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Synopsis 52 

Deep neural networks enable fast and accurate automated isolation and 53 

quantification of important intraocular dimensions in anterior segment of the eye in 54 

optical coherence tomography images.  55 

Abstract 56 

Background/Aims: 57 

Accurate isolation and quantification of intraocular dimensions in the anterior segment 58 

(AS) of the eye using optical coherence tomography (OCT) images is important in the 59 

diagnosis and treatment of many eye diseases, especially angle closure glaucoma.  60 

Methods: 61 

In this study, we developed a deep convolutional neural network (DCNN) for the 62 

localization of the scleral spur, moreover we introduced an information rich 63 

segmentation approach for this localization problem. An ensemble of DCNNs for the 64 

segmentation of anterior segment structures (iris, corneo-sclera shell, anterior 65 

chamber) was developed. Based on the results of two previous processes, an 66 

algorithm to automatically quantify clinically important measurements were created. 67 

200 images from 58 patients (100 eyes) were used for testing. 68 

Results: 69 

With limited training data, the DCNN was able to detect the scleral spur on unseen 70 

ASOCT images as accurately as an experienced ophthalmologist on the given test 71 

dataset; and simultaneously isolated the anterior segment structures with a Dice 72 

coefficient of 95.7%. We then automatically extracted eight clinically relevant ASOCT 73 

measurements and proposed an automated quality check process that asserts the 74 

reliability of these measurements. When combined with an OCT machine capable of 75 

imaging multiple radial sections, the algorithms can provide a more complete objective 76 

assessment. The total segmentation and measurement time for a single scan is less 77 

than 2 seconds. 78 

Conclusion: 79 

This is an essential step toward providing a robust automated framework for reliable 80 

quantification of ASOCT scans, for applications in the diagnosis and management of 81 

angle closure glaucoma. 82 

  83 
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INTRODUCTION 84 

 Primary angle closure glaucoma (PACG) is a major type of glaucoma, in particular in 85 

Asia [1]. By 2020, the number of people affected by primary angle closure glaucoma (PACG) 86 

is estimated to be up to 23.4 million[1 2]. PACG is associated with a high rate of blindness [3 87 

4] that is up to 5 times greater than primary open-angle glaucoma[5]. Therefore, an early 88 

diagnosis followed by effective management strategies is essential to reduce the damage to 89 

the optic nerve head tissues that could lead to irreversible vision loss [6]. Early diagnosis is 90 

crucial in the Asian population, given the higher prevalence of PACG compared to European 91 

and African populations [3 4 7].  92 

The diagnosis of PACG is based on the status of the anterior chamber angle (ACA) [8-93 

10]. While the gold standard for ACA assessment is dark-room indentation gonioscopy [11], 94 

the procedure requires direct contact with the eye and is highly dependent on the physician’s 95 

expertise and the background illumination [11 12]. This can result in poor reproducibility and 96 

diagnostic accuracy. In contrast, anterior segment optical coherence tomography (ASOCT) 97 

imaging allows for an objective, fast and non-contact assessment of the ACA in a standardized 98 

dark-room environment [12 13]. However, current technology typically requires the manual 99 

identification and marking of the scleral spur location (SSL) (Supplement Figure 1) by a human 100 

grader before ACA measurements such as trabecular iris space area (TISA) and angle opening 101 

distance (AOD) can be measured to quantify the anterior chamber angle [14]. The 102 

introduction of this subjective human factor has been shown to introduce significant intra- 103 

and inter-observer variability [12-14]. The inconsistent labelling of SSL compromises the 104 

diagnosis and the monitoring of treatment effectiveness/disease severity in PACG [14]. In 105 

addition, with swept-source ASOCT imaging, there are up to 128 cross-sectional scans 106 

obtained per eye. To manually label each individual section in a timely manner would not be 107 

clinically viable, and therefore automated image processing algorithms are required.    108 

