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Liquid crystal elastomers exhibit stress softening
with residual strain under cyclic loads. Here, we
model this phenomenon by generalising the classical
pseudo-elastic formulation of the Mullins effect
in rubber. Specifically, we modify the neoclassical
strain-energy density of liquid crystal elastomers,
depending on the deformation and the nematic
director, by incorporating two continuous variables
that account for stress softening and the associated
set strain. As the material behaviour is governed
by different forms of the strain-energy density on
loading and unloading, the model is referred to as
pseudo-anelastic. We then analyse qualitatively the
mechanical responses of the material under cyclic
uniaxial tension, which is easier to reproduce in
practice, and further specialise the model in order to
calibrate its parameters to recent experimental data
at different temperatures. The excellent agreement
between the numerical and experimental results
confirms the suitability of our approach. Since the
pseudo-energy function is controlled by the strain-
energy density for the primary deformation, it is valid
also for materials under multiaxial loads. Our study
is relevant to mechanical damping applications and
serves as a motivation for further experimental tests.

1. Introduction
Liquid crystalline solids are advanced manufactured
materials combining the elasticity of rubber with the
self-organisation of liquid crystals [16,27]. They consist
of cross-linked networks of polymeric chains containing
liquid crystal mesogens, and are capable of relatively
large deformations, which arise spontaneously and
reversibly under external stimuli (heat, light, solvents,
electric or magnetic field) [17,35,38,48,64,75,77,79,85].
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Recent experimental studies have revealed softening effects under repeated tensile loading of
nematic liquid crystal elastomer (NLCE) samples at different temperatures [5,49]. Specifically, a
hysteretic response during unloading after loading in uniaxial tension was documented, whereby
the stress on unloading was significantly less than that on loading at the same strain. In addition,
after loading and subsequent unloading, the material did not return to its initial natural, stress-
free configuration, but exhibited a residual strain. In contrast, LCE stiffening under compressive
loads was recorded in [3]. Self-repair (or self-healing) was also observed experimentally in
damaged LCEs [78].

Softening under repeated loading and unloading of rubber where filler particles (e.g., carbon
black) are dispersed in the polymer network was initially obtained by Bouasse & Carriére
(1903) [11] and is known as the Mullins effect [55–59]. This phenomenon is reversible since the
material can ‘heal’ through re-cross-linking of network junctions at sufficiently high temperature
[55,61,69,70]. A comprehensive study of filled polymers and their industrial applications is
provided by the monograph [41]. Due to its industrial relevance, the Mullins effect has attracted
considerable attention. Within the theoretical framework of large-strain finite elasticity, several
constitutive models have been proposed. In [86], the rubber material was treated as a mixture of
two macromolecular networks with different reference configurations. The model, which is valid
when scission is caused by sufficiently large deformations, was refined in [66] and applied to
specific equilibrium problems in [65]. A constitutive framework for the response of rubber that
undergoes temperature-induced scission and re-cross-linking was developed in [87,88]. In [36],
the Mullins effect in uniaxial tension was studied and used to describe the transverse vibration
of a rubber string which was stretched repeatedly. Softening under different deformations
than uniaxial tension was considered in [23,37,46]. Three-dimensional two-phase models were
formulated in [6,32]. In [71], a phenomenological micromechanical model was devised starting
from a polymeric network in which filler particles were treated as rigid spheres connected by
two different types of chains, elastic or breakable. The efficiency of this model in describing
three-dimensional inhomogeneous deformations was further demonstrated in [72]. In [15], the
model was extended to incorporate healing. A mesoscopic model that describes the Mullins
effect in rubber-like solids based on the notion of limiting chain extensibility associated with
the Gent hyperelastic model was presented in [33,34]. In [40,63], a macroscopic pseudo-elastic
model was introduced to account for stress softening by incorporating a continuous damage
parameter into the hyperelastic strain-energy function for rubber. This material model comprises
two different forms of the strain-energy density on loading and unloading, respectively, such
that its mechanical behaviour can be treated within the elasticity framework, while loading-
unloading cycles involve energy dissipation. In [24], the phenomenological pseudo-elastic strain-
energy function was modified to account for both stress softening and the associated set strain.
A particular version of this model was treated in [67]. An extensive survey on modelling
approaches for the Mullins effect can be found in [22]. More recent experimental results are
recorded in [42,44]. It is worth mentioning that Mullins-like effects have also been observed
during experimental tests performed on certain soft tissues (e.g., arteries, skin, lungs, brain),
where loading-unloading cycles are generally performed several times before the stress-strain
relationship becomes repeatable. The procedure is known as preconditioning [12,25,30,60].

For ideal monodomain nematic solids, where the mesogens are aligned throughout the
material, a general constitutive formulation is provided by the phenomenological neoclassical
strain-energy function proposed in [10,81,84]. This model is based on the molecular network
theory of rubber elasticity [73], and its parameters are directly measurable experimentally or
derived from macroscopic shape changes [82,83]. Nematic monodomains can be formed from
polydomains, which are generally isotropic, through stretching during the final cross-linking,
or by cooling from the isotropic to the nematic phase under an external stress field [14,39]. For
nematic polydomains, where the mesogens are separated into many domains, such that in every
domain they are aligned along a local director, in [8,9], it was assumed that each domain has the
same strain-energy density as a monodomain. However, similarly to the case of rubber elasticity,
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the neoclassical theory requires modifications in order to accommodate material behaviours
observed in certain experiments [45]. Extensions to nematic strain-energy densities based on
classical hyperelastic models (e.g., Money-Rivlin, Gent, Ogden) are discussed in [1,2,21]. More
general continuum mechanical theories are presented in [4,90].

