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ABSTRACT 

A study has been taken to investigate the channel development especially fluvial river with 

meandering thalweg. The study included the physical model with steady inflow and unsteady 

inflow in the lab, and numerical model to simulate the development process, considering the 

bank erosion and secondary flow. 

 

In the study of channel development with physical model, a series of tests have been carried 

out to model the fluvial river with different flume slope, flow rate and channel section size. 

The meandering thawleg channel development process was carefully observed and from 

results in the lab, channels only had curved boundaries with meandering thalweg, not the real 

meandering river. Many characteristics of fluvial river in the nature like ripple- pool unit, 

point bar have been modelled successfully. Then different parameters like slope, flow rate 

and channel size were tested independently to see their effect on channel morphology. From 

experiments, it is confirmed that slope is key factor to distinguish straight, meandering and 

braided channels. Flow rate and section size were also discussed. From the discussion of 

different controlling parameters, it is found that the essential control factor is Froude number. 

 

Tests with unsteady inflow were then carried out to model the real hydrology process as that 

in nature. Gradually varied unsteady inflow and rapidly varied unsteady inflow were 

achieved by controlling the frequency of pump. Bed profile of channel after operation was 

recorded by Bed Profiler. Developments tell that steady inflow could deep channel and 

unsteady inflow has more effect on bank erosion and makes channel wider. It is concluded 

from bed profiles, steady inflow produces stable ripples, smooth point bars, curved channel 

banks. Rapidly varied flow got straight channel, wider upstream. Gradually varied flow got 

unstable ripple in the main channel and deepest pools. 

 

Finally numerical modelling considering bank erosion and secondary flow was developed to 

simulate the tests. Bank erosion model comes from previous research and secondary flow was 

considered based on the balance of force in the transverse direction on Cartesian coordinate 

system without the constraint of constant radius of curvature. The modelling results have a 

good agreement with physical model for steady inflow and unsteady inflow with different 

channel size and slope. 
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NOTATIONS 

a maximum diameter to describe the shape of a particle, reference level of 

sediment profile and equals to the roughness height 

A  width of channel, cross section area 
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B  channel width 

CB   calculated width 

Bm   thalweg width 
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Br   degree of braiding 

c volumetric concentration, time averaged concentration, minimum diameter to 

describe the shape of a particle, volumetric concentration 

ac    reference concentration 

C coefficient in the equation, Chezy roughness coefficient, a maximum Courant 

number for the ADI method 

'C   Chezy coefficient 

dC    experimentally derived coefficient between Q and idealQ  

wC   air/fluid resistence coefficient 

DC   drag coefficient 

*d    bed depth 

D mean flow depth, the deposition, depth of sand 

D spherical sediment diameter, bed material size 

nD  a nominal diameter 
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sD  diameter of circumscribed circle which is equivalent to the maximum 

dimension of the particle 

9.15D  sediment diameter for which 15.9% of bed material being finer 

50D  sediment diameter for which 50% of bed material being finer 

1.84D  sediment diameter for which 84.1% of bed material being finer 

90D  sediment diameter for which 90% of bed material being finer 

*D  non-dimensional particle size, *D 3/123 )/( gD  

xxD , xyD , yxD , yyD  the depth- averaged dispersion- diffusion coefficients in the x and y 

directions respectively 

E  the erosion rates, values of the depth averaged turbulent eddy viscosity, the net 

erosion flux per unit area of bed 

f  the friction factor, Coriolis parameter due to earth's rotation, the Darcy-

Weisbach friction coefficient 

F drag force, factor in calculation of suspended sediment load 

bF  one factor in Bench’s equation 

bcF   bed factor 

Fr Froude number 

sF  side factor  

g  gravitational acceleration 

h  Water depth, channel depth, the depth of water at the centre of the control 

volume, water depth between bed level and datum 

'h   the distance between the datum and base line 

h1   depth of water measurement 

h2   length between water surface and position of moving rack 
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TBRLC ,,,, hhhhh  the bed elevations at the central, left, right, bottom and top cells 

H  height from bottom of flume to the position of moving rack, water depth with 

vee weir, total water depth 

I  the net inflow for the control volume 

ABCDI  the volume of water across face ABCD 

EFGHI  the volume of water across the opposite face EFGH 

xI  net inflow in the x direction in time Δt 

yI  the net inflow in the y direction in time Δt 

zI  the net inflow in the z direction in time Δt 

J flowing slope 

  constant of Von Karman ( =0.4) 

k  a factor multiplied on right-hand side of the slope equation (3.36c) in Blench’s 

equation for meandering channels 

k1  viscous drag coefficient 

k2  form drag coefficient 

sk   the Nikuradse equivalent sand roughness size 

L Length of  thalweg of one wave, river length (path wave length) 

M  empirical constant, weighted silt- clay index, the net mass increase during time 

step Δt 

sM  mass of solid particle 

m  the velocity profile exponent, representing the effect of friction 

n  the Manning roughness coefficient 

n
   the direction normal to   
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*N   a coefficient representing the strength of the secondary flow related to the 

vertical profile of velocity 

p discharges per unit width in the x direction 

P  wetted perimeter 

q  flow rate, discharges per unit width in the y direction 

bq   volumetric bed-load transport rate 

bxq   components of bed load transport (kg/m/s) in the x  direction 

byq    components of bed load transport (kg/m/s) in the y direction 

mq   source discharge per unit horizontal area 

sq   depth-integrated suspended load transport rate 

tq   total sediment discharge 

txq    total volumetric sediment transport rate in positive x directions 

tyq   total volumetric sediment transport rate in positive y directions 

xq    flow per unit width in the x direction 

yq    flow per unit width in the y direction 

Q flow rate, discharge, bankfull discharge, volume of sand transported per unit 

width of bed per unit time 

bQ  bank full discharge 

idealQ   ideal flow rate 

mQ    mean annual flow rate  

maQ    mean annual flood flow rate 

Qs   sediment discharge 

wQ    flow in straight channels in medium sand by Ackers (1964) 



xxvii 
 

r    the radius of  curvature of the streamline 

cr   meander-bend radius 

R  hydraulic radius 

bR   the hydraulic mean radius for the bed 

Re  Reynolds number 

*Re   grain Reynolds number, /Re ** Du cr  

mR   minimum radius of curvature. 

s  ratio of densities of grain and water,  /ss   

S  water surface gradient, slope of flume, Sinuosities, bed slope, the 

concentration of suspended sediment 

bS   near bed cohesive sediment concentration, percentage of silt and clay in 

channel banks 

cS    percentage of silt and clay in channel bed 

crS    the critical slope 

eS    the depth-integrated equilibrium concentration 

IVIIIIII ,,, SSSS  four quadrants in schematic diagram of modelling the bank failure 

TBRL ,,, SSSS  the bed slopes along the cell system, named as the left ,right, bottom and top 

slopes 

maxS   the maximum bed slope around a cell 

0S    the initial bank slope 

Sr  a specific value for slope when carrying a particular discharge and sediment 

load is stable only 

Sv   valley slope 
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T temperature by C , the transport parameter, the transport stage parameter, 

time 

cru*    the critical shear velocity according to Shields’ diagram 

   dynamic viscosity 

  kinematics viscosity of water,   /  

u velocity, local velocity, the horizontal velocity 

*u  overall bed-shear velocity 

'
*u  effective bed shear velocity 

U mean velocity, depth averaged velocity components in the x direction 

cU , crU  threshold (critical) depth- averaged speed 

),,(p tnU    the depth-averaged horizontal velocity components in the   directions 

),,(p tnU n    the depth-averaged horizontal velocity components in the n
  directions 

v  velocity,  

sv    the near-bed secondary flow speed 

V  the total volume of sediment including solid particle volume ( sV ) and pore- 

space volume ( pV ), flowing velocity, depth averaged velocity components in 

the y direction 

pV   pore-space volume 

sV    volume of solid particle 

CV   calculated velocity 

w   Width,width of river 

w   fall velocity for a single particle, the vertical velocity 

w   fall velocity of particle in a concentration  



xxix 
 

sw   particle fall velocity of suspended sediment, apparent sediment setting velocity, 

the settling velocity of particles 

W   the submerged weight, channel width 

sW    the wind speed measured at 10m above the water surface 

xW   the wind velocity component in the x direction at 10m above the water surface 

yW  the wind velocity component in the y direction at 10m above the water surface 

*W   mean width 

0y   depth 

Cy0   calculated depth 

z suspension parameter which expresses the influence of the upward turbulent 

fluid forces and the downward gravitational forces, vertical coordinate 

    angle of vee weir, channel direction or orientation angle 

cr   threshold Shields parameter 

m   maximum angle between a channel segment and the mean down valley axis 

r   the submerged angle of repose 

τ  shear stress 

    the primary flow direction 

0   shear stress on bed surface 

b   bed shear stress 

cr   threshold bed shear-stress 

d   critical shear stress for deposition 

f   a characteristic time scale for bank erosion 

xb   the bed shear stress 
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e   critical shear stress for erosion 

ρ  density of water 

a   air density 

s   density of sediment 

   g , air- water resistance coefficient, an adjustment coefficient 

s   sg  

  amplitude of meandering, sphericity of a sediment particle, meander length 

   meander wavelength, scale parameter of secondary flow 

β  factor for the fall velocity by sediment concentration, a function of Re, 

coefficient related to diffusion of sediment particles, momentum correction 

factor for a non-uniform vertical velocity profile 

   a coefficient used to describe the friction coming from both the bed and the 

upper layer water 

Δ   /)(  s , apparent roughness 

Bh , Rh  the sediment volumes transferred to the two parts are expressed by the 

variation of bed elevation  

Δx   grid sizes in x direction 

Δy   grid sizes in y direction 

S   the difference between the maximum bed slope maxS  and the critical bed slope 

crS  

S
~

   the slope to be adjusted for bank erosion 

Δt   the time step 

r   an additional angle for the special location 
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  correction factor representing all additional effects such as the volume 

occupied by particles, reduction of particle fall velocity and turbulence 

damping effect 

b  saltation height 

Φ the transport function is for the total transport 

ε  porosity of bed, depth averaged turbulent eddy viscosity 

ω angle rotation speed of the earth 

φ geographical angle of latitude of site 

   the proportion of near bed water column 

ζ  bed level, relative to an arbitrary datum, distance between the sand bed surface 

and base line 

η water surface elevation above datum, the porosity of bed sediment 
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ABBREVIATIONS 

ADI  Alternating Direction Implicit 

ADV  Acoustic Doppler Velocimeter 

AutoCAD A software for design and drawing 

BS  British Standard 

BOD   Biochemical Oxygen Demand 

CAIC  A small software to get position from AutoCAD to Excel 

CFD   Computational Fluid Dynamics 

COR  the value of signal correlation coefficient 

DB  Unit for COR 

DIVAST Depth Integrated Velocity And Solute Transport 

DO   Dissoloved Oxygen 

FORTRAN A programming language suited to numeric computation and scientific 

computing 

HZ  Hertz, the unit of frequency 

ISO   International Organization for Standardization 

SF  Shape Factor 

SIMENS A German engineering conglomerate, the largest of this kind in Europe 

SNR   Signal- to- Noise Ratio 

TECPLOT The name of a family of visualization software tools developed by Tecplot, 

Inc. 

WIHEE Wuhan Institute of Hydraulics and Electrical Engineering  

WBB  The name of Providers of industrial minerals 
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1.1 Introduction  

Alluvial rivers play an important role in people’s living. There are three types of alluvial rivers: 

straight, meandering and braided (see Figure 1.1). Among the various river planforms, 

meandering is a very common type observed in natural rivers (Dulal and Shimizu, 2010). 

Morphology development of meandering rivers involves not only sand erosion and deposition in 

the vertical direction, but also retreat and advance in the lateral direction. Large population tends 

to live in close proximity to meandering rivers because of the fertile land, easy transportation and 

flat terrain. Meandering development could have negative impacts to flooding defence projects, 

ports, roads, bridges and navigation. It is very important to understand the meandering 

phenomenon before any new construction work such as bridges, ports, pipe line crossings, etc. 

(Parker, 1998) and/or dealing with problems like sediment transport, river ecology, 

re-naturalization, etc. (Crosato, 2008). Construction works would also affect the meandering 

development. 

   

(a): A meandering section of the Amazon River.  (b): A braided river in New Zealand. 

Figure 1.1: River forms: (a) a meandering river and (b) a braided river from Google map. 
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Physical experiment has shown to be a useful method to study the meandering process by many 

researchers. In the laboratory it is easy to control the flow rate, flume slope, channel size and sand 

material type thus to understand their effects on channel morphology development. Experiments 

undertaken in the laboratory can be used not only to model real natural rives, but also to provide 

calibration data for numerical model development. 

 

1.2 Aims and objectives 

From the review in Chapter 2, it is clear that physical experiment in the laboratory is an important 

method to study morphological development in fluvial rivers. There are a lot of experiments being 

carried out to study meandering and braided rivers since the pioneering work by Friedkin in 1945. 

Most of these researches involved only the condition of steady inflow. There are very few 

unsteady inflow experiments. One of the main objectives of this research was to cover this gap by 

modelling fluvial rivers with unsteady inflow. Non-cohesive silica sands with size D50 = 0.268 

mm were used in this study. This size range is similar to those used in previous studies. A two 

dimensional sediment transport model developed by Sun and Tao (2010) was modified and used 

to model the channel development. 

The main objectives and key problems can be summarized as follows:  

1. To improve the understanding of the fundamental processes of river planform evolution like 

bank erosion processes, meander evolution and cut-offs, which are important for the fixing of 

river bend or the creation of an artificial cut-off. 
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2. To undertake physical modelling of fluvial rivers in the laboratory with a different grain size 

from existing studies. 

3. To test the different effects of some key parameters on the morphological development, such 

as channel size, flume slope and flow rate. Since different parameters have different roles in 

the channel development. 

4. To undertake experiments with unsteady inflow. To compare results from experiments by 

unsteady inflow with experiment results by steady inflow. 

5. To analyse the meandering development process in fluvial rivers. Most previous experiments 

focused on the final results but did not mention the process of development. Here the 

observation of process development could provide foundation of analysis in natural rivers. 

6. To undertake numerical model simulations to predict lateral channel development. The 

experimental data obtained from the laboratory will be used to assist the numerical model 

development. 

 

1.3 Outline of thesis 

The details of the remaining chapters in this study can be summarised as follows: 

Chapter 2 reviews recent physical experiments and numerical modelling on meandering rivers and 

the phenomenon of meandering development. 

Chapter 3 introduces the properties of sands, sediment transport model and some theories of river 

morphology, including channel types and regime theory. 
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Chapter 4 demonstrates the experimentation methods including experiment planning, water supply 

system, equipment, model set up, operation and data processing. 

Chapter 5 presents physical experiment results, first with steady inflows and then with unsteady 

inflows. Tests for straight, meandering and braided channels are introduced. Comparisons are 

made between tests with different flow rates, slopes and channel sizes. The reproducibility is 

discussed. In the second part, tests with gradually varied inflow and rapidly varied inflow are 

outlined to compare with tests having steady inflow. Results from the experiments are also 

compared with theoretical calculations. 

Chapter 6 provides details of the governing equations used to represent the hydrodynamic and 

sediment transport processes. 

Chapter 7 introduced the development of numerical model which includes the numerical solution 

methods, bank erosion and secondary flow. The developed model would be used to model the 

experiments in the lab. 

In chapter 8, numerical model predictions are compared with results from the physical 

experiments. 

Chapter 9 draws conclusions for this research and also provides recommendations for future 

study. 

The appendices contain source code for processing data collected from the laboratory experiments. 

Comparisons between results from the physical experiments and results from several regime 

theories are also included. 
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2.1 Introduction 

Meandering migration is a complex process involving water flow, sediment transport and bank 

movement. Many researchers have investigated this process in order to prevent potential damages. 

Physical experiments and numerical modelling are two basic research methods in this field and 

many useful progresses have been made. 

 

2.2 Phenomena study 

Before undertaking any numerical modelling on meander migration, it is important to understand 

physical processes that are causing meandering migration to take place. 

 

Water Flow 

Flow characteristics and their interaction with channel geometry and planform are central to all 

problems of river engineering (Thorne et al., 1997). A spiral flow occurs in the channel bend, 

combining a primary flow and a secondary flow. It affects the flow velocity distribution, sediment 

transportation, bed and bank erosion and deposition and, as a result, affects the development of 

channel morphology, dispersion of contaminants and sorting of sediments. 

Knighton (1998) and Chang (1988) pointed out that the flow phenomenon under the influence of 

centrifugal acceleration includes: 

(1) superelevation of the water surface against the concave bank. 

(2) transverse current towards the outer bank at the surface and towards the inner bank at the 

bed to give a secondary circulation additional to the main downstream flow. 
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(3) a maximum velocity current, which moves from near the inner bank at the bend entrance 

to near the outer bank at the bend exit, crossing the channel through the zone of greatest 

curvature. 

De Vriend (1979), Bathurst et al. (1979) and Thorne et al. (1997) indicated that the circulation 

pattern may also include a small cell of reverse circulation at the steep outside bank and a 

dominance of outward flow near the inside bank caused by a progressive longstream decrease in 

depth along the point bar, see Figure 2.1. Rozovskii (1957) concluded that the small cell is a wall 

effect, extending over a region of one or two depths from the bank, but negligible in bends with 

large width/depth ratios. 

 

Figure 2.1: Secondary circulation pattern at a river bend cross-section, with main circulation cell 

near the inside bank and small cell of reverse circulation at the outside bank. (From Thorne et al., 

1997) 

 

Secondary flow 

Just as mentioned above: a spiral flow occurs in the channel bend, combining a primary flow and 

a secondary flow. The secondary flow is an important process in river morphology. Below is a 

brief review of the secondary flow. 
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Secondary flow is a field of fluid motion which can be considered as superimposed on a primary 

field of motion. It is relatively minor flow when compared with the primary flow. There are 

several types of secondary flows. The most common type occurs when fluid follows a curved path 

(Taylor, 1968). Another type is generated through the action of friction, usually in the vicinity of 

solid boundaries, thus it is also known as frictional secondary flow (McGraw-Hill of Science and 

Technology Dictionary, 2003). In some instances, the secondary flow is in a region separated 

from the primary flow by a streamline that attaches to smooth surfaces or sharp edges (Lewalle, 

2006).  

A classic example is that a cup of tea is stirred to give a circular motion. Tea leaves tend to gather 

at the centre bottom of tea cup, not at the perimeter. The water is a little deeper at the perimeter 

than at the centrer. There is a pressure gradient from the perimeter toward the centre. This 

pressure gradient provides the centripetal force for the circular motion of water. The pressure 

gradient also accounts for a secondary flow flowing toward the axis of circulation of the water 

across the floor of the cup. On reaching the center the secondary flow is then upward toward the 

surface, progressively mixing with the primary flow. Near the surface there may also be a slow 

secondary flow outward toward the perimeter. 

The secondary flow at a river bend is a similar type which will be emphasized in this chapter. The 

water surface is slightly higher near the concave bank than near the convex bank. As a result, the 

water pressure is slightly higher near the concave bank than near the convex bank. There is a 

secondary flow along the floor of the river bed from the concave bank toward the convex bank, 

driven by the pressure gradient. The secondary flow is then upward toward the surface where it 

mixes with the primary flow or moves slowly across the surface, back toward the concave bank. 
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On the floor the secondary flow sweeps sand across the river and deposits sediment near the 

convex bank just like tea leaves being swept toward the center of a cup as described above. 

In nature, there are other types of secondary flow existing around us, for example the tropical 

cyclones, tornadoes and dust devils. Secondary flow also occurs in machines like turbines and 

other turbomachinery. 

 

Sand transportation 

‘Pool- bar unit’ is the basic morphological unit in meandering rivers because of the spiral current. 

The shear stress is linked to velocity. When shear stress is larger than the critical shear stress, bed 

material would begin to move first as bed load, then suspended load. Due to the spiral motion in 

the flow, the pool is scoured near the outer bank and bed material would be transported from the 

outer bank to the inner bank, and clear water would be transported from the inner bank to the 

outer bank. The above processes enhance erosion of the outer bank and growth of point bar. The 

maximum sediment transport follows the maximum shear stress and the distribution of shear 

stress affects sediment sorting. The coarser material would be found in the outer bank and finer 

material is found in the inner bank. 

 

Bank erosion and collapse 

With the erosion at the outer bank, and deposition at the inner bank, the out bank retreats and 

point bar advances. Chen and Duan (2006), Nagata et al. (2000) recognized that bank erosion of 

non-cohesive material consisted of two interactive physical processes: basal erosion and bank 
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collapse. The bank material at the bank toe is transported by the flowing water and then the bank 

collapses by its gravity and sediment is accumulated or transported away from bank toe. 

Ikeda et al. (1981) assumed that the rate of bank erosion rate is linearly related to the near bank 

velocity perturbation, a difference between depth- averaged velocity and cross- sectional mean 

velocity (Chen and Duan, 2006). The distribution of velocity and shear stress and local turbulence 

characteristics have an important influence on the erosive potential of hydraulic action, which in 

many instances is the major process (Knighton, 1973; Hooke, 1979). The bank collapse by mass 

failure depends on bank geometry, structure and material properties. Thorne (1982) recognized 

that the moisture conditions play an important role in the processes of weakening of bank material 

strength and bank stability. There are many factors that influence the bank erosion, including: 

stream power, shear stress by the primary current and secondary current, local slope, bend, bank 

composition, vegetation, bank moisture content, bank height and angle. 

The collapse of bank makes bank line retreat. Thorne et al. (1997) pointed out that the balance 

between the rates of supply from bank processes and removal by fluvial entrainment decides the 

amount and duration of basal sediment storage and then decides the bank retreat and advance. 

 

Meander migration 

Lateral migration in meandering rivers results from the erosion of the outer bank combined with 

equivalent sedimentation near the inner bank. The migration rate depends on the erosion rate and 

erosion rate depends on the bank material strength, cohesion, armouring and vegetation (Julien, 

2002). The rate of migration is controlled to a large extent by bend geometry and in particular by 

channel curvature ( wrc / , where cr  is meander-bend radius and w  channel width) (Knighton, 
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1998). The relative migration rate is defined as the annual migration rate divided by the channel 

width. Nanson and Hickin (1986) found that the rate of migration reaches a maximum when 

2< wrc / <4, decreasing rapidly on either side of this range. 

Migration has various movements: translation, extension, rotation and lobbing and compound 

growth. Hooke (2007) offered an insight into the geomorphological instability and evolution of 

landscape by 20 years of observation of an active natural meandering channel. 