Deep convolutional neural networks (DCNNs) have been shown to perform well with 109 

many medical imaging modalities [15-19], but their applications in ASOCT imaging are  110 

nascent. From the perspective of the current study, there are two relevant applications that 111 

can benefit from DCNNs, namely: object localization (for SSL detection) and segmentation (for 112 

classifying tissues such as the cornea and the iris). Traditional object detection and 113 

localization approaches in DCNNs are mainly based on classification and regression [20]. 114 

However, this approach requires a large number of labelled images to achieve robust 115 

automation [21]. Moreover, accurate landmark localization is critical for the diagnosis and 116 

management of PACG. Hence with limited training data, a traditional regression approach is 117 

not ideal in providing a high accuracy prediction. Frequently, in the medical context, it might 118 

not be feasible to obtain a large number of labelled images due to limited resources and time. 119 

This problem is exacerbated in certain ocular conditions that are relatively less common 120 

which may benefit from mass screening such as PACG. In addition, the reduced availability of 121 
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ASOCT images for eyes with PACG can be attributed to the lack of accessible equipment, cost, 122 

and clinical expertise.  123 

In this study, we developed a custom hybrid DCNN inspired from widely used U-Net 124 

and full-resolution residual network (FRRnet) [22] for the localization of scleral spur, and the 125 

segmentation of the anterior segment structures (iris, corneo-sclera shell, anterior chamber). 126 

The hybrid DCNN leveraged the U-Net architecture to simultaneously exploit the local (i.e. 127 

tissue texture) and contextual (i.e. tissue spatial arrangement) information and exploited the 128 

FRRnet pathway to achieve precise localization. Further, we automatically extracted eight 129 

clinically relevant ASOCT measurements from the segmented structures. The aim of the work 130 

is to offer a robust and automated framework for the accurate localization of the scleral spur 131 

and quantification of the ASOCT structures for enhancing the diagnosis and management of 132 

PACG.  133 

METHODS 134 

ASOCT imaging  135 

We included ASOCT images from patients examined at the Eye Surgery Centre, 136 

National University Hospital, Singapore. Prior informed consent was obtained for all patients. 137 

The study was conducted in accordance with the tenets of the World Medical Association’s 138 

Declaration of Helsinki and had ethics approval from the National Healthcare Group Domain 139 

Specific Review Board (NHG 292015/00788). In total, ASOCT images from 100 patients (175 140 

eyes) were included for analysis. The scans were obtained from the swept-source Casia SS-141 

1000 ASOCT (Tomey Corporation, Nagoya, Japan). All the eyes in this study was part of a 142 

prospective cohort study which included only eyes with primary angle closure suspects and 143 

so all the eyes were phakic. For each eye, a 360-degree scan yielded up to 128 cross-sections 144 

of the anterior segment. We used 620 images from 42 patients (75 eyes) for training and 145 

another 200 images from 58 patients (100 eyes) for testing. Since each image contained two 146 

scleral spur instances, we further divided the images in half for scleral spur localization 147 

(Supplementary Figure 2). All the images used for testing were out-of-sample validation, 148 

meaning training and model tuning were being done entirely on training images. All results 149 

reported are from testing images. 150 

Small landmark localization and ASOCT segmentation 151 

The accurate localization of small landmark points using neural networks has always 152 

been challenging [23]. In the current study, we adopted a segmentation approach for both 153 

the landmark localization and the ASOCT segmentation. A MATLAB (R2018a, MathWorks Inc., 154 

Natick, MA) script was prepared to assist in labelling the SSL (landmark localization). Three 155 

definitions were used to locate the scleral spur: 1) A change in curvature in the corneo-scleral 156 

interface; 2) The posterior end of the trabecular meshwork; and 3) The posterior end of a 157 

protruding structure along the cornea and sclera [14 24]. In each image, the following classes 158 
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were identified (Supplementary Figure 2): focus region; attention region and the background. 159 

Out of the 620 training images, 420 were used for training and 200 were used for validation. 160 

