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Highlights

Deep learning-based prediction of piled-up status and payload distribution of bulk material

ZongWei Yao, Qiuping Huang, Ze Ji, XueFei Li, Qiushi Bi

• The proposed method can automatically predict the
Piled-up Status and Payload Distribution (PSPD) of
bulk materials in terms of material mass and dumping
position from pure images.

• The work introduced a two-stage prediction-
regression CNN for predicting the PSPD of bulk
materials.

• The proposed method has promising generalization
capability in the prediction of the PSPD of bulk ma-
terial with no special requirements on material char-
acteristics, shape of loader bucket and truck body,
dumping position, and so on.
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Abstract

The piled-up status of bulk material in a haul truck body determines the load balance, hence affects the mining operations’
efficiency. Prediction of Piled-up Status and Payload Distribution (PSPD) of bulk material contributes to providing
optimal dumping positions to improve the vehicle’s stress state and service life. This work introduces a novel deep
learning-based PSPD prediction method from images. A two-stage prediction-regression CNN model is designed to
automatically extract image features to obtain the PSPD of the current state. The PSPD prediction is accomplished via
a backward-propagation neural network (BPNN). Scaled model experiments are performed using robots for validating
the method. Experiments show the trained model accurate and reliable in prediction and computationally efficient. The
probability density of the prediction error is subject to the Cauchy distribution with x0 of −0.00043 and γ of 0.01986.
The maximum prediction error is 0.19kg (about 3.17% of total weight).
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1. Introduction

Mining haul trucks are essential equipment in the open-
pit mining industry. The transportation efficiency can
be heavily influenced by the performance of these vehi-
cles for the whole mining processes. Statistical reports
indicate that unbalanced payload distributions for such
trucks are common throughout their entire periods of ser-
vice and could lead to many problems. One typical un-
even loading case is shown in Figure 1, where the truck
frame is subject to excessive stress. The overloading on
one side of the truck not only seriously affects the pro-
ductivity and efficiency of mining trucks, but also sig-
nificantly reduces the life span of tires, suspensions and
other structural components. Such phenomena will even
lead to catastrophic structural failures as shown in Figures
2. Besides, the whole-body vibrations caused by the un-
balanced payload distributions during the transportation
makes the truck drivers under immense safety and occu-
pational health risks[2].

Mining trucks generally transport blasted bulk materials
comprising discrete particles of various sizes, while these
materials cannot be self-balanced like fluids, nor can they
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Figure 1: The truck with uneven material distribution [1]

be loaded in an orderly manner like prefabricated solids
with regular shapes. Therefore, the balance of payload
distribution can only be carried out by a reasonable se-
lection of dumping positions. For now, operators rely on
manual observations to balance the truck payload when
dumping from loaders or shovels. Due to the limited field
of view of the driver and the obstructions of equipment,
it is not possible to clearly observe how the materials are
distributed inside the truck body, as shown in Figures 3.

Although the payload distribution in the truck body can
be simplified through the pressure signals from the suspen-
sion system, the dumped materials could move and, hence,
deform overtime due to the granular characteristics. The
deformation behaviour is difficult to predict, making the
final payload distribution after each dump very difficult
to be precisely described. Therefore, even with the help
of some dumping assisting software, the determination of
dumping positions is still mostly based on personal expe-
rience, which causes the unbalanced payload distribution
unavoidable.

According to the operation principles of typical shovels-
truck systems, it usually takes 5-7 dumps to fill the truck
body, meaning the PSPD would change significantly af-
ter each dump. However, in actual operations, the ran-
domness of the dumping position cannot be ignored, while
the payload distribution can only be estimated after each
dump through the steady pressure signals from the suspen-
sion system. In other words, even if the suspension system
can provide the risk alert, it is too late because the blasted
materials cannot be re-dumped that makes the truck tires
and the structure subject to excessive loads during the
transportation process. In addition, it should be noted
that the payload sensing system needs to be frequently
calibrated online on a standard platform. Otherwise, data

Figure 2: Axle failure on a truck [3]
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Figure 3: It is difficult for drivers to be fully informed about unload-
ing operations

drift would largely impact the measurement results. The
payload estimation sensors are subject to complex loads,
resulting in short life-span and frequent accidental dam-
ages. Once the replacement of the sensors is required,
the truck must be stopped and overhauled, which would
greatly affect the efficiency of the production chain. An-
other issue that should be taken into consideration is that
the payload estimation system can only function properly
when the truck is operating in a quasi-static state. How-
ever, it is difficult to eliminate the dynamic loads during
the dumping process making the accuracy and reliability
of the sensor system hardly meet the requirements of the
actual applications.

For these reasons, numerous researchers have attempted
to use theoretical and numerical analyses to improve the
payload distribution in mining trucks. These studies
mainly focus on the following three aspects, which are 1)
analyzing the flow behavior of bulk materials in the truck
body using the DEM (Discrete Element Method) simu-
lation; 2) the geometry optimization of the truck body
aiming to make the material in the truck body achieve a
certain degree of self-balancing; and 3) the topology op-
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timization of key support components of the vehicle to
reduce the stress level and increase the strength limit.

Although these studies provide valuable references to
this study, they have not fundamentally solved the prob-
lem of payload unbalanced distribution due to some con-
ditional limitations. Therefore, establishing a method to
improve the unbalanced distribution of payload in min-
ing trucks remains a challenge. One main reason for the
unbalanced payload distribution is due to the lack of rea-
sonable planning of dumping positions. More balanced
payload distribution can be achieved through optimizing
the dumping position before each cycle reaching a balanced
payload distribution result. Serving the vision of optimal
planning of dumping position of each load cycle, it is im-
portant to effectively and precisely predict the distribution
result of bulk material in the truck body before each dump
based on the loader dump position, the digging payload
and the current payload distribution inside the truck body.
The method for payload distribution prediction can signif-
icantly reduce the randomness of dumping operations ac-
complished by drivers and the risks caused by insufficient
information and decision-making ability. Meanwhile, the
payload distribution prediction method can provide tech-
nical support for the autonomous operation of the loader-
truck system and contribute to the intelligent process of
the mining industry.

It is obvious that experienced drivers of loaders or shov-
els can mostly control the dumping operation resulted
in the fairly balanced payload distribution in the mining
truck body, which is evidently better than that of inex-
perienced ones. In other words, the ability to predict the
PSPD of bulk material in the truck body can be “learned”
by training through observations from human naked-eyes,
without additional precise measurement. The rationale of
this work is that it is possible to make accurate enough
prediction of the payload distributions in the truck body
with relatively “inaccurate” or indirect measurement from
partial 2D vision information of the pile surfaces, in order
to make an optimal decision for the position of next dump.
For the purpose of this project, we assume that the pay-
load distribution can be estimated accurately with images
of the surface profiles.

