESSIBILITY”).

3 RESULTS

3.1 Minimum dimensionality of empirical networks

For the five dimensionality measures we considered, the inclusion of alternative
interaction modes, forbidden links, and a more mechanistic approach describing interaction
tasks, consistently increased the minimum dimensionality estimate across a wide range of

empirical networks (Fig. 3 and Fig. 4).

We frequently estimated higher minimum mechanistic dimensionality under the

alternative rather than the single mode explanation (Fig. 3), especially in systems of non-basal
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consumption, biotic pollination, ectoparasitism, and seed dispersal (Fig. 3b,d—f). 54% of the

empirical systems had higher dimensionality if alternative modes were assumed, with only

7% of the systems having higher unimodal dimensionality (Fig. 4a).
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FIGURE 3 Minimum mechanistic dimensionality estimates from 658 empirical systems. Cell colour indicates
frequency of the n systems with the corresponding pair of values in our two minimum mechanistic
dimensionalities (MMD), i.e. number of exploiter—resource trait pairs assuming: alternative 1-dimensional modes
(x-axis; minimal explanation II); and tasks in a single mode (y-axis; minimal explanation I). Panels represent: (a)
animal dominance in n = 168 unipartite graphs (6-31 individuals); (b) consumption of non-basal species in n = 95
unipartite food webs (657 species; basal species excluded from the original food webs); (¢) consumption by
consumers exclusively feeding on basal species in n = 95 bipartite graphs (11-91 species; same food webs used in
panel b); (d) biotic plant pollination in n = 105 bipartite graphs (8—114 species); (e) ectoparasitism of small
mammals in # = 165 bipartite graphs (8-92 species); and (f) plant seed dispersal in n = 30 bipartite graphs (686
species). Parameter values in the inequalities method: m = =200, M = 200, t4 p; = 1, for all pairs of exploiter A with

resource B, and in any trait pair i.
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FIGURE 4 Comparisons of minimum dimensionality measures estimated from 658 empirical systems. Violin plots
show the normalised distributions of the dimensionality ratios (see Section 2.3 for details) of: (a) our minimum
mechanistic dimensionality under minimal explanation II (alternative 1-dimensional modes), to our minimum
mechanistic dimensionality under minimal explanation I (tasks in a single mode); (b) our minimum mechanistic
dimensionality under minimal explanation II, to the same dimensionality estimate with the failures ignored; and (c)
our minimum mechanistic dimensionality under minimal explanation I, to the comparable dimensionality of Ek16f
et al. (2013). The raw data are displayed as semi-transparent points which, for the same x—y value, are spread
regularly among the x-axis to avoid overplotting. Dotted horizontal lines mark a ratio of one, with values above the
line indicating higher minimum dimensionality when assuming: alternative modes (a), failures as trait-mediated

outcomes (b), and a more mechanistic perspective (c).

Comparing our minimum multimodal dimensionality with the same dimensionality
estimate excluding failure inequalities from the system of inequalities, showed that minimum
mechanistic dimensionality was higher in 92% of the empirical systems when including
failure outcomes (Fig. 4b). In the remaining 8% of empirical systems, both dimensionality
estimates were equal. With failures excluded, minimum dimensionality was always one
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dimension. In this case, the structure of observed successes can be explained unimodally, as
exploiters can have a single power trait with a greater value than the single toughness trait of
any resource (in the absence of any inequalities constraining the power scores). We further
required that exploiters and resources possess the same trait for power and toughness in the
unipartite systems of animal dominance and non-basal consumption, instead of the default
power—toughness trait pair. Thus, the unipartite systems could require more than one
dimension with failures excluded. Even when modelling trait opposition with a common trait
per dimension, 79% of the unipartite systems had higher minimum dimensionality with

failures included rather than excluded (Fig. 4b).

In 81% of the empirical systems, our minimum mechanistic dimensionality was higher
than the dimensionality estimate of EkIof et al. (2013) (Fig. 4c). We assumed a single mode
(minimal explanation I), comparable to the niche approach of Eklof et al. (2013). Only 2% of
the networks had higher minimum dimensionality under Ekl6f et al.’s (2013) more
phenomenological approach, with no bipartite networks among them (Fig. 4c). The minimum
number of trait pairs for the explanation of all outcomes in our approach, was (median) 1.5
times larger than with the more phenomenological dimensionality estimate across all
networks. Note that since our dimensionality refers to exploiter—resource trait pairs, the actual
number of necessary traits is double our dimensionality, i.e. our approach suggested a median

of 3 times more trait axes required for the explanation of the observed outcomes.