The full 200 test images were used for testing. 161 

FIJI[25] was used to obtain the manual segmentations of the ASOCT tissues. In each 162 

image, the following classes were identified (Supplementary Figure 3): (1) the iris; (2) the 163 

corneo-sclera shell; (3) the anterior chamber; and the background. Due to limited human 164 

resource and the complicated procedure of tissue segmentation, we only had 126 training, 165 

18 validation and 84 testing images.  166 

The SSL labelling and the manual segmentations used for training the DCNNs were 167 

prepared by two trainers: a trained medical student (AA), and a trained observer (THP), both 168 

with more than two years of experience in ASOCT imaging.  169 

The landmark localization and segmentation performance of the DCNNs on unseen 170 

ASOCT images were evaluated by three graders: the aforementioned trained observer 171 

(observer A; THP) and medical student (Observer B; AA), and a glaucoma fellowship trained 172 

ophthalmologist (Observer C; VK) with eight years of experience in in the management of 173 

PACG.  174 

Quantification of ASOCT measurements 175 

The ASOCT measurements could be automatically quantified once the scleral spur was 176 

defined and the anterior segment intraocular tissues segmented. The key structural 177 

measurements, including ACA, anterior chamber and iris-based measurements were 178 

automatically computed based on their definitions (Table 1). 179 

Table 1. Definitions of important anterior segment optical coherence tomography 180 

measurements 181 

Measurement Definition 

Anterior Chamber 

Depth (ACD) 

Axial distance between corneal endothelium to anterior lens surface [26] 

Lens Vault (LV) Perpendicular distance from middle of the line connecting the scleral 

spurs to the anterior pole of the lens [27] 

Anterior Chamber 

Width (ACW) 

Distance between two scleral spurs [28] 

Anterior Chamber 

Area (ACA) 

Area bordered by posterior surface of the cornea, anterior surface of iris 

and anterior surface of the lens [29] 

Angle Opening 

Distance (AOD) 

Distance between the anterior iris surface and posterior corneal surface 

on a line perpendicular to the trabecular meshwork, a distance from the 

scleral spur (500µm, 750µm etc.) [30] 
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Trabecular Iris Space 

Area (TISA) 

Area of a trapezoid created by the following boundaries: AOD of a 

distance from scleral spur (500µm, 750µm etc.), line from scleral spur 

perpendicular to plane of inner scleral wall to the iris, inner corneoscleral 

wall, iris surface [30] 

Iris thickness (IT) IT at a distance from the scleral spur or a relative distance in the iris (e.g.: 

middle of iris) [31] 

Iris Curvature 

(ICurve) 

Distance from iris greatest convexity point to the line between most 

central and most peripheral iris pigment epithelium [31] 

 182 

Network training and architecture 183 

In recent years, several research groups have successfully used U-Net and its variants 184 

[17 19 32 33] in medical image segmentation. The sequential downsampling and upsampling 185 

of images combined with skip connections [34] help in simultaneously extracting both the 186 

local (i.e., tissue texture) and contextual (i.e., tissue spatial arrangement) information. This 187 

allows U-Net style architectures to achieve very high levels of segmentation accuracy even 188 

when trained with limited training data [16 17 19]. Another promising but less explored DCNN 189 

in medical imaging applications is the FRRnet [22]. The network has two pathways: a full 190 

resolution path that helps in identifying precise boundaries and a multi-scale feature 191 

extraction pathway that is responsible for robust feature recognition. Also, the residual 192 

connections improve the gradient flow through the network [35]. By combining the 193 

information from both the pathways, the FRRnet was able achieve precise localization and 194 

robust feature recognition [22].  195 

Many studies have demonstrated that an ensemble network that learned to combine 196 

the predictions of multiple DCNNs into a single predictive model offered a better accuracy 197 

than each of the networks separately [36 37]. When trained on the same training data as the 198 

individual DCNNs (weights of the individual DCNNs were frozen), the ensemble network 199 

learned to reduce the variance for each network, thus dramatically increasing the predictive 200 

power.   201 

In this study, we developed FRRUnet (full resolution residual U-Net), a hybrid DCNN 202 

that exploited the inherent advantages of both the U-Net and the FRRnet. For the detection 203 

of the SSL, the FRRUnet was used, while an ensemble of the U-Net, FRRnet, and the FRRUnet 204 

was used for the segmentation of the ASOCT structures [Supplementary Figure 4,5,6,7].  205 