In this study, we combine the neoclassical framework with the pseudo-elasticity theory
proposed in [24,63] to construct a phenomenological model for NLCEs that captures stress softening
and residual strain inelastic responses under repeated loads. In general, these responses are
interpreted as being due to changes in the microstructural texture or viscoelasticity, but we
do not consider microstructural or time-dependent effects here. In Section 2, we recall the
neoclassical modelling strategy where we adopt the isotropic phase at high temperature as
the reference configuration [13,18–21], rather than the nematic phase in which the cross-
linking was produced [4,10,76,80,81,84,90]. Our choice is phenomenologically motivated by the
multiplicative decomposition of the deformation gradient from the reference configuration to
the current configuration into an elastic distortion followed by a natural (stress free) shape
change. This multiplicative decomposition is similar to those found in the constitutive theories of
thermoelasticity, elastoplasticity, and growth [31,43], but it is fundamentally different as, for LCEs,
the stress-free geometrical change is superposed on the elastic deformation, which is applied
directly to the reference state. The elastic stresses can then be used to analyse the final deformation
where the particular geometry also plays a role. To formulate the pseudo-energy function, in
Section 3, we modify the one-term (neo-Hookean-based) neoclassical strain-energy density, which
characterises the NLCE material on primary loading from the undeformed state, through the
incorporation of two additional variables that account for stress softening and residual strain on
unloading, respectively. Because the material behaviour is governed by different forms of the
strain-energy density on loading and unloading, and depends on both the deformation and the
nematic director, the model is referred to as pseudo-anelastic. In Section 4, we analyse qualitatively
the inelastic responses of the material in cyclic uniaxial tension. The scope of these two sections
is to introduce the theoretical principles and present the general strategy for the pseudo-anelastic
modelling in a manner that is mathematically and mechanically transparent. Carefully extending
the one-term neoclassical model to the pseudo-anelastic form is the best way to illuminate the
key aspect of the new approach. Following the general principles, other strain-energy functions
could also be constructed if required by the experimental data, albeit with more complicated
calculations due to additional nonlinearities. In Section 5, we select a pseudo-anelastic extension
of Ogden-type and adjust its parameters to recent experimental data provided in [49]. However,
for different experimental measurements, different strain-energy functions could better capture
the observed mechanical behaviour, and the choice is not unique in general. In Section 6, we draw
concluding remarks.

2. An ideal liquid crystal elastomer
The neoclassical strain-energy density function describing an ideal nematic liquid crystal
elastomer (NLCE) takes the general form

W (nc)(F,n) =W (A), (2.1)

where F denotes the deformation gradient from the isotropic state, n is a unit vector field, known
as the director, and W (A) represents the strain-energy density of the isotropic polymer network,
depending only on the (local) elastic deformation tensor A. The tensors F and A satisfy the relation
(see Figure 1)

F = GA, (2.2)

where
G = a1/3n⊗ n + a−1/6 (I− n⊗ n) = a−1/6I +

(
a1/3 − a−1/6

)
n⊗ n, (2.3)

is the spontaneous deformation tensor defining a change of frame of reference from the isotropic
phase to a nematic phase. This tensor is symmetric, i.e., G = GT (where the superscript “T”
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denotes the transpose operator), but the elastic tensor A may not be symmetric in general. In
(2.3), a> 0 is the temperature-dependent stretch parameter, ⊗ denotes the usual tensor product
of two vectors, and I = diag(1, 1, 1) is the identity tensor. Here, it is assumed that a is spatially-
independent (i.e., no differential swelling). For an ideal nematic solid, the ‘anisotropy’ ratio
r= a1/3/a−1/6 = a1/2 is the same in all directions. In the nematic phase, both the cases with
r > 1 (prolate molecules) and r < 1 (oblate molecules) are possible, while when r= 1, the energy
function reduces to that of an isotropic hyperelastic material [17].

Figure 1. Schematic of the composite deformation of a nematic solid.

In (2.1), the elastic strain-energy function W is minimised by any deformation satisfying
AAT = I [62,74], whereas the corresponding nematic strain-energy W (nc) is minimised by any
deformation satisfying FFT = G2. Hence, every pair (GR,n), with R an arbitrary rigid-body
rotation (i.e., R−1 = RT and detR = 1), is a natural (i.e., stress free) state for this material model.
By (2.3), the following identity holds

RTGR = a−1/6I +
(
a1/3 − a−1/6

)(
RTn

)
⊗
(

RTn
)
. (2.4)

The director n is an observable (spatial) quantity. Denoting by n0 the reference orientation of the
local director corresponding to the cross-linking state, n and n0 may differ both by a rotation
and a change in r. Many macroscopic deformations of nematic elastomers induce a director re-
orientation whereby the director aligns in the direction of the largest principal stretch associated
with the deformation. The strain energy given by (2.1) satisfies the following conditions, which
are inherited from isotropic finite elasticity [51]:

Material objectivity. This states that constitutive equations must be invariant under changes of
frame of reference. It requires that the scalar strain-energy functionW (nc)(F,n) is unaffected by a
superimposed rigid-body transformation (which involves a change of position) after deformation,

i.e.,W (nc)
(

RT F,RTn
)
=W (nc) (F,n), where R∈ SO(3) is a proper orthogonal tensor (rotation).