3.2 Minimum dimensionality of simulated networks with known dimensionality

In simulated networks built with a single mode of multiple tasks, our MMD method
(also assuming a single mode) typically estimated a higher minimum dimensionality—i.e.
closer to the actual number of dimensions involved—than the comparable Eklof et al. (2013)
method (Fig. 5a,c), particularly in larger networks (Appendix S1). The Eklof et al. (2013)
method sometimes erroneously estimated a minimum dimensionality which was higher than
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the actual dimensionality for some large, two-dimensional unipartite networks (Fig. Sc;

Appendix S1).

As EKkIof et al. (2013) essentially assumed a single interaction mode, applying their
approach to theoretical networks with multiple modes is not straightforward. Nevertheless, we
experimented by using the EkIof et al. (2013) and our method by assuming the opposite
interaction form than the one used for building the networks, to identify any characteristic
trend in minimum dimensionality estimates when an incorrect assumption is used. Applying
our MMD assuming multiple modes to networks built with a single mode, resulted in higher
estimates compared to those assuming a single mode (Fig. 5a,b). Similarly, when applying
our MMD and the EkI&f et al. (2013) method, both assuming a single mode, to networks built
with multiple modes, the minimum dimensionality estimate was higher than with our MMD

correctly assuming multiple modes (Fig. 5d,f versus Fig. Se, respectively).
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FIGURE 5 The minimum dimensionality estimates for simulated networks with known dimensionality. The top
row shows networks built with one multi-task mode, the bottom row shows networks with multiple, single-task
modes. For each value of actual dimensionality (x-axis), there are 60 unipartite (circles) and 60 bipartite networks
(squares), with all panels on the same row with the same x-value hosting the same networks. Symbol colour
indicates the frequency that networks had the corresponding pair of actual and minimum dimensionality values.
Panels show: (a) MMD assuming a single mode with multiple tasks (minimal explanation I); (b) MMD assuming
multiple, single-task modes (minimal explanation II); (c) Ekl6f et al. (2013) method; (d) MMD under minimal

explanation [; (¢) MMD under minimal explanation II; and (f) Eklof et al. (2013) method. Dotted lines show y = x.
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4 DISCUSSION

We introduced a novel method for calculating the minimum number of traits required
to explain all observed interaction outcomes of ecological networks more mechanistically,
using a general framework applicable to different interaction (network) types, modes, tasks,
and types of traits. Applying this to 658 empirical systems, and simulated networks of known
dimensionality, we showed that the minimum number of traits involved is typically
underestimated when ignoring any of the three framework features we combined here for the
first time: (1) alternative interaction modes; (2) trait-mediated failure outcomes; and (3) a
more mechanistic description of interactions broken down to tasks. This underestimation risks
omitting important traits in empirical investigations, and generating less realistic theoretical

networks at the level of interaction outcomes.

Our minimum mechanistic dimensionality framework can explicitly incorporate the
alternative interaction modes frequently observed empirically, e.g. alternative feeding modes.
In previous theoretical trait-based works, an exploiter has to overcome all barriers or defences
of a potential resource to exploit the resource (Gilman, Nuismer, & Jhwueng, 2012;
Santamaria & Rodriguez-Gironés, 2007). Similarly, in other works adopting a niche
approach, a niche arises from the intersection of all niche dimension intervals (EkI&f et al.,
2013; Stouffer, Camacho, & Amaral, 2006). The interaction mode in our framework is
equivalent to these two approaches—an exploiter’s performance must be sufficiently high in
all the mode’s tasks. Generalising to alternative modes, we also showed that minimum
mechanistic dimensionality was frequently higher under alternative modes than under a single
mode (Fig. 4a). By simulating networks of known dimensionality and interaction form, we
showed that applying a method assuming the incorrect interaction form frequently increased
minimum dimensionality estimates (Fig. 5). Thus, we suggest that many of the empirical
networks we tested may be built using fewer modes of multiple tasks, a hypothesis that can be
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investigated further in future work. Our framework’s generalization to alternative modes can
offer a new mechanistic perspective to the study of interactions, for example, offering
alternative minimal explanations for the emergence of intransitive networks (Fig. 1), or for

the emergence of pollination syndromes and floral mimicry (Schiestl & Johnson, 2013).