All three networks were trained end to end using an Adam optimizer [38] with a 206 

learning rate of 5e-5 without any scheduler, β1 of 0.9 and β2 of 0.999, and categorical cross 207 

entropy loss function [39]. All the convolution layers were activated with a leaky rectifier 208 

linear unit (ReLU) [40] activation function. A dropout layer with a probability of 0.5 was used 209 

after every building block to reduce the overfitting [41]. Given the limited size of the training 210 

dataset, the DCNNs’ variance was increased through data augmentation techniques such as 211 
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rotation, width shift, height shift, shear, zoom, flip, brightness and contrast shift. The final U-212 

Net, FRRnet, FRRUnet, and the ensemble network consisted of 7.80 million, 4.2 million, 4.2 213 

million, and 1.7 thousand trainable parameters respectively. All networks were trained and 214 

tested on an NVIDIA GTX 1080 founder’s edition GPU with CUDA v8.0 and cuDNN v5.1 215 

acceleration. Using the given hardware configuration, for each ASOCT image the network was 216 

able to detect the SSL in 0.108 ± 0.0035 seconds and segment the ASOCT tissues in 0.324 ± 217 

0.0018 seconds. The measurements were then automatically computed on a CPU (Intel Xeon 218 

at 2.1 GHz) in under 1.723 ± 0.287 seconds. It should be noted that measurement 219 

quantification can be accelerated by parallelism since each scan is independent.  220 

Inter- and intra- observer tests 221 

We performed an inter-observer agreement test to assess the reproducibility when 222 

identifying the scleral spur between three human observers: A – Trained non-expert, B – 223 

Trained medical student; C – Fellowship-trained glaucoma expert well-versed in ASOCT 224 

analysis and the software algorithm. The intra-observer agreement test assessed the extent 225 

of repeatability among the human observers and their comparison with the software 226 

algorithm. The time interval between image grading by the same observer was between 3 227 

and 7 days.  A paired t-test was used to measure the extent of agreement on-average and 228 

Bland-Altman plots were used to depict the limit of agreement (±1.96 SD) and the distribution 229 

of discrepancy between individual measurements. The intra-correlation coefficient (ICC), 230 

assessed by a single grader (absolute agreement, two-way random effect model) was used to 231 

reflect the degree of agreement and correlation between measurements. ICCs of <0.50, 0.50-232 

0.75, 0.75-0.90; >0.90 were taken as poor, moderate, good and excellent measures of 233 

reliability, respectively [42]. All p-values presented were 2-sided and statistically significant if 234 

<0.05.   235 

Quality check 236 

Poor quality scans (low signal strength, presence of motion/blink artefact, improper 237 

head positioning etc.) can affect the localization and segmentation performance of the 238 

DCNNs, thus resulting in incorrect automated measurements. In this study, we performed a 239 

two-step automated quality check based on the predictions obtained to eliminate poor 240 

quality ASOCT images. First, upon the detection of the SSL a square region surrounding the 241 

center of the predicted region was obtained as the reference. A confidence index was 242 

computed as the intersection over union (IoU; between 0-1) between the predicted and 243 

reference regions. Scans that yielded a confidence index greater than or equal to 0.85 were 244 

considered good, while lower values were designated as poor quality. Second, for the 245 

segmentation the number of closed and continuous contours representing each class were 246 

used to assess the quality of a scan, i.e., the iris should have two contours, while the corneo-247 

sclera shell and the anterior chamber should have only a single contour each. Scans with 248 