Note that, as n is defined with respect to the deformed configuration, it transforms when
this configuration is rotated, whereas n0 does not [29]. Material objectivity is guaranteed by
defining strain-energy functions in terms of the scalar invariants. Indeed, by the material frame
indifference of W ,

W
(

RTA
)
=W (A), (2.5)

and by (2.2),

RT F =
(

RTGR
)(

RTA
)
. (2.6)

Then, (2.1), (2.4), (2.5) and (2.6) imply

W (nc)
(

RT F,RTn
)
=W

(
RTA

)
=W (A) =W (nc)(F,n). (2.7)
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Material isotropy. This requires that the strain-energy density is unaffected by a superimposed
rigid-body transformation prior to deformation, i.e., W (nc)(FQ,n) =W (nc)(F,n), where Q∈
SO(3). Note that, as n is defined with respect to the deformed configuration, it does not change
when the reference configuration is rotated, whereas n0 does [29]. For isotropic materials, the
strain-energy function is a symmetric function of the principal stretch ratios {λi}i=1,2,3 of F. The
squares of the principal stretches, {λ2i }i=1,2,3, are the eigenvalues of the deformation tensors FFT

and FT F. This is because, as W is isotropic, i.e.,

W (A) =W (AQ), (2.8)

and (2.2) holds, it follows that

FQ = G (AQ) . (2.9)

Hence, by (2.1), (2.8) and (2.9),

W (nc)(FQ,n) =W (AQ) =W (A) =W (nc)(F,n). (2.10)

For an homogeneous isotropic incompressible hyperelastic material described by the strain-
energy function W (A), the Cauchy stress tensor (representing the internal force per unit of
deformed area acting within the deformed solid) takes the form [31,50,62,74]

T = (detA)−1 ∂W

∂A
AT − pI =−pI + β1B + β−1B−1, (2.11)

where p denotes the Lagrange multiplier for the incompressibility constraint detA = 1,

β1 = 2
∂W

∂I1
, β−1 =−2

∂W

∂I2
(2.12)

are material parameters, B = AAT is the left Cauchy-Green elastic deformation tensor, and I1, I2
are its first two principal invariants (I3 =detB = 1 for incompressibility).

The associated first Piola-Kirchhoff (PK) stress tensor (representing the internal force per unit
of undeformed area acting within the deformed solid) is equal to

P = T Cof(A) = TA−T . (2.13)

where Cof(A) = (detA)A−T is the cofactor of A.
For the associated nematic elastomers described by (2.1), when the director is free to rotate,

using the multiplicative decomposition (2.2), the Cauchy stress tensor takes the form [52]

T(nc) = J−1 ∂W
(nc)

∂F
FT − p(nc)I = J−1G−1 ∂W

∂A
ATG− p(nc)I = J−1G−1TG, (2.14)

where T is the Cauchy stress defined by (2.11), J =det F, and the scalar p(nc) (the hydrostatic
pressure) represents the Lagrange multiplier for the internal constraint det F = 1.

The Cauchy stress tensor T(nc) given by (2.14) is not symmetric in general [4,68,90], and in
addition, the following condition is assumed [4,90],

∂W (nc)

∂n
(F,n) = 0. (2.15)

Equivalently, by the principle of material objectivity stating that constitutive equations must be
invariant under changes of frame of reference (see [4] for details),(

T(nc)T − T(nc)
)

n = 0. (2.16)

The first Piola-Kirchhoff (PK) stress tensor for the nematic material is then

P(nc) = T(nc)Cof(F) = G−1TA−T = G−1P, (2.17)

where P is the first Piola-Kirchhoff stress given by (2.13).
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3. The pseudo-energy function
In this section, we construct a pseudo-anelastic energy function to capture stress softening with
associated residual strain in nematic elastomers under cyclic loads (see also [7,47,89]). In its
general form, this function builds directly on the neoclassical model, which depends on both
the strain and the nematic director, and is similar to the pseudo-elastic strain-energy function
accounting for the Mullins effect in filled rubbers [24,63]. Therefore, we briefly recall the steps
associated with the construction of a pseudo-elastic energy function first, and then extend the
method to nematic materials.

(a) The pseudo-elastic strain-energy function
Based on the notion of pseudo-elasticity introduced in [30], the Mullins effect of rubber can be
captured by modifying the strain-energy function for an isotropic incompressible hyperelastic
material to account for stress softening and residual strain. A general form of the pseudo-elastic
energy function is given as follow [24],

W̃ (α1, α2, α3, η0, η1) = η0W0(α1, α2, α3) + (1− η1)W1(α1, α2, α3) + φ0(η0) + φ1(η1). (3.1)

In this equation, W0(α1, α2, α3) is a hyperelastic strain-energy function of the ordered principal
stretch ratios 0<α3 ≤ α2 ≤ α1, representing the singular values of the elastic deformation
gradient A; φ0(η0) is a function of the ‘damage’ (or ‘softening’) scalar variable η0 associated
with the softening effect; φ1(η1) is a function of the ‘residual strain’ scalar variable η1 associated
with set strain effect; and W1(α1, α2, α3) is an auxiliary function. The pseudo-energy function
described by (3.1) is required to satisfy the material objectivity condition [63].

On the primary loading path, i.e., loading from the undeformed state, the material is fully
determined by the elastic strain-energy density. Therefore, the variables η0 and η1 are inactive on
loading, where they are set equal to a given constant value, and active on unloading, where they
change the material properties. For simplicity, it is assumed that

∂W̃

∂η0
(α1, α2, α3, η0, η1) = 0,

∂W̃

∂η1
(α1, α2, α3, η0, η1) = 0. (3.2)

These equations determine η0 and η1 implicitly in terms of the stretch ratios {αi}i=1,2,3.
For example, we consider the neo-Hookean (NH) strain-energy function (see also [62])

W0(α1, α2, α3) =
µ

2

(
α2
1 + α2

2 + α2
3 − 3

)
, (3.3)

where µ> 0 represents the constant shear modulus at small strain, and {α2
i }i=1,2,3 are the

principal eigenvalues of the Cauchy-Green tensors B = AAT and C = ATA.
We can define the auxiliary function by [24]

W1(α1, α2, α3) =
1

2

[
C1

(
α2
1 − 1

)
+ C2

(
α2
2 − 1

)
+ C3

(
α2
3 − 1

)]
, (3.4)

where {Ci}i=1,2,3 are constants that can be adjusted to data.
The great advantage of this approach is that, despite the fact that the pseudo-elastic model

described by (3.1) takes different forms on loading and unloading, it can be studied by the usual
methods of finite elasticity on each path.