We regarded failures as trait-mediated outcomes of interaction, meaning more traits
were expected to be involved in the interactions (Fig. 4b). We found that three to six pairs of
opposed traits must be involved in several behavioural dominance systems (Fig. 3a), whereas
only a few traits are commonly employed in behavioural studies for the explanation of only
the successful dominance outcomes (Chase & Seitz, 2011). For example, in the elephant
family named ‘AA’ in Archie et al. (2006), almost all observed dominance events were
directed towards younger elephants, and the authors conclude the system is an age-ordered
dominance hierarchy based only on the successes, agreeing with the one dimension estimated
in our failures-excluded analysis (Fig. 4b). However, incorporating failures in our minimum
mechanistic dimensionality estimates suggests three trait pairs under both minimal
explanations, because there are several older—younger pairs where no dominance or
aggression was observed, i.e. failures unaccounted for by Archie et al. (2006). In fact, most
elephants dominated younger members within their matriline, but also younger members of
two specific matrilines (Archie et al., 2006). These two behavioural tendencies are candidates
for the two extra dimensions predicted by our method, overlooked when ignoring failure
outcomes. Again, we recommend combining our approach—incorporating interaction failures
with trait-based methods—with system-specific biological knowledge, to improve estimates
when other approaches perform poorly; e.g. our MMD can indicate a minimum bound for the
number of traits that might be represented by phylogeny when missing traits may be difficult

to ascertain (e.g. Brousseau et al., 2018).

We adopted a phenotype rather than a niche space representation for traits. Studies of
interactions commonly use the ‘resource-utilization’ approach to represent the ‘ecological
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niche’ concept (Schoener, 1989). Despite its operational advantage, dimensions usually arise
more phenomenologically, as in the minimum dimensionality of Ekl6f et al. (2013). For
example, body size is a trait with high explanatory power in food webs (Stouffer, Rezende, &
Amaral, 2011). However, other traits scaling allometrically with body size are mechanistically
involved in trophic interactions (Woodward et al., 2005). Even if taken mechanistically,
realised niches commonly span a range of the resource gradient, implying two traits per niche
dimension. For instance, in systems where the maximum prey size is limited by a predator’s
mouth gape, the size range minimum must be limited by a second trait, like the predator’s
inability to handle smaller prey. The resource-utilization approach also excludes exploiters
from the niche space, as it is created by resource trait dimensions (Schoener, 1989). Our
framework accounts for the traits of both interacting players simultaneously; a dimension is
simply a challenged trait-axis in the phenotype space of exploiters and resources, as in Dalla
Riva and Stouffer (2016). Thus, our minimum dimensionality assuming a single interaction
mode was frequently higher than the comparable dimensionality of Ekl6f et al’s (2013) niche-
based approach in empirical networks of unknown dimensionality (Fig. 4c). Comparing the
two methods on simulated networks with known dimensionality confirmed that minimum
dimensionality can often be underestimated when using this more phenomenological, niche-

based approach (Fig. 5a,c).

In this first account, we assumed two simple and extreme minimal interaction forms,
but users can input any number of traits and values, in any interaction form. While we
presented a deterministic version, future versions could incorporate stochasticity (Dalla Riva
& Stouffer, 2016), e.g. more probable successes explained by larger power—toughness
differences. Further extensions could consider the effects of abundance, and indirect
interactions in the estimation of minimum dimensionality. Additionally, we tested our method
in simulated networks only generated with a ‘barrier’ traits mechanism (Santamaria &
Rodriguez-Gironés, 2007), but future work can address the effect of other mechanisms, such
as ‘complementarity’ or ‘mixed’ barrier—complementarity traits. Lastly, we assumed that
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performance is independent in the different tasks, i.e. a unique trait per task per player in our
formulation of the inequalities. In reality, several traits can contribute to performance in the
same task, and the same trait can contribute to performance in several tasks (Arnold, 1983).
Since our aim was a minimum dimensionality measure, we assumed independence in task
performance, to impose fewer constraints in the linear inequalities system, allowing the
estimation of a lower minimum. We expect that trait correlations will increase the minimum
number of dimensions required to explain a specific network, given the associated restrictions

on possible trait values.

In conclusion, we have outlined a novel method under a different perspective on how
interactions occur, for estimating the minimum dimensionality of ecological networks.
Informed by a more accurate minimum dimensionality estimate, future studies can rely on
network models reproducing community structure more accurately at the interaction outcome
level, reducing the risk of omitting important traits that are involved in alternative interaction
modes, only in failure outcomes, and mechanistically in tasks. In that way, our method,
combined with appropriate biological insight and other methods, could improve
understanding, explanation, and prediction of community structure and structure-dependent

processes.
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