predictions that did not satisfy these criteria were considered as poor quality. Finally, the 249 
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automatically extracted measurements were considered reliable only if the ASOCT scan 250 

satisfied both the aforementioned quality check criteria. The test images are made sure to be 251 

of usable quality clinically. 252 

RESULTS 253 

All results in this section are from 4 observers: A – Trained non-expert, B – Trained medical 254 

student, C – Fellowship-trained glaucoma expert well-versed in ASOCT analysis, M – Trained 255 

machine. The same denotation is used throughout. For the whole study, the mean age ± 256 

standard deviation of the patients was 62.20±8.35, the median was 62, the interquartile range 257 

was 11 (Q3 = 68, Q1 = 57) and 31.91% of them were males. The percentage for Chinese, 258 

Malay, Indian and other races was 77.86%, 11.42%, 7.86% and 2.86% respectively. For testing 259 

dataset, the mean age ± standard deviation was 62.00±8.93, the median was 62, the 260 

interquartile range was 10 (Q3 = 68, Q1 = 58) and 32.8% of them were males. The percentage 261 

for Chinese, Malay, Indian and other races was 75.86%, 15.52%, 8.62% and 0.00% 262 

respectively. 263 

Scleral spur localization 264 

  First, our proposed segmentation approach was compared against a regression 265 

approach, both utilizing DCNNs. The final models were trained for 1,000 iterations and then 266 

tested against 3 human observers. The segmentation approach was closer to human 267 

observers for all cases. The next test showed that our segmentation approach could reach 268 

human level detection with a much smaller training dataset (~200 samples or ~100 images) 269 

(Supplementary Figure 8). 270 

Inter-observer tests showed that human grader differences were not significantly 271 

different from human and machine differences in most cases (Figure 1A). Moreover, 272 

intraclass correlation [42] (ICC) was done for each observer pair for the X and Y coordinates 273 

of the scleral spur location (Table 2).  It was shown that the machine’s scleral spur marking 274 

was in high agreement with human graders. Bland-Altman plots for Machine – Human pair 275 

was further provided in Supplementary Figure 9. 276 

The machine neural network was deterministic once training was complete, meaning 277 

that a given input always resulted in the same output. Hence, to do intra-observer tests, 278 

another model was trained from scratch and used to compare with the first model. RMS 279 

difference for the machine intra-observer test was significantly smaller than most human 280 

intra-observer tests (except for observer A, whose intra-observer result was similar to the 281 

machine) (Figure 1B).  This means that machine SSL prediction generally had lower variability 282 

than that of human grader. 283 

Table 2. ICC results for Inter Observer Test 284 
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Two-way, Single Score, Absolute Agreement ICC 

X Coordinate A B C M 

 

Y Coordinate A B C M 

A 1 0.978 0.985 0.984 A 1 0.993 0.995 0.994 

B  1 0.983 0.979 B  1 0.994 0.993 

C   1 0.984 C   1 0.994 

M    1 M    1 

 285 

 286 

Figure 1. Observer Test results. A: Inter-observer Test. B: Intra-observer Test 287 

ASOCT segmentation 288 

The ASOCT segmentation performance of the trained network was validated using the 289 

Dice coefficient, sensitivity and specificity (Figure 2), as described below. The Dice coefficient 290 

was used to assess the similarity between the manual segmentation and DCNN segmentation.  291 