This study proposes a deep learning-based method us-
ing a low-cost vision sensor for predicting the PSPD of
bulk materials in the truck body under complex environ-
ments. In the work, a series of images of material piles
in the truck body dumped from different positions are
collected and used for training the convolutional neural
networks (CNNs), in order to estimate the current PSPD
through the surface states. A backward-propagation neu-
ral network (BPNN) is introduced to predict the PSPD
after dumping, taking the loader dumping position, the
digging payload and the current payload distribution in-
side the truck body as input parameters. Once this func-
tion is accomplished, the operators in the cabs of loaders
or shovels can adjust the dumping position beforehand to
reduce the probability of unbalanced payload distribution

and improve the safety and reliability of the truck. The
vision-based monitoring system forms one critical compo-
nent for the “smart construction” system. The proposed
method only requires a camera to be mounted above the
truck cab for monitoring the dumped materials, and the
acquired images and related extracted information can be
transferred to the excavator cab through wireless networks.
The trained model will provide the driver with information
about the distribution of materials in the truck body.

The rest of this paper is organized as follows. Section 2
presents the related existing research works. Section 3 ex-
plains the predictive model proposed in this paper, includ-
ing CNNs and BPNN. Section 4 details the experimental
setup, task description, and experimental data. Section 5
discusses the experiment results and evaluates the perfor-
mance of our model by comparing with other models. This
is followed by the conclusion in section 6, summarising the
advantages and disadvantages of the proposed model.

2. Related works

As mentioned, the method proposed here is to predict
the payload distribution in haul truck body according to
the current dumping conditions and the flow behaviour
model of bulk material. Therefore, the state of the loaded
material inside the truck body should be firstly estimated,
as well as the interaction between the bulk materials in
the shovel/loader bucket and that in the truck body dur-
ing dumping. Then, machine learning, specifically deep
neural networks, that are proved highly effective in ex-
tracting pivotal features, can be adopted for predicting the
bulk material state. The main research topics involved in
this process include online payload estimation, bulk mate-
rial behaviour analysis, and machine learning techniques.
This section will review related works in the three areas
respectively.

2.1. Online payload estimation

Stentz A. et al. [4] introduced an excavator assistant
system for loading haul trucks using two scanning laser
rangefinders mounted on each side of the excavator’s boom
searching for the low region in the truck body to ensure the
payload distribution to be balanced. However, the system
does not consider the characteristics of physical interac-
tion between the bulk materials and the rigid body. In
addition, the lasers are also affected by dust and harsh en-
vironmental factors, which makes the system less reliable.
Duff E. [5] proposed a method using two lasers mounted
on a structure scanning the material pile in the truck body
to estimate the volume of payload, when the truck is pass-
ing under the scanners. Although this method makes it
possible to accurately evaluate the payload in the truck
body, it can be functioned only after all dumping opera-
tions, which cannot meet the requirement for predicting
payload distribution. Borthwick J.R. [6] developed a haul
truck loading status estimation system using stereo cam-
eras for payload volume evaluation. Since 10% of the truck
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body is unavailable in the camera view field, the payload
distribution in the blind area is interpolated from the ob-
served surface. The performance using stereo cameras, in
terms of accuracy and reliability, is prone to the harsh
mining environmental conditions, which are dusty as well
as under severe weather conditions.

Chamanara A. et al. [1, 2] developed an algorithm to
model the cumulative shovel load passes within the truck
body and to provide an appropriate location for succes-
sive dumping operations to achieve a balanced payload
distribution before the truck leaves the digging face. This
work assumes that the material can naturally form reg-
ular cone shapes, which are only suitable for sand and
gravel with homogeneous particle size distributions. How-
ever, the blasted material in the mining site is highly dis-
crete making the model unsuitable for field applications. A
method using cluster analysis based on the Iterative Clos-
est Point algorithm (ICP) was introduced by Bewley A.
et al. [7, 8, 9] for measuring the volume of digging mate-
rial in a dragline bucket through a range bearing laser for
estimating the material’s bulk density in real-time. Re-
sults show that the method can achieve an accuracy of
above 95%. The application of the method is based on
the hypothesis that the material pile in the bucket does
not change in shape, which is obviously different from the
problem addressed in our research. Huang X. [10] pro-
posed a sensing system that can efficiently and accurately
reconstruct 3D shapes under moving conditions based on
a single laser distance sensor. However, the method is not
suitable for the estimation of piles formed by bulk mate-
rial.

Innes C. et al. [11, 12] provided a method for represent-
ing, tracking and fusing information on excavated material
following its movement through a mining process chain.
In the method, only the quality of the excavated mate-
rial is tracked, while the distribution of the material is not
involved. Dunbabin M. [13] used a laser scanner to mea-
sure the height of the piled-up material in the bucket dur-
ing the excavation process estimating the fullness of the
bucket combining the teeth forces and the height infor-
mation. Sarata S. et al. [14, 15, 16] performed an on-line
measurement of the loading volume of a wheel loader. The
method firstly uses stereo vision to establish a 3D model
of the large material pile, and then the loading volume is
considered as the interference part of the bucket and the
3D model. Rasuli A. et al. [17] dynamically estimated the
payload of a cable shovel based on the least square eval-
uation method and a simplified kinetic model. Anwar H.
et al. [18] established an algorithm for estimating the vol-
ume of material in the bucket using 3D sensors based on
the assumption that the material is evenly distributed in
the bucket. The results of experiments prove the effective-
ness of the algorithm. An online algorithm was proposed
by Bi Q. et al. [19] for estimating the payload of cable
shovels based on static analysis verified by scale model ex-
periments. As can be seen, all those methods mainly focus
on the value of payload, but not the distribution.

2.2. Bulk material behavior analysis

It is convincing to study bulk material behavior through
experiments. The complexity of such bulk materials due
to the high variety with the particle sizes or shapes makes
it very difficult to simulate the mining operations of real-
world experiments in various conditions. It is not possible
and unrealistic to simulate all conditions due to the ran-
domness of particle shapes and such a large number of
experiments will take too much time with very low effi-
ciency.

The DEM simulation provides convenient solutions for
particle behavior modeling and analyses [20]. Many schol-
ars have applied DEM to researches focusing on mining
and earth-moving equipment.