(b) The pseudo-anelastic energy function for liquid crystal elastomers
Combining the neoclassical and pseudo-elasticity theories, we extend the formulation of a
pseudo-energy function to nematic elastomers as follows,

W̃ (nc)(λ1, λ2, λ3,n, η0, η1) = η0W
(nc)
0 (λ1, λ2, λ3,n) + φ

(nc)
0 (η0)

+ (1− η1)W
(nc)
1 (λ1, λ2, λ3,n) + φ

(nc)
1 (η1),

(3.5)
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where

W
(nc)
0 (λ1, λ2, λ3,n) =

µ

2

{
a1/3

[
3∑
i=1

λ2i −
(
1− a−1

) 3∑
i=1

λ2i (ei · n)
2

]
− 3

}
(3.6)

represents the neoclassical strain-energy function defined by (2.1), with the NH strain-energy
density of the elastic network given by (3.3), {λ2i }i=1,2,3 and {ei}i=1,2,3 denote, respectively, the
principal eigenvalues and principal eigenvectors of the deformation tensors FFT and FT F (see
also [51,52]), and

W
(nc)
1 (λ1, λ2, λ3,n) =

1

2
a1/3

[
3∑
i=1

Ciλ
2
i −

(
1− a−1

) 3∑
i=1

Ciλ
2
i (ei · n)

2

]
− C1 + C2 + C3

2
(3.7)

is an auxiliary nematic function based on the function given by (3.4), with α1 replaced by λ1a−1/3

and αi replaced by λia1/6, i= 2, 3. We also assume

∂W̃ (nc)

∂η0
(λ1, λ2, λ3,n, η0, η1) = 0,

∂W̃ (nc)

∂η1
(λ1, λ2, λ3,n, η0, η1) = 0. (3.8)

We call the material model described by (3.5) pseudo-anelastic as it takes different forms on loading
and unloading, like the pseudo-elasticity model, but depends on the nematic director as well [26].
The associated Cauchy and first Piola-Kirchhoff stress tensors are calculated by similar formulae
as given in (2.14) and (2.17), respectively, with W̃ (nc) instead of W (nc).

As the material is incompressible, i.e., λ1λ2λ3 =det F =detG = 1, we have λ3 = λ−1
1 λ−1

2 , and
given that the nematic director n can rotate freely, it follows that

W
(nc)
0 (λ1, λ2,n) =

µ

2

[
a1/3

(
λ21
a

+ λ22 + λ−2
1 λ−2

2

)
− 3

]
(3.9)

and

W
(nc)
1 (λ1, λ2,n) =

1

2
a1/3

(
C1λ

2
1

a
+ C2λ

2
2 + C3λ

−2
1 λ−2

2

)
− C1 + C2 + C3

2
. (3.10)

Without loss of generality, we set η0 = η1 = 1 when η0 and η1 are inactive, and take the
functions φ(nc)0 and φ(nc)1 to satisfy, respectively, the conditions [24]

φ
(nc)
0 (1) = 0, φ

(nc)
1 (1) = 0. (3.11)

Then, by (3.5) and (3.11),

W̃ (nc)(λ1, λ2,n, 1, 1) =W
(nc)
0 (λ1, λ2,n), (3.12)

where W (nc)
0 (λ1, λ2,n), given by (3.9), represents the energy function of the perfectly elastic

material, for which the loading and unloading paths are the same.
When η0 and η1 are active, assuming that equations (3.8) can be solved explicitly, we can write

η0 = η0(λ1, λ2,n), η1 = η1(λ1, λ2,n), (3.13)

and then define the energy function on unloading as

w̃(nc)(λ1, λ2,n) = W̃ (nc)(λ1, λ2,n, η0(λ1, λ2,n), η1(λ1, λ2,n)). (3.14)

If
(
λ
(m)
1 , λ

(m)
2

)
are the values of (λ1, λ2) at which unloading is initiated, then

η0

(
λ
(m)
1 , λ

(m)
2 ,n

)
= 1, η1

(
λ
(m)
1 , λ

(m)
2 ,n

)
= 1. (3.15)
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By (3.8), the first derivatives of φ(nc)0 and φ(nc)1 with respect to η0 and η1, respectively, satisfy
the following equations,

dφ(nc)0

dη0
(η0) =−W

(nc)
0 (λ1, λ2,n),

dφ(nc)1

dη1
(η1) =W

(nc)
1 (λ1, λ2,n). (3.16)

These implicitly define η0 and η1 in terms of λ1, λ2 and n.