The lateral migration rate increases as channel sinuosity increases. When sinuosity and bend 

amplitude become very large, the downstream transport capacity, channel slope and flow velocity 

are reduced. A threshold sinuosity may be reached and the concerned river can no longer maintain 

its shape, then a cut- off develops. Cut-off includes neck cut-off and chute cut-off. Cut-offs cause 

a decrease in the sinuosity, and an increase in the slope and velocity. 

 

2.3 Theory analysis 

Many scientists studied the meandering river, not only through physical experiment and field 

observation, but also through theoretical analysis. 

According to Ikeda et al. (1981), the rate of bank erosion is linearly related to the magnitude of 

near bank velocity perturbation, a difference between depth- averaged velocity and cross- 

sectional mean velocity, bank advances if the near bank perturbation velocity is greater than zero, 

and it retreats otherwise (Duan, Wang and Jia, 2001). This method had been used by many other 

researchers: Sun et al. (1996, 2001a, b), Johannesson and Parker (1989), Odgaard (1989) and 

Parker (1983). This assumption has its own limitation when it is used to simulate meander 
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migration. Other investigators have developed a few analytical models, such as El-Khudairy 

(1970), Engelund (1974), Kikkawa et al. (1976), Zimmermann and Kennedy (1978) and Odgaard 

(1981), Kassem and Chaudhry (2002). These models can be applied to simple bed- flow 

conditions due to their simple assumptions. 

 

Empirical regime theory developed from field observation and analysis has been used to predict 

geometry of equilibrium channels with flowing characteristics. 

Ackers (1964) found the best-fit relations describing the morphology of straight channels in 

medium sands, and Ackers and Charlton (1970a) indicated that meandering channels on average 

are twice the width of straight channels. Lacey in 1929 obtained relationships between wet 

perimeter and discharge in the channel. Leopold and Maddock (1953) recognized that the regime 

concept could be used to describe natural alluvial rivers, based on the bankfull discharge. Julien 

and Wargadalam (1995) took the discharge, grain size and channel slope into consideration. 

Leopold et al. (1960) obtained a relationship between the meander length, width and radius of 

curvature. Bettess and White (1983) developed an analytical regime theory to decide the channel 

patterns. 

Extremal hypotheses with more physical basis have also been proposed. These theories include: 

the minimum unit stream power (Yang, 1976), the minimum stream power (Chang, 1979), the 

maximum sediment transport rate (Kirkby, 1977; White et al., 1982), the minimum variance 

hypothesis, the minimum energy dissipation rate (Yang et al., 1981), the minimum Froude number 

(Jia, 1990) and other theories. 
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2.4 Physical experiment study 

Steady inflow 

Many physical experiments have been undertaken to investigate the flow velocity, channel bed 

form and channel morphology development. 

Many experiments have been carried out since the pioneering work by Friedkin in 1945. Most 

researchers chose non-cohesive silica sand as the bed and bank materials, such as Friedkin (1945), 

Schumm et al. (1987), Jang and Shimizu (2005), Gran and Paola (2001) and Federici and Paola 

(2003). The results were either the braided channels or the straight channels with meandering 

thalwegs. Madej et al. (2009) carried out experiments to examine how sediment transport capacity 

changes during aggradation and degradation while changing sediment loads. 

 

Smith (1998) used light, fine grained materials to simulate the formation of well defined, highly 

sinuous meanders in a small flume. Jin and Schumm (1986) did experiments with kaolinite clay as 

top layer and floodplain as base of sand. Ouchi (1985) conducted physical experimentation with a 

mixture of moderately sorted medium sand and a small amount of kaolinite to examine the effects 

of both uplift and subsidence on braided and meandering channels. And for the braided channel, 

additional sand was fed into the head of channel by a sand feeder and a mixture of clay and water 

was circulated by a pump for the meandering channel. Gardner (1983) carried out physical 

experiments to simulate knickpoint retreat and stable alluvial meander phase developed within 

150 hours. Kleinhans et al. (2009) modeled estuarine meandering channels with highly cohesive 

sediment and found that the channel bed was eroded by backward migrating steps. 
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Other researchers did experiments with the sine- generated channel to see the morphological 

change. Silva (1995) used a channel with an initial angle of 30 degree; Nagata et al. (2000) took 

the initial meandering channel form with 2 m wavelength. In these experiments non- cohesive 

uniform silica sand was used. Shepherd and Schumm (1974) carried out experiments to study the 

incision in straight and sinuous channels. 

These researchers carried out many experiments with different materials. However, they mainly 

focused on the last stage of channel development, with little attention being focused on the actual 

processes and also the relationship between the meander length, width and amplitude. This paper 

is to fill this gap. 

 

Unsteady inflow 

Most experiments carried out before were using different materials, such as cohesive sediment 

(Smith, 1998; Kleinhans et al., 2009; Dulal and Shimizu, 2010) or non-cohesive sediment 

(Friedkin, 1945; Ackers, 1964), but they were only involving steady inflow conditions. 

Experiments with unsteady inflow conditions are rare. The only previous laboratory work on 

unsteady inflows is limited to some experiments where, for example, Tominaga, Liu, Nagao and 

Nezu (1995) studied the hydraulic response of flash floods with fixed boundaries, and Kabir 

(1993), Graf and Song (1995) and Bestawy (1997) studied sediment transport and velocity 

distributions in flash floods in laboratory conditions with mobile beds. (Valentine and Ershadi, 

2003). Hong et al. (1987) did experiments with flooding modelling in the lab and analysed its 

impact on meandering. Unsteady inflows include gradually varied and rapidly varied flows. 

Experiments with steady inflow in the laboratory show a lot of similarity to rivers in nature and 
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also have some differences. These have been analysed by many researchers. In this study, a series 

of physical experiments were carried out, using non-cohesive sediment, to understand the 

influence of unsteady inflow on the development of channel form. 

 

2.5 Numerical modelling 

Ikeda et al. (1981) developed a model to predict the meander formation and migration, in which 

the bank erosion rate is assumed to be proportional to the near bank flow velocity. Such process- 

based bank erosion models could be used to predict long term development of meandering forms. 

And this model is used by many researchers (Parker et al., 1982; Odgaard, 1989; Parker and 

Andrew, 1986; Sun et al., 1996, 2001a, b). However, according to Darby et al. (2002), these 

models are limited to predict the meandering processes over a short time period. Because: 

1. the erodibility coefficient is empirical and decided by calibration not by sand characteristics. 

2. some models set the river as regular planform, which is different from rivers found in the 

natural world. 

3. many meander channel models (Odgaard, 1989; Sun et al., 1996, 2001a, b) neglected the 

adjustment of channel width. The bank advance or retreat is the result of bank erosion and 

near bank sediment transportation.  Thus over simplification may cause inaccuracy in the 

predictions of flow, sediment transport and bed-level change in rivers with erodible banks. 

To overcome this disadvantage, a physically based model was developed by Osman and Thorne 

(1988). In this model the sediment transport and bank erosion rates were calculated to assess the 

advance or retreat of a channel bank line. Then Mosselman (1998), Nagata et al. (2000), Duan et 
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al. (2001) and Darby et al. (2002) presented 2-D depth averaged models of flow and bed 

topography in movable computational grids. The advantages of this physically based model are 

that: 

1. the model of bank erosion, collapse and deposition could allow further insight into the 

influence of sedimentary characteristics on meander evolution (Osman and Thorne, 1988). 

2. the model is a dynamic model and not restricted to steady conditions. 

3. the coordinate system of 2-D physically based model could be used to model the natural 

irregular rivers. 

However, Mosselman (1998), Duan et al. (2001) neglected the bank failure process, Nagata et al. 

(2000) neglected the difference between basal erosion and bed degradation. Mosselman (1998) 

concluded that the empirical formula which was used to calculate the helical flow in the bending 

section was the main reason for the shortcoming in his model. And Shimizu et al. (1996) and 

Nagata et al. modelled the meandering evolution with uniform non- cohesive banks in the 

laboratory while Sun and Darby’s model included mixed materials for natural rivers. 

 

A 3-D model was also developed to predict the meander evolution by Olsen (2003) and Rüther 

and Olsen (2003, 2005a, b). With a 3-D model, the domain is also discretised over the depth and 

velocities in all the three directions are calculated in each cell of the domain (Rüther and Olsen, 

2007). It does not need the empirical formulae like the 2-D model to calculate the helical flow in 

the bending section. The advantage for these models is that the cells could keep dimensions and 

would not be distorted while channel narrowing or widening. The main disadvantage of a 3-D 

model is that it is time consuming. 
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Some other researchers (Murray and Paola, 1994 and 1997) used a simple cellular numerical 

model in a fixed grid system to reproduce the braided river’s features. Cellular modelling has its 

advantage on the range of spatial scales (1–100 km2) and time periods (1–100 years) that are 

especially relevant to contemporary management and fluvial studies (Coulthard, Hicks and Van 

De Wiel, 2007), and disadvantage on the restrictions on computational stability and routing water 

velocity limitation. 

 

2.6 Spur dike 

A spur dike may be defined as a structure extending outward from the bank of a stream for the 

purpose of deflecting the current away from the bank to protect it from erosion. (Kuhnle1 et al, 

2008) River spur dikes are often constructed nearly perpendicular to the riverbanks, beginning at a 

riverbank with a root and ending at the regulation line with a head. They maintain a channel to 

prevent ice jamming, and more generally improve navigation and control over lateral erosion, that 

would form from meanders. Spur dikes have a major impact on the river morphology: they cause 

autonomous degradation of the river. 

 

2.7 Summary 

This chapter introduces the phenomena study, theory analysis and sediment transport, physical 

experiment study and numerical modelling of meandering rivers. Previous physical experiments 

did not show details on the morphology change due to bed slope and cross sections development, 

and the current research would cover this gap. This research with unsteady inflow is a new aspect 
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to doing meandering research in the laboratory. And the physical experiment is the foundation for 

calibration of the 2-D depth average model development. 
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          Sediment transport and river morphology 
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3.1 Introduction 

Sediment is important to river morphology and the environment which affect people’s living 

conditions. The river form is influenced by sediment transport, including erosion and deposition. 

Sediment is generally transported in two forms: bed load and suspended load. In the following, the 

sediment characteristics will be first introduced and then details of two main river forms, 

meandering and braided rivers, and the regime theory are presented. The sediment transport 

equation will be described with details in Chapter 6. 

 

3.2 Sediment properties and characteristics 

It is important to understand the physical properties and characteristics of sediment that control 

the transportation rate. It will help in interpreting results obtained from physical and numerical 

modelling studies. 

 

3.2.1 Density and porosity 

The mass density of a solid particle could be described as the solid mass per unit volume. 

s

s
s V

M
                   3.1 

where s  = sediment density, sM  = mass of solid particle, sV  = volume of solid particle. 

The mass density for a quartz particle is 2650 3/ mkg . It does not vary significantly with the 

temperature. Other materials can be different, for example: heavy materials have large mass 

density, plastic sediments are usually lighter. 

The specific gravity is another parameter used to describe the density. 
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
 ss                     3.2 

where s = specific gravity,  = density of fluid at reference temperature, usually taken as 1000 

3/ mkg when the temperature is at C4 . In this way, the specific gravity for a quartz particle is 

2.65. 

 

Porosity is the ratio of pore-space volume to total volume of sediment. The equation used to 

describe its value is given as: 

Porosity =
sp

pp

VV

V

V

V


                3.3 

where pV = the pore-space volume, sV  = the solid volume, V = the total volume of sediment 

including solid particle volume ( sV ) and pore- space volume ( pV ). 

The porosity is a measure of the closeness of contact between particles. It is influenced by 

sediment shape, size, uniformity and pattern of deposition. 

The value of porosity tends to reduce after sediments travel a long distance, because the shape 

would become round. Sediments with different sizes have smaller porosity compared with the 

uniform sediments. Fine sediment particles have fewer voids than coarse particles. 

 

3.2.2 Shape 

Sediment comes from rocks which became small parts by outer forces such as temperature, 

collision. These parts have different shapes and sizes. Then with transportation in the river, 

particles become smaller and their surfaces become smoother from upstream to downstream. 

Different shapes and sizes would have important impact on their transportation. 
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One of the definitions in use is named shape factor (Raudkivi, 1998): 

2/1)(ab

c
SF                   3.4 

where SF = shape factor, a, b and c = maximum, intermediate and minimum diameters of a 

particle, respectively. 

 

The sphericity is also used to describe shape: 

s

n

D

D
                   3.5 

where   = sphericity of a sediment particle, nD = a nominal diameter, sD  = diameter of 

circumscribed circle which is equivalent to the maximum dimension of the particle. 

 

3.2.3 Size 

Size is another important physical property of a sediment particle. According to the size, sediment 

is clarified as boulder, cobble, gravel, sand, silt and clay. Details of classification are shown in 

Table 3.1. 

Table 3.1: Sediment classification according to particle size, BS 1377: 1975. 

Class name Particle diameter D (mm) Class name Particle diameter D (mm) 

Boulder  Sand  

Very large >2048 Coarse 0.500< D< 1 

large 1024< D <2048 Medium 0.250< D <0.500 

medium 512< D <1024 Fine 0.125< D< 0.250 
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small 256< D <512 Very fine 0.062< D <0.125 

Cobble  Silt  

Large 128< D <256 Coarse 0.031< D <0.062 

Small 64< D <128 Medium 0.016< D <0.031 

Gravel  Fine 0.008< D <0.016 

Very coarse 32 < D <64 Very fine 0.004< D <0.008 

Coarse 16< D <32 Clay  

Medium 8< D <16 Coarse 0.0020< D <0.004 

Fine 4< D <8 Medium 0.0010< D <0.0020 

Very fine 2< D <4 Fine 0.0005< D <0.0010 

Sand  Very fine 0.00024< D <0.0005 

Very coarse 1< D <2   

 

The sediments become cohesive when their size is smaller enough. The shape of sediment 

particles are different in nature, thus specific methods have been developed to measure the size. 

There are a number of ways to define the particle size (Shao and Wang, 2005): 

1. The nominal diameter refers to the diameter of a sphere with the same volume as that of 

particle, usually measured by the displaced volume of a submerged particle. 

2. The sieve diameter is the minimum length of the square sieve opening through which a 

particle will fall. 

3. The fall diameter is the diameter of an equivalent sphere of specific gravity s = 2.65 having the 

same fall velocity in water at C24 . 
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4. 50D  (medium size) is usually taken as the representative diameter, which means sediment 

coarser and finer than that diameter both have 50% of the total weight. 

 

3.2.4 Angle of repose for sediments 

When sediments are poured together in still water the angle between the edge of the pile and the 

horizontal surface is called the angle of repose. The angle of repose varies with grain size and 

angularity of the material. 

The value of the angle of repose for material coarser than medium silt would be between 

30 and 42 . Different shaps lead to different values. If particles have sharp edges and are angular, 

then they will have a larger angle of repose than normal, sometimes 5 to 10  higher. 

 

3.2.5 Fall velocity 

The fall velocity of sediment particles is an important property for sediment transport. It is also 

known as setting velocity or terminal velocity. The concept is straightforward, but not easy to 

evaluate. Many factors such as size, shape, density and viscosity decide its value. 

The fall velocity of single particle in still water  

For a spherical particle in stationary fluid, falling would reach a constant velocity when the 

submerged weight (W) of the particle is equal to the drag (F): 

FW                     3.6a 

24
),(

6

223  D
CFg

D
W Ds              3.6b 
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where DC = drag coefficient, which is a function of grain specify Reynolds number, D = spherical 

sediment diameter,   = kinematic viscosity, g = gravitational acceleration and   = falling 

velocity. 

2/1
1

3

4







 
 gD

C
s

D 


                3.7 

When Reynolds number is less than 0.4, the drag coefficient can be obtained from a relationship 

given by Stokes: 

DF 3                   3.8 

So, 
24

3
22  D

CD D               3.9 

and 
*Re

24
DC                  3.10 

where   = dynamic viscosity, and 





2

18

1 gDs                  3.11 

For natural sands, the fall velocity would have a coefficient less than 1. WIHEE (Wuhan Institute 

of Hydraulics and Electrical Engineering) uses 
6.25

1
 (Shao and Wang, 2005) instead of

18

1
 

when some researchers use
24

1
. 

The above equation applies when *Re < 0.4.Most researchers think that Stokes solution works if 

*Re  <= 1. 

For 2Re*  , Goldstein (Raudkivi, 1998) got: 

...)Re
20480

71
Re

1280

19
Re

16

3
1(

Re

24 3
*

2
**

*

DC           3.12 

Oseen solution is the first two terms in brackets (Raudkivi, 1998). 

If *Re  > 1000, the viscous force is negligible and 45.0DC , 
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gDs







 72.1                 3.13 

The corresponding diameter is larger than 4.0 mm. For natural sands, the fall velocity would have 

a coefficient less than 1. For WIHEE the coefficient 1.72 would become 1.044, other researchers 

use different coefficients. 

 

If *Re  is between 0.4 and 1000, both the inertia and viscous forces have significant effects. For 

this transitional region, both the viscous drag and form drag exist, with different terms being used 

to represent them: 

 Dk
D

k
D

s 2

22

1

3

246
)(             3.14a 

gD
kDk

k

Dk

k s







1

2

1

2

1

2

3

4
)4(4           3.14b 

where 1k and 2k  are two coefficients. For natural sands, Rubey chose 3,2 21  kk  and 

WIHEE chose 266.4,223.1 21  kk . 

 

The effect of shape on the fall velocity 

The shape of a particle is another factor that has a significant effect on the fall velocity. Analytical 

solutions exist for the Stokes range, but only experimental information is available when the Re is 

outside of the Stoke range. The effect of shape on the fall velocity is far from being completely 

understood. 

Cheng (1997) proposed a formula: 

  5.12/12
* 5)2.125(  D

D




              3.15 
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Zanke (1982) developed a relationship for determining the fall velocity of grains with a SF ≈ 0.7 

(SF is shape factor, see Equation 3.4). 

  1)01.01(
11 5.03

*  D
D

               3.16 

For isolated sand grains in still water, the formulae of van Rijn (1984a) for natural sand are widely 

used: 

D

D3
*

18

1 
                      when         187.16* D      3.17a 

 1)01.01(
10 5.03

*  D
D

         when 16187187.16 *  D      3.17b 

D

D 5.1
*1.1 

                     when         16187* D      3.17c 

in which 3/1
2

3

* )(

gD

D


 , and  /)(  s . 

 

Effect of temperature on fall velocity 

Temperature affects the fall velocity since the kinematic viscosity υ of water changes with 

temperature. For small size particles the effect of temperature is more significant. A 0.2 mm grain 

in water at 20 C  has an approximately 20% higher fall velocity than at 10 C  (Raudkivi, 

1998). 

The average values for quartz sands in water at 20 C  are well described by Equation 3.18. 

)(663)/( 2 mmDsmm  , D < 0.15mm           3.18a 

)(5.1345.134)/( 52.0 mmDDsmm  , D > 1.5mm        3.18b 

In the transition region, i.e., mmDmm 5.115.0  , the value of fall velocity is shown in Table 3.2. 
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Table 3.2: Fall velocities of quartz grains of mmDmm 5.115.0  at 20 C , from Raudkivi 

(1998). 

D (mm) 0.15 0.2 0.3 0.4 0.5 0.6 

 (mm/s) 14.8 21.1 36.1 50.0 64.0 76.4 

D (mm) 0.7 0.8 0.9 1.0 1.2 1.5 

 (mm/s) 88.6 99.0 110.0 121.0 137.3 166.0 

 

The kinematic viscosity could be calculated by an empirical formula: 

2000221.00337.01

01775.0

TT 
              3.19 

in which T is in C , and υ is in scm /2 . 

An approximate expression for the kinematic viscosity is: 

              3.20 

 

Some values of dynamic viscosity μ are shown in Table 3.3. 

Table 3.3: Dynamic viscosity μ of pure water as a function of temperature. 

T ( C )  ( N s/m2) 

0 2 4 6 8 

0 1.7938 310  1.6740 310 1.5676 310 1.4726 310  1.3872 310

10 1.3077 310  1.2390 310 1.1748 310 1.1156 310  1.0603 310

20 1.0087 310  0.9608 310 0.9161 310 0.8746 310  0.8363 310

30 0.8004 310  0.7670 310 0.7357 310 0.7064 310  0.6791 310

 

)/(10
20

40 26 sm
CT


 



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Effect of concentration on the fall velocity 

The influence of sediment concentration on the fall velocity can be expressed as: 

)1( cww  , in which c is the volumetric concentration, w is the fall velocity for a single 

particle, w  is the fall velocity of particle in a concentration c and β is a function of Re and 

particle shape. And also function of non-dimensional particle size: 3/1
2

3

* )(

gD

D


  

where:  /)(  s .               3.21 

For common natural particles (SF is about 0.7): 

65.4   when *D <40             3.22a 

35.2   when *D >~8000            3.22b 

129.0
*478.7  D  when 800040 *  D            3.22c 

 

3.2.6 Cumulative frequency curve 

The size distribution of sediment particles reflects the intensity of sorting process in river flow and 

is related to the amount of sediment transported. There are several methods to describe the size 

gradation, such as frequency histogram, cumulative size-frequency curve and others. 

Frequency histogram: particle diameter (or its logarithm) is taken as abscissa and the percentage 

of weight (or number) as the ordinate. 

Cumulative size-frequency curve: particle diameter (or its logarithm) is taken as the ordinate and 

the percentage of weight (or number) of sediment particles that is smaller than the given size is 

taken as the abscissa. 
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3.3 Sediment transport model 

3.3.1 Threshold for bed shear stress 

Water flowing over a bed of sediment exerts a force on grains that tend to move or entrain them. 

The resistance to the entraining action depends on the grain size and its distribution. Shields (1936) 

suggested that the process of initiation of motion is statistical in nature. 

The measure of the threshold of motion can be made using the bed shear-stress. Shields (1936) 

developed the threshold called Shields parameter cr , which is the ratio of the force exerted by the 

bed shear-stress acting to move a grain on the bed and the submerged weight of the grain. The 

threshold Shields parameter cr is defined as: 

Dg s

cr
cr )( 





                 3.23 

where cr = threshold bed shear-stress, g = gravitational acceleration, s = sediment density,  = 

water density, D = particle diameter. 