The coefficient was defined between 0 and 1 (0: no overlap; 1: perfect overlap), and was 292 

calculated for each class as follows:  293 

              𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =  
2×|𝐷 ∩𝑀 |

2×|𝐷 ∩ 𝑀|+|𝐷 \ 𝑀|+|𝑀 \ 𝐷|
                [1] 294 

where D and M are the set of pixels representing the particular class in the DCNN 295 

and manual segmentation, respectively. 296 

Specificity and sensitivity were used to obtain the true negative (assess false 297 

predictions) and true positive rates (assess correct predictions) respectively. They were 298 

defined for each class as follows:  299 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
|𝐷̅ ∩ 𝑀̅ |

|𝑀̅  |
             [2] 300 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
|𝐷 ∩ 𝑀 |

|𝑀|
               [3] 301 

Both specificity and sensitivity were defined between 0 and 1.  302 

 303 

Figure 2. Validation scores for ASOCT segmentation. Machine segmentation result examples 304 

can be found in Supplementary Figure 10. 305 

Measurement quantification 306 

Measurement quantification was a crucial step to help validate the scleral spur 307 

localization. The segmentation used in this step was fully automated, based on the 308 
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assumption that the accuracy of automated ASOCT segmentation is already high. Figure 3 309 

defined the measured ACA measurements. Table 3 shows ICC results for inter- and intra-310 

observer test agreement. Inter-observer test results showed good to excellent agreement 311 

between observers, especially between machine and human. Moreover, for measurements 312 

with relatively lower ICC between machine and human, the human-human counterpart 313 

results were similar.  Intra-observer test ICC for machine was higher than human, indicating 314 

that the machine was more consistent and stable. 315 

 316 

 317 

Figure 3. ASOCT Measurement Quantification and Definitions. Anterior Chamber Depth 318 

(ACD): axial distance between corneal endothelium to anterior lens surface[26]. Lens Vault 319 

(LV) : perpendicular distance from the middle of the line connecting the scleral spurs to the 320 

anterior pole of the lens[27]. Anterior Chamber Width (ACW): distance between the two 321 

scleral spurs[28]. Anterior Chamber Area (ACA): the area bordered by posterior surface of the 322 

cornea, anterior surface of iris and anterior surface of the lens[29]. Angle Opening Distance 323 

(AOD): distance between the anterior iris surface and posterior corneal surface on a line 324 

perpendicular to the trabecular meshwork, at a specific distance from the scleral spur 325 

(500µm, 750µm etc.) [30]. Trabecular Iris Space Area (TISA): area of a trapezoid created by 326 

the following boundaries: AOD of a distance from scleral spur (500µm, 750µm etc.), line from 327 

scleral spur perpendicular to plane of inner scleral wall to the iris, inner corneoscleral wall, 328 

iris surface[30]. Iris thickness (IT): IT at a distance from the scleral spur or a relative distance 329 

in the iris (e.g.: middle of iris) [31]. Iris Curvature (ICurve): distance from iris greatest convexity 330 

point to the line between most central and most peripheral iris pigment epithelium[31]. 331 

 332 

Table 3. ICC results for Inter and Intra Observer Tests for ASOCT measurement 333 

quantification for ACW, TISA and AOD 334 

Inter Observer Test (Two-way, single score, absolute agreement ICC) 

 A vs M B vs M C vs M A vs B vs C 

ACW 0.941 0.931 0.949 0.937 

TISA500 0.784 0.722 0.710 0.759 

TISA750 0.822 0.728 0.761 0.793 

AOD500 0.910 0.902 0.927 0.926 

AOD750 0.880 0.863 0.898 0.903 

Intra Observer Test (Two-way, single score, absolute agreement ICC) 

 M A B C 



11 

 

ACW 0.979 0.951 0.953 0.954 

TISA500 0.847 0.845 0.728 0.646 

TISA750 0.884 0.887 0.738 0.702 

AOD500 0.959 0.958 0.923 0.881 

AOD750 0.948 0.956 0.874 0.901 

 335 

Results visualization and quality check 336 

This was assessed visually by exporting the software prediction into an image format. The 337 

machine was able to visualize the per-scan results (Figure 4A). Moreover, fully automated 338 

measurement enables 360° analysis, for example of AOD and TISA (Figures 4B and 4C). The 339 

goniogram showed that the inferior quadrant’s angle is narrower than other quadrants of 340 

that specific patient’s eye (Figures 4B and 4C). Indicating that a global assessment would 341 

provide a more accurate diagnosis. 342 

For image quality check, the ASOCT scans need to pass both the SSL confidence and 343 