Cleary P.W. [21] reviewed the application of DEM in the
research topics of bulk material excavation, transporta-
tion, sorting, mixing, grinding and landslide, showing that
the DEM simulation is an efficient method to understand
the particle behaviors of bulk materials. Based on particle
dynamics, a mathematical model of hopper discharge was
established [22] and the influence of particle shape on the
entire system was analyzed [23]. Coetzee C. et al. [24, 25]
used DEM to establish a simulation model of the material
fulfilling process of excavator, which was validated through
experiments. The comparison results show that the error
of DEM simulation is less than 20%. DEM is also used
by Teufelsbauer H. et al. [26] to analyze the interaction
between particles and obstacles validated experimentally
in the laboratory environment. Lu G. et al. [27] found
that the particle shape has a great influence on the static
and dynamic properties of particle systems. Dynamic hop-
per discharge of irregular non-spherical particles was an-
alyzed by Wang S. et al. [28], and the accuracy of the
model was verified by the results of both experiments and
simulations. However, most of the particles in the current
studies are simplified based on analytical numerical studies
that can be described with mathematical equations. Even
the so-called irregular particles are just irregular balls or
polyhedron, which are not strictly irregular. As can be
seen in Figure 3, the shape of the blasted rock is almost
impossible to describe by equations. In addition, the con-
tact models applied in the DEM simulation are restricted,
which cannot cover all the complex contact conditions of
the rock materials in the mining site.

In DEM simulations, computational efficiency is a piv-
otal performance indicator. In order to speed-up the calcu-
lation, Lommen S. et al. [29] proposed a reduced stiffness
method. Gopalakrishnan P. et al. [30] proposed a paral-
lel computing method. Similarly, Gan J. et al. [31] used
GPU for improvement for computation efficiency and Yue
X. et al [32] utilized parallel computing and GPU simul-
taneously for acceleration. To simulate the macroscopic
particle behavior of materials, the number of particles in-
volved in the simulation may exceed 10 millions. Mean-
while, in order to ensure the stability of the simulation,
the time step has to be set to a small value, which leads to
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huge computational demands [33]. Therefore, even with
parallel computing or other efficient algorithms, it is unre-
alistic to achieve real-time PSPD with DEM simulation on
a reasonable hardware system for real mining operations.

For the purpose of real-time prediction, Hagenbuch L.
[34] assumed that loose bulk material dumped on a flat
surface will form a tapered or elongated cone, and Joseph
T. et al. [35] considered that the piled-up status of the
material in the compartment was formed by the intersec-
tion of cones limited by the shape of the cabin. Errors
of the method are considerably small when the particles
are uniform that there is no need to utilize DEM or other
algorithms that consume huge amounts of computational
resources. But the accuracy of the method needs to be ver-
ified for the bulk materials with different sizes and shapes.

2.3. Machine learning for handling bulk material

As mentioned before, the capability of predicting the
PSPD of bulk material can be learned and improved
through training. In recent years, deep learning has been
used widely and successfully in various fields. Schenck C.
et al. [36] used deep learning to control the robotic arm to
form bulk materials into a pre-set shape. The application
process includes the determination of the current material
piled-up profile and the prediction of its shape after the
operation of dumping. Although the parameters involved
in Schencks study are not the same as what we need, it
is still with great value for our research. However, to ob-
tain accurate results, the sensors must be able to output
depth information with high accuracy for the point cloud
measurement used as the main source in Schencks study.
Besides, the robot applied for material handling needs 6 el-
ements for motion planning, which are much more compli-
cated than that for earth-moving equipment such as load-
ers or shovels.

Takei T. et al. [37] applied the optimization method
using a genetic algorithm to the path planning for wheel
loaders on scraping and loading operations. Rozo L. et al.
[38] developed a parametric hidden Markov model based
on force feedback to teach robots of pouring skills. Yam-
aguchi A. et al. [39] proposed a differential dynamic pro-
gramming method based on the directed graph structure,
which can pour fluid-like materials with different proper-
ties into containers forming different shapes.

Zhao Z. et al. [40] used the Gray model data as input
and seed distribution as output to train the BPNN, which
can predict the relationship between planter vibration pa-
rameters and the seed distribution in the rectangular vi-
brating tray. Kumar R. et al. [41] used ANN to predict
the relationship between key parameters of the material
handling system (inner angle, bulk density, average diam-
eter, friction coefficient, et al.) and discharge efficiency.
Rabault J. et al. [42] applied an ANN training method
through a deep reinforcement learning agent to perform
active flow control.

Benvenuti L. [43, 44] and Ye F. [45] adopted ANN and
BPNN to predict the relationship between particle con-

tact parameters and the repose angle for DEM simula-
tions. Chen S. et al. [46] established a CNN model with
parameters of particle residence time, diameter and den-
sity as inputs, and classification of particle height in the
initial packing as output. Wan Z. Y. et al. [47] combined
a fluid mechanics model with machine learning to propose
a method describing the motion state of spherical particles
in fluid. Goldstein E.B. et al. [48] predicted the settling
velocity of frictionless particles using a machine learning
approach based on the genetic programming. Clarke S.
[49] proposed a learning method using audio-frequency vi-
brations from contact events to estimate the flow rate and
mass of granular materials during scraping and loading
tasks.

3. Method

In view of the extreme complexity of the working envi-
ronment and operational requirements of the loaders and
haul trucks, several coupling factors affecting the bulk ma-
terial behavior impede the establishment of an accurate
theoretical and numerical model for describing the mate-
rial handling operation. During the digging and dump-
ing process, the loader-truck system, as a typical complex
electromechanical system, would generate a large amount
of noises that greatly interfere the signals, which can be
used for payload distribution estimation. Compared with
other methods, the vision technology applied in the min-
ing industry is relatively easy to obtain with high stabil-
ity. Therefore, it is considered more reliable to use images
than other sources for prediction of payload distribution.
With the powerful capabilities of characterizing complex
systems, processing big data, and automatically extract-
ing features, deep learning has feasibility and superiority
in the prediction task. Therefore, this paper trains the
deep learning model by images supplemented with a small
amount of data of material quality and coordinates to pre-
dict the PSPD in the truck body after the current dumping
operation.

3.1. Proposed framework overview

To achieve the dynamic prediction of the PSPD of the
bulk material in the truck body before each dump, this
paper presents a synthesis model by using a deep learning-
based forecasting framework that integrates CNN and
BPNN. Figure 4 shows the flowchart of this framework,
which involves 3 parts.

Part I Data pre-processing. For image data, the region
of interest (ROI) is firstly extracted and the data
outside the ROI is deleted to purify the image to
improve the regression accuracy of the CNN, and
then perform a grayscale process to the images to
reduce the consumption of computing resources.
For the quantity of material in bucket and the
dumping coordinates, the average value can be
obtained after eliminating the zero drift and the
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filtering process, as shown in Part I: Data Pre-
process in Figure 4.