This dimensionless parameter cr  can be plotted against the grain Reynolds number *Re : 

/Re ** Du cr                  3.24a 

where 2/1
* )/(  crcru                 3.24b 

This relationship is famously known as Shields curve and is widely used in determining the 

critical condition of sediment movement. However, it is inconvenient to use because the unknown 

cru*  appears on both sides of the equation. 

3/1
2

3

* )
)1(

(


Dsg
D


                 3.25 

where   / ,  /ss  . Then Shields parameter can be approximately written as the 

following form: 
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1
*(24.0  ）Dcr           4* D             3.26a 

640
*(14.0 。） Dcr      104 *  D             3.26b 

100
*(04.0 。） Dcr     2010 *  D             3.26c 

29.0
*(013.0 ）Dcr     15020 *  D             3.26d 

055.0cr              150* D             3.26e 

 

3.3.2 Threshold current speed 

The flow velocity which makes a few particles begin to move is called threshold (or initiation) of 

motion or incipient motion. 

There are a lot of methods developed to predict the threshold (critical) depth-averaged speed 

crU for a steady inflow where the river bed is flat, horizontal and un-rippled. 

Van Rijn (1984c) developed formulae to calculate the critical mean flow velocity for particles in 

the range of 100~2000 μm, in water at 15 C , s = 2650 3/ mkg and g = 9.81 2/ sm : 

)/4(
10

1.0
50

90log)(19.0 Dh
cr DU               mD 500100 50        3.27a 

)/4(
10

6.0
50

90log)(5.8 Dh
cr DU                mD 2000500 50       3.27b 

where all units are in metres and seconds. These equations are more difficult to use because they 

are purely based on experiments. 

Soulsby (1997) combined his threshold bed shear-stress formula with the friction law to form a 

relationship for threshold current speed, which works for any non-cohesive sediment and flow 

conditions, provided: 

  2/1
*50

7/1

50

)()1()(7 DfDsg
D

h
U cr          *D > 0.1        3.28a 



33 
 

where )]020.0exp(1[055.0
2.11

30.0
)( *

*
* D

D
Df 


         3.28b 

This equation is easier to use because it is based on theory. 

 

3.4 River morphology 

3.4.1 Classification 

Channels are classified as a range of geomorphological channel types. These classifications take 

consideration of river planform, cross section geometry, longitudinal profile and types of bed 

materials. 

Schumm (1977) showed five basic river types in Figure 3.1 and these types show a relationship 

between the sediment load, channel stability and channel form. It is convenient to divide the 

channel form as: straight, meandering, braided and anastomosed channels. In this chapter, 

meandering and braided channels will be analysed in more details in connection with the brief 

introduction of straight and anastomosed channels. 

 

Figure 3.1: Classification of channel pattern based on sediment load and system stability (adapted 

from Schumm (1977)). 
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If the sinuosity (channel length/ straight line valley length) of a river channel is less than 1.1, the 

channel is considered straight. As shown in Figure 3.1, straight channels always have fine 

suspended sediment. 

 

The braided rivers are separated by braided bars and these bars can be stable when large size 

particles and vegetation make the bars stable as islands. Banks are resistant to erosion. This type 

of channel form is regarded as anastomosing. 

 

And in gravel bed rivers, the basic morphological unit: pool-bar exists in all straight, meandering 

and braided channels. Channel-bed configurations include bedforms and bars. Bedforms include 

ripples, dunes, and antidunes and remain submerged. Bars include alternate bars, point bars and 

tributary bars. Bars are alluvial bed deposits and would be exposed during low flows. 

 

3.4.2 Differentiation between braided and meandering channels 

Leopold & Wolman (1957) proposed to use the following equation to determine the channel 

pattern: 

44.0012.0  bQS                  3.29 

where S = bed slope, bQ = bank full discharge. 

This equation separates braided channels and the meandering channels. A figure of slope against 

discharge has been used by other researchers to differentiate between meandering and braided 

channels and boundaries were drawn to distinguish not only areas of braided and meandering, but 

also areas of meandering and straight. 
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The relationship between erosion and transporting bank materials is a key element used to 

differentiate channels patterns (Brotherton, 1979). A channel would be straight when erosion is 

more difficult than transporting; a channel would be braided when erosion is easier than 

transporting; meandering is the intermediate state when erosion and transporting are in balance. 

 

3.4.3 Meandering rivers 

In this study, model channels developed in the flume were not the real meandering channels but 

the thalweg meandering. Theory about meandering channels could be used on the thalweg 

meandering. This is the reason why information about meandering is introduced here. 

Relationships 

Langbein and Leopold (1966) found that θ is a function of the maximum angle m  set at the 

origin, the downstream distance x and the river length L: 

L

x
m

 2
cos                  3.30 

where θ = channel direction or orientation angle, m  = maximum angle between a channel 

segment and the mean down valley axis, L = river length (path wave length). This equation 

describes symmetrical meander paths reasonably well. 

It is recognized that there is approximately a constant relationship between meander parameters 

and channel width. Leopold et al. (1960) observed that the meander length Λ is about 10 times the 

channel width W and the ratio of wavelength to minimum radius of curvature mR/  for a 

meandering stream is between 3 and 5. Leopold and Wolman (1960) suggested 4.7 as an average 

ratio. 



36 
 

 

Dury (1965) found the relationship between the meander wavelength and discharge, given as: 

5.03.54 bQ                   3.31 

where λ = meander wavelength. 

Nixon (1959) related the width, depth and mean velocity to the bank-full discharge in sediment 

bed rivers: 

2/199.2 QB  , 3/1
0 55.0 Qy  , 6/161.0 QV            3.32 

Charlton et al. (1978) derived similar expressions for gravel bed rivers: 

45.074.3 QB  , 40.0
0 31.0 Qy  , 15.086.0 QV            3.33 

Ackers (1964) found that the best-fit relations describing the morphology of straight channels in 

medium sand, which carried flows ( wQ ) between 0.011 and 0.153 sm /3 , were: 

85.052.0 wQA  , 42.064.2 wQB  , 43.0
0 20.0 wQy  , 15.092.1 wQV        3.34 

where A = cross- section area in 2m , B = width in m, 0y  = depth in m, V = velocity in m/s. 

Ackers and Charlton (1970a) indicated that the width of meandering channels on average is twice 

of straight channels. 

River width and depth are also functions of type of sediment and sediment load. Coarse sediments 

lead to broader and shallower rivers and fine sediments to deeper and narrower streams (Raudkivi, 

1998). However, the above equations do not take sediment load into consideration and they are 

not widely used. 

Schumm (1968) analysed a large number of empirical data sets for sand bed rivers and streams 

and derived the following relationships: 

74.034.01935  MQm                        89.02 r        3.35a 
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74.043.0618  MQb                         88.02 r        3.35b 

74.048.0395  MQma                         86.02 r        3.35c 

where mQ  = mean annual flow rate, bQ = bank-full discharge ( sm /3 ), maQ = mean annual 

flood flow rate, M = weighted silt- clay index, given by: 

0

0

2

2

yB

ySBS
M bc




                 3.35d 

in which cS , bS = percentage of silt and clay in channel bed and channel banks, respectively. 

 

Blench’s equations took account of bed load transport and the effect of differences in bed and 

bank material is accommodated by means of a bed and a side factor (Thorne et al., 1997). 

For discharge (Q): 0.03- 2800 sm /3 , Sediment discharge (Qs): 30- 100 ppm, 

Bed material size (D): 0.1- 0.6 mm, Bank material type: cohesive, 

Bedform: ripples- dunes,                Bank vegetation: not specified, 

Valley slope: not specified,              Planform: straight, 

Profile: uniform, 

Mean width: 5.0
5.0

5.0
* Q

F

F
W

s

bc （m）            3.36a 

Bed depth: 33.0
66.0

33.0
* Q

F

F
d

bc

s (m)             3.36b 

Slope: 
)

2330
1(63.3 166.0

25.0083.0833.0

s

sbc

Q
gQ

FF
S





             3.36c 

where bed factor bcF and side factor sF are defined by: 

)012.01( sbbc QFF                 3.36d 
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)/( 2
*

2

sm
d

V
Fb  , and can be approximated by: 5.0

5058.0 DFb        3.36e 

)/( 32
*

3

sm
W

V
Fs  , or sF = 0.009 (metric) for loam of very slight cohesiveness,  3.36f 

                     = 0.018 (metric) for loam of medium cohesiveness, 

                     = 0.027 (metric) for loam of very high cohesiveness, 

where   the kinematic viscosity ( sm /2 ), Qs bed load charge in parts per 100 000 by weight, 

50D is the median particle size (mm). 

In order to calculate the Blench regime dimensions, the side factor, sediment concentration, and 

the bed-material gradation should be known. For meandering channels Blench (Thorne et al., 1997) 

indicated that right-hand side of the slope Equation 3.36c should be multiplied by a factor k. He 

indicated that the value of k varied from 2 for well-developed meanders to 1.25 for straight 

channels with alternate bars. 

 

Migration and cut-off 

If a channel bank is composed of erodible sediment particles, the bank may be eroded and the 

bank line would advance or retreat. The lateral migration in meandering rivers results from the 

erosion of the outer bank combined with equivalent sedimentation near the inner bank (Julien, 

2002). 

The rate of migration is controlled to a large extent by the bend geometry of a river and, in 

particular, by the channel curvature ( Wrc / , where cr  is radius of curvature and W is channel 

width) (Knighton, 1998). The relative migration rate is defined as the annual migration rate 
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divided by the channel width. The migration process involves various movements: translation, 

extension, rotation and lobbing and compound growth. 

The lateral migration increases as channel sinuosity increases. When the sinuosity and bend 

amplitude become very large, the downstream transport capacity, channel slope and flow velocity 

are reduced. A threshold sinuosity may be reached when a river can no longer maintain its shape, 

then a cut-off develops. Cut-off forms include neck cut-off and chute cut-off. (Knighton, 1998)  

Cut-offs decrease the sinuosity, increase the slope and velocity (Knighton, 1998). 

 

3.4.4 Braided rivers 

Braided rivers are multi-channel forms in which the channels are separated by bars or islands. The 

characteristic feature of the braided pattern is the repeated division and joining of channels, and 

the associated divergence and convergence of flow, which contributes to a high rate of fluvial 

activity relative to other river types (Knighton, 1998). Other primary characteristics of braided 

channels are also found in natural and laboratory braided channels: 1) straight channel banks, 2) 

division of the flow into numerous thalwegs separated by bars or islands, 3) a very wide, flat- 

bottomed, shallow cross section, 4) a steep longitudinal profile, 5) a high concentration of bed 

load, 6) and a continuous shifting of the positions of the thalwegs (Schumm et al., 1987). 

To measure the degree of braiding by the sum of channel lengths in a reach to the reach length: 

reachin  channel widest oflength  channel mid

reachin  channelsprimary  all of lengths channel mid of sum
Br  
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From the characteristic features of braided channels, these conditions below are required for the 

development of braided channels: 1) an abundant bed load, 2) erodible banks, 3) a highly variable 

discharge, 4) steep valley slope. 

 

3.4.5 Regime theory 

Bettess and White (1983) recognized that for a given type of sediment, a river with valley slope 

(Sv) carrying a particular discharge and sediment load is stable only if the slope has a specific 

value (Sr). This specific value (Sr) is calculated from the analytical regime theory developed by 

White et al. in 1982. When: 

(a) Sr = Sv, channel would be straight and in equilibrium. 

(b) Sr < Sv, equilibrium can be achieved by either: 

(i) channel would be meandering because meandering reduces the slope measured 

along the channel from the slope measured along the valley and channel with 

sinuosity Sv/ Sr. Or 

(ii) channel would be braiding when Sr << Sv, which increases the (regime) slope 

by sharing the total discharge and sediment load between n smaller channels. 

(c) Sr > Sv, river cannot achieve the required equilibrium and erosion or deposition would take 

place to reach another equilibrium condition. 

Bettess and White (1983) indicated that large gravel rivers are more frequently braided than sand 

rivers of comparable size which are more frequently meandering in nature, and it is unusual to 

come across a meandering gravel river with a high sinuosity while this is more common for sand 

rivers. It is uncommon for small streams to be braided in character, see Figure 3.1. 
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3.4.6 Mountain river morphology 

Steps and pools are ubiquitous bed forms in mountain stream channels, occurring where gradients 

exceed 2% and materials are in the gravel to boulder size range (Chin, 2003). Mountain streams 

differ from their lowland counterparts in a number of important respects (Knighton, 1998). They 

develop step-pool morphology in which steps are typically formed from the accumulation of 

boulders and cobbles which span the channel width, and finer sediments in pools produce a 

characteristic, repetitive sequence of bed forms. 

The development step-pool morphology is strongly influenced by local supply and flow 

conditions. Besides, step-pool morphology plays a fundamental role in river system because of its 

hydraulic resistance. It could dissipate large potential energy generated by the steep slope, that 

otherwise would lead to extreme erosion and channel degradation. The role of step–pools is 

especially important in confined mountain streams that prohibit lateral adjustments and energy 

dissipation by meandering and braiding (Chin, 2003). From Chin (2003)'s research, it can be 

concluded that: steps are an effective energy dissipator at low flows; energy dissipation by steps 

diminishes at increasing flows; the point at which steps become submerged marks a transition in 

their role as an energy dissipator to roughness elements in the fluvial system. 

 

3.5 Summary 

In this chapter, a review of sediment properties, sediment transport model and channel 

morphology have been presented. Details have been given regarding the sediment characteristics 

such as the density, porosity, shape, size, repose angle and fall velocity in section 3.2. After this, 
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the sediment transport models were introduced in section 3.3. Section 3.4 gave the river 

morphology: meandering river and braided river, introduced regime theory and mountain streams. 

The equations for bed-load and suspended sediment transport will be introduced in Chapter 6 

together with the bed deformation equation. 
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Chapter 4 

___________________________ 

Experimentation methods 
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4.1 Introduction 

This chapter introduces the aims, objectives, materials, equipment and methods for the physical 

experiments. Section 4.2 explains the aims and objectives. Section 4.3 describes the water supply 

system. Section 4.4 introduces the flume used for the experiments. Section 4.5 describes sediment 

chosen and section 4.6 shows the data measurement including velocity measurement, depth 

measurement and water elevation measurement. 

 

4.2 Aims and objectives of the experiments and the planning 

4.2.1 Aims and objectives 

 To see how the channel changes by the introduction of spur dike (or other artificial structure 

in the river) from straight channel to meandering. 

 To see how the straight channel develops into a meandering river by an initial small curved 

beginning with steady flow. 

 To study characteristics of channels with meandering thalweg and curved boundaries. 

 To study effects of bed slope, flow discharge and cross-section sizes on key channel 

properties. 

 To carry out flume experiments to study channel development with unsteady flow. 

 The result can provide theory instruction for navigation and flooding defence projects. 

 The physical experiments can be compared against results from numerical modelling. 

 

 

 



45 
 

4.2.2 Plan of experiments to meet study aims 

There are two sets of experiments. One set of experiments is carried out using a spur dike to see 

how it causes morphological change. The other is how channel morphology changes from straight 

to meandering by the initial bending. 

4.2.2.1 The procedure for the first set of experiment 

1. Put concrete block at the beginning of channel as a spur dike. 

2. Put sand in the flume to 5.0 cm depth and then make the sand bed surface flat. 

3. Water elevation in the flume is raised by adding water to the tailbox. 

4. Discharge in the channel is raised slowly to the designed rate. 

5. Water surface and bed elevations are measured along the channel. Vertical and oblique 

photographs are taken, planimetric and cross-sectional data will be collected to construct maps 

and cross sections of the channel. (Photograph will be taken every hour.) 

There is no sand feeding and water is recycled after the sediment deposition. 

4.2.2.2 The procedure for the second set of experiments 

The flume was filled with sand to a depth of 8.0 cm. The surface was flattened to a given slope 

(the same as the flume), then the middle straight channel was excavated. Detail of preparation is 

below: 

Prepare the channel with wood board: the size of wood board is 120 cm width. Put another small 

wood board in the middle of the large channel (see Figure 4.15). After finishing channel, the real 

size of the channel is not the same as the board’s size: it has got a larger top width, smaller bottom 

width but the same height). Figure 4.1 shows the channel made in the flume ready for the 

experiment. 
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1. Put the sand surface flat while there is no water. 

2. Let small quantity of water flow into flume until water upstream at about 1 cm depth, so all 

sand is under water, and water can flow out through the sluice-gate. 

3. Put the board in the flume with its boundary near the glass flume wall, move the board slowly 

from upstream to downstream to excavate middle channel and flatten the two sides of banks. The 

slope of channel bank is the sand repose angle in the water, top and bottom width would be 

different with the size of wood board, height is the same. It needs to measure size again after 

channel making. 

4. Move the board from the beginning smoothly and slowly again to make the channel better. 

Make two small sand banks at the end of sand bed with channel in the middle which keep water 

flowing away from the middle channel while lowering down water level, and trying not 

destroying the smooth surface. 

 

Figure 4.1: Channel ready for experiment.  
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5. Stop water flowing into flume and lower water level by lowering sluice-gate slowly. The flat 

sand surface with middle channel can now be seen. Keep lowering the sluice- gate until there is 

little water in the channel. 

6. Leave the sand bed and channel dry for about two days, then dig the upstream channel as 

designed and also the curved connection. It is important to dry sand for about two days or flowing 

water in the first minutes would destroy channel banks. 

7. Draw white lines with lime water every 20 cm. It is used to mark river boundaries. See picture 

of flume being ready for use in Figure 4.1. 

8. Turn on water to do experiment as designing. 

 

4.3 Water supply system 

The following two pictures are showing the flume structure in the lab. One (Figure 4.2) is viewing 

down the flume from upstream to downstream and the other (Figure 4.3) is viewing it from the 

side. 

 

Figure 4.2: The flume viewed from upstream. 
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Figure 4.3: The flume viewed from the side. 

4.4 Flume structure and plan view 

Figures 4.4a and 4.4b show the plan and layout of flume for the second set of experiments. In 

Figure 4.4b, sections A-A and B-B are shown in more detail in Figure 5.1 in Chapter 5. The flume 

is 10 m long, 1.2 m wide and 0.3 m deep. And 10 m is at the beginning of upstream while 0 m is 

at the end of downstream. 

 

  Figure 4.4a: The map for water supply system. 

 

Figure 4.4b: Ichnography of flume. 
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The first set of experiments 

The flume width is 120 cm, length 1000 cm, and a depth of 30 cm. See Figures 4.2 and 4.3. The 

sediment depth is 5 cm (in the second set of experiments, this is increased to 8.0 cm as shown in 

Figure 4.4a). 

Water comes from pipe below the flume and is then controlled by a honeycomb to make the water 

velocity more homogenized. 

There is a spur dike located at the upstream flume and which is at 1.5 m from the inlet and 8.5 m 

far from the outlet, see Figure 4.5. 

  

Figure 4.5: The map for the first set of experiments. 

The spur dike width is one quarter of the flume width (30 cm). For comparison, the width can be 

used as 1/3 or 1/5 of flume width. The flume slope can be adjusted, and according to the design, 

the slope is chosen as 0.005. 

 

The second set of experiments 

Sand depth is 8.0 cm from 9.8 m to 2.5 m of the flume length. There are pebbles (with diameter of 

about 1 cm) from 10 m to 9.8 m to prevent sand flowing into the water tank at the upstream. At 
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the end of the sand bed, there is a brick wall to stop sand flowing out and there is another brick 

wall at 1.5 m to stop sand flowing into water tank at the downstream. See Figure 4.4a and Figure 

4.4b. 

 

4.5 Sediment 

The chosen sediment is non-cohesive sediment. Depth of sediment is 5 cm for the first set of 

experiments and 8.0 cm for the second set of experiments. So with a width of 1.2 m, length of 10 

m, the total volume is 0.6-0.9 3m . Considering the loss during experiments and for a little extra 

safety ratio, the ordering volume for sediment is 1 3m . Other researchers used sand with median 

size 50D  of 0.56 mm (Schumm et al., 1987), 0.45 mm (Friedkin, 1945), 0.5 mm (Gran and Paola, 

2001), 1.25 mm (Jang and Shimizu, 2007), 0.94 mm (Ohmoto, 1998) and 0.6 mm (Michiue and 

Hinokidani, 1992). 

The median size chosen is between 0.2 mm to 0.8 mm. And because the sand would be 

transported by the flowing water (bed-load and suspended load), if the size is small and velocity is 

too large, sediment would be completely washed away. Also if the size of silica sand is large and 

at the same time, the velocity is small, there would be no sediment transport. Water supply ability 

could reach 55 l/s with a flow depth of 190 mm and the slope at 1:1000. So the maximum velocity 

(v=Q/ (w×h)) that the flume can provide is shown in Table 4.1. 

Table 4.1: The velocity calculation. 

Water depth h (m) Width w=1.2 m and the max velocity (m/s) 

Q=0.020 sm /3  Q=0.030 sm /3 Q=0.055 sm /3  

0.10 0.167 0.25 0.46 
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0.05 0.333 0.5 0.92 

 

The threshold (critical) depth- averaged speed cU  at different water depths of 5 cm and 10 cm as 

calculated using different formula. 

Г.И.Шамов formula: (Wang et al., 2004): 
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with: s=ratio of densities of grain and water. 

 =kinematics viscosity of water. 

The results of calculation are shown in the Table 4.2. 

Table 4.2: The calculation of critical depth- averaged speed by two different formulae. 

Diameter 

(mm) 

By Г.И.Шамов (Wang et al., 2004) 

formula to calculate the threshold   

velocity cU (m/s). 

By Soulsby (1997) formula to 

calculate the threshold current 

velocity cU (m/s). 

h=0.05 m h=0.10 m h=0.10 m 

0.13 0.141 0.158 0.210 

0.2 0.163 0.183 0.211 
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0.35 0.196 0.220 0.220 

0.5 0.221 0.248 0.236 

0.8 0.258 0.290 0.276 

 

Compare with the critical depth-averaged velocity and the maximum velocity that flume can 

provide, if sand diameter is chosen as 0.8 mm, water will not make sand transportation. If water 

depth is 0.05 m, the Acoustic Doppler Velocimeter (ADV) machine cannot work (the minimum 

water depth requirement). Based on equipment ability and experiment material, the silica sand 

50D  less than 0.8 mm (0.5 mm or 0.2 mm) and water depth as 0.1 m were adopted. 

Conclusion: 50D =0.5 mm, the critical depth-averaged velocity is 0.25 m/s. 

           50D =0.2 mm, the critical depth-averaged velocity is 0.18 m/s. 