(c) Stress softening with residual strain in nematic elastomers

On the primary loading path, where η0 = η1 = 1, setting λ1 = λ
(m)
1 and λ2 = λ

(m)
2 the stretch

ratios from which unloading begins, we have

dφ(nc)0

dη0
(1) =−W (nc)

0

(
λ
(m)
1 , λ

(m)
2 ,n

)
,

dφ(nc)1

dη1
(1) =W

(nc)
1

(
λ
(m)
1 , λ

(m)
2 ,n

)
. (3.17)

After unloading, in the absence of a residual elastic deformation, such that a−1/3λ1 = a1/6λ2 = 1

and η1 = 1, if η(m)
0 = η0

(
a1/3, a−1/6,n

)
denotes the corresponding value of η0, then

dφ(nc)0

dη0

(
η
(m)
0

)
=−W (nc)

0

(
a1/3, a−1/6,n

)
= 0. (3.18)

In this case, the residual value of the pseudo-energy function when the material is fully unloaded
is equal to

φ
(nc)
0

(
η
(m)
0

)
= w̃(nc)

(
a1/3, a−1/6,n

)
= W̃ (nc)

(
a1/3, a−1/6,n, η(m)

0 , 1
)
. (3.19)

We define

ϕ
(nc)
0 (η0) =

dφ(nc)0

dη0
(η0)−

dφ(nc)0

dη0
(1), (3.20)

which, by (3.17) and (3.18), at the beginning and the end of unloading, satisfies, respectively,

ϕ
(nc)
0 (1) = 0, ϕ

(nc)
0

(
η
(m)
0

)
=W

(nc)
0

(
λ
(m)
1 , λ

(m)
2 ,n

)
. (3.21)

Integration of (3.20) gives

φ
(nc)
0 (η0) =

∫η0
1
ϕ
(nc)
0 (ζ)dζ + (1− η0)ϕ

(nc)
0

(
η
(m)
0

)
. (3.22)

Furthermore,

φ̇
(nc)
0 (η

(m)
0 ) =

(
1− η(m)

0

)
Ẇ

(nc)
0

(
λ
(m)
1 , λ

(m)
2 ,n

)
, (3.23)

where the superposed “dot” denotes differentiation with respect to any deformation parameter
that increases with loading (e.g., differentiation with respect to time). As η(m)

0 ≤ 1, with equality
only at the beginning of the primary loading, and since the stored energy on the primary loading

path must increase, i.e., Ẇ (nc)
0

(
λ
(m)
1 , λ

(m)
2 ,n

)
> 0, by (3.23), it follows that φ̇(nc)0

(
η
(m)
0

)
≥ 0 [63].

A suitable choice for φ(nc)0 (η0) is given by the solution of

dφ(nc)0

dη0
(η0) =−µm erf−1 (r(η0 − 1))−W (nc)

0

(
λ
(m)
1 , λ

(m)
2 ,n

)
, (3.24)

where erf−1 is the inverse of the error function, and m and r are positive constants that can be
adjusted to the data. By (3.16) and (3.24), we have

η0(λ1, λ2,n) = 1− 1

r
erf
(

1

µm

[
W

(nc)
0

(
λ
(m)
1 , λ

(m)
2 ,n

)
−W (nc)

0 (λ1, λ2,n)
])

. (3.25)
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Since erf(0) = 0 and erf(∞) = 1, for η0 to be positive, we require r > 1. The minimum value of this
function is attained in the naturally deformed state, where a−1/3λ1 = a1/6λ2 = 1, and is equal to

η
(m)
0 = η0

(
a1/3, a−1/6,n

)
= 1− 1

r
erf
(

1

µm
W

(nc)
0

(
λ
(m)
1 , λ

(m)
2 ,n

))
> 0. (3.26)

In (3.26), r
(
1− η(m)

0

)
represents the probability that a random variable with normal

distribution of mean 0 and variance 1/2 lies between −W (nc)
0

(
λ
(m)
1 , λ

(m)
2 ,n

)
/(µm) and

W
(nc)
0

(
λ
(m)
1 , λ

(m)
2 ,n

)
/(µm).

When residual strain is present, on unloading, η1 should be decreasing. A suitable form for
this parameter is

η1(λ1, λ2) =
1

erf(1)
erf

 W
(nc)
0 (λ1, λ2,n)

W
(nc)
0

(
λ
(m)
1 , λ

(m)
2 ,n

)
p , (3.27)

where p≥ 1 is a function of W (nc)
0

(
λ
(m)
1 , λ

(m)
2 ,n

)
. The minimum value of this function is also

attained when a−1/3λ1 = a1/6λ2 = 1, and is equal to

η
(m)
1 = η1

(
a1/3, a−1/6,n

)
= 0. (3.28)

The function φ(nc)1 associated with the residual strain is defined implicitly in (3.16).

In particular, if W (nc)
0 (λ1, λ2,n) is described by (3.9), then

η0 = 1− 1

r
erf

 1

2m
a1/3


(
λ
(m)
1

)2
− λ21

a
+
(
λ
(m)
2

)2
− λ22 +

(
λ
(m)
1

)−2 (
λ
(m)
2

)−2
− λ−2

1 λ−2
2




(3.29)
and

η1 =
1

erf(1)
erf


 λ2

1
a + λ22 + λ−2

1 λ−2
2 − 3(

λ
(m)
1

)2

a +
(
λ
(m)
2

)2
+
(
λ
(m)
1

)−2 (
λ
(m)
2

)−2
− 3


p . (3.30)

Here, we have chosen the error function, erf, to express the variables η0 and η1, but this choice is
not unique. For example, in [24], the hyperbolic tangent function is used instead.

4. Uniaxial tension
We analyse the mechanical behaviour of the pseudo-energy function defined by (3.5) in uniaxial
tension, such that

λ1 = λ and λ2 = λ3 =
1√
λ
, (4.1)

where λ= a1/3 is the extension ratio for the natural deformation, and λ/a1/3 − 1 is the elastic
strain due to the tensile load (various definitions of the elastic strain for large deformations are
presented in [50]). In this case, the equations given in (3.16) become, respectively,

dφ(nc)0

dη0
(η0) =−W

(nc)
0 (λ,n),

dφ(nc)1

dη1
(η1) =W

(nc)
1 (λ,n), (4.2)

where

W
(nc)
0 (λ,n) =

µ

2

[
a1/3

(
λ2

a
+ 2λ−1

)
− 3

]
(4.3)

and

W
(nc)
1 (λ,n) =

1

2
a1/3

[
C1λ

2

a
+ (C2 + C3)λ

−1
]
− C1 + C2 + C3

2
. (4.4)
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We focus first on the case when only stress softening occurs, then we take also into account the
associated residual strain.