Part II CNN classifier and regressors. CNNs, which
have deep architectures with multiple convolu-
tions and pooling layers, and the abilities of au-
tomatically extracting pivotal features of data,
are applied in this study. We will take the ad-
vantages of these features of CNN to estimate
the PSPD in the current state based on the pro-
cessed image data, as shown in Part II: CNNs
in Figure 4.

Part III BPNN regressor. In order to train the BPNN
to accomplish the prediction of PSPD, the re-
sults obtained in Part II and the processed data
in Part I are taken as input parameters with
the predicted PSPD after dumping as output, as
shown in Part III: BP Neural Network in Figure
4.

The detailed approach of each part is discussed as fol-
lows.

3.2. Data pre-process

Considering the interference of dust and light in the min-
ing sites, the background segmentation and grayscale con-
version are needed on the images in this work to improve
the accuracy and the calculation efficiency of the predic-
tion. Due to the identifiable chromatic aberration between
the truck body, dumped material, and the background, a
trapezoidal-shaped mask can be used to effectively identify
the ROI, while the regions outside of the ROI are removed.
The original RGB images are converted to grayscale by the
weighting method. The weighted gray value I (i, j) of the

pixel (i, j) can be calculated according to Equation (1)
based on the red component R (i, j), the green component
G (i, j), and the blue component B (i, j):

I (i, j) = 0.30R (i, j) + 0.59G (i, j) + 0.11B (i, j) (1)

It should be noted that the weights (0.30, 0.59 and 0.11)
in Equation (1) were determined empirically after testing
multiple combinations of parameters. In the subsequent
training processes, the efficiency was found improved by
about 3% compared to using the default parameters pro-
vided by MATLAB R©. However, there is no significant
difference in terms of prediction performance between the
trained models with different parameters.

Regarding the mass of the material, the measurement
feedback from the load cells would vary over time, present-
ing the data drifting problem. It is necessary to eliminate
the zero drift before any applications. Then the data re-
flecting the PSPD of the material can be obtained after
the process of filtering and averaging.

For the design of the experiments, 9 different candidate
dumping positions of the scaled bucket are predefined with
respect to a fixed position of the cabin representing the
truck body. However, due to the influence of the inertia of
the robot arms and the payload distribution status in the
bucket, the coordinates of the dumping positions would
change to a certain degree. Considering the movement of
dumping is performed by a KUKA LBR iiwa robot, which
cannot accurately simulate the motion of the z-bar linkage
of a loader, the dumping position is defined as the average
value of the center of gravity of the cabin with the dumped

Part I:
Data Pre-process

Part II:
CNNs

Part III: BP Neural Network
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material after every first dump of all the cycles.

(Xi, Yi) =
1

Ni

 Ni∑
j=1

xji ,

Ni∑
j=1

yji

 (2)

where, the subscript i (i = 1, 2, · · · , 9) indicates the values
of the ith dumping point, (Xi, Yi) represents the average
value of coordinates of the ith dumping point, Ni indicates
the total number of cycles in which the first bucket of pay-

load is dumped at the ith dumping point,
(
xji , y

j
i

)
repre-

sents the coordinates at the jth cycle of the ith dumping
point.

3.3. CNNs

Despite the great success of CNNs for deep learning
tasks with images as input, high-accuracy results can usu-
ally only be obtained with the availability of massive data
for training the network. The data set in this work will
be limited for training a deep CNN from scratch. There-
fore, it is necessary to take advantage of the pre-trained
deep CNNs. A feasible way to use deep CNNs is to conduct
transfer learning. To be more specific, a pre-trained model
that has been trained with massive data is applied to spe-
cific problems trained with dedicated data, which share
some commonality at low-level features with the massive
data, and a small learning rate. The commonly used
deep CNNs include AlexNet, Densenet201, Googlenet, In-
ception v2, Inception v3, Resnet101, Resnet50, Resnet18,
VGG16, VGG19, and so on. Generally, these networks are
designed for identifying and classifying targets, while the
goal of our study is to perform regression. In addition,
the low-level features of the data sets (CIFAR-10/100 or
ImageNet) used to train these networks are very different
from that of the images applied in this paper. Hence, it is
difficult to accomplish the purpose of this study by simply
applying the method of transfer learning.

Based on the above reasons, we proposed a two-stage
CNN prediction method, including a classifier and some
regressors, as shown in Figure 5.

Step 1: Classification task. To increase the training ef-
ficiency and estimation accuracy of PSPD and
the material mass in the cabin, we divide the im-
ages into several different categories based on their
weights. For that purpose, 6 sets of images are
prepared out of the total images, according to the
mass intervals of material as follows: (0, 1], (1, 2],
(2, 3], (3, 4], (4, 5], (5, 7], where (0, 1] represents
the mass that fall between 0 and 1kg. The high-
est weight in the cabin is 6.68kg. There are very
limited data with only 46 groups that are above
6kg in the validation set. So the data above 6kg is
combined into the intervals of (5, 6] to form (5, 7].
The images can be classified according to the mass
of material that can greatly reduce the variation
of the target for the regression task and improve
the prediction accuracy.

Step 2: Regression task. In this task, we introduced a
compact neural network for predicting the mass
and PSPD. Six networks of the same architecture
are trained separately for different categories ac-
cording to the output from Step 1 above. The re-
gression target here contains two outputs, which
are the total payload and the coordinates. A single
universal network can be deployed for this work.
Unfortunately, the results are not as satisfactory
as using two separate networks. Therefore, we
propose a framework comprising two separate net-
works for predicting the mass of the material in the
cabin and the coordinate of its centre of gravity.

An alternative option is to design a network for estimat-
ing the mass directly in continuous space. However, cor-
rectly estimating the mass in continuous space from images
would be difficult using our limited data. For simplicity,
we used a classification network as described above. Con-
sidering that the number of prediction regression networks
will change correspondingly with respect to the number
of classes, the number of classes cannot be too large, as
that would introduce extra computational burden. Also,
as mentioned, the number of images in each of the in-
tervals needs to be sufficient for training. In this work,
empirically, six was found to be a well-balanced decision
with our collected data.

3.3.1. Classification

The performance of those popular networks listed in Sec-
tion 3.3 is evaluated for the classification task in terms of
several performance metrics, including accuracy, resource
consumption, etc. In order to make the networks appli-
cable to the problem addressed in this article, the last
fully connected layer of each model is deleted and re-
placed by a 6-output fully connected layer. Other layers
remain unchanged with their structures, parameters, and
weights. When performing the training process, the multi-
class cross-entropy is taken as the loss function,

Loss = −
∑
i

ln(x̂i) (3)

where x̂i is the probability that the prediction being clas-
sified as the ith class.