 

Silica sand could be provided by sand supplier: WBB Minerals and sand size: 50D =0.45 mm and 

50D =0.268 mm. The loose bulk density is 1490 kg. 

For 50D =0.45mm, the threshold velocity by Г.И.Шамов (Wang et al., 2004) Fomula: cU =0.24 

m/s, by Soulsby (1997) formula: cU =0.23 m/s. 

For 50D =0.268 mm, the threshold velocity by Г.И.Шамов (Wang et al., 2004) Fomula: cU =0.20 

m/s, by Soulsby (1997) formula: cU = 0.20 m/s. 

At last, sand with 50D =0.268 mm was chosen. 

For more information about the sand size, see Tables 4.3 and 4.4. Figures 4.6 and 4.7 show sand’s 

cumulative curve and its percentage. 
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Table 4.3: Particle size distribution (ISO). 

Microns 

 

Passing 

(%) 

Retained (%) Category 

 Full Octave Half Octave 

8000 100 0.00 0.00 Stones 

5600 100 0.00 0.00 

 

Coarse Gravel

4000 100 0.00 

2800 100 0.00  

0.00 

 

Fine Gravel 2000 100 0.00 

1400 100 0.00 0.00 Very Coarse 

Sand 1000 100 0.00 

710 99.90 0.10 1.20 Coarse Sand 

500 98.80 1.10 

355 85.20 13.60 57.70 Medium Sand

250 41.10 44.10 

180 11.40 29.70 38.90  

Fine Sand 125 2.20 9.20 

90 0.60 1.60 2.10 Very Fine 

Sand 63 0.10 0.50 

<63 0.00 0.10 0.10 Silt / Clay 

 

Table 4.4: D values for the sand. 

D D95 D90 D85 D60 D50 D25 D20 
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Size (μm) 413 378 354 289 268 218 207 

D D10 D5 D60 / D10 D90 /D10 D84.1/D15.9 - - 

Size (μm) 174 146 1.7 2.2 1.8 - - 
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Figure 4.6: The cumulative curve for the sand.   Figure 4.7: The percentage of sand. 

 

4.6 The equipment and data collection 

Below is the equipment description and data collection. 

4.6.1 Acoustic Doppler Velocimeter (ADV) 

 

Figure 4.8: The ADV introduction (from: http://biology.st-andrews.ac.uk/serg/adv.htm). 

The ADV in the lab of Hydro-environmental Research Centre in Cardiff University was bought 

from Nortek-AS Company. It is not new and it has been used in several other experiments, but 
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proved to be in good condition. The ADV and the point gauge which were used in the experiment 

are shown in Figures 4.9 and 4.10 below. 

   

Figure 4.9: The ADV machine.    Figure 4.10: The point gauge. 

The ADV probe is controlled by a computer. To make it work well, after the installation of 

vectrino software on the computer, it is necessary to have a functional test. After preparation, the 

probe was put in the sanding water in a bucket to test the probe. 

 

The sampling frequency for ADV is 200 HZ. Temperature is set to be close to room temperature 

and the salinity is 0 (no salt). In this condition, the sound speed can be calculated as 1482.9 m/s at 

a temperature of 21.20 degrees. The sampling volume is 7 mm. 

 

For this research, to make ensure the measurement was the same level and control easily, the 

equipment was attached to a movable rack which was parallel with the flume surface and could 

move on the track, on the top of two sides of flume. See Figure 4.9. 
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4.6.2 Point gauge and bed profiler 

Point gauge that was used to measure water depth in the lab was also attached to a movable rack 

like the ADV machine. See Figure 4.10. 

Also the bed profile would be measured by the HR Wallingford Bed Profiler (Figure 4.11) which 

is located on two structures and can be moved in horizontal direction. In lateral direction, it can be 

moved to positions by hand. 

The profiler consists of a support beam, a profiler carriage, a probe and a computer. The support 

beam is mounted over the bed where bed profile is measured. The profiler carriage drives along 

the support beam and the probe is fitted to the profiler carriage. Except for the drag-arm probe, the 

probe is driven up and down to maintain a constant distance from the probe sensor to the bed. 

 

Figure 4.11: The bed profiler. 

The computer controls the movement of the profiler carriage and the probe and also displays and 

logs the profile data. (HR Wallingford, 2003) 
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Figure 4.12: Control panel for bed profiler. 

The profiler is controlled via two screen displays from a computer and runs with a customised 

software program. The first sets parameters such as start point, total distance to be travelled, and 

for incremental profiling the number of steps, step height and so on. The second screen allows the 

profiling operation to be started and stopped and also displays the profile as it is measured (HR 

Wallingford, 2003). The control panel on the computer is shown in Figure 4.12. 

 

The bed profiler could measure constantly or step by step (HR Wallingford, 2003). After 

comparing two methods, the measurement constant is chosen in the experiment because it saves 

time. Machine measures depth in fixed times and with one chosen moving velocity, distance 

between two measure points would be slightly different. The bed profiler machine is controlled by 

computer and parameters are set in the control panel (see Figure 4.12). For experiments here, the 

bed profiler was moved each 1 cm in lateral directions. 
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The depths were obtained and stored in .dat format. Because horizontal and vertical readings were 

taken at discrete time intervals and the data for the continuous profiling programme would not be 

taken by every 1 cm but different each time. This gives difficulty in obtaining 3-D profiles of 

channel bed by TECPLOT. With help of the programme which is compiled by FORTRAN 90, 

depth at fixed points can be interpolated by neighbour points. This programme is attached at the 

end of the thesis. 

 

4.6.3 Velocity Meter 

Velocity is important in experiments and it was measured by Nixon Streamflo Velocity Meter 

model 430 (See Figure 4.13). The miniature head of the flow sensing probe can be inserted into 

small channels where it has ability to measure velocities as low as 5.0 cm/s and channel depth 

should larger than about 2 cm. The sensing probe is a measuring head joined by a slim tube to the 

plug and socket which connects to the measuring instrument. 

 

Figure 4.13: Nixon Streamflo Velocity Meter model 430. 
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4.6.4 Discharge control for unsteady inflow 

Experiments with unsteady inflow are different to experiments with steady inflow. Discharge was 

changed by pump engine frequency. And frequency could be changed easily by hand using 

control panel of SIEMENS Micromaster 430 (see Figure 4.14). 

  

Figure 4.14: Control panel for Micromaster 430 and control panel for valve openness. 

Because minimum frequency change can be 0.10 HZ and small frequency change can achieve 

small discharge change, this method is more accurate than controlling valve openness. 

When water tank is full，valve openness is fixed to 15% (see in Figure 4.14), discharge with 

different engine frequency could be measured by vee weir. Then accurate discharge could be used 

for experiment (see Table 4.5). 

Table 4.5: Discharge with different frequency. (The formulae used for vee weir is: 

2/5)2/tan(2
15

8
hgCQ d    (Chadwick et al., 2004) Where h is water depth above the 

lowest crossing, here h=H-10.7 (cm),   is the angle of vee weir, here 090 , and dC  is the 

experimentally derived coefficient between Q and idealQ , ideald QQC / , here dC =0.59 for 

090  Q by sm /3 .) 

Frequency 

(HZ) 

Water 

Height 

Vee weirs 

Depth (D) 

h=(H-D)

(cm) q( sm /3 ) q(l/s)  

Frequency 

(HZ) q(l/s) 
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(H) (cm) (cm) 

15.90 12.95 10.7 2.25 0.000106 0.106  15.90 0.1 

16.10 13.55 10.7 2.85 0.000191 0.191  16.10 0.2 

16.40 14.10 10.7 3.40 0.000297 0.297  16.40 0.3 

16.60 14.50 10.7 3.80 0.000392 0.392  16.60 0.4 

17.00 14.90 10.7 4.20 0.000504 0.504  17.00 0.5 

17.30 15.20 10.7 4.50 0.000598 0.598  17.30 0.6 

17.70 15.50 10.7 4.80 0.000703 0.703  17.70 0.7 

18.10 15.75 10.7 5.05 0.000798 0.798  18.10 0.8 

18.60 16.00 10.7 5.30 0.000901 0.901  18.60 0.9 

19.00 16.20 10.7 5.50 0.000988 0.988  19.00 1.0 

19.50 16.45 10.7 5.75 0.001104 1.104  19.50 1.1 

20.10 16.65 10.7 5.95 0.001203 1.203  20.10 1.2 

20.40 16.85 10.7 6.15 0.001307 1.307  20.40 1.3 

21.10 17.03 10.7 6.33 0.001404 1.404  21.10 1.4 

21.60 17.20 10.7 6.50 0.001500 1.500  21.60 1.5 

22.30 17.38 10.7 6.68 0.001607 1.607  22.30 1.6 

23.00 17.53 10.7 6.83 0.001698 1.698  23.00 1.7 

23.40 17.70 10.7 7.00 0.001806 1.806  23.40 1.8 

24.00 17.85 10.7 7.15 0.001904 1.904  24.00 1.9 

24.60 18.00 10.7 7.30 0.002006 2.006  24.60 2.0 
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25.10 18.13 10.7 7.43 0.002096 2.096  25.10 2.1 

25.70 18.27 10.7 7.57 0.002196 2.196  25.70 2.2 

26.40 18.42 10.7 7.72 0.002307 2.307  26.40 2.3 

27.00 18.55 10.7 7.85 0.002405 2.405  27.00 2.4 

27.50 18.68 10.7 7.98 0.002506 2.506  27.50 2.5 

28.00 18.80 10.7 8.10 0.002601 2.601  28.00 2.6 

28.60 18.92 10.7 8.22 0.002699 2.699  28.60 2.7 

29.20 19.05 10.7 8.35 0.002806 2.806  29.20 2.8 

29.70 19.15 10.7 8.45 0.002891 2.891  29.70 2.9 

30.20 19.30 10.7 8.60 0.003021 3.021  30.20 3.0 

31.00 19.38 10.7 8.68 0.003092 3.092  31.00 3.1 

31.80 19.50 10.7 8.80 0.003200 3.200  31.80 3.2 

32.60 19.60 10.7 8.90 0.003292 3.292  32.60 3.3 

33.40 19.72 10.7 9.02 0.003404 3.404  33.40 3.4 

 

4.6.5 Data measurements and records 

The first set 

1. Use camera to record pictures of change at different stages from vertical and longitudinal 

direction. 

2. At each time stage, measure velocity. 

3. Depth of water measurement (h1): 

4. Depth of sand measurement: 
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The height (H) from the bottom of flume to the position of moving rack needs to be measured. 

After measuring the length (h2) between the water surface and the position of moving rack, the 

depth of sand (D) is H-h1-h2. 

5. Measure the meander wavelength, amplitude, depth, width of channel. 

 

The second set 

The boundary line measurement 

1. Put the tripod at the end of flume with a camera to record changes of river morphology (Figure 

4.15). 

 

Figure 4.15: The equipment used in the experiments (wood board, tripod, ADV and other tools). 

2. After the sand bed became dry on the surface, use lime water to draw the transverse lines. From 

observation, the morphology change was faster at the first 1 hour and then become slowly. So 

camera will record every 2 minutes’ changes during the first 1 hour and then 5 minutes’ changes 

in the second hour. After 2 hours, the camera records changes by every 10 minutes and half hours 

if the running continues. 
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3. Copy pictures from camera to computer and then edit them by AutoCAD. Draw the paralleled 

lines according to the limed lines on the sand bed surface and draw the Polyline (the name of one 

type of line in AutoCAD) by river boundaries. Use software CAIC.exe which can transfer the 

positions of points in Polyline to an excel file. Then draw boundary lines by excel. 

These pictures would be compared with results from numerical modelling. 

 

Depth measurement 

For depth of channel, at moment, it is not easy to get a timely measurement. The point gauge was 

used to measure one section, but it was so slow to get 10 points for one section in short time and 

the condition would change to another one after finish one section. There will be no two sections 

for comparison at the same time. 

The ADV machine can measure water depth when it is deeper than 5 cm and this limits its use. It 

was tried to measure the depth by filling water slowly in the flume to raise water depth to more 

than 5 cm after half hour to 1 hour. More details will be presented later. After measurement, flow 

water away and begin the running as initial condition. After another hour, do the same as before to 

raise water level for the depth measurement by ADV. It is the same procedure for Bed profiler 

machine. 

 

4.7 Summary 

In this chapter, the materials, equipment and methods that were used in this experimental study 

were introduced. Experiment aims and objectives were explained in section 4.2. In section 4.3, the 

water supply system for the flume in the lab was illustrated and section 4.4 shows a plan view of 
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the flume structure. After that, the characteristic of the main material: sand used in the study was 

described. This included threshold velocity and particle size distribution analysis. Then in section 

4.6, equipment like ADV, the bed profiler, velocity meter, point gauge and discharge control 

equipment were outlined with their operating methods. The experiment results for this study will 

be discussed in Chapter 5. 
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Chapter 5 

______________________________________ 

       Results of Physical Experiment 
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5.1 Introduction 

Many experiments with different conditions have been carried out in this study without changing 

the sand bed. Two different types of tests were designed. One set was designed to test the meander 

development caused by a spur dike, and the other set was designed to test the meander 

development resulting from the initial bending. With these two different types of tests, a large 

number of experiment conditions were conducted using different flume slopes, flow rates and 

channel sizes. In this chapter, more details of experiments with steady inflow and unsteady inflow 

will be described and the discussions follow these results. 

 

5.2 Flow rate measurements 

Because flow rates in the experiment were small and could not be read directly from the discharge 

meter, they were measured separately. The flow rate was measured by a vee weir in the flume as 

shown in Figure 5.1. 

 

Figure 5.1: Vee weir used to measure flow rate and its setting in the flume (cm). 

Then pump was switched on and water flowed with different flow rate. With a point gauge to 

measure water depth H and then flow rate was calculated with formula below: 

2/5)2/tan(2
15

8
hgCQ d    (Chadwick et al., 2004)        5.1 
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Where h is the water depth above the lowest crossing, here h=H-10.7 (cm),   is the angle of vee 

weir, here 090 , and dC  is the experimentally derived coefficient between Q and 

idealQ , ideald QQC / , here dC =0.59 for 090 . 

After this measurement, the discharge used before becomes clear and tests can be compared with 

each other easily. At beginning water was collected at the end of flume by container in a period 

and then measured by scale to get the exact flow rate. Flow rate got in this way had a good 

agreement with that by calculation from vee weir. Then flow rate was measured directly from the 

vee weir in this study. 

Table 5.1: Measurement of discharge by vee weir. 

H (cm) 19.40 17.15 15.52 

h (cm) 8.70 6.45 4.82 

Discharge (l/s) 3.110 1.472 0.711 

 

5.3 The experiments series B with middle channel whose banks were above water level and 

with spur dike together 

The experiment series A (Tests 1 to 6) were set with a spur dike to see its effect on morphology 

when the sand was all under water. Results indicated that the spur dike could cause bed erosion 

and formed a curved inner channel as shown in Figure 5.2. 
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Figure 5.2: Spur dike in experiments series A for Tests 1- 6. 

In reality it is unreasonable and not practicable for this research. Projects use spur dikes to make 

flow smooth rather than turbulent. It proved that a straight river would have a curving 

development by the initial bending in upstream. After these tests, channels were excavated in the 

middle of the sand bed and bending in the upstream was designed for experiments. Tests with 

straight channel were also carried out for comparison. 

 

5.3.1 Results from the experiments series B 

Test conditions for this set are described in Table 5.2. 

Table 5.2: Experiments series B: with middle channel whose banks above water level and with 

spur dike. 

Test 

No 

Channel size 

(cm×cm×cm) 

-bank slope 

Area of cross 

section( 2cm )

Slope Q 

(l/s) 

Comment 

7 30×30×4- 090  120 0.003 1.472 Straight channel, feeding sand 

 Channel 1     

8 30×22×4- 045  104 0.010 1.472 Straight channel, no sand feeding
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9 30×22×4- 045  104 0.010 1.472 Bending beginning, no sand 

feeding 

10 30×22×4- 045  104 0.010 1.472 Bending beginning-sand feeding 

11 30×22×4- 045  104 0.015 1.472 Bending beginning-sand feeding 

 

Channels for these tests were made from attached small wood board when there was no water in 

the flume and channel size was shown as below. Spur dike was not moved away and channel 

banks were above water level in experiments (See Figures 5.4- 5.10). Experiments for straight 

channel without bend upstream were carried out in Tests 7 and 8, while experiments for channel  

with bend upstream were carried out in Tests 9- 11 in experiments series B. 

 

Figure 5.3: Channel size 1 for Tests 7- 11 (cm). 

At first, there was a middle straight channel for Test 7, but after 1 hour in Figure 5.4, channel did 

not have a curving development at all as expected, so in Test 8, flume slope was increased from 

0.003 to 0.010, and but again this time channel kept straight as in Figure 5.5. Then a channel with 

initial bending was made in Test 9 as shown in Figure 5.6. This angle was a trial. 
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Figure 5.4: Test 7 at 1 h.       Figure 5.5: Test 8 at 1 h.     Figure 5.6: Test 9 with bending. 

   

Figure 5.7: Test 9 at 140 min. Figure 5.8: Test 10 at 150 min.   Figure 5.9: Test 10 at 210 min. 

 

From results shown in Figure 5.7 in Test 9, after 140 minutes, channel did not have obvious lateral 

development. The angle of initial bending for this test was not large (see in Figure 5.6), so this 

was the main reason for no meander development. In Test 10, the initial bending angle increased 
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more, after 150 min as in Figure 5.8, bank boundaries became curved and after 210 min, there was 

a meandering thalweg in the straight channel as shown in Figure 5.9. 

. 

The result encouraged having a large bending angle in upstream and keeping the same in 

experiments series C, D and E. Results also encouraged increasing the flume slope from 0.010 to 

0.015 in Test 11. The channel development for Test 11 in Figure 5.10 proved that increased slope 

not only gave the channel meandering thalweg but also sinuous bank boundaries. The large slope 

here indicated that it plays a key role on channel development. 

   

(a) 15 min            (b) 60 min                (c) 130 min 

Figure 5.10: Test 11 at 15 min, 60 min and 130 min with slope 0.015. 

In all these experiments from series B, the spur dike did not play a role and the initial bending and 

slope caused the channel to have a meandering thalweg. Take this into consideration, the spur dike 

was moved away after Test 11 for experiments series C, D and E. 

b c a 
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5.3.2 Discussion from the results of experiments series B 

Channel would become wide only when the initial channel was straight, no matter whether slope 

was 0.003 or 0.010, and there was no meandering trend at all. The largest shear stress (τ) on the 

bed in straight channel was along the centre. So Schumm et al. (1987) drew the conclusion that 

shear stress (τ) decreased away from centre and approached zero at the corners of a rectangular 

channel; therefore, the area of active sediment movement was in the centre of straight channel. 

There was an initial bending and a meandering thalweg occurred in Test 10 with slope 0.010. 

When slope was increased to 0.015 in Test 11, channel not only had a meandering thalweg but 

also had sinuous boundaries. As it developed, the channel became wider and shallower and 

channel had an obvious meandering thalweg while boundary lines were not obviously curved. 

Experiments from Tests 7-11 indicated that the slope and initial bending were key factors in 

causing curving thalweg and boundaries. 

 

5.4 The experiments series C, D and E: with middle channel and without spur dike 

5.4.1 Setting and results for experiments series C, D and E 

In these series, many experiments were carried out. Different channel sizes, flow rates, flume 

slopes were combined to create different experiment conditions. From the results, these 

parameters could be found to have varying effects on channel morphology. Tests 12- 14 had a 

channel size as shown in Figure 5.3 and Test 15 had a little difference. Other tests used the 

channel size as shown in Figure 5.11. These sizes were made from the same wood board but with 

a different depth, see details for channel preparation in Chapter 4. They were made under water, 
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so the bank slope was sand’s repose angle: 029 . Experiment conditions for all test cases are 

shown in Table 5.3, Table 5.4 and Table 5.5. 

   

 (a) Channel size 2          (b) Channel size 3       (c) Channel size 4 

Figure 5.11: Different channel sizes (cm). 

Table 5.3: Experiments series C: Tests 12- 15. 

Test No Channel size (cm×cm×cm) 

bank slope 

Area of cross section 

( 2cm ) 

Slope Q(l/s) 

12 30×22×5.5- 045  143 0.015 1.472 

13 33×22×5.5- 045  151.25 0.015 1.472 

14 33×22×5.5- 045  151.25 0.015 1.472 

15 32.5×17.5×4- 029  100 0.015 0.711 

 

Table 5.4: Experiments series D: Tests 16-19, 21- 26, 29- 30 with bank slope 029 . 

Test 

No 

Channel size 

(cm×cm×cm) 

Area of cross 

estion ( 2cm ) 

Slope Q 

(l/s) 

 Channel 2    

16 22×8×4 60 0.015 1.472 /0.711

17 22×8×4 60 0.015 0.711 

18 22×8×4 60 0.015 0.711 



74 
 

19 22×8×4 60 0.015 0.711 

 Channel 3    

21 26×6×5.5 88 0.015 3.110 

22 26×6×5.5 88 0.015 0.711 

23 26×6×5.5 88 0.020 0.711 

24 26×6×5.5 88 0.020 0.711/1.472 

25 26×6×5.5 88 0.010 0.711 

26 26×6×5.5 88 0.010 1.472 

 Channel 4    

29 31×4×7.5 131.25 0.010 1.472 

30 31×4×7.5 131.25 0.015 0.711/ 1.472

 

Table 5.5: Experiments series D: Tests 31- 37 with bank slope 029 . 

Test 

No 

Channel size 

(cm×cm×cm) 

Area of cross 

section( 2cm ) 

Slope Q(l/s) Time 

31 26×6×5.5 88 0.020 0.711 30/30 

32 26×6×5.5 88 0.020 1.472 30/30 

33 26×6×5.5 88 0.015 1.472 30/30 

34 26×6×5.5 88 0.020 1.472 /0.711 30/30 

35 31×4×7.5 131.25 0.020 1.472 30/30 

36 31×4×7.5 131.25 0.020 3.110 30 

37 31×4×7.5 131.25 0.015 1.472 30/30 
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There were 23 tests in total in Tables 5.3, 5.4 and 5.5. The most important factors for channel 

morphology are discharge, sediment load and character and valley floor slope. (Schumm et al., 

1987) In these tests, the initial conditions (flume slope, channel size, initial entrance bending, flow 

rate, sand feeding) were changed to compare river morphology development. Some channels just 

had a meandering thalweg with a straight bank boundary after water supply. Some had obvious 

sinuosity at the beginning of tests, and then the experiment went on, there was a trend 

development from meandering to braided. 