ASOCT segmentation quality assessment. The SSL confidence can be visualized in 360° as 344 

shown in Figure 5A. Visually comparison of good (Figure 4A) and failed (Figure 5B and 5C) 345 

cases determined that, if the image quality is good, the SSL confidence should be above 0.85. 346 

Detailed analysis to justify confidence threshold to be 0.85 can be found in Appendix A. 347 

Moreover, this threshold can be manually adjusted. A failed SSL detection can be seen in 348 

Figure 5B on the left scleral spur, where SSL confidence is accordingly very low. For ASOCT 349 

segmentation, the exclusion criteria are for iris, anterior chamber, corneo-sclera, a number 350 

of contours larger than 5, 6 and 10, respectively. Ideally, the number of contours for the said 351 

areas of interest should be 2, 1 and 1 respectively. However, for narrow angle cases and many 352 

other noisy cases, there might be insignificant wrong small contours. Hence, we increased the 353 

threshold. All of these are hyper-parameters and can be tuned. A future systematic study of 354 

hyper-parameter tuning is planned. A failed ASOCT segmentation can be seen in Figure 5C. 355 

All failed scans were excluded from the final measurement quantification. 356 

 357 

 358 

Figure 4. Example of automated results. (A) Example measurement quantification of a single 359 

scan. (B) Example of 360° analysis for AOD. (C) Example 360o analysis for TISA. The measured 360 

value for each scan in the whole volume is denoted by the radius, while the angle corresponds 361 

to the scan position in the ASOCT volume.  362 

 363 

 364 

 365 
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Figure 5. Example of quality check results. (A) Visualization of SSL confidence 360°. Greens 366 

are passed scans. Reds are failed scans. Blue circle is 0.8 SSL confidence threshold. Red dots 367 

above the thresholds are scans that failed the ASOCT segmentation check. In this example 368 

4/128 scans are disqualified. (B) Excluded scan due to low SSL confidence on the left side. (C) 369 

Excluded scan due to bad segmentation quality. 370 

DISCUSSION 371 

The use of ASOCT for the assessment of the ACA in angle closure glaucoma is increasingly 372 

popular in the clinical setting. However, the practicality and efficiency of its assessment 373 

remains challenging for the ophthalmologists. In the absence of an absolute ground truth for 374 

SSL, any prediction, including that of experienced human graders, may be expected to contain 375 

errors and show variability in performance. The errors consist of bias, variance and irreducible 376 

error (noise) [43 44]. Thus, when a machine learns from human graders, it also learns the 377 

human’s error. However, with more trainers and data, the errors would be centered around 378 

zero [44 45]. In addition, if the algorithm is developed using expert trainers’ inputs, these 379 

errors would stabilize faster. In clinical practice, errors and variability in SSL on ASOCT scans 380 

have huge impact in the diagnosis of angle closure glaucoma because incorrect identification 381 

of SSL can result in misdiagnosis and management of patients with PACG. ASOCT imaging has 382 

been shown to be more objective and quantifiable compared to gonioscopic techniques [9 13 383 

46 47]. The ACA measurements from ASOCT scans are heavily dependent on the SSL and 384 

ophthalmologists gauge treatment effectiveness based on ASOCT measurements before and 385 

after treatment.  386 

One of the strengths of the presented method is that it utilizes 3 different approaches to 387 

identify the SSL, allowing the machine to be more robust and, thus, be able to more accurately 388 

locate the SSL on a variety of ASOCT scans. For ASOCT segmentation, beside a high Dice 389 

coefficient, the network also had high sensitivity and specificity, making it a reliable tool in 390 

quantifying ASOCT measurements. A comparable algorithm is the STAR Program available on 391 

the Casia 2 swept-source ASOCT (Tomey Corporation, Nagoya, Japan), which is capable of 392 

automated identification of SSL and ACA measurements [48]. However, this program is a 393 