Accuracy is employed as one performance metric, de-
fined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP , FP , TN , and FN denote the true positive, false
positive, true negative, and false negative respectively.

The training processes are shown in Figure 6, and some
result data are listed in Table 1.

Since the entire model is connected in serial with mul-
tiple networks, the accuracy of the entire model will be
lower than that of any sub-network. The accuracy of the
entire model will, therefore, be dependent on the accuracy
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Figure 6: Accuracy and loss of popular networks in the classification task.

of each sub-network, which needs be as high as possible
in order to reach a satisfying level. Since the subsequent
regression networks are designed separately for each class,
the prediction performance will be poor for mis-classified
samples. However, practically, the images in two adjacent
intervals, e.g. (1,2] and (2,3], would appear more similar
than with more isolated intervals, e.g. (4,5]. The impact
of misclassifications between adjacent intervals would be
limited on the PSPD prediction networks.

As can be seen from Table 1, VGG19 performs best com-

pared to other networks, so it is adopted as the basis for
transformation. The modified classifier of the VGG19, as
shown in Figure 7, consists of 47 layers, including 1 input
layer, 16 convolutional layers, 5 pooling layers, 18 active
layers, 3 full connect layers, 1 softmax layer, 1 normaliza-
tion layer, and 2 dropout layers with the probability of 0.3.
The sizes of the convolution kernels can be found out from
the figure.
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Table 1: Important results of popular networks in the classification
task

Base model Accuracy (%) Loss Time cost (s)

VGG19 91.34 0.2167 1159
VGG16 89.73 0.2366 984
Alexnet 86.63 0.3128 116
Googlenet 83.42 0.4396 491
Densenet201 84.53 0.4995 5981
Resnet101 83.17 0.5470 2001
Resnet18 79.46 0.6253 274
Resnet50 81.68 0.6324 912
Inception v3 81.56 0.6345 1832
Inception v2 72.15 0.8462 6739

3.3.2. Regression

The proposed regressor in this paper is based on VGG19,
as shown in Figure 8, consisting of 41 layers, including 1
input layer, 12 convolutional layers, 5 pooling layers, 15
relu layers, 5 full connect layers, 1 regression layer, 1 cross
channel normalization layer, and 1 dropout layer with the
probability of 0.7. The sizes of the convolution kernels can
be found out from Figure 8.

The continuous form of cross-entropy is used as the loss
function for the training of the regressors. The parameters
of {(d0, z0) , (d1, z1) , . . . , (dN−1, zN−1)} are used to repre-
sent the values of image-label pairs and f for the regression
function. For any image-label pair (di, zi), the probability
Pr (ẑi) can be derived through the regression function f .
Since the true value of zi changes continuously within a
certain range, Pr (zi) follows a continuous probability dis-
tribution, that is, the cross-entropy between Pr (zi) and
Pr (ẑi) should be expressed in a continuous form as:

Hi =

∫ +∞

−∞
δ (z − zi) ln Pr

z
(ẑi)dz = ln p (zi|s) (5)

where p (zi|s) represents the distribution of ẑi, which fol-

lows a Gaussian distribution if function f was linear regres-
sion with the parameter s. δ (·) is the probability density
function of zi which is a Dirac delta function.

Therefore, the overall cross-entropy loss function would
be expressed as a sum over all Hi:

H =

N−1∑
i=0

Hi =

N−1∑
i=0

ln p (zi) (6)

Since p (zi|s) ∝ exp (zi−ẑi)2
2s2 , the sum of cross-entropy

would be proportional to
∑N−1

i=0 (zi − ẑi)2, which is equiv-
alent to least square.

This work uses RMSE as the criterion for evaluating the
quality of training results:

RMSE =

[
1

N

N−1∑
i=0

(zi − ẑi)2
] 1

2

(7)

3.4. BPNN

The data for the network are relatively simple, compris-
ing 6 inputs and 4 outputs, a fully connected BPNN with
two hidden layers is proved to be effective and accurate.
Figure 4 in Part III: BP Neural Networks depicts the net-
work architecture.

4. Experiments

Machine learning has been successfully applied in many
fields. One common characteristic for these applications
is the availability of massive labelled data for training the
neural networks. Also, the labelled data are mostly col-
lected from controlled working environments, such as lab-
oratories, production assembly lines and structured urban
transportation networks. However, the environmental con-
ditions for mining trucks are much more severe than the
laboratory environment. Factors such as vibrations, dust,
and lights may cause failures in field experiments. Also,
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labelled data for the real-world environment are very lim-
ited. Therefore, it is difficult to understand the causes
of the failures or inaccuracies with the prediction results
that may come from the prediction model or/and the ex-
treme environmental conditions. Repeated experiments
potentially can be applied to minimise the influence of the
environmental factors. However, it is obviously not an
economical or practical method to pause the mining chain
simply for the validation of the payload prediction algo-
rithm. It would be desirable to only perform large-scale
field experiments after the framework’s validity has been
fully verified in laboratory.

Therefore, this work designs a series of laboratory ex-
periments for validation of the proposed prediction frame-
work.

4.1. Experiment setup

The physical setup for the experiment is shown in Fig-
ure 9. Two LBR iiwa 14 R820 type robots are applied
for the experiments. A custom 3D-printed plastic bucket
mounted to the end-effector flange of one robot to simulate
the dumping operations of a loader. A red box simulat-
ing the truck body is put between the dumping robot and
the camera robot. Four load cells are assembled at four
bottom corners of the red box for the payload description
inside the box after each dump. The specific parameters
of the load cells are shown in Table 2. The data logger
USB-1608FS-Plus is applied to record the data acquired
by the load cells. The mass of the material contained in
the bucket can be determined by the difference between
the sensor data obtained by two consecutive dumping op-
erations. As can be seen from Figure 9, a black box con-
taining irregularly shaped limestone of about 10mm in size
is placed on the side of the dumping robot, simulating the
material pile in the mining site. A USB camera is mounted
to the end-effector of the other robot and calibrated with
respect to the world coordinates. The camera faces down

towards the red box to capture RGB images of the surface
in different positions. The data logger and the camera
communicate with the system through USB respectively,
while the robots are connected via TCP/IP. MATLAB R©

is applied to automate the process of data collection by
controlling the two Kuka robots that greatly accelerated
the process of data acquisition. The MATLAB R© toolbox
KUKA Sunrise is used to control the robot and log posi-
tion data.

Figure 9: The physical setup for the experiment

4.2. Task specifications

The experiments contain the following main steps:

Step 1: Set experimental parameters.

• Put the empty red box onto the load sensors
and then clear the initial data of the load
sensors.