These developments were analyzed by channels’ types: straight, meandering and braided while 

considering parameters like flow rate, sediment load and character, channel size, water depth and 

flume slope. 

 

From the experiments, the depth of water was found to be around 3 cm. Sediments parameters 

were calculated to compare with its critical parameters when the flume slope was 0.015, giving: 

cr =0.186 Pa     = 4.41 Pa 

cru* =0.014 m/s    *u =0.06 m/s  

cr =0.043      =1.018 

The comparison shows that parameters from experiments are larger than the critical parameters 

and sediments can be moved by the flowing water easily. 
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5.4.2 Description of channel development 

5.4.2.1 Straight channels 

From other researchers, a straight channel could develop to a meandering one. Nagata et al. (2000) 

carried out an experiment and confirmed this development. Numerical modelling also had result 

that the channel developed from straight to meandering. Secondary flow develops spontaneously 

in straight channels as a result of vortices generated at the boundary walls (Einstein and Shen, 

1964; Shen and Komura, 1968). And inequalities from bank roughness induce asymmetry and 

periodic reversal of the dominant cell, resulting in the formation of a meandering thalweg and 

alternating bars. 

Schumm et al (1987) got results from other researchers: it is impossible to produce any pattern 

other than straight if the valley slopes below the valley slope 0.003. From Test 18 in Figure 5.12, 

channels would become wider and shallower only even after 1020 minutes because the initial 

channel in Test 18 was straight, and slope and flow rate were small. The low slope and small flow 

rate make the flowing with low energy and produce the straight channel. 

Table 5.6: Tests with initial straight channel and result with straight channel. 

Test 

No 

Channel size (cm×cm×cm) 

bank slope 

Area of cross 

section ( 2cm )

Slope Q (l/s) 

 Tests from experiment   Series C   

18 22×8×4- 029  60 0.015 0.711 

 Tests from experiment   Series B   

7 30×30×4- 090  120 0.003 1.472 
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8 30×22×4- 045  104 0.010 1.472 

  

Figure 5.12: Test 18 with initial straight channel at 60 minutes (a) and 1020 minutes (b). 

An initially straight channel in Test 18 remained straight because of its small flow rate (0.711 l/s) 

and slope (0.015). It had the same straight development in Tests 7 and 8 (see Figures 5.4 and 5.5) 

which had a medium flow rate (1.472 l/s), and a small slope of 0.003 and 0.010. Again the reason 

for straight channel was that in straight channel, flow with low energy was unable to scour the bed 

and have a high rate of sediment transportation. 

5.4.2.2 Straight channels with meandering thalweg 

Channels with this type of development were in Table 5.7, they had an upstream bend. Their 

developments were not straight like above: by development, channel became wider and shallower, 

boundary lines did not have obvious meandering, but a little curving, and channel had an obvious 

meandering thalweg. Tests 11 and 13 are good examples, see Figures 5.13, 5.14. Figure 5.15 

shows that there was an obvious sinuous thalweg in Test 11 after stopping water supply. 

Table 5.7: Tests with an initial bend upstream and results with a little curving channel and 

meandering thalweg. 

Test 

No 

Channel size (cm×cm×cm) 

bank slope 

Area of cross 

section ( 2cm ) 

Slope Q (l/s) 

 Tests from experiment   Series C and D   

a b 
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13 33×22×5.5- 045  151.25 0.015 1.472 

26 26×6×5.5 88 0.010 1.472 

33 26×6×5.5 88 0.015 1.472 

 Tests from experiment   Series B   

10 30×22×4- 045  104 0.010 1.472 

11 30×22×4- 045  104 0.015 1.472 

 

 

Figure 5.13: Channel development at 60 min (a), 130 minutes (b) in Test 11. 

 

 

Figure 5.14: Channel development at 60 min (a), 130 minutes (b) in Test 13. 

a 

b 

a 

b 
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Figure 5.15: The meandering thalweg at 130 minutes in Test 11 after stop water supply. 

 

Compared with Test 8 with slope 0.010, Test 11 had a steep slope 0.015 and a bend upstream. 

These differences meant that Test 11 had downstream boundary curving and a sinuous thalweg. It 

proved that with a steep slope and a bend upstream, a meandering boundary would appear. That 

Test 13 increased channel depth to 5.5 cm from 4 cm in Test 11 told us that: with the same 

flowing rate and channel slope, a high bank depth/width ratio can provide high energy to erode 

bank. Results in Figures 5.13 and 5.14 proved that large depth/width ratio can have more erosive 

ability. In Figure 5.15, the thalweg had a very large bend with high sinuosity when boundaries 

were a little curved. This is the main characteristic of this type of development. 

5.4.2.3 Meandering channels 

Channel development with different channel size 

Accourding to Schumm et al (1987), a channel’s sinuosity will begin to increase from 1 to 

maximum 1.3 when valley slope is increased from 0.003 to 0.016. That means that below 0.003, it 

is straight channel and between 0.003 and 0.016, it is meandering, above 0.016, it is braided. With 

these experiments here, because different tests from Schumm were used, meandering happened at 

a slope of 0.015, with flow rate of 0.711 l/s for Tests 15, 19 and 22 with channel sizes 1, 2 and 3 

separately (see in Table 5.8). Meandering also occured in Test 29 when valley slope was 0.010, 
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with flow rate of 1.472 l/s and a channel depth of 7.5 cm. Test 22 increased slope from 0.015 to 

0.020, which was Test 23. And Test 23 had a more sinuous thalweg compared with Test 22. More 

details will be shown in Figure 5.22. Below is channel development for Tests 15, 19 and 22 with 

different channel size. 

Table 5.8: Tests 19, 22 and 15 with meandering channels. 

Test 

No 

Channel size (cm×cm×cm) 

bank slope 

Area of cross 

section ( 2cm ) 

Slope Q (l/s) 

19 22×8×4 60 0.015 0.711 

22 26×6×5.5 88 0.015 0.711 

15 32.5×17.5×4- 029  100 0.015 0.711 

 

 

Figure 5.16: Test 19 with channel size 2 (60 2cm ) at 0 min (a), 14min (b), 30 min (c), 60 min (d), 

120 min (e) and at 60 min (f) after stop water supply. 

b c a d e 

f 



81 
 

        

 

Figure 5.17: Test 22 with channel size 3 (88 2cm ) at 0 min (a), 14min (b), 30 min (c), 60 min (d), 

120 min (e), and 300 min (f). 

  

 

Figure 5.18: Test 15 with channel size 32.5 cm×17.5 cm×4 cm (100 2cm ) at 0 min (a), 14 min (b), 

30 min (c), 60 min (d), 120 min (e), and 425 min (f). 

b c a d e 

f 

b c a d e 

f 
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From the channel development above with different channel sizes, Test 19, which had the smallest 

channel size (60 2cm ) had most sinuous boundary lines compared with Tests 22 and 15. Also, 

from Figure 5.16, it is clear to see that in Test 19 the meander and points bars at 60 min when 

there was no water supply. With initial bending at the beginning, alternate bars and pool formed. 

Their existence enhanced the development of meandering. Amplitude at 118 min was larger than 

that at 60 min but channel was wider and shallower at 2 hours. Pools and crossings came out 

alternately. The phenomenon of channel development in the lab in Figures 5.16f and 5.17f (the 

bars by black arrows) were in close agreement with the natural river in Figure 5.19 by the black 

arrows. 

 

Figure 5.19: The nature river in east Russian from Google map. 

 

In the section of pools and riffle, one side was shallow (point bar) and another side (thalweg) was 

deep. By spiral flow due to the centrifugal force in meandering, sand was transported from 

concave to convex. This made the pool develop further. Figure 5.20 shows transverse sections 

measurement at 1 hour and at 2 hours along the river from 7 m to about 4 m(the upstream is 

marked as 10 m and flume downstream is marked as 0 m. Flow direction is from 7 m to 4 m). 
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They showed at 1 hour, that thalweg changed from right to left and then to right again with 

shallow crossings in the middle. The river planform at 1 hour and 2 hours were shown in Figure 

5.16d and 5.16e. 

  

  

  

Figure 5.20: Transverse sections at 7 m (a), 6.5 m (b), 6 m (c), 5.5 m (d), 5 m (e) and 4.5 m (f) in 

Test 19 at 1 h and 2 h. 

Taking the section at 5.5 m as an example, widening and shallowing occurred from 1 h to 2 h. The 

deepest depth at 1 hour was nearly 3 cm, and then at 2 hours, it changed to about 2.3 cm. Channel 

a b 

c d 

e f 
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width also increased 40 cm from 45 cm to 85 cm in this 1 hour. Channel banks developed further 

on both sides, meaning there was more sinuosity at 2 hours than at 1 hour. 

 

Figure 5.21 from Knighton (1998) shows Einstein and Shen’s model of twin periodically 

reversing, surface- convergent helical cells to explain the flow structure in alluvial straight 

channels. In this model, the thalweg changed from right to left and then to right again with 

shallow crossing in the middle just as the same as Test 19 at 1 h in Figure 5.20. It also shows the 

flow structure in flume channel. 

                  

Figure 5.21: Models of flow structure and associated bed forms in straight alluvial channels ((A) 

Einstein and Shen’s (1964) model of twin periodically reversing surface- convergent helical cells, 

black lines indicate surface currents, and white lines near bed currents.). 

 

Channel development description 

There was beginning of thalweg meandering and point bar development in Tests 15, 19 and 22 

with a medium flume slope of 0.015. During the test, there was little overflow in Test 19. This 
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encouraged to increase the channel size to avoid overflow. Point bars (black arrows shown in 

Figure 5.17) in Test 22 would appear when water level was decreased by stopping water supply. 

This made increase channel slope to cause much stronger meandering with point bars. Test 23 is 

the following experiment which had the same flow rate and channel size but a steep slope of 0.020. 

The trapezoidal cross section’s average aspect ratio (width/depth) is 2.9. It gave a good example 

of how a meandering channel develops from a straight channel with initial bending upstream. 

Other experiments also had meandering tendency, but not as obvious as in Test 23. 

There are white lime lines to indicate distance (see in Figure 5.22). With this flow rate and flume 

slope, the initial channel size was not its equilibrium size. When water flew into channel, banks 

began to be eroded and channel became wide and shallow. Due to the bending at the beginning, 

the small channel size and mainstream changed flowing direction to another bank and this bank 

was eroded, causing the channel to become wider and shallower. The sinuosity was formed 

upstream and moved downstream, see Figure 5.22. Then the sinuosity became stronger and 

enhanced erosion. Sand was deposited to form bars. The resulting channel featured in Figure 

5.22a were very similar to a nature river described by Duan and Julien (2005) which meanders 

downstream, with its amplitude of meandering decreasing in the downstream direction. This is a 

real river in New Mexico, the lab experiment can model the features of natural rivers. 
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16 min        30 min        60 min        120 min       300 min 

Figure 5.22: Test 23 with slope 0.020, flow rate 0.711 l/s and channel size 3 at 16 min (a), 30 min 

(b), 60 min (c), 120 min (d) and 300 min (e). Flow direction is from up to down. 

From Figures 5.22 and 5.23, it can be seen that bend development rate was not the same. At the 

first 40 minutes, the whole channel developed a bend rapidly, then from 40 minutes to 60 minutes, 

there was little development upstream (thalweg not obvious) and the thalweg downstream was 

clear with fast bank erosion (by checking white lines). Then after 60 minutes, the rate of growth 

decreased dramatically, but width of the channel continued to grow with wave length and growth 

of amplitude. The reason for these different rates is that the channel became wider upstream to 

downstream, when upstream was wide and its erosion rate was slow, downstream was narrow and 

its velocity was large and had strong erosive ability. When downstream became wider than its 

initial width, flow velocity was small and stream power became separated, and then bend 

development increased slowly. Channel boundary lines and thalweg in Figure 5.23 show how 

bend developed from 0 min to 120 minutes. 

b c a d e 
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Figure 5.23: Boundary lines and thalweg development in Test 23 at 0 min (a), 16 min (b), 30min 

(c), 60 min (d) and 120 min (e). Flow direction is from right to left. In transverse: m, in 

longitudinal: m. 

 

Because of non-cohesive material in tests, point bars in Tests 19, 22 and 23 were not very stable. 

If there is clay or other cohesive sediment, point bars would be stable when channel migrates 

away. By developing, flow rate around point bars is small and cohesive material covers the 

surface of point bars and can then consolidate them. Consolidation plays an important role in the 

evolution of river channel pattern (Smith, 1998). In that way, a real meandering river would be 

formed. Here channel type in Tests 19, 22 and 23 could be regarded as type 3b or 4 as in Figure 

3.2 in Chapter 3. In these tests, flow rate was steady and other conditions were simple such as 

homogenous sands and no vegetation. If not, morphology change would be complex: bar would be 

fixed by vegetation to be an island. Fine sand would be in convex and coarse sand would be in 

concave. Others (Jang and Shimizu, 2007; Gran and Paola, 2001; Tal et al., 2003) have done 

research to see how vegetation affects the morphology. For more complicated flow condition, 

tests with unsteady inflow will be introduced in the next chapter. 

 

e 
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5.4.2.4 Braided channels 

Braided channels are a product of high energy and the steepest valley slopes. Braided channels 

have many channels separated by bars and islands. The characteristic feature of braided pattern is 

the repeated division and joining of channels, and the associated divergence and convergence of 

flow, which contribute to a high rate of fluvial activity relative to other river types (Knighton, 

1998). The braided development would create rapid increase in channel width. The high velocity 

flowing would erode banks quickly which provide abundant of bed load and bank boundaries keep 

straight, but flow is divided into many thalwegs by bars and islands. The river becomes very 

shallow and flat in comparison to its width. Also thalwegs often change without regulation. 

There is no obvious braided channel in these series of experiments, but one test showed a trend of 

braided development: Tests 21 in Figure 5.24. In Figure below, black arrows indicated flowing 

channels which were separated by shallow bars. This channel development with very large 

discharge is different from tests described before which had one main thalweg and other branches, 

with bars and islands separating them. 

 

Figure 5.24: Test 21 with slope 0.015, channel size 3 and discharge 3.110 l/s at 60 minutes. 
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5.4.3 Reproducibility discussion of tests with the same conditions 

Channel geometry in sand- bed streams can be described by one set of continuous functions over a 

wide range of flow conditions (Hickin, 1972). It means that under the same constraints and with 

the same values of independent variables, channel form should be reproducible. (Schumm et al., 

1987) Tests 23, 24 and 31 had the same conditions in the first 30 minutes: flow rate of 0.711 l/s, 

slope of 0.020, channel size 3 of 26 cm×6 cm×5.5 cm. Their channel forms at 30 minutes are 

shown in Figure 5.25, and the comparison of Tests 23 and 24 is shown in Figure 5.26. 

   

Figure 5.25: Channel geometry at 30 minutes for Tests 23 (a), 24 (b) and 31 (c). 

 

Figure 5.26: A comparison of inner and outer boundaries at 30 minutes for Tests 23 and 24. 

a c b 
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It is not easy to compare the difference between these three tests in Figure 5.25 because of the 

angle of camera, so forms of Tests 23, 24 were drawn together in Figure 5.26 for easy comparison. 

But Figure 5.25 still shows the same relationship of point bars with meandering thalweg and their 

positions. Figure 5.26 shows channel development for Tests 23 and 24 with the same conditions at 

30 minutes. It can be seen that the trend of development for those two channels is similar. 

However, there are some differences between them, like meander width and length. The main 

reason for these differences in curves is that the initial channel was made manually and they could 

not be made exactly the same. The morphology is controlled by flowing rate, sand characteristic, 

channel slope and size. If these parameters were the same, morphology would be more consistent. 

Therefore, the development of a channel is a reproducible process, particularly under laboratory 

conditions. This is also confirmed by others’ experiments and research. 

 

5.4.4 Channel development in longitudinal and lateral direction 

5.4.4.1 Cross section development and lateral migration with medium channel 

Figure 5.27 is Test 31 at 30 minutes, point bars with a meandering thalweg after stopping water 

supply clearly showed the effect from upstream bending. Figure 5.28 shows the lateral migration 

at different time steps. Measurements for the first 30 minutes were at sections of the meander apex, 

bottom and crossing, and then at 60 minutes, the second measurement was at the same section for 

easy comparison purpose in Figure 5.29. 

In Figure 5.27, phenomena associated with meandering were clearly observed, such as point bars 

appearing alternately, strong sinuous thalweg, sediment transport passed to downstream and some 
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deviation towards the bars from the channels due to the secondary effect on the bed. The 

meandering was temporary and could not last for a long time in this test with non-cohesive sand 

and point bars could not resist the erosion in the long run. In Figure 5.27b, with point bars above 

water level, flow seemed to channelize when water was stopped. 

              

Figure 5.27: Test 31 at 30 minutes with water supply (a) and without water supply (b). 

 

Figure 5.28: Comparison for Test 31 at 0 min, 30 min and 60 min. Flow is from right to left. 

In Figure 5.28, in upstream part (5.3 m to 7.8 m), it shows that in the first 30 minutes, the erosion 

happened seriously, not only on erosion area but also the erosion length in a lateral direction. It 

was about two times faster than the period from 30 to 60 minutes. But in downstream (2.6 m to 

5.3 m), erosion area and lateral length was almost the same for the two half hour periods. This 

a b 
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proves that bank erosion was seriously affected by its upstream bending. In the first 30min, flow 

from 5.3 m to 7.8 m had strong erosion ability by initial bending and channel in downstream 2.6 

m to 5.3 m was not affected. Then at 30 min, channel from 5.3 m to 7.8 m formed bending and 

provided flowing with erosion ability to channel downstream (2.6 m to 5.3 m). Also at this time 

upstream was wide and erosion phenomenon was weak. 

 

In Figure 5.29, it is clear to see channel section development from 0 min to 60 min. At 30 minutes, 

thalweg moved from upstream right side to downstream left side and then right side again with 

crossing in the middle. The first 30 minutes had almost 85% of lateral migration at the meander 

apex (see at 6.10 m, 4.90 m and 3.60 m). Crossing at 5.5 m and 4.30 m was different. After 30 

minutes, the channel had little migration or no obvious change at 5.5 m, but at 4.30 m, channel 

was eroded at its left side and had more erosion than the first 30 minutes. The depth had little 

change in these two 30 minutes. The most erosion happened on the right side, the left side also 

had small erosion at beginning, but after 30 minutes, there was almost no change on the left side 

in lateral direction. Bed elevation increased a lot in the first 30 minutes by deposition, the first half 

hour accounted for most of the deposition. At 30 minutes, point bars and the main channel formed, 

and then after that there was scour on these bars, then the middle channel bar and secondary 

channel formed. 
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Figure 5.29: Test 31 at 0 min, 30 min and 60 min at sections 6.80 m (a), 6.10 m (b), 5.50 m (c), 

4.90 m (d), 4.30 m (e) and 3.60 m (f). Flow is from inside to outside of paper.(Blue lies are the 

original channels) 

a b 

c d 

e f 
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5.4.4.2 Channel development with big channel and different slope 

Channel morphology was changed by bank erosion and sand transportation or deposition. Bank 

erosion provided sand source. The cut bank development took place when flowing against banks 

and banks directed flowing against the opposite banks, causing opposite bank erosion again. Here 

we can take example from Tests 35 and 37 in Table 5.9 to describe the cut bank development and 

meander shift. Photographs describing channel development for Tests 35 and 37 are shown below 

alternately in Figures 5.30 and 5.31. 

Table 5.9: Tests 35 and 37 with meandering channels. 

Test 

No 

Channel size (cm×cm×cm) 

bank slope 

Area of cross 

section ( 2cm ) 

Slope Q (l/s) 

35 31×4×7.5 131.25 0.020 1.472 

37 31×4×7.5 131.25 0.015 1.472 

 

 

6 min          12 min       18 min        24 min       30 min 

a c b e d 
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36 min         42 min         48 min      54 min        60 min 

Figure 5.30: Cut bank development in 60 minutes for Test 35 (slope: 0.020, discharge: 1.472 l/s, 

channel size 4). 

 

6 min         12 min         18 min       24 min       30 min 

 

36 min         42 min        48 min        54 min        60 min 

a c b e d 

f h g j i 

f h g j i 
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Figure 5.31: Cut bank development in 60 minutes for Test 37 (slope: 0.015, discharge: 1.472 l/s, 

channel size 4). 

Tests 35 and 37 had the same big channel 4 (31 cm×4 cm×7.5 cm), and the same discharge 

of .472 l/s but a different slopes. This made a large difference for channel development as shown 

in Figures 5.30 and 5.31. The large slope shown in Figure 5.30, the speed of moving sinuous 

thalweg downstream was faster than in Figure 5.31. Black arrow on channel right indicates the 

first apex where flowing eroded bank after bending. The position of black arrow moved a little 

from 5.8 m to 4.8 m from 6 min to 12 min in Test 37 and then, it almost remained still, moving 

0.40 m from 4.8 m to 4.4 m in 60 min. This moving speed was slower because flume slope for this 

test was 0.015. When flume slope was 0.020 in Test 35, the speed of moving sinuous thalweg 

became faster. The black arrow on the right channel moved from 5.4 m at 6 min to 3.2 m at 30 

min and at last moved to 2.4 m at 60 min. This also proves that the rate of bend development was 

not uniform through time. 

Through development, a bar formed. But in Test 35, the length and width of bar after bending did 

not stop growing in 60 min. At 6 min, the bar length was 1.5 m from 6.5 m to 5.0 m, at 30 min, 

the bar length was 2.9 m from 5.4 m to 2.5 m and 3.2 m from 4.7 m to 1.5 m. It was different with 

Test 37. The bar length was 0.9 m at 6 min and at 60 min it was 1.1 m, which did not change a lot 

in 1 hour because the channel almost reached a stable condition at 30 min, and the channel in Test 

35 continued its bend development after 60 min. 

Keller (1972) illustrated a five stage model of development for alluvial stream channels in Figure 

5.32 and its advantage is that it can be applied to nearly all alluvial channels. Results of channel 

development in the lab (Tests 35 and 37) can be regarded from stage 1 to stage 3 where dominant 
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bed forms are pools, riffles and asymmetrical shoals (point bars). Channels in the lab could 

transform from a straight to a meandering thalweg but they could not develop to stage 4 and 5. As 

discussed before, if there is vegetation, clay or fine sand to stabilize point bars, the channel would 

develop to the next two stages- the well-developed meandering channels. 