(a) Stress softening
When η0 is active and η1 = 1, by (3.24) and (3.25), with the stretch ratios satisfying (4.1), we have

dφ(nc)0

dη0
(η0) =−µm erf−1 (r(η0 − 1))−W (nc)

0

(
λ(m),n

)
(4.5)

and

η0(λ,n) = 1− 1

r
erf
(

1

µm

[
W

(nc)
0

(
λ(m),n

)
−W (nc)

0 (λ,n)
])

, (4.6)

where λ(m) is the elastic stretch ratio at which unloading begins. By (4.3) and (4.6), we obtain

η0(λ,n) = 1− 1

r
erf

 1

2m
a1/3


(
λ(m)

)2
− λ2

a
+ 2

(
λ(m)

)−1
− 2λ−1


 . (4.7)

Hence, by (3.26) and (4.3),

η
(m)
0 = η0(a

1/3,n) = 1− 1

r
erf

 1

2m


(
λ(m)

)2
a2/3

+ 2
(
λ(m)

)−1
a1/3 − 3


 . (4.8)

We infer that:
(I) As r > 1 decreases, the difference between η0 and 1 increases, i.e., damage increases;
(II) As m> 0 decreases, there is increasing damage at small strains, but the material response

at small strain on repeated re-loading remains effectively unchanged. As m> 0 increases, there
is decreasing damage at small strains, but the change in the material response at small strain
increases upon subsequent re-loading compared to the undamaged state;

(III) As a> 0 decreases, damage increases at small strains, but the material response on
repeated re-loading remains practically unchanged. As a> 0 increases, damage decreases at small
strain, but the change in the material response increases upon further re-loading compared to the
undamaged state.

This behaviour is illustrated numerically in Figures 2-4, where the first Piola-Kirchhoff stress
takes the form

P
(nc)
0 = a−1/3P0 = η0µa

1/3
(
λ

a
− λ−2

)
. (4.9)

The corresponding Cauchy stress is equal to

T
(nc)
0 = T0 = η0µa

1/3
(
λ2

a
− λ−1

)
. (4.10)

In Figures 2-3, for a= 1, corresponding to the purely elastic case, and different values of r and m,
respectively, we represent the scaled first Piola-Kirchhoff stress P (nc)

0 /µ, given by (4.9), and the
damage function η0, defined by (4.7). These figures show that damage at small strains increases
when r decreases, and also when m decreases, while the response at small strains increases upon
repeated re-loading when m increases. In Figure 4, for nematic materials with different values of
the parameter a, the scaled first Piola-Kirchhoff stress P (nc)

0 /µ and the damage function η0 are
shown when r= 2 and m= 0.2 are fixed. In this figure, damage at small strains increases when a
decreases, and the response at small strains increases upon repeated re-loading when a increases.

More generally, when other deformation paths are considered, any pair of (λ1, λ2), such that

W
(nc)
0 (λ1, λ2,n) =W

(nc)
0

(
λ(m),n

)
can be taken as the starting point for unloading instead of(

λ(m), 1/
√
λ(m)

)
. Then, if the value W

(nc)
0

(
λ(m),n

)
is fixed, the set of such pairs forms a



11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

(a) (b)

(c) (d)

Figure 2. The effect of changing parameter r, showing: (a,c) The scaled values P (nc)
0 /µ of the first Piola-Kirchhoff stress

given by (4.9) and (b,d) the damage function η0 defined by (4.7) when a= 1 and m= 0.2. In (a,c), the solid curve is for

the primary loading, and dashed curves for the unloading from different values of the maximum stretch ratio λ(m).

(a) (b)

(c) (d)

Figure 3. The effect of changing parameter m, showing: (a,c) The scaled values P (nc)
0 /µ of the first Piola-Kirchhoff

stress given by (4.9) and (b,d) the damage function η0 defined by (4.7) when a= 1 and r= 2. In (a,c), the solid curve

is for the primary loading, and dashed curves for the unloading from different values of the maximum stretch ratio λ(m).
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(a) (b)

(c) (d)

Figure 4. The effect of changing parameter a, showing: (a,c) The scaled values P (nc)
0 /µ of the first Piola-Kirchhoff stress

given by (4.9) and (b,d) the damage function η0 defined by (4.7) when r= 2 and m= 0.2. In (a,c), the solid curve is for

the primary loading, and dashed curves for the unloading from different values of the maximum stretch ratio λ(m).

(a) (b)

(c) (d)

Figure 5. Constant energy contour curves in the (λ1, λ2)-plane for the strain-energy given by (3.9) with scaled values

W
(nc)
0 /µ∈ {2, 2.25, 2.5, 2.75, 3}, when a∈ {1, 1.5, 1.75}. In (a) W (nc)

0 is fixed and a varies, while in (b,c,d) a is

fixed and W (nc)
0 varies.
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(a) (b)

(c) (d)

Figure 6. The effect of varying parameter a when unloading begins at maximum stretch ratio λ(m) = 1.5, showing:

(a) The scaled values P (nc)/µ of the first Piola-Kirchhoff stress given by (4.13); (b) The scaled values T (nc)/µ of

the Cauchy stress given by (4.14); (c) the function η0 defined by (4.7), with r= 2 and m= 0.2; and (d) the function

η1 defined by (4.12), with C1 = 0.5
[
1− erf

(
λ(m) − 1

)]
, C2 + C3 = 1 and p= 1 +W

(nc)
0

(
λ(m), n

)
/µ. In (a,b),

solid curves are for primary loading and dashed curves for unloading.