10



Table 2: The specifications of the load cells

Parameter Value Units

Rate Load 5000 g
Null Balance ±1 %F.S
Sensitivity 2.0± 0.05 mV/V
Non-Linearity ±0.03 %F.S
Hysteresis ±0.03 %F.S
Repeatability ±0.03 %F.S
Recommend Excitation 5 ∼ 15 V
Input Resistance 350± 20 Ω
Output Resistance 350± 5 Ω
Insulation Resistance 2000 MΩ
Safe Load Limit 7500 g
Total Error 0.03 mV/V

• Select a predetermined dumping position rel-
ative to the black box.

• Set the relative positions of the camera and
the red box.

Step 2: The robot excavates the material from the black
box. Practically, operators are usually required
to dig up as much material as possible (fullness
is about 90% - 110%). If the digging conditions
can be fully controlled, the material mass of each
bucket would be consistent and can be described
as within a natural variability. However, the un-
certainty of the material pile will encounter diffi-
cult working conditions. For example, stones with
irregular shapes will lower the fullness to less than
50%. On the other hand, under certain conditions,
material above the boom may “collapse” into the
bucket, increasing the fullness level to above 130%.
Therefore, the variability of material mass will be
large. To simulate the phenomenon of large-scale
variation, the material mass of each excavation in
this work was deliberately prepared within a large
variation.

Step 3: Move the robot to the unloading position and keep
still for a short time (0.5s) to stabilize the bucket
and material to eliminate the effects of inertial
motion, while allowing load cells to record stable
data.

Step 4: Dump the material into the red box, and then
return to the initial position where the material
is excavated. The camera takes pictures at the
predetermined positions and the load cells record
the data again while the robot moving away.

Step 5: Repeat Step 2 to Step 4 until the material loaded
in the red box reaches a certain amount, and then
dump the material back into the black box after
the measurement.

Step 6: After obtaining a sufficient amount of data (see
section 4.3), change the dumping position relative
to the black box, and then repeat Step 1 to Step

5.

The red box coordinate origin O is defined at the po-
sition of the load cell at the lower-left corner, where the
horizontal axis is x and the vertical axis is y. The load
cells at each corner are numbered counter-clockwise from
the origin of the coordinate frame. The measured value
of each load cell is represented by mi, where i = 1, 2, 3, 4,
and the mass of the red box is mh, Therefore, the centroid
of the material can be projected on the xOy plane at the
following coordinate:


xCOG =

m2+m3− 1
2mh

4∑
i=1

mi−mh

yCOG =
m3+m4− 1

2mh

4∑
i=1

mi−mh

(8)

4.3. Experiment data

We predefined 9 dumping positions and conducted
about 1000 experiments at each position, totaling 8840
sets of valid data (each set contains the images and corre-
sponding sensor data). The experiments were conducted
iteratively. Initially, about 500 sets of data were acquired
at each position. We then evaluate the performance dif-
ference by adding more data iteratively. We collect 100
sets of data per round and this process stops until no no-
ticeable performance improvement. Figure 10 shows some
acquired images, and the corresponding sensor data are
shown in Figure 11.

As can be seen from Figure 11, the changes of the sen-
sor data are relatively smooth. It should be noted that
although the zero line and the data are plotted in the
same graph, they are collected during different time pe-
riods, where the zero line data are acquired before the
start of each dump (when the red box has not been placed
on the load cells) and the load data are collected after
dumping. In addition, the relative values of the load
data for each load cell appear consistent with the mate-
rial distribution in the red box shown in Figure 10, where
m3 > m4 > m2 > m1.

The acquired data include the current distribution im-
age of the material in the red box, the current mass of ma-
terial in the bucket, the dumping position, and the PSPD
of the material in the red box after the dumping opera-
tion. The first three items of the data are set as input for
the predictive model, and the last one is used as the label,
providing the labelled training data.

Statistical analysis of the material mass in the bucket is
shown in Figure 12, which is subject to the Normal distri-
bution N (0.4379, 0.06866), with RMSE = 2.92 × 10−3kg,
and SSE = 3.15× 10−4.
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5. Results and discussion

5.1. Prediction for the experiment data

5.1.1. Classification

Figure 13 shows the training results in terms of accu-
racy and loss of the proposed network (see Section 3.3.1),
where the hyper-parameters are empirically decided based
on common values that have been extensively used in other
literature, where the learning rate is 10−6, the batch size
is 20 and the number of epochs is 6. It can be seen from
the training and validation results that the network does
not appear over-fitting or under-fitting, implying that the
model has a good generalization ability. The final accu-
racy is 97.26% and the loss is 0.082, which are considerably
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Figure 12: Quality of material in bucket subjects to Normal distri-
bution.

better than the performance of the original networks listed
in Table 1.

5.1.2. Regressors

According to Section 3.3.1, all data (images) are divided
into 6 groups according to the weight range that are used
as the inputs for training six networks individually. Mean-
while, the data obtained from the load cells at the time,
when the images were captured, are used as the output
to train the networks. In the work, we set the learning
rate as 10−6, the batch size as 20 and epochs as 6, the
training results are shown in Figure 13. Correspondingly,
the RMSE and loss for each range are listed in Table 3.
Relative RMSE and Relative Loss in Table 3 are the ratios
of RMSE values with respect to the corresponding median
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Figure 13: Accuracy and loss of the proposed classifier.

Table 3: RMSE and loss of mass regression for each range

Range(kg) RMSE(kg) Relative RMSE Loss Relative Loss

(0, 1] 0.0486 0.0972 0.00118 0.0024
(1, 2] 0.0737 0.0491 0.00271 0.0181
(2, 3] 0.0935 0.0374 0.00438 0.0018
(3, 4] 0.1515 0.0433 0.01148 0.0033
(4, 5] 0.1568 0.0348 0.01230 0.0027
(5, 7] 0.1934 0.0322 0.01871 0.0031

values. Take the data in the first row as an example, Rel-
ative RMSE (0.0972) equals to divide RMSE (0.0486kg)
by the median (0.5kg) of the range (0, 1].

It can be seen from Figure 14 that with the increase of
mass of material, the absolute value of RMSE predicted
by the model increases, while the relative RMSE gradu-
ally decreases, indicating that the regression performance
of the model has improved slightly with the increase of
the mass of material. The possible reason is that due to
the limitation of the red box simulating the truck body.
The viscosity or granularity characteristics of such materi-
als are different at different layers, while the bottom layers
would spread slightly flatter, showing less variations in the
weight distribution. When the payload exceeds a certain
amount, the bottom part of the material pile cannot be
changed while the viscosity of the newly dumped mate-
rial is reduced. However, when there is only one dump of
material inside the red box, the movement of the particles
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Figure 14: RMSE and relative RMSE of regressed mass varying with
the material weights.

would be less affected by the sides of the container. The

13



flowing behavior of the material would show greater un-
certainty in that case. Therefore, in such circumstances,
even if there is only a small change in the surface shape
of the material, the mass of the material might be greatly
different.