 

Figure 5.32: Illustration of the five stage model of development for alluvial stream channels by 

Keller (1972). 

The phenomenon of bar formation and bend development here proved the large effect of slope to 

morphology again. Figure 5.33 shows bank development clearly for Test 23. It had same 

phenomenon with Test 37 but was clearer with white lines to mark distance. 
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6 min            12 min          18 min          24 min         30 min 

 

 36 min         42 min          48 min           54 min         60 min 

Figure 5.33: Bend development in Test 23 (slope: 0.020, discharge: 0.711 l/s, channel size 3: 26 

cm×6 cm×5.5 cm). 

a c b e d 

f h g j i 
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5.4.5 Controlling parameters 

5.4.5.1 Comparison for channels with different slopes 

In Table 5.10, Tests 23, 22 and 25 had the same flow rate and channel size but a different slope: 

Test 23 with 0.020, Test 22 with 0.015 and Test 25 with 0.010. It is clear to see the important 

effect on morphology by slope in Figures 5.34- 5.36. 

Table 5.10: Tests 23, 22 and 25 with meandering channels. 

Test 

No 

Channel size (cm×cm×cm) 

bank slope 

Area of cross 

section ( 2cm ) 

Slope Q(l/s) Date 

23 26×6×5.5 88 0.020 0.711 5.8 

22 26×6×5.5 88 0.015 0.711 5.5 

25 26×6×5.5 88 0.010 0.711 5.17 

 

Figure 5.34: Test 23 at 14 min(a), 30 min(b), 60 min(c), 120 min(d) and 300 min(e). 

b c a d e 
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Figure 5.35: Test 22 at 14 min(a), 30 min(b), 60 min(c), 120 min(d) and 300 min(e). 

 

 

Figure 5.36: Test 25 at 14 min(a), 30 min(b), 60 min(c), 120 min(d) and 300 min(e). 

b c a d e 

b c a d e 
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With a large slope in Test 23, the channel developed quickly and became sinuous quickly. But 

with the flat slope in Test 25,the channel developed very slowly, keeping straight and narrow for a 

long time. Test 22, with the middle slope, had channel development which was neither fast nor 

slow, just on an average level. 

Conditions of Tests 23, 22, and 25 differ essentially in having different values of Froude number 

( ghuFr / ) caused by different slope. Tests 23 (the same as Test 31 in Table 5.5) had a high 

value of Fr (Fr=1.27) which leaded to quick meandering development with high sinuosity, Fr for 

Test 22 was about 1.00 which leaded to channel with low sinuosity and Fr for Test 25 was 

smallest at about 0.60 with almost straight channel development. The velocity for Fr was obtained 

by tracking the particle travelling a certain distance. (It is the same for Fr in Tables 5.11 and 5.12; 

at 7 min, flow rate became stable and channel was still straight after a long distance.) 

The bed load sheet could be visible in the channel for cases 22 and 25 in 30 min and 60 min in 

Figures 5.34- 5.36. Bed load source came from bank collapse and erosion. Bed load was also the 

main type of sediment transportation. 

 

Channel development in the experiment correlated well with the observation by Schumm and 

Khan (1971). When slope is small, channel would remain straight and when slope increases, 

sinuosity would increase, meaning that channel develops in a meandering pattern. When slope 

continues to increase, channel would become braided. Here Test 23 had a sinuous channel with 

thalweg meandering. If slope becomes larger, for example: 0.025, channel would develop as 

braided or trend to braided with many small middle channels. 
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The slope in these experiments was steeper than those in nature. The modelling rivers’ slope was 

between 0.010 and 0.025 for meandering river, which is nearly 10 times of that of real stream. 

 

5.4.5.2 Comparison for channels with different flow rate 

A large slope increases unit stream power (unit stream power: ρgQS/w=τU=ρgdSU, where ρ= 

density of water, g = accerlation due to gravity, Q = discharge, S = water surface gradient, w = 

width of river, U =mean velocity, τ= mean shear stress, d = mean flow depth) which enhances 

erosion ability and increases bank collapse and bed load transportation. Large flow rate could also 

provide large unit stream power to cause sinuosity. Van den Berg and Bledsoe (2003) agreed that 

stream power is an appropriate parameter to predict channel patterns: with increasing stream 

power, channel width increases, and the channel pattern increasingly tends to become braided. 

Conversely, with a lowering of the stream power, channels tend to become relatively narrow and 

single-thread. Friedkin (1945) found that meander wavelength, sinuosity, and amplitude increase 

with discharge. This phenomenon could be observed in Figure 5.37. Tests 31 and 32 had different 

flow rate (0.711 l/s and 1.472 l/s respectively). And Tests 35, 36 also had different flow rate 

(1.472 l/s and 3.110 l/s respectively). Their run conditions and results are in Table 5.11. It is clear 

that Test 32 with large flow rate had larger meander length, width and amplitude than Test 31. 

Test 36 had the same comparison with Test 35, and did not even have one whole wave in the 

flume. 
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Figure 5.37: Tests 31 (a) and 32 (b), Tests 35 (c) and 36 (d) at 30 minutes. 

Table 5.11: Results of Tests 31, 32, 35 and 36. 

Test 

No 

Slope Q (l/s) Bed forms(cm)

at 30 min 

30 min 

/ 60 min

At 30 min 

 

At 7 min 

   A L sinuosity Fr 

31 0.020 0.711 60 250 48 369/ 426 1.54 1.27 

32 0.020 1.472 98 285 74 472/ 598 1.64 1.15 

35 0.020 1.472 81 450 65 493/ 594 1.30 1.21 

36 0.020 3.110 - - - - - 1.30 

S: slope of flume,   is amplitude of meandering,   is length of meandering, A is width of channel, L: Length 

(cm) of thalweg of one wave (cm), h: channel depth (cm). 

 

a d b c 
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5.4.5.3 Comparison for channels with different channel size 

    

Figure 5.38: Tests 32 (a) and 35 (b), 33 (c) and 37 (d) at 30 minutes. 

Channel size especial aspect ratio (average width/ depth) plays an important role in river 

morphology change. It is recognized by many researchers that the channel pattern is most 

sensitive to the bankfull width/depth ratio. The small width/depth ratio means water could be 

concentrated in a small area with large unit stream power (ρgdSU). Also a channel with small 

width- depth ratio is not its equilibrium condition, and it leads to bank erosion, sand deposition, 

and finally a total different morphology. Small width/depth ratio has a higher bank and bank 

collapse could provide lots of sand load for morphology change when bank erosion is a major 

source of sediment load in many real rivers. This happened in model stream. 

Table 5.12: Results of tests with the same discharge. 

Test 

No 

Slope Q Aspect 

ratio 

Bed forms(cm) 

at 30 min 

30 min/ 

60 min 

L 

At 30 

min 

Sinuosi

At 7 min 

   A V h Fr 

a d b c 
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ty 

32 0.020 1.472 2.9 98 285 74 472/ 598 1.64 57.1 2.5 1.15

35 0.020 1.472 2.3 81 450 65 493/ 594 1.30 53.7 2 1.21

33 0.015 1.472 2.9 83 300 72 483/ 483 1.61 51.7 3 0.95

37 0.015 1.472 2.3 62 256 51 391/ 436 1.33 60.2 3 1.11

S is slope of flume, Q: flow rate (l/s),   is amplitude of meandering,   is length of meandering, A is width of 

channel, L: Length (cm) of thalweg of one wave (cm), h: channel depth (cm), V: velocity at 7min (cm/s). 

 

 

Figure 5.39: Cross section measurement of the first wave apex after bending in Tests 32 (a), 35 (b), 

33 (c) and 37 (d). (Blue lines are the original channels) 

a b 

c d 
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The comparison can be seen from Figure 5.38 between Tests 32 and 35, Tests 33 and 37. Tests 35 

and 37 had a smaller average width/depth ratio with 2.3 and 32 and 33 with 2.9. It is clear to see in 

Table 5.12 that smaller width/ depth ratio meant that Tests 35 and 37 have smaller sinuosity, 

smaller meander amplitude and width, but meander length. We also observed the same 

dependence of the width/depth ratio on the Froude number (Fr) again. Fr in 35 and 37 were larger 

than 32 and 33 in Table 5.12. The difference can also be observed from the cross section 

measurement of the first wave apex after bending in Figure 5.39. Tests 35 and 37, with small 

width/depth ratio, had a deep and narrow channel. 

 

5.4.5.4 Sediment 

Sediment character 

Sediment character plays an important role in channel formation, and many researches and 

observations have proved this influence. 

Friedkin (1945) did experiments to demonstrate the effect of varying materials while other 

conditions remianing the same. Channels with more silt would be deeper and narrower and 

meander wavelength and amplitude were smaller than channels with less silt. 

In Friedkin’s experiments, the channel was straight with a meandering thalweg. It was not a real 

meandering river. But when cohesive clay was added to flowing water, the true meandering 

channel was formed from a meandering thalweg channel. Many researchers have observed the 

effect of deposition of cohesive clay. Schumm and Khan (1972), Yi (1965) and Dulal and 

Shimuzu (2010) observed that the clay could reduce shallow water depth over bars and stabilize 
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point bar against further erosion, the scour along thalweg lowered water level, and the channel 

became narrower and deeper with larger sinuosity. 

 

Shimizu et al.’s (1996) test at 95 minutes showed a good result, but author did many tests with 

different conditions, without one as the same. Result from Friedkin also showed a good 

meandering form after 3 hours. But Test 23 from author showed a good result after 40 minutes 

when slope was 0.020, different sand size being the main reason. Friedkin chose 0.45 mm, and 

Shimizu chose 1.25 mm. Both were larger than authors’ choice (0.268 mm). Fine sand has a small 

threshold current speed and that could make morphology develop quickly. 

Smith (1998), Dulal and Shimuzu (2010), Ouchi (1985), Shepherd and Schumm (1974) and 

Gardner (1983) used cohesive material and their experiments required more time, about 100 times 

more than non-cohesive materials. Smith took more than 120 hours, Dulal took 29 h to 132 h, 

Garden’s meander took 150 hours. Shepherd and Schumm had 107 hours for the channel. 

 

Sediment load 

In this research, the researcher at first thought that sand load would play a very important role in 

channel morphology, but the effect of sediment load was small, and sediment load had no obvious 

effect on the channel morphology in this experiment. So after dry sediment was fed by hand at a 

constant rate at the entrance in some earlier tests, there was no sand load by hand, and sand from 

bank erosion was the major source of sediment load. This was also observed by other researchers, 

like Ackers and Charlton (1970a). They pointed out that sediment load is unimportant and has a 

small independent effect on channel morphology. 
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5.5 Discussion 

5.5.1 Experiment with theory research 

Theory from Leopold et al. (1960) showed that: 

nCB                    5.2 

Where λ is meander length, B is channel width and C=7.3 or C=12.1 with n=1.1 or 1.09. 

 The meander length is about 10 times channel width and the average ratio of wavelength to 

minimum radius of curvature is about 3- 5 (Leopold suggested: 4.7): 

mRB 7.410                   5.3 

where B is channel width, mR  is minimum radius of curvature. 

Below it is meander relationship of Tests 23 and 24. Because experiment results had curved 

boundaries and meandering thalweg, they are both measured and shown in Table 5.13. It proves 

that the meander of thalweg could satisfy theory of Leopold, but the boundary meander could not. 

From this result, we can conclude that experiments undertaken in a laboratory flume cannot get a 

real meandering river but a sinuous thalweg. 

Table 5.13: Relationship between meander parameters and channel width. 

Relationship Test 23 Test 23 Test 24 Test 24 

Boundary Thalweg Boundary Thalweg 

Degree of sinuosity (measured) 1.15 1.75 1.24 1.67 

Ratio of meander length to 

channel width 

5.55 12.8 4.44 14.3 
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5.5.2 Channel morphology discussion by regime theory 

Leopold and Maddock (1953) recognized that stream develops for stability and has a relationship 

named hydraulic geometry. Regime theory agrees with artificial channels and natural rivers, 

showing that for a stable alluvial channel of given sediment, if two variables (discharge, sediment 

concentration, width, depth and slope) are known, the other three could be determined uniquely. 

Regime theory could also be used to calculate the stable slope for an alluvial river and compared 

with valley slope to decide whether river would be straight, meandering or braided. From Simons 

& Albertson (1963) using the regime theory, the stable straight channel width is: 

2/12/1 706.534.69.09.0 QQPB  , where P: wetted perimeter. 

For flow rate 0.711 l/s in tests 31, B=15.2 cm 

Ackers and Charlton (1970a) indicated that the meandering channels average twice the width of 

straight channels, 2B=30.4 cm>16 cm (average). The original channels were not their stable forms, 

so sediment from channel bed and banks was transported by flowing for deposition, erosion or 

washed away to change channel form until a stable channel is formed. 

 

Bettess and White (1983) found that braiding of sand channels is uncommon, particularly for 

small discharges. Gravel rivers have a strong possibility of braiding, and it is not possible to have 

large sinuosity as meandering. Sand rivers are frequently meandering in nature. In researcher’s 

experiments, considering sand size, channel slope and flow rate, channel form should be between 

meandering and braided and that correlated with the experiment results. 
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Using theories discussed in Chapter 3 about stable channels, the parameters of a stable channel 

were calculated from different theories and are shown in Table 5.14. The calculations are 

compared with results from the experiments. 

Table 5.14: The comparison for stable channel parameters between theories and experiments 

(where Br is channel width and Bm is thalweg width, 0y is depth, λ is meandering wave length, S is channel slope, V 

is flowing velocity, A is cross section, P wetted perimeter.) 

Discharge ( sm /3 ) 0.000711(Test 31 at 30 

min) 

0.001472(Test 37 at 30 

min) 

                         

Experiment                

Theory 

Br=0.48 m, Bm=0.16 m 

0y =0.010 m, λ=2.50 m 

S=0.0167 

Br=0.51m, Bm=0.26m 

0y =0.012 m, λ=2.56 m 

S=0.0130 

5.08.4 QP    (Lacey, 1929)  P=0.128 m P=0.184 m 

5.03.54 bQ  Dury (1965) λ=1.45 m λ=2.08 m 

Nixon (1959) for 27 streams 

in England and Wales. Q is 

bankfull discharge 

B=0.080 m,  

0y =0.049 m, 

V=0.182 m/s 

B=0.115 m, 

0y =0.062 m, 

V=0.206 m/s 

Charlton et al. (1978) for 23 

gravel bed rivers 

B=0.143 m 

0y =0.017 m 

V=0.290 m/s 

B=0.199 m 

0y =0.023 m 

V=0.323 m/s 

Ackers (1964) for straight 

channels in medium sand, 

( wQ ) between 0.011 and 

0.153 sm /3  

A=0.001097 2m  

B=0.1257 m 

0y =0.009 m 

V=0.647 m/s 

A=0.002036 2m  

B=0.1706 m 

0y =0.012 m 

V=0.722 m/s 

Stable channel design by 

Blench’s equations 

B=0.1540 B=0.2216 
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0y =0.043 

S=0.00147---0.00092 

0y =0.054 

S=0.0013---0.00081 

From Table 5.14, Bm (thalweg width) could be used to compare with width by calculation. If 

meandering thalweg is a channel, Lacey’s equation is reasonable, and Dury’s equation agree well 

for Test 37 but not 31. Nixon’s (1959) theory did not correlate with experiment, the main reason is 

that their theory is based on natural rivers and Q is bankfull discharge. Charlton et al. (1978) 

equation gives a good result. Width from Ackers (1964) is lower than that in the experiment. 

Blench’s equation correlates well with experiment results on width, but not on channel slope and 

depth. From comparison, stable channel size in lab could not easily be designed. 

From Bettess and White (1983), the discrepancy between the channel slope required for 

equilibrium and valley slope makes channel develop as a meandering or braided type. Regime 

theory is used to calculate the equilibrium river slope and by comparing this with the available 

valley slope, it is then determined whether river type is straight, meandering or braided.  For 

some reasons, the author did not get the calculation result from analytical regime theory 

developed by White et al. (1982), but got results from other researchers (see in Table 5.14). 

Sv (valley slope) in Test 31 is 0.020 and Sr (equilibrium slope by calculation) by Blench’s 

equation is between 0.00092 and 0.00147, Sv>Sr. Then river could accommodate the discrepancy 

by meandering and channel slope reduced to 0.0167 in Test 31 at last. There was the same 

phenomenon in Test 37, Sv=0.015, Sr=0.0013- 0.00081. Channel adjusted its slope as meandering 

to its equilibrium slope 0.013 at last. 
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5.5.3 Extremal hypotheses 

These theories include: the minimum unit stream power (Yang, 1976), the minimum stream power 

(Chang, 1979), maximum sediment transport rate (Kirkby, 1977; White et al., 1982), the 

minimum variance hypothesis, minimum energy dissipation rate (Yang et al., 1981), minimum 

Froude number (Jia, 1990). 

From tests in Table 5.15, it is clear that the slope of flowing channels (Tests 31, 32, 33, 35 and 37) 

became smaller than its original slope after 30 minutes and slope continued to decrease at 60 

minutes, but the decrease rate at the second 30 minutes slowed dramatically compared with the 

first 30 minutes. Test 34 had an unsteady inflow rate and Test 36 did not get a measurement, but 

at 30 minutes, they all had a decreasing slope. The development also correlates with the minimum 

Froude number (Jia, 1990), Fr changed from between 0.95 and 1.27 at 7 min to less than 0.70 at 

60 minutes. Channels developed to more stable conditions with minimum unit stream power (Uτ= 

ρgdSU=minimum). 

Table 5.15: Channels’ slope and Fr in the second set of experiments 

Test No Slope of flume Slope of thalweg Fr 

30 min 60 min 7 min 60 min 

31 0.020 0.0167 0.0159 1.27 <0.70 

32 0.020 0.0148 0.0128 1.15 <0.70 

33 0.015 0.0109 0.0105 0.95 <0.70 

35 0.020 0.0177 0.0156 1.21 <0.70 

37 0.015 0.0130 0.0129 1.11 <0.70 
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5.5.4 Relation between slope and discharge 

From the experiment results, we can concluded that slope plays a very important role in 

morphology change and it can be seen that in Tests 25, 22 and 23, threshold value of slope existed, 

see Figures 5.34- 36.The slope changed from 0.010 to 0.015 to 0.020 and the channel pattern then 

changed from straight (Test 25) to meandering thalweg (Test 22) to a well-developed meandering 

thalweg channel (Test 23). 

 

 

Figure 5.40: Relation between slope and discharge and threshold slopes at each discharge as 

defined by Lane (1957), Leopold and Wolman (1957), Ackers and Charlton (1971), and Schumm 

and Khan (1972). 
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Threshold values of slope at a given discharge have been recognized by other researchers 

(Schumm and Khan, 1972) and their relations are shown with study’s data in Figure 5.40 (point 1 

is Test 23, point 2 is Test 25, point 3 is Test 37 and point 4 is Test 22). Lane and Ackers and 

Charlton curves fit Schumm and Khan’s data very well, Lane curve fits this study’s meandering 

thalweg datas very well (points 1, 3, 4 and 7) but point 2 for straight channel. The author also had 

other points (points 5, 6 and 8) which have tendency to be braided. From Figure 5.40, these points 

(points 5, 6 and 8) are just at or above Lane's line, but from their channel morphology (see Figure 

5.41 below), that were not the exact braided channels but have some characteristics of braided 

channels, such as multiple channels, separated bars and incision on the surface of large bar. 

    

Figure 5.41: Channel development for Tests 21 (a), 24 (b), 32 (c) and 36 (d). 

 

5.6 Summary 

The experiments have been described in this chapter and have shown the important of channel 

size, sand characters, channel slope and flowing rate. 

a b c d 
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1. Slope is a key factor in distinguishing straight, meandering and braided channels. Braided 

channels must have steep slope and coarse sand. Larger slopes or larger flow rates would cause 

meandering. Steep channel slopes became flat quickly at beginning and then slowed. 

2. The essential control factor is the Froude number. A channel with small width/ depth ratio, or a 

large slope, or a large flow rate which leads to meandering all have large Fr (more than 1). With 

this test, Fr became smaller and finally less than 0.70. In these meandering thalweg channels, a 

large Fr caused smaller sinuosity. 

3. The cohesive clay plays a key role in stabilizing point bar and in forming real meandering river, 

not just a sinuous thalweg. Non- cohesive silica sand in this experiment meant that point bars did 

not lasting long. 

4. Bed- load transportation is the main type of sand transportation. Some tests with large flow 

rates or steep channel slopes had meandering channels or straight channels with meandering 

thalweg, which were not their stable form, but half-way to braided form or multiple channels. 

These processes maybe short or long depending on flow rate and channel slope. 

5. Sediment load plays an unimportant role in channel morphology and is not independent 

variable controlled by other factors like slope, discharge and channel size. 

6. Sinuous meandering rivers can be modelled in the lab and the resulting model shows many 

similarities and differences with real rivers. Similarities include ripple-pool form and point bars. 

The difference is that the slope for the model river was much steeper than that of a real stream. 

7. The stable channel size from regime theories correlates with the experiment results, but these 

theories should be chosen carefully especially considering their range of application. 
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5.7 Introduction with unsteady inflow 

Channel development with steady inflow was introduced in this chapter and here, experiments for 

channel development with unsteady inflow were described. Unsteady inflow includes gradually 

varied inflow and rapidly varied inflow. Here, a series of physical experiments conducted with the 

objective to understand the influence of unsteady inflow using channels in the lab with 

non-cohesive sediment are reported. For comparison, sediment is material that was used for 

experiments with steady inflow in past research. 

 

5.8 Experiments with unsteady inflow 

Experiments are listed in Table 5.16. There are two types of unsteady inflow for channel 

experiments. One is increasing gradually, decreasing gradually (Tests D2 and D3, see Figure 5.42) 

and another one increases suddenly, and decreases suddenly (Test D5, see Figure 5.43, Test D10). 

Tests D1, D4 had steady inflow 0.6 l/s (see blue lines in Figures 5.42, 5.43). In this way, 

experiments with steady inflow could compare experiments with unsteady inflow. D1 compares 

with D2, D3 compares with D4 and D5 in the medium channel. D8, D9 compare with D10 in the 

large channel. 

Table 5.16: Experiments with their test conditions. 