semi-automated software which uses simple edge detection to detect the scleral spur-uvea 394 

edge line and, from that, detect the scleral spur location [48]. Moreover, it also depends on 395 

the assumption that SSL lies in a perfect circle. In cases of narrow angle, there will be 396 

iridotrabecular contact and the scleral spur-uvea edge line will not be visible. In our approach, 397 

the machine is trying to learn from human expertise, hence it can detect the scleral spur 398 

without the edge line and it also has the potential to expand its definition of scleral spur 399 

implicitly by learning from the expert human grader. 400 

The two main limitations in our study were firstly the lack of an absolute ground truth in 401 

labelling of the ASOCT images and secondly the size of the dataset. The labelled data was 402 

being prepared by human trainers. This is compounded by crowding of the ACA in eyes with 403 
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angle closure. The compressed ocular tissues, namely the cornea, peripheral iris and 404 

trabecular meshwork, make accurate identification of the scleral spur challenging. Hence, one 405 

of the limitations of the paper is the lack of trainers. To validate the machine’s performance 406 

without a true ground truth, we used the inter- and intra-observer test and ICC, with the 407 

exception of the ASOCT segmentation where we only had one trainer and observer. Through 408 

the validation tests conducted, it was shown that the machine performance was in good 409 

agreement with human performance, while the former was more consistent.  410 

One of the limitations of the study was the relatively small test set, which included a 411 

predominantly Chinese population and only one type of ASOCT scan. As such, the 412 

generalizability of the results of our study needs to be interpreted with caution outside these 413 

circumstances. 414 

As mentioned before, the lack of a generalized population of trainers caused the 415 

machine’s performance to be biased towards the trainers’ errors. As shown in our inter-416 

observer test, since observer A was a trainer for the network, the distance between machine 417 

and observer A was lower than the machine with observer B or C. This limitation could be 418 

resolved simply by having more trainers. The second limitation was the presence of only one 419 

expert. Again, this could be resolve by having more experts. 420 

One technical limitation of our approach was that the resolution depends on the Focus 421 

region. The landmarks could not lie too close to the border. The distance should be larger 422 

than half of the focus region length, since the point of interest lay in the center of the region. 423 

This could be resolved partially with padding (introduce non-meaningful features) or 424 

decreasing the size of focus region (susceptible to class imbalances [49]). In this study, the 425 

majority of our patients were of Chinese ethnicity (77.86%). It was therefore not possible to 426 

perform robust structural comparisons across ethnic groups. 427 

The impact of our method of accurate and automated identification of the scleral spur 428 

in ASOCT scans would be in the diagnosis and monitoring of angle closure glaucoma eyes. The 429 

diagnosis of angle closure on ASOCT images is dependent on accurate localization of the 430 

scleral spur. Angle closure is defined by contact between the peripheral iris and the trabecular 431 

meshwork anterior to the scleral spur [9]. As such, the accurate localization of the scleral spur 432 

can potentially make screening of angle closure glaucoma on ASOCT imaging easier and more 433 

automated. This is especially useful for modern swept-source ASOCT which provides a 360-434 

degree scan of the eye and as many as 64 cross-section cuts of the ACA per eye. The 435 

automated identification of the scleral spur reduces variability of human graders and speeds 436 

up image analysis to provide a more comprehensive evaluation of the ACA. In the monitoring 437 

of angle closure glaucoma eyes, the ACA characteristics should be tracked over time and this 438 

paper demonstrates how these measurements can be quantified in a reproducible manner, 439 

as most ACA measurements use the scleral spur as the reference. These ACA measurements 440 

are important in determining the mechanisms of angle closure, guiding clinical management 441 
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and measuring efficacy of treatment modalities [50 51].  In future, the proposed algorithm 442 

might make ASOCT scans more clinician-friendly but more studies would be required to 443 

determine its diagnostic performance and how it compares to clinical assessments without 444 

AI.  445 
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