Training under the same hyper-parameter settings, the
RMSE and loss for coordinates regression of the gravity
centers of the payload are listed in Table 4. The curve in
Figure 15 shows the RMSE of the regressed coordinates
and it can be seen that there is no obvious correlation
between the performance of the model and the mass of
material.

Table 4: RMSE and loss of coordinates regression for each range

Range(kg) RMSE Loss

(0, 1] 0.0217 0.000236
(1, 2] 0.0226 0.000256
(2, 3] 0.0181 0.000164
(3, 4] 0.0222 0.000246
(4, 5] 0.0218 0.000239
(5, 7] 0.0337 0.000566
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Figure 15: RMSE of regressed coordinates varying with the material
quality.

5.1.3. Results of BPNN

The RMSE of the training process are shown in Figure
16. It can be seen that RMSE reaches a relatively low level
in a short time. Although there is a certain difference be-
tween the training and validation, the absolute difference
at the final stage is negligibly small with the average value
of the material mass in the red box, proving that the model
provides satisfactory results for the application in terms of
generalization. It should be noted that the input data used
for training the BPNN is the data obtained from the load
cells, which serve as the ground truth of the corresponding
images, not the output predicted by the model established
in Section 3.3.

The predicted results are shown in Figure 17 and Figure
18. As can be seen in Figure 17, the predicted and the tar-
get values have a linear relationship with a slope close to
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Figure 16: RMSE of the BPNN varying with epochs.

1 (the maximum is 0.99414 and the minimum is 0.99127),
and the intercept close to zero (the minimum is 0.00302
and the maximum is 0.00674). Figure 18 shows that the
probability density of the prediction error on the entire
data set is approximately subject to the Cauchy distribu-
tion with the fitted position parameter x0 close to zero,
with the scale parameter γ around 0.015, indicating that
the prediction errors are negligible.

5.2. Comparison with other models

For comparison purposes, we transform some popular
networks, with minimum changes, in order to complete
the task of the CNNs (as specified in Part II: CNNs in
Figure 4), by 1) removing the softmax layer and the clas-
sification layers behind the last full connect layer of each
network and then 2) adding a 3-output full connect layer
with the same parameters as the last full connect layer,
while keeping the structure, parameters, weights, etc. of
the other layers. The training process is shown in Figure
19, and the results are listed in Table 5. After that, the
trained results of CNNs, the mass of the material in the
bucket and dumping coordinates, are used as the input
data of the trained BPNN to predict the final PSPD.

Table 5: CNN results of the most popular networks.

Base model RMSE Loss Time elapsed

VGG19 0.0800 0.00321 306min56sec
Inception v2 0.0817 0.00334 997min23sec
VGG16 0.1036 0.00536 242min30sec
Googlenet 0.1333 0.00888 74min08sec
Inception v3 0.1501 0.01126 785min45sec
Resnet18 0.1708 0.01459 52min31sec
Resnet101 0.1807 0.01633 344min32sec
Resnet50 0.2321 0.02693 169min08sec
Alexnet 0.2415 0.02915 74min10sec
Densenet201 0.2706 0.03662 834min04sec

It can be seen from Figure 20 that a few networks, in-
cluding our proposed model, VGG16 and VGG19, perform
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Figure 17: Relationship between the predicted and the target values. From left to right are the corresponding results of mi (i = 1, 2, 3, 4).
The equation obtained by linear fitting, the correlation coefficient R, and the standard deviation STD are shown at the upper left corner.
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Figure 18: Error distribution for training, validation, and test sets. The Fitted KDE in the figure fits the error probability density of ensemble
dataset, including the training, validation, and test set, and its distribution approximately subjects to Cauchy distribution f (x;x0, γ) =
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better in terms of predicting the mass of the material,
showing strong correlations between the prediction and
the actual target mass. With other networks, it can be
observed that there exist certain numbers of outlier sam-
ples in the predicted values that deviate far from the fitted
line, especially with the network of Resnet101, Resnet50,
Resnet18, and Densenet201. For the PSPD prediction,
those models are reliable enough or at least not directly
usable for practical applications by default without addi-
tional tuning or modifications. Besides, the slopes of the
fitted lines of VGG16, Googlenet, and Alexnet are clearly
lower than others, indicating that the three networks have
a larger prediction bias for large-mass samples. Specifi-
cally, the slope of the fitted line of Alexnet is only 0.88558,
which cannot meet the requirements.

It can be seen from the violin figure (Figure 21) that
the proposed model, VGG16 and VGG19, perform con-
siderably better than all other networks in terms of ac-
curacy, especially for Densenet201, Resnet101, Resnet50,
and Resnet18, whose maximum prediction errors have ex-
ceeded 1kg. Although the maximum prediction error of
Alexnet is lower than 0.5kg, the distribution of its peak
values deviate from zero clearly (as can be seen from

Figure 22, the Skew of Alexnet has exceeded −0.37kg).
The peaks of the prediction errors of VGG16, VGG19,
Googlenet, Inception v2 and Inception v3 are close to zero.
However, their results are more scattering than the model
proposed in this paper.

Table 6 shows that the largest prediction error of the
proposed model is the lowest among all models, where
the maximum error is 0.192kg and the minimum er-
ror is −0.189kg (both are about 3.17% of the total
weight). Due to the visualisation effect caused by the line
width, the curve in Figure 21 appears to slightly exceed
±0.2kg. It should be noted that, when using the model of
Densenet201, Resnet101, Resnet50, and Resnet18 for pre-
diction, negative values appear in the results. However,
it is obvious that negative results are practically mean-
ingless. Further study confirmed that those models are
less reliable for the PSPD prediction. Because the focus
of this research is on the proposed model, there is no fur-
ther analysis of this phenomenon, but to simply delete the
samples corresponding to negative results when compar-
ing different models. It can be seen from the comparison
results that the method proposed in this paper has great
advantages in terms of accuracy and reliability.
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Table 6: Maximum and minimum errors and time required for a
single prediction of each model.