Test No Square ( 2cm ) Slope Q (l/s) Time (min) 

Medium channel   Average  

D1 88 0.020 Steady 0.6 l/s 30 

D2 88 0.020 Unsteady 0.6 l/s 30 
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D3 88 0.020 Unsteady 0.6 l/s 60 

D4 88 0.020 Steady 0.6 l/s 60 

D5 88 0.020 Unsteady 0.6 l/s 60 

D6 88 0.015 Steady 0.6 l/s 60 

D7 88 0.025 Steady 0.6 l/s 60 

Large channel     

D8 131.25 0.015 Steady 2 l/s 30 

D9 131.25 0.015 Steady 2 l/s 60 

D10 131.25 0.015 Unsteady 2 l/s 60 

 

5.8.1 Tests with medium channel 

 

Figure 5.42: Gradual changing discharge (red line) for Tests D2 (30 min) and D3 (60 min). 
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Figure 5.43: Rapidly varied changing discharge (red line) for Test D5 (60 min). 

 

5.8.1.1 Reproducibility of tests with steady inflow and unsteady inflow 

Comparison was made between two separate tests with the same flowing conditions. Figure 5.44 

is with steady inflow and Figure 5.45 is with unsteady inflow. From the results, it is seen that 

channel bank lines almost cover each other in upstream and the difference in downstream is small 

at 15 min, 30 min, no matter whether it is in steady or unsteady inflow. Considering the difference 

caused by the channel made by hand, the reproducibility of the fluvial channel with steady inflow 

and unsteady inflow in the lab could be confirmed. 
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Figure 5.44: Tests D1 and D4 at 15 min and 30 min with the same steady inflow (m). 
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Figure 5.45: Tests D2 and D3 at 15 min and 30 min with the same unsteady inflow (m). 

 

5.8.1.2 Medium channel for tests comparison with steady inflow and unsteady inflow 

Channel development from 0 min to 30 min 

Figure 5.46 is a comparison between steady inflow, gradually varied inflow and rapidly varied 

inflow at 15 min and 30 min. D4 is steady inflow, D3 is gradually varied inflow and D5 is rapidly 

varied inflow. 
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Figure 5.46: Tests D3, D4 and D5 with the same channel size, flume slope but different flow 

conditions (m). 

From flow conditions in Figures 5.42 and 5.43, at 30 min and 60 min, tests with unsteady inflow 

and steady inflow both had the same total water quantity. Before 15 min, D4 not only had larger 

flow rate but also larger total water quantity, so D4 had more channel development at 15 min 

compared with D3 and D5. After 15 min, flow rate for D3 and D5 became larger than D4 and also 

erosion rates on the bank. At 30min when the total water quantity was the same, D3, D4, D5 right 

bank line and upstream left bank line was almost at the same place. D5 had little more bank 

erosion on both sides because of its sudden increase in flow rate. At 30 min, from Table 5.2.2, the 

average width for D5 was 53 cm which was the widest, while D3 was 50 cm and D4 was 

narrowest with only 48 cm. 
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D1 with steady inflow at 30 min              D2 with gradually varied inflow at 30 min 

Figure 5.47: Bed profile for D1 with steady inflow and D2 with unsteady inflow at 30min (cm). 

Figure 5.47 shows bed profiles for D1 and D2 at 30 min. Picture shows flume length from 7.20 m 

to 3.40 m. It is seen that deeps and shoals located almost at the same place for these two tests and 

also area for deeps and shoals is the same. The only difference is that the contour for D2 is 

smoother than D1 because D2 had gradual flow rate change. 

 

Figure 5.48 shows the 3-D of bed profile for Test D1 from measurement and channel from camera 

picture from the same location. It can be seen that the measurement could describe the real 

situation accurately. So from measurement, tests can be used to compare with each other easily. 



123 
 

        

Figure 5.48: 3-D Bed profile and picture of D1 at 30 min after stopping water supply (cm). 

Just like the bed profile in Figure 5.47, cross sections for these tests with different running 

conditions at 30 min also show similar development in Figure 5.49. Especially at 6.3 m, 5.6 m and 

5 m, width and depth were covered very well. At downstream, D2’s channel was wider but D1 

had a deeper channel. This phenomenon also happened at upstream, but not as obvious as 

downstream. Section developments tell that steady inflow could erode the channel bed and has a 

deeper channel, unsteady inflow has more effect on bank erosion and makes channel wider. 
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Figure 5.49: Cross sections for Tests D1 (D4) and D2 (D3) at 30 min (cm). 
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Channel development from 30 min to 60 min 

The flow rate for D3, D4 and D5 was described in Figures 5.42 and 5.43. At 30 min, flow rate for 

D3 reached its peak and then decreased gradually, but in future 15 min observations, flow rate was 

still larger than steady inflow rate of 0.6 l/s. At 45 min, there was a turning point: flow rate began 

to be lower than 0.6 l/s. Also test D4 had a steady inflow 0.6 l/s. From 30 min, test D5 would keep 

1.2 l/s 10 min, and then at 40 min, it suddenly changed to 0.3 l/s. 

 

The difference of flow rate brings difference bank erosion rates and erosion positions. In Figure 

5.50, it is clear to see that at 45 min and 60 min, bank positions were totally different to that at 15 

min and 30 min. Test D4 with steady inflow at 45 min was the slowest channel development. D5 

had more area in Figure 5.43 which was higher than 0.6 l/s than D3, so D5 got the erosion, D3 

was the second and D4 was least in upstream. 
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Figure 5.50: Tests D3, D4 and D5 with the same channel size, flume slope but different flow 

conditions at 45 min and at 60 min. 

From 45 min to 60 min, D3 and D4 changed their positions but not D5 in upstream. After 45 min, 

D5 had the smallest flow rate and slowest erosion rate, its banks almost kept their positions. With 

more area that could erode bank, D5 got the largest bank erosion at 60 min. After 45 min D4 still 

had a flow rate that could cause erosion, this made the difference between D3 and D4 smaller. At 

60 min, D5 was the widest as 66 cm, D3’s channel width increased a lot and reached 65 cm which 

was almost the same as D5, D4 had the smallest channel again. Unsteady inflow brings a wider 

channel than steady inflow. 

 

From channel development, it was seen that it was seriously affected by flow rate. When flow rate 

is too small, bank erosion would not happen, like D3 after 45 min. When flow rate is large enough 

and creares bank erosion, the channel would develop fast, like Test D4. And if the flow rate is 

larger and lasts for a while, then channel changes its origin morphology quickly, like D5 in the 

middle 20 min. The flow process in D3 is like a flooding in nature, and only effective flow causes 

bank erosion. 

 

Bed profiles for the above tests are shown in Figure 5.51. D5 has a large difference with D3 and 

D4, where the channel almost became straight after 5.6 m and the right bank reached flume 

boundary at downstream. It had the widest upstream channel. Distinguishing between upstream 

point bar and downstream point bar is not clear in D5, not like in D3 and D4. D3 and D4 had 

similarities in beginning and end of the channel, but not in the middle. D3 had a narrow ripple 
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length at about 5 m and D4 was longer, because D4 was a steady inflow and its ripple length was 

stable. Correspondingly, the ripple in D3 was destroyed and rebuilt easily in the main channel. So 

contours in main channel had a big difference for D3 and D4, and point bar had a similarity. From 

Figure 5.51, D4 had largest sinuosity, most smooth point bars. 
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D4: Steady inflow       D3: Gradually varied inflow      D5: Rapidly varied inflow 

Figure 5.51: Channel after stopping water supply and their bed profiles in Tests D4, D3 and D5. 
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60min at 5.60m
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60min at 4.45m
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Figure 5.52: Bed profile and cross sections for Tests D4, D3 and D5 (cm). 

Also from cross sections in Figure 5.52, D3 with a gradually varied inflow had the deepest main 

channel. It is not easy to find any regulations on average widths or average depths, because they 

always changed their positions. 

It is concluded from bed profiles, steady inflow produces stable ripples and curved channel banks. 

Rapidly varied unsteady inflow got straight channel, wider upstream. Gradually varied inflow got 

unstable ripples in the main channel and deeper main channel. Unsteady inflow brings wider 

channels than steady inflow. 
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5.8.2 Tests with large channel 

Tests with large channel were also carried out and their flow conditions are described in Figure 

5.53. Bed profiles for D9 with steady inflow 2 l/s at 30 min and at 60 min are shown in Figure 

5.54. 

 

Figure 5.53: Unsteady discharge (red line) for Tests D10 (60 min) and steady inflow (blue line) 

for D8 (30 min), D9 (60 min). 

The relationship for channel at 30 min and 60 min is clear in Figure 5.54. D9 at 30 min was a 

well-developed channel with meandering thalweg and then at 60min, meander wavelength and 

amplitude became larger and wider but sinuosity for meandering thalweg became small. 

Figure 5.55 shows differences of channel development for Tests D9 and D10. Again it proved that 

unsteady inflow makes channel wider just like in Figure 5.50. D10 was wider by nearly 1/3 than 

D9 at 6.5 m and 4.5 m. On average, D10’s channel width from bending was larger 11 cm than D9 

in Table 5.17. 
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D8 (D9): Steady inflow- 2 l/s- 30 min                 D9: Steady inflow- 2 l/s- 60 min 

Figure 5.54: Channel development for steady inflow 2 l/s in 30 min and in 60 min. 

Table 5.17: Channel width comparison between D4 (steady inflow), D3 (gradually varied inflow) 

and D5 (rapidly varied inflow), D9 (steady inflow) and D10 (rapidly varied inflow). 

 D4 D3 D5 D9 D10 

Average from bending at 30 min 0.48 m 0.50 m 0.53 m - - 

Average from bending at 60 min 0.61 m 0.65 m 0.66 m 0.62 m 0.73 m

Increase 0.13 m 0.15 m 0.13 m - - 

Largest width at 30 min 0.53 m 0.64 m 0.69 m - - 
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Largest width at 60 min 0.83 m 0.89 m 0.87 m 0.76 m 0.96 m

 

Table 5.17 shows that unsteady inflow made channels wider. In medium channels, D5 and D3, got 

larger channel width than D4, especially D5 with rapidly varied unsteady inflow having the 

largest width. It was larger 10% than D4 at 30 min and larger 8% than D4 at 60 min. D3’s average 

width increased more in 30 min than D4 and D5. In the large channel, unsteady inflow again made 

a wider channel. Difference of largest width is larger a lot than that of average width between D9 

and D10. Correspondingly in the medium channel, this difference is almost the same. 
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Figure 5.55: Compare channel development for D9 with steady inflow and D10 with unsteady 

inflow at 60 min. 

 

5.8.3 Sinuosity 

Table 5.18: Sinuosities for banks and meandering thalwegs. 

Sinuosity 15 min 30 min 45 min 60 min 

up down up down   

D1 Bank line 1.19 1.02 1.23 1.16 - - 

meandering 1.62 1.15 1.68 1.64 - - 
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D2 Bank line 1.13 1.01 1.20 1.14 - - 

meandering 1.50 1.14 1.79 1.57 - - 

D3 Bank line 1.17 1.04 1.28 1.13 1.17 1.26 

meandering 1.60 1.23 1.60 1.31 1.51 - 

D4 Bank line 1.23 1.09 1.29 1.20 1.29 1.22 

meandering 1.75 1.40 1.92 1.40 - 1.43 

D5 Bank line 1.29 - 1.17 - 1.13 1.16 

meandering 1.88 - - - - - 

D6 Bank line 1.05 - 1.08 - 1.03 1.03 

meandering - - - - - - 

D7 Bank line 1.26 1.19 1.30 - 1.24 1.25 

meandering 1.84 1.70 1.96 - - - 

D8 Bank line 1.13 1.02 1.18 - - - 

meandering 1.46 1.06 1.46 - - - 

D9 Bank line 1.05 - 1.05 - 1.07 1.08 

meandering - - - - - - 

D10 Bank line 1.14 - 1.16 - 1.14 1.15 

meandering - - 1.43 - 1.40 - 

Sinuosities (S) of banks and meandering thalwegs from different tests are shown in Table 5.18. 

From these data, it is seen that: 

For the same medium channel with different flow conditions: 

At 30 min, S steady (D4)> S gradual unsteady (D3)> S rapidly varied unsteady (D5) 
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At 60 min, S gradual unsteady (D3)> S steady (D4)> S rapidly varied unsteady (D5) 

For the same large channel with different flow conditions: 

At 30 min, S rapidly varied unsteady (D10) >S steady (D9) 

At 60 min, S rapidly varied unsteady (D10) > S steady (D9) 

For medium channel with different slope: 

At 30 min, S (D7 with slope 0.025)> S (D4 with slope 0.020)> S (D6 with slope 0.015) 

At 60 min, S (D7 with slope 0.025)> S (D4 with slope 0.020)> S (D6 with slope 0.015) 

From above results, the relationship of sinuosity at 30 min and 60 min did not change their 

position for channels with different slope and large channels with different flow conditions. D10 

with unsteady inflow had larger S (sinuosity) than D9 with steady inflow, and channel with a 

larger slope got larger S, D7 had largest S and D6 had the smallest. 

For medium channel with different flow conditions, D3 and D4 changed their places at 30 min 

and 60 min, D5 with rapidly varied inflow was always the last. It is different in large channels, 

D10 with rapidly varied inflow was larger than D9 with steady inflow. 

 

5.8.4 Experiment with theory calculation 

From earlier discussion in Chapter 5.5.2: if meandering thalweg is a channel, Lacey’s equation is 

reasonable, Charlton et al. (1978) equation also gives a good result. Dury’s results are not good, 

however. Blench’s equation agrees well with experiment results on width, but not on channel 

slope and depth. Here in Table 5.19, calculations correspond well with the discussion in Chapter 

5.5.2 for steady inflow. Table 5.19 also gives relationship of experiment results for unsteady 

inflow with calculation results for gradually varied inflow and rapidly varied inflow. 
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Table 5.19: Comparison calculation results with experiment results (where Br is channel width and Bm 

is thalweg width, 0y  is depth, λ is meandering wave length, S is channel slope, V is flowing velocity). 

 Q=0.6 l/S=0.0006 sm /3  Q=2 l/S=0.002 sm /3  

                  

 Experiment results 

 

 

 

Calculations 

D4: B=0.14 m, λ=2.3 m,s=0.0101 (steady) D9: B=0.20 m, λ=3.0 m, s=0.0101  

(steady) D3: B=0.16 m, λ=2.5 m, s=0.0115 

 (gradual unsteady) 

D5: B=0.12 m, λ=2.7 m (rapid unsteady) D10: B=0.23 m, λ=3.1 m,  V=0.458 m/s, 

0y =0.025—0.03 m (rapidly varied 

unsteady) 

D6: B=0.30 m, V=0.35 m/s (slope=0.015) 

D7: B=0.12 m, λ=3.2 m, V=0.30 m/s 

(slope=0.025) 

Charlton et al. (1978) 

gravel bed rivers: 

45.074.3 QB  , 

40.0
0 31.0 Qy  , 

15.086.0 QV   

B=0.133, 0y =0.016, V=0.283 

For steady: CBB  )05.190.0( ,  

                   CVV  06.1  

For gradual unsteady: CBB ×20.1  

For rapidly varied unsteady: 

CBB ×90.0  

B=0.228, 0y =0.026, V=0.338 

For steady: CBB  88.0  

For rapidly varied unsteady: 

CBB  01.1  

CVV  36.1  

Cyy 00 )15.196.0(   

 

In Charlton’s equation ( CB  is calculated width): 

For medium channel: ( Cunsteadygradual BB  20.1 )＞( Csteady BB  97.0 )＞( Cunsteadysudden BB  90.0 ) 

                                                                                  

( Csteady VV  06.1 ) 

For large channel: ( Cunsteadysudden BB  01.1 )＞( Csteady BB  88.0 ) 



136 
 

                                 Cunsteadysudden VV  36.1 , Cunsteadysudden yy 00 05.1   

Charlton’s equation can be edited as: 

With middle channel: 45.074.3 QBsteady  , 45.049.4 QB unsteadygradual  , 45.037.3 QB unsteadysudden   

15.086.0 QVsteady   

With large channel: 45.029.3 QBsteady  , 45.078.3 QB unsteadysudden   

15.017.1 QV unsteadysudden  , 40.0
0 32.0 Qy unsteadysudden   

Charlton’s equations give a good result for steady inflow on width and velocity. Correspondingly 

equations for unsteady inflow can be rectified as in Table 5.20. 

Table 5.20: Rectified Charlton’s equation for gradually varied inflow and rapidly varied inflow. 

Charlton’s equation for different flow conditions 

Steady flow 

CBB  , CVV  ,  

Cyy 00   

Gradually varied inflow 

CBB  20.1 , CVV  20.1 ,  

Cyy 00 20.1   

Rapidly varied inflow 

CBB  90.0 , CVV  90.0 ,  

Cyy 00 90.0   

45.074.3 QBsteady   

15.086.0 QVsteady   

40.0
0 31.0 Qy steady   

45.049.4 QB unsteadygradual   

15.003.1 QV unsteadygradual   

40.0
0 37.0 Qy unsteadygradual   

45.037.3 QB unsteadysudden   

15.077.0 QV unsteadysudden   

40.0
0 28.0 Qy unsteadysudden   

Charlton’s equations work well for medium channels. But for large channels, equations should be 

edited with different ratios. Other equations need more data to be rectified for steady inflow and 

unsteady inflow. 
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5.9 Conclusion 

1. It is seen that depth and shallow located almost at the same place for Tests D1 and D2 and also 

area for depth and shallow is the same. The only difference is that the contour for D2 is smoother 

than D1 because D2 had gradual flow rate change. 

2. Sections development tells that steady inflow could deepen channels and unsteady inflow has 

more effect on bank erosion and makes channels wider. 

3. It is concluded from bed profiles that steady inflow produces stable ripples, smooth point bars 

and curved channel banks. Rapidly varied unsteady inflow got a straight channel which was wider 

upstream. Gradually varied unsteady inflow got unstable ripple in the main channel and the 

deepest pools. 

4. Charlton’s equations work well for steady inflow and to make them work well for gradually 

varied inflow and rapidly varied inflow, Charlton’s equations should have a ratio of 1.2 for 

gradually varied unsteady inflow and 0.9 for rapidly varied unsteady inflow as shown in Table 

5.20. It must be emphasized that ratios here were only used in the current study, for other research 

or real rivers, more investigations are needed. 
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                       Governing equations 
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6.1 Introduction 

In recent years, numerical models have been widely used to predict the hydrodynamic, solute and 

suspended sediment transport processes in riverine, estuarine, coastal and ground waters. 

Numerical modelling is increasingly accepted by its time saving and accuracy. In the field of river 

morphology, computational fluid dynamics (CFD) models have been used to predict the formation, 

development, and migration of free- forming meander bends. 

 

It is necessary to understand the physical processes that control the movement of solute and mass 

in the water column before a numerical model is developed to predict the sediment transport 

processes. Also, in order to predict sediment transport processes, it is necessary to predict the 

hydrodynamic processes. 

 

This chapter describes the governing equations used to represent the hydrodynamic, solute and 

sediment transport processes. The equations are based on the conservation of mass and 

momentum. In the real world, the hydrodynamic, solute and sediment transport processes is three 

dimensional. The 3-D mass balance equation will be introduced first and then the depth integrated 

2-D mass equation. Then the momentum equation will be described. The discretisation will be 

introduced in Chapter 7. 

 

6.2 Hydrodynamic equations 

The 3-D and 2-D governing equations describing the hydrodynamic process of fluid flow are the 

basis of numerical models used to predict the hydrodynamic, water quality and sediment transport 
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processes in coastal, estuarine and river waters. 

Fluid flow can be described by the conservation laws of mass and momentum within the body of 

fluid. The mass conservation equation, or the conservation equation of fluid mass, can also be 

called the continuity equation. The mass conservation requires that the net fluid entering or 

leaving a control volume in a time interval Δt equals the amount of mass of change within the 

control volume during Δt. The momentum conservation requires that the sum of the external 

forces acting on a unit mass equals the rate of change of linear momentum by Newton’s second 

law of motion. 

 

6.2.1 Three dimensional equations 

The Navier- Stokes equations for incompressible flows are given below: 
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where  is the kinematic viscosity of the fluid, u, v, w are the instantaneous velocities in the x, y, 

z directions respectively,   is the fluid density, P is the instantaneous pressure, g is the 

gravitational acceleration, X, Y, Z are the body forces per unit mass in x, y, z directions 

respectively. Equations 6.1- 6.3 are the momentum conservation equations in the x, y and z 
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directions respectively. Equation 6.4 is the three-dimensional continuity equation for all kinds of 

incompressible flows. 

 

6.2.2 Two-dimensional depth integrated equations 

6.2.2.1 Two-dimensional depth integrated mass conservation 

When the water depth is shallow and the flow velocity shows little variation in the vertical 

direction, it is appropriate to integrate these equations over the depth of water to obtain 

two-dimensional equations. 

As shown in Figure 6.1, then depth integrated of continuity equation 6.4 gives:- 
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Using Leibnitz Rule: 
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gives for equation 6.6: 
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At the surface the kinematic free surface condition (namely a particle on the surface will remain 

on the surface) gives: 
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Substituting in Equation 6.9 gives: 
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where: 
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h
vdz
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1
 i.e. depth averaged velocities in the x and y directions 

respectively, and H= total depth = h , p and q are flow per unit width in the x and y directions 

respectively, defined as: pUH  , qVH  . 

If there is an inflow or outflow in the studying area, a source or sink term can be added to the right 

hand side of equation 6.11b to give: 
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where mq is source discharge per unit horizontal area. 

6.2.2.2 Two-dimensional depth integrated momentum equations 

The momentum equations for an incompressible turbulent flow in a Cartesian co-ordinate system 

can be integrated over the depth to give the depth integrated momentum equations, with the 

derivation being detailed in Falconer (1993): 
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where p=UH, q=VH: Discharges per unit width in the x and y directions respectively ( msm //3 ) 
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U, V: Depth averaged velocity components in the x and y directions respectively (m/s) defined as: 
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              6.13 

β: Momentum correction factor for a non-uniform vertical velocity profile. 

f: Coriolis parameter due to earth's rotation sinω2f , with ω is angle rotation speed of the 

earth and sradians /1027.7)360024/(2 5  , φ is geographical angle of latitude of site. 

g: Gravity acceleration and g=9.81 2/ sm . 

H: Total water depth and hH  , see in Figure 6.2 below. 

η: Water surface elevation above datum see in Figure 6.2 below. 

h: water depth between bed level and datum see in Figure 6.2 below. 

a : Air density ( 3/292.1 mkg ). 

C: Chezy roughness coefficient ( sm /2/1 ). 

wC : Air/fluid resistence coefficient (assumed to be 3106.2  , Falconer and Chen (1991)). 

ε: Depth averaged turbulent eddy viscosity ( sm /2 ). 

xW and yW are the wind velocity component in the x and y direction, respectively, 

Further details of the derivation of momentum equations can be found in Falconer (1993). 

 

 

 

 

 

Figure 6.1: Co-ordinate system for depth integrated equations. 

Term1: local acceleration. 

h

η

Bed level

Datum 

z

x
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Term 2: advective or convective acceleration. 

Term 3: body force to describe the effect of the earth’s rotation on the flow. 

Term 4: pressure gradient to represent the action of gravity. 

Term 5: wind effect. 

Term 6: bed shear stress. 

Term 7: the turbulent shear stress. 

 

6.2.2.3 Meaning of different terms and parameters 

The momentum correction factor 

The momentum correction factor β can be defined as: 


H

dzu
HU 0

2
2

1                 6.14 

where U: depth average velocity, u: local velocity, H: total water depth and z: vertical co-ordinate 

In practical model studies, and in the absence of extensive field data, β is generally either set to 

unity or a specific vertical velocity profile is assumed (see Falconer, 1993). 

For the Seventh Power law velocity profile assumption, the value of β is 1.016. 

 

For an assumed logarithmic vertical velocity profile, the value of β can be expressed as: 

22
1




C

g
                  6.15 

where C is the Chezy's bed roughness coefficient. 

 is von Karman’s constant ( =0.4) 

For an assumed quadratic velocity profile (Falconer& Chen, 1991), the value of β=1.2. 
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Coriolis parameter due to earth's rotation 

The Coriolis term describes the effect of the earth’s rotation on the flow. It is dependent on the 

latitude and the flow velocity and acts at right angle to the flow. It deflects currents in channel and 

can indirectly influence river alignment and sediment transport. On the coast it affects tidal 

currents and amplitude, causing the flow to rotate around points of zero amplitude. 

 

Pressure gradient 

This term represents the action of gravity and takes into account both the topography and the 

water elevation. This term contains both the mean depth and water elevation, and the derivative of 

the water elevation, making the term non-linear. In the case of computational instability, the mean 

depth may be used instead of mean depth and water elevation. This term usually represents the 

driving force in tidal flow (Falconer et al., 2001). 

 

Wind effects 

From Falconer et al. (2001), wind exerts a drag force as it blows over the water surface, and the 

shear stress at the air water interface is calculated by assuming that it is proportional to the square 

of the wind speed at a particular height above the water surface. 

The shear stress due to wind action on the water surface is usually expressed as a quadratic 

function: 

sxaxw WW                   6.16a 

syayw WW                   6.16b 
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where γ is air- water resistance coefficient and most widely be used as γ=0.0026, a is air 

density, 

3/29.1 mkga  , xW and yW are the wind velocity component in the x and y direction, 

respectively, 

22
yxs WWW  is the wind speed measured at 10 m above the water surface. 

 

Bottom friction 

The bed shear stress is usually presented in a similar manner to that of uniform flow in open 

channel. It can be written as in the x direction: 

2
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
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The bottom friction has a non- linear, retarding effect on the flow. The Chezy coefficient is a 

semi-empirical bottom friction coefficient, which was originally developed to describe uniform 

flow in open channels. 

The value of Chezy coefficient can be obtained directly: 

smCsm /100/30 2/12/1    

Also, Chezy coefficient can be evaluated from Manning equation: 

n

H
C

6/1

                   6.18 

where n is the Manning roughness coefficient and 04.0015.0  n . 

Alternatively, the Colebrook- White equation can be used to give (Henderson, 1966): 
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where: f is the Darcy-Weisbach friction coefficient. 
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Re is the Reynolds number. 

sk is the Nikuradse equivalent sand roughness size. 

 

Turbulence 

From Falconer et al. (2001), the turbulent shear stress refers to the flow resistance associated with 

the random fluctuation of water in space and time. 

Yuan (2007) indicated that the values of the depth averaged turbulent eddy viscosity, E, can either 

be estimated from field data or, assuming that bed generated turbulence dominates over free shear 

layer, by a logarithmic velocity profile, such as (Elder, 1959): 

HuHuE ** 0667.0
6
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               6.20 

where *u  is the bed shear velocity defined as: 

C
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              6.21 

b  is the bed shear stress. 

But Fischer (1973) found from field data that E is greater than that given by Elder (1959), and he 

found the value from laboratory data was: 

 22
* 15.015.0 VUg

C

H
HuE              6.22 

  

6.3 Equation for sediment transport processes and bed deformation equation 

6.3.1 Equation for bed load transport 

In the current study the bed load transport is determined using van Rijn’s formula (1984a). The 

model is applicable for the grain size range 0.2 ~ 2.0 mm (or 0 < T < 3): 
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where  /ss   is the specific density;   is the density of pure water (= 1000 kg/m3).  *D  

is the characteristic (dimensionless) particle diameter and T  is the transport stage parameter, 

which can be calculated using (Yalin, 1972; Ackers and White, 1973): 
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in which cru*  is the critical shear velocity which can be determined by Shields’ diagram, 

50* )1( gDsu crcr   , *u  is the effective bed-shear velocity (van Rijn, 1984a). 

 

6.3.2 Depth integrated governing equation for suspended sediment transport processes 

When a solute is introduced into a fluid body like water, the solute would propagate, dilute and 

spread as it moves with flow due to the effect of advective, diffusive and dispersive transport 

processes. The solute can be heat (or temperature), dye pollution, salinity, DO (Dissoloved 

Oxygen), BOD (Biochemical Oxygen Demand), nutrients etc. The advective- diffusion equation is 

used to solve the concentration distribution of solute. The advection is a process that the solute 

moves with the fluid. Diffusion includes the scattering of particles by molecular and turbulent 

motion. The prediction of suspended sediment transport in a numerical model is generally based 

on solving the advective-diffusion equation. 
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For a horizontal or quasi- horizontal flow, the three dimensional solute mass balance equation is 

integrated over the water depth to obtain the two-dimensional depth integrated advective- 

diffusion equation giving as (Kocyigit et al., 2005):- 
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       6.26 

where H is the total water depth, 

S is the concentration of suspended sediment (kg/m3), 

U, V are the depth- averaged velocity components in x and y direction respectively, 

xxD , xyD , yxD , yyD  are the depth- averaged dispersion- diffusion coefficients in the x 

and y directions respectively ( sm /2 ), which were calculated by an existing formula (Elder, 1959). 

The net erosion flux per unit area of bed, E , is expressed in the following form: 

 SSwE es                   6.27 

where   is an adjustment coefficient; sw  is the settling velocity of particles (m/s); eS  is the 

depth-integrated equilibrium concentration, determined from an appropriate sediment transport 

formula (e.g. the formula by van Rijn (1984b and 2007)). When the sediment flux upwards from 

the bed due to turbulence and the net sediment flux due to the fall velocity is in equilibrium, 

0E  or SSe  . 

For the equilibrium concentration, the formulation by van Rijn (1984b, 2007) is used in this study: 
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where F  is calculated using Equation 44 in van Rijn (1984b) 



150 
 

 Z
H

a

H

a

H

a

F
Z

Z







 
















 



2.11

2.1

               6.29 

Z   is the modified suspension number, a is a reference level of sediment profile and it equals to 

the roughness height. It is the upper edge of the bed load layer ( bz  , b saltation height, z is 

the vertical coordinate). 

 

6.3.3 Bed deformation equation 

For a control volume, the sediment budget equation can be used to predict the area of sediment 

accretion or erosion. For two-dimensional flows and based on the mass balance concept, the 

corresponding bed evolution equation is: 
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where s  is the sediment density ( s = 2650 kg/m3);   is the porosity of bed sediment ( = 0.4 

in this study); bxq  and byq  are components of bed load transport (kg/m/s) in the x  and 

y direction, respectively; E  denotes the erosion, or deposition flux (kg/m2/s). The bed load is 

related to the hydrodynamic conditions while the flux E  is coupled with the suspended sediment 

concentration. 
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6.4 Summary 

In this chapter, the mass, momentum equations, sediment transportation and bed deformation 

equations are presented. The different terms and parameters in these equations are discussed. The 

depth integrated 2-D equations used in the current study are listed below: 

1. Continuity equation: Equation 6.11c; 

2. Momentum equation: Equations 6.12a and 6.12b; 

3. Bed load sediment transport equation: Equation 6.23; 

4. Suspended sediment transport equation: Equation 6.26; 

5. Bed evolution equation: Equation 6.30. 
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Chapter 7 

_____________________________________ 

Development of 2-D numerical model 
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7.1 Introduction 

The governing equations for the flow, solute and sediment transport processes are introduced in 

the previous chapter. These equations to be solved are listed below. 

1. Two dimensional continuity equation: Equation 6.11c of Chapter 6; 

2. Two dimensional momentum equations: Equations 6.12a and 6.12b of Chapter 6; 

3. Bed load sediment transport equation: Equation 6.23 of Chapter 6; 

4. Suspended sediment transport equation: Equation 6.26 of Chapter 6; 

5. Bed evolution equation: Equation 6.30 of Chapter 6. 

Then equations are replaced by finite difference equations on the computational mesh based upon 

the Taylor’s series approximation. This process will be introduced in the next section. Also, the 

secondary flow plays an important role in meandering rivers, which will be discussed in section 

7.3. After that bank erosion will be described in section 7.4. In section 7.5, the procedure for the 

computation is shown and a summary is in section 7.6. 

In this model, the bed deformation is simulated based on a two-dimensional hydrodynamic and 

sediment transport model (Lin and Falconer, 1995). Bank failure is modelled according to the 

submerged angle of repose, the process of wetting and drying is simulated by an improved method 

recently developed by Sun and Tao (2010). 

 

7.2 Numerical solution procedure 

Equations mentioned in section 7.1 are replaced by finite difference equations on the 

computational mesh based upon the Taylor’s series approximation. There are a number of 



154 
 

methods to express the finite different method like forward, backward or central difference 

schemes in space and the explicit and implicit solutions in time. The above equations must 

therefore be divided up in time and space; this process is called discretization: taking the 

continuous equations and forming discrete segments in time (time step, Δt) and space (grid size, 

Δx, Δy). 

 

There are three steps to solve the governing equations: 

Firstly, the hydrodynamic governing equations are split into two sets of equations in the x and y 

directions using the methods of fractional steps in space and then an alternating direction implicit 

finite different scheme (ADI scheme) is used to solve the two sets of discretized equations in a 

staggered grid. 

Secondly, the method of fractional steps in space and the hybrid scheme of explicit and implicit 

discretization are employed to solve the 2-D sand transport equation. Each time step is divided into 

two half time steps. For the first half time step, from time level n to n+1/2, values of water 

elevation, velocity and the solute and sediment concentrations in the x direction are solved 

implicitly, while other variables in the y direction are expressed explicitly. For the second half 

time step, from time level n+1/2 to n+1, values of water elevation, velocity in the y direction and 

solute and sediment concentrations are solved implicitly, while other components in the x 

direction are now expressed explicitly (Falconer et al., 2001). 

For example, in the first half time step for continuity equation and momentum equation, the 

discretization form can be shown as the following tri-diagonal equations: 
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Thirdly, the bed elevation at each node at the end of the time level can be obtained by solving 

Equation 6.37 with the explicit scheme. With boundary conditions included, the resulting finite 

difference equations for each half time step are arranged in a similar way to Equations 7.1 and 7.2 

and solved by using the method of Gauss elimination and back substitution. (See Gerald & 

Wheatly (1994) for details) 

 

The ADI scheme is time-centred and theoretically has no stability constraints. However, to 

achieve reasonable computational accuracy, the time-step needs to be restricted in relation to the 

grid-size. A maximum Courant number for the ADI method has been suggested by (Stelling et al., 

1986): 
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             7.3 

where g is the acceleration due to gravity ( 2/ sm ), Δx, Δy, and Δt are grid sizes and the time step, 

and H is the average depth of flow. 

When Δx= Δy, Equation 7.3 will become: 

gh
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7.4 

 

7.3 Bank erosion 

Different kinds of soil riverbanks are represented by different erosion mechanisms and modelling 

methods. River banks could be classified as non-cohesive, cohesive and composite banks. Bank 
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erosion mechanisms could be classified by controlled conditions as fluvial- controlled and 

non-fluvial controlled erosion mechanisms. The fluvial controlled erosion mechanisms are caused 

by scouring action, including lateral erosion by water flow and mass failure due to gravity. The 

submerged soil on the bank slope is detached, entrained and removed by the near-bank flow, which 

results in the bank erosion (Xia, Wang and Wu, 2004). Non-cohesive bank material is usually 

entrained by fluvial force and its submerged weight grain by grain. The main reason for bank 

failure is sediment erosion on the bottom of banks, and then bank height increases. A 

non-cohesive bank will fail when the angle of the bank is greater than the submerged repose angle 

of particle. 

The non-fluvial controlled erosion mechanisms are mainly caused by the seepage, piping effect, 

wind and waves, rapid fall of water level after a high flow event, freezing- thawing and vegetation 

roots’ growth or shrink near the bank. These cause banks reduce their strength and then lead to 

bank fail. In this study, non-cohesive sand is used as bank material. Fluvial controlled 

mechanisms play a main role and the submerged angle of repose is an important parameter. 

 

In the models of Jang and Shimizu (2005a, b), Duan and Julien (2005), it is assumed that if the 

cross-sectional slope of the bank becomes steeper than the submerged angle of repose, any 

sediment located above the angle is eroded instantly. It has been observed in the laboratory 

physical experiments that even for non-cohesive sand bank, bank slope is steeper than the 

submerged angle of repose to some extent. This is thought to be related to the moisture content of 

the bank, since the submerged angle of repose is measured under water. If the sand bank is 

partially dry, a rather steep slope can be formed. When more water gradually seeps through the 
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sand, bank failure then takes place, approximately according to the submerged angle of reposed. 

This phase lag is important to the evolution of meandering channel. Herein, a characteristic time 

scale, f , is introduced to represent this temporal process of bank failure, by which the temporal 

variation of bank slope is assumed to be: 

  )/exp()( f0 tSStS              7.5a 

and   0,max cr0 SSS                7.5b 

In Equations 7.5a and 7.5b, 0S  is the initial bank slope and crS  is the critical slope 

  r
cr

r

tan at the submerged bank

tan( ) at the water-land interface
S


 


   

        7.6 

where r  is the submerged angle of repose and r  is an additional angle for the special 

location. The impact of the time scale on the river evolution will be discussed in results in the next 

chapter. 

   

(a) Maximum Bed Slope     (b) Bank Failure 

Figure 7.1: Schematic diagram of modelling the bank failure. 

The bank erosion, including the basal erosion and bank failure (Osman and Thorne, 1988; Darby 

and Thorn, 1996; Duan and Julien, 2005), was modelled by the following procedure. Firstly, the 

basal erosion is simulated using the bed deformation by sediment transport models, which was 
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described in Chapter 6, including both the bed load and suspended load transport. Secondly, the 

maximum bed slope maxS  around a cell is computed. Finally, this slope is compared with the 

critical bed slope crS  to determine whether bank failure is taking place and the amount of 

sediment being moved. More details of the procedure for simulating bank erosion are given 

below. 

To estimate whether bank failure will occur in a cell, the maximum bed slope is determined using 

the information of the four surrounding cells, see Figure 7.1 (a). The adjacent area is divided into 

four quadrants, I, II, III and IV, and the maximum bed slope is found among the bed slopes in the 

four quadrants, IVIIIIII ,,, SSSS , written as: 

   IVIIIIIImax ,,,max SSSSS              7.7 

with 

  2
T

2
RI SSS                 7.8a 

  2
L

2
TII SSS                 7.8b 

  2
B

2
LIII SSS                 7.8c 

  2
R

2
BIV SSS                 7.8d 

In the above equations, TBRL ,,, SSSS  are the bed slopes along the cell system, named as the 

left ,right, bottom and top slopes respectively, which can be calculated using:- 
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  










 0,max TC
T y

hh
S              7.9d 

where TBRLC ,,,, hhhhh  are the bed elevations at the central, left, right, bottom and top cells, 

respectively. If a surrounding cell is inactive, such as a dry cell, or a non-loose-bed cell, a zero 

slope is set. As shown in Figure 7.1 (a), where the left cell is an inactive cell, the slope to the left 

is set to zero, 0L S , and consequently the bed slopes in the second and third quadrants will be 

equal to that in the top and bottom directions, namely TII SS   and BIII SS  . 

As an example, in Figure 7.1(a) the maximum slope is located in the fourth quadrant, namely: 

  2
R

2
BIVmax SSSS               7.10 

If this maximum bed slope is larger than the critical bed slope crS , then the bank fails, i.e. some 

bed material will be transported from the central cell to the bottom and right cells, as shown in 

Figure 7.1(b). The sediment volumes transferred to the two parts are expressed by the variation of 

bed elevation, as Bh  and Rh , since that the spatial steps, x  and y  are invariable along 

the respective coordinate axis. The values of Bh  and Rh   are determined according to the 

difference between the maximum bed slope maxS and the critical bed slope crS , by the following 

formulae: 
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~
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y
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Sh


               7.11a 
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~
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
               7.11b 

where 
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














f1
~ 

t

eSS               7.12a 

   0,max crmax SSS               7.12b 

In the above equations, S  is the difference between the maximum bed slope maxS  and the 
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critical bed slope crS , while S
~

  is the slope to be adjusted in the current time step. In Equation 

7.12, the time scale f  and the critical slope crS , introduced in Equations 7.5 and 7.6, are 

applied to the discretized system and coupled with the basic model. 

 

7.4 Secondary flow 

It has been found (Seminara, 2006) that at river bends the secondary flow plays an important role 

on bed deformation (for both erosion and deposition) by transverse sediment transport. Thus it is 

one of the major dynamic factors of meandering river evolution. 

In previous 2-D model studies of bed deformation and bank movement at river bends (Duc et al., 

2004; Jang and Shimizu, 2005a, 2005b; Duan and Julien, 2005), the secondary flow was usually 

taken into account using an empirical formula by Engelund (1974) and Odgaard (1986a): 

  
r

H
VNv s 


*                7.13 

where sv  is the near-bed secondary flow speed (m/s); V


 is the primary flow velocity vector 

(m/s), r  is the radius of  curvature of the streamline (m); *N  is a coefficient representing the 

strength of the secondary flow related to the vertical profile of velocity and its value is about 7 

based on laboratory measurements. This formula was derived based on the cylinder coordinate 

system, assuming the river reach to be a circular bend, namely the radius of curvature of 

streamline is constant (Odgaard, 1986a; Engelund, 1974). 

In the present study, a new method is introduced to calculate the near bed secondary flow by 

linking it to the transverse water level gradient. This method is derived based on the balance of 

force in the transverse direction, which is the same as the previous research of Odgaard (1986a) 
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and Engelund (1974), but is based on the Cartesian coordinate system and more importantly, 

without the constraint of constant radius of curvature. 

The surface water flow in rivers is one kind of gravity flow, where the main dynamic factor is 

produced by the water level gradient, i.e. the pressure gradient. In a straight reach, the direction of 

negative water level gradient is the same as that of stream line and this pressure gradient plays a 

role of overcoming the friction and accelerating the flow. On the other hand, at channel bends, the 

water level gradient does not follow the streamline. At this location, the variation of momentum in 

the transverse direction causes the water lever at the concave bank to be higher than that at the 

convex bank. Thus, the water level gradient provides an additional force, i.e. the centripetal force 

that changes the direction of stream line. In a real water column, under the effect of boundary 

layer, the velocity at the lower level of a channel is usually smaller than that at the upper level, 

leading to smaller centrifugal force at the lower level. However, the water level gradient provides 

the same pressure gradient along the water depth in the same water column. As a result, a 

relatively larger force at the lower level is produced. Then the near-bed transverse flow is 

generated by this pressure gradient excess from the concave bank to the convex bank. In this study, 

a new method of calculating the secondary flow is developed based on above-mentioned principle. 

 

Figure 7.2: Schematic diagram of production of near-bed secondary flow in river bends. 
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In order to investigate the secondary flow in channel bends, a three dimensional momentum 

equation based on a local Cartesian coordinate system is used. The origin of the coordinate system 

is fixed at a reference point along the streamline of a curved reach, see Figure 7.2, where   is 

the primary flow direction at this point and n
  is the direction normal to  , namely the direction 

of secondary flow, with z-axis being the vertical direction. It should be noted that   is different 

from s


, the streamline direction. The direction of 
  is fixed, while s

 varies with the streamline. 

In direction n
 , the momentum equation can be written as: 
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      7.14 

where u  is the horizontal velocity; w  is the vertical velocity;   is the turbulent eddy viscosity; 

the subscripts denote the direction. In this equation, the hydrostatic pressure assumption is 

considered. The superscripts of ‘p’ and ‘s’ denote the velocity components in the primary flow 

and secondary flow, respectively. Thus the two velocity components can be written as:- 

  sp
 uuu                  7.15a 

  sp
nnn uuu                  7.15b 

It should be noted that 0s u  and 0p nu , but their spatial derivatives are not zero. 

It is further assumed that the secondary flow is quasi-steady and the vertical velocity component is 

small and its dynamic effect is negligible. Thus the 1st and 4th terms on the left hand side of 

Equation 7.14 can be neglected. The vertical turbulence-eddy-diffusion term is considered to be 

much larger than the other horizontal terms, considering the water depth is smaller than the width 

for most rivers. The primary flow is regarded as the dominant motion, and the advection term can 

be approximated by the primary flow. Under these assumptions, Equation 7.14 can be simplified 

as: 
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The two terms on the left hand side represent the centrifugal force, which is balanced by the 

pressure gradient, provided by the water level variation and diffusion effect. In past studies, the 

radius of curvature of streamline, r , is considered to be constant. Thus Equation 7.16a can be 

written, in the cylindrical coordinate system, as (Engelund, 1974; Odgaard, 1986): 
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It should be pointed out that the radius of curvature in Equation 7.13 is coming from the right 

hand side of Equation 7.16b. However, the constant radius of curvature is hardly held in a real 

meandering channel. The method of this study is based on Equation 7.16a, instead of Equation 

7.16b. In the following derivation, the water level gradient will be reserved with the accelerate 

term being eliminated, while in previous research the left hand of Equation 7.16b is kept and the 

pressure gradient is eliminated. 

The normalized vertical profile of primary flow is considered to be a function of )(zf , such as