(a) (b)

(c) (d)

Figure 7. The effect of varying parameter a when unloading starts from a maximum load P (nc)/µ≈ 1, showing: (a) The

scaled values P (nc)/µ of the first Piola-Kirchhoff stress given by (4.13); (b) The scaled values T (nc)/µ of the Cauchy

stress given by (4.14); (c) the function η0 defined by (4.7), with r= 2 and m= 0.2; and (d) the function η1 defined

by (4.12), withC1 = 0.5
[
1− erf

(
λ(m) − 1

)]
,C2 + C3 = 1 and p= 1 +W

(nc)
0

(
λ(m), n

)
/µ. In (a,b), solid curves

are for primary loading and dashed curves for unloading.
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closed contour in the (λ1, λ2)-plane. In Figure 5, contours of scaled constant values of W (nc)
0 =

W
(nc)
0 (λ1, λ2,n), defined by (3.9), are plotted in the (λ1, λ2)-plane, showing that these contours

are convex. Each contour represents a damage threshold, with η0 = 1 at any point on the contour.
Inside a contour, η0 < 1 and no further damage occurs, while crossing the contour will lead to
further damage.

(b) Residual strain
When both η0 and η1 are active, by (3.27), we have

η1(λ,n) =
1

erf(1)
erf

((
W

(nc)
0 (λ,n)

W
(nc)
0

(
λ(m),n

)
)p)

, (4.11)

and, by (3.30) and (4.3), we obtain

η1(λ,n) =
1

erf(1)
erf

 λ2

a2/3
+ 2λ−1a1/3 − 3

(λ(m))2

a2/3
+ 2

(
λ(m)

)−1
a1/3 − 3

p . (4.12)

For uniaxial tension, the function φ(nc)1 is given implicitly in (4.2).
The first Piola-Kirchhoff stress for the model combining stress softening and residual strain

takes the form

P (nc) = a−1/3P = η0µa
1/3
(
λ

a
− λ−2

)
+ (1− η1) a1/3

(
C1

λ

a
− C2 + C3

2
λ−2

)
. (4.13)

The corresponding Cauchy stress is equal to

T (nc) = T = η0µa
1/3
(
λ2

a
− λ−1

)
+ (1− η1) a1/3

(
C1

λ2

a
− C2 + C3

2
λ−1

)
. (4.14)

In Figures 6-7, we plot examples of the scaled values P (nc)/µ and T (nc)/µ of the first Piola-
Kirchhoff stress given by (4.13) and of the Cauchy stress given by (4.14), respectively, of the
damage function η0 defined by (4.7), and of the function η1 for the residual strain defined by
(4.12). In Figure 6, unloading is initiated at a maximum value of the stretch ratio, λ(m) = 1.5, while
in Figure 7, this is from a maximum load value of P (nc)/µ≈ 1. The energy dissipated during a
loading-unloading cycle is represented by the hysteretic area for the Cauchy stress.

5. Model example calibrated to data
Stress softening and the accumulated residual strain was assessed systematically in [49], where
experimental results for main-chain polydomain LCE samples under cyclic uniaxial tension at
different temperatures were presented. For each sample, the mechanism for stress softening
was mostly attributed to the change in the microstructure during the polydomain-monodomain
transition upon uniaxial loading, and material viscosity. Nevertheless, at 89◦C, the LCE behaved
like rubber, with the initial cycle exhibiting a slight stress softening and a small set strain, which
did not increase with further cycling. This behaviour was considered to be consistent with
the Mullins effect, and it was posited that the same inelastic effect could also explain the set
strain produced in the first cycle at 62◦C. The data sets presented in [49] are therefore suitable
candidates to verify the performance of the pseudo-energy function defined by (3.5). Since,
due to the polydomain configuration, the nonlinear responses of the LCEs tested under large
loads at different temperatures differed both qualitatively and quantitatively, we calibrate our
phenomenological model to data corresponding to individual temperatures separately.

During calculations, we have found that the neo-Hookean-based model given by (3.6) is
insufficient to capture the complex nonlinear deformation on each loading path, and replaced
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(a) (b)

Figure 8. (a) Comparison of computed applied stress vs. strain for the calibrated pseudo-energy function given by (3.5)
and the experimental data plotted in Figure 2(b) of [49]; (b) Computed Cauchy stress vs. strain. The base polymeric

network is described by a four-parameter Ogden model described by (5.1), while the auxiliary function accounting for

residual strain is given by (4.4). Solid and dashed curves are for the computed loading and unloading paths, respectively,

and circles for the data. The calibrated model parameters at each temperature are provided in Table 1.

it with a four-term (four-parameter) Ogden-type strain-energy function of the form

W
(nc)
0 (λ1, λ2, λ3,n) =

µ1
2

[
a1/3

(
λ21
a

+ λ22 + λ23

)
− 3

]
+
µ2
2

[
a−1/3

(
λ−2
1 a+ λ−2

2 + λ−2
3

)
− 3
]

+
µ3
8

[
a2/3

(
λ41
a2

+ λ42 + λ43

)
− 3

]
+
µ4
8

[
a−2/3

(
λ−4
1 a2 + λ−4

2 + λ−4
3

)
− 3
]
,

(5.1)

where {µi}i=1,2,3,4 are constants, µ=
∑4
i=1 µi > 0 is the shear modulus for the polymeric

network at small strains [50], and {λi}i=1,2,3 satisfy the uniaxial tension condition (4.1). By
comparison with our four-parameter model, in [24], a three-term six-parameter Ogden strain-
energy function is calibrated to data for particle-reinforced rubber. The function W (nc)

1 described
by (4.4) remains adequate as auxiliary function.

For our model example, the first Piola-Kirchhoff stress in uniaxial tension takes the form

P (nc) = η0

[
µ1a

1/3
(
λ

a
− λ−2

)
− µ2a−1/3

(
λ−3a− 1

)
+
µ3
4
a2/3

(
λ3

a2
− λ−3

)
− µ4

4
a−2/3

(
λ−5a2 − λ

)]
+ (1− η1) a1/3

(
C1

λ

a
− C2 + C3

2
λ−2

)
.

(5.2)

The corresponding Cauchy stress is equal to

T (nc) = η0

[
µ1a

1/3
(
λ2

a
− λ−1

)
− µ2a−1/3

(
λ−2a− λ

)
+
µ3
4
a2/3

(
λ4

a2
− λ−2

)
− µ4

4
a−2/3

(
λ−4a2 − λ2

)]
+ (1− η1) a1/3

(
C1

λ2

a
− C2 + C3

2
λ−1

)
.

(5.3)

To calibrate the model parameters, we employed a nonlinear least squares procedure
(lsqnonlin.m) implemented in Matlab. At each temperature, the calibration was realised in two
steps. In the first step, the coefficients of the Ogden-type strain-energy function were adjusted to
the data along the primary loading path. These coefficients were input parameters for the second
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Table 1. Computed parameter values of the pseudo-energy function described by (3.5) calibrated to experimental data

plotted in Figure 2(b) of [49]. A comparison between the numerical and experimental results is presented in Figure 8(a).

Temperature Coefficients of W (nc)
0 Coefficients of W (nc)

1 Parameters of η0 Parameter of η1

given by (5.1) given by (4.4) given by (4.6) given by (4.11)

and shear modulus µ (kPa)

89◦C µ1 = 193.6043, µ2 = 204.2571 C1 =−1.1553 r= 597.4134 p= 9.0895

µ3 = 30.5968, µ4 = 0 (C2 + C3) /2 = 25.9192 m= 0.0012

µ=
∑4
i=1 µi = 428.4582

62◦C µ1 = 69.3951, µ2 = 85.9516 C1 = 2.6967 r= 5.6174 p= 141.9146

µ3 = 61.3268, µ4 = 0 (C2 + C3) /2 = 29.0940 m= 0.6824

µ=
∑4
i=1 µi = 216.5735

39◦C µ1 =−57.0148, µ2 =−328.9884 C1 = 7.7678 r= 0.5118 p= 113.2093

µ3 = 91.5032, µ4 = 626.1964 (C2 + C3) /2 = 108.0556 m= 12.2572

µ=
∑4
i=1 µi = 331.7064

step, where all the other material constants were fitted to the data on the unloading path. The
computed parameter values are recorded in Table 1. The numerical results for the applied stress,
given by (5.2), are compared with the data in Figure 8(a), where an excellent agreement between
theory and experiments is found. The corresponding values of the true stress, given by (5.3), are
plotted in Figure 8(b), showing the hysteretic energy dissipation in each case. We see that both the
loss of energy and the set strain are negligible at 89◦C, but increase significantly as temperature
decreases from 62◦C to 39◦C. In Table 1, the coefficient µ4 vanishes for LCE tested at 89◦C and
62◦C where reversible deformation mechanisms were observed. For rubber-like material, three-
term (three-parameter) Ogden models were calibrated to uniaxial tensile data in [28]. The fact that
an extra parameter (µ4 6= 0) is required at 39◦C may be due to the additional viscous effects which
also play a role at this temperature. In contrast, at 62◦C, reorientation in the microscopic texture
was the dominant mechanism in the first cycles. For a full explanation of the experimental set-up,
results and discussion, we refer to [49]. Viscoelastic responses of main-chain polydomain LCEs
in loading-unloading uniaxial tensile tests were also demonstrated in [5]. The stress-strain curves
displaying stress softening and set strain at various temperatures in Figure 6 of [5] are comparable
to those in Figure 2(b) of [49].

6. Conclusion
The neoclassical model, based on the rubber elasticity theory, has been widely used for modelling
the mechanical behaviour of nematic elastomers, but cannot account for various inelastic effects
displayed by these materials under certain loading conditions. In liquid crystal elastomers (LCEs),
these effects are caused by significant microstructural changes under combined loading and
optothermal stimuli, and are relevant to important applications, such as mechanical damping
and self-healing. Here, we have formulated a phenomenological pseudo-energy function for the
constitutive modelling of nematic elastomers exhibiting stress softening with residual strain
under cyclic loads. To accomplish this, we combined the neoclassical theory with the pseudo-
elasticity framework for particle-reinforced rubber proposed in [24,63]. Since uniaxial stretch
deformations are easier to reproduce in practice [5,49,53,54], we analysed theoretically the stress
softening under cyclic uniaxial tensile loads, and calibrated a specific form of the pseudo-energy
function to recent experimental data at various temperatures reported in [49]. Based on our
numerical results, we conclude that the pseudo-energy function captures well the Mullins-like
inelastic responses observed experimentally in LCEs, but that different parameter sets must be
used at different temperatures. Essentially, the material behaves at each temperature as a different
LCE material that cannot be simply captured by a modification of the temperature-dependent
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nematic parameter a in the neoclassical model. For a fixed temperature, the general model is
applicable also to nematic materials under multiaxial loads for which further experimental testing
is needed.
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