Model
Max. error
(kg)

Min. error
(kg)

Time cost
(ms/prediction)

Proposed model 0.19205 −0.18929 104.8
VGG19 0.28447 −0.23852 34.18
VGG16 0.28814 −0.22554 27.40
Inception v3 0.29956 −0.53738 34.98
Inception v2 0.33447 −0.32081 74.11
Googlenet 0.43461 −0.34711 7.37
Alexnet 0.47534 −0.17423 2.11
Resnet18 0.60868 −1.03483 6.60
Resnet101 0.64185 −1.16618 29.26
Densenet201 1.01221 −1.39022 47.11
Resnet50 1.36430 −0.84171 19.30

5.3. Real-world environment

Applying this method to real-world construction appli-
cations should overcome some engineering challenges, in-
cluding 1) limited labelled training data for the real-world
environment, 2) the difference of the data between labo-
ratory and real-world environments, 3) the unstructured
nature of real-world data, and 4) noisy images and sen-
sor data from the real-world environment. Below are our
strategies to deploy the work for real-world environment.

Part I deals with pre-processing of sensor data from both
the camera and load cells. On construction sites, image
quality will be unavoidably degraded by the adverse ef-
fects of light scattering due to the presence of dust particles
that will hinder the performance of the proposed system.
In order to enhance the observed image quality, removal
of the interference caused by dust will be required. Deep
Learning-base methods will be deployed for reconstructing
high-quality images by training neural networks using syn-
thetic images [50, 51] and using CNNs or generative net-
works, such as Generative Adversarial Networks (GAN)
and Variational Autoencoder (VAE), to produce clean im-
ages [51, 52]. For dust-specific image enhancement, it is
also worth investigating in manipulating image parame-
ters in the colour space, such as the halo-reduced dark
channel prior (DCP) dehazing technique [53]. In addition,
trustworthy labels are critical to the success of the model

16



Figure 20: Relationship between target and predicted values. The equation expression, correlation coefficient R, and standard deviation STD
obtained by linear fitting are labelled in the figure.

training. However, as mentioned in Section 1, it is difficult
to keep the vehicle horizontal after each load from shovels
caused by the suspension system and rough terrain, which
lead to inaccurate force measurement from the four cor-
ners, hence not able to provide true representations of the
distributions of the materials. Sensors, such as gyroscope,
will be needed to provide tilt angles of the truck body to
compensate the force measurement. It should be noted
that once the model has been trained, it is not necessary
to use such sensors, when applying it to the vehicle, be-
cause the camera will stay relatively stationary with the
truck body.

Secondly, the CNNs (Part II) are not directly applica-
ble for real world environment due to the different feature
spaces from the laboratory experiments. The most ob-
vious solution is through transfer learning, which allows
the use of pre-trained models to be mapped to a different
domain, the real-world dataset here [54, 55]. Since there
will be limited data obtained from the real-world environ-

ment, it is unrealistic to retrain the whole network from
scratch, i.e. the feature levels at the convolutional lay-
ers. We believe that the materials that we tested in the
laboratory share some similarities with the real-world im-
ages at its low-level representations. In that case, the low-
level generic features from the laboratory experiments can
be reused for the real-world data and the network layers
will be selectively freezed or fine-tuned during retraining.
It will be challenging if the labelled real-world data are
scarce, and focus will be on the strategy of how to balance
freezing or fine-tuning the generic feature layers. The net-
work structure in Part III is relatively simpler and should
be more straightforward to be retrained. Further experi-
ments and investigation will be focusing on incorporating
prior domain knowledge to further constrain the training
process to improve the performance and reliability in the
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real-world environment.
6. Conclusions

The pilot study of the application of artificial neural
networks on predicting the PSPD is proposed in this pa-
per. The effectiveness of the solution has been verified
experimentally with real data collected from a laboratory-
based setup using two robots, simulating the mining site
environments.

The prediction model consists of three main parts,
namely data pre-processing, CNN and BPNN. Firstly, the
operations of background removal and grayscale conver-
sion are applied to images. Then, filtering and averaging
are applied for data processing of material mass and coor-
dinates to remove irrelevant noises, enhance data availabil-
ity, speed up network training, and improve model predic-
tion accuracy. Secondly, based on the model of VGG19, a
two-stage prediction-regression CNN model is designed to
automatically extract image features to obtain the PSPD
in the current state. Finally, a shallow BPNN with 6 in-
puts and 4 outputs is established to predict the PSPD af-
ter the current dumping operation. In order to verify the
proposed model, we designed experiments and obtained a
large amount of data allowing for model training and test-
ing. The proposed model has demonstrated better perfor-
mance, in terms of accuracy, reliability, and so on, com-
pared to other standard neural networks.

Our work has two main contributions. Firstly, a new
data pipeline or model is developed by combining machine
vision, data processing, CNN and BPNN, which can per-
form regression prediction on images. This idea can be also
accommodated for solving prediction problems in other
similar engineering fields related to the distribution of bulk
materials, such as estimation of the material quantity in
loader buckets, storages in granary, etc. Secondly, the al-

gorithm proposed in this paper accomplishes the real-time
prediction of the PSPD in the laboratory environment.
It can be expected that, when the method is transplanted
into the actual production environment, drivers can adjust
the dumping position in advance to achieve the material
balance in the truck body. Besides, the proposed model
lays the foundation in supporting future research in au-
tonomous operations of mining equipment.

Although the proposed model provides satisfactory pre-
dictive performance, there are still some limitations. The
characteristics of data collected from the laboratory and
data from real-world working conditions may be inconsis-
tent. For example, this work was carried out in a labo-
ratory environment under controllable lighting conditions.
Also, the impact of adverse factors such as dust and vi-
brations are nearly negligible here. However, in real opera-
tional situations, lighting conditions will vary greatly. The
impact of illumination, dust and vibrations on the qual-
ity of the images cannot be ignored. The results in this
paper demonstrate the feasibility of our proposed method
for predicting the PSPD of bulk material. However, it is
foreseeable that a considerably large amount of data would
be required for real-world conditions to cover many differ-
ent conditions, compared to laboratories. In future, we
will also consider other machine vision methods to pre-
process images and enhance image quality in conditions
with reduced visibility due to illumination, dust and vi-
brations. The influence of the material’s characteristics
on the results will also be investigated. In this work, the
bulk materials are of the same type, which, however, will
not be always true in real-world operations that the ma-
terials would be likely to be a mixture of multiple types.

In addition, this article only discusses the possibility of
dumping control methods based on prediction optimiza-
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Figure 22: Distribution of prediction error for each model. The Fitted KDE in the figure is the curve obtained by fitting the probability
density with the Cauchy distribution. The fitting parameters x0 and γ corresponding to each result are marked in the upper left corner of
the graph as well as the Skew and Kurtosis.

tion in mining shovels, and detailed research is needed
in the future. Although drivers can manually select the
dumping position based on the results of the prediction
model, it is still difficult to achieve the optimal balance re-
sult for imprecise operations. Therefore, in the subsequent
work, a multi-objective optimization study of the dumping
position will be performed based on the prediction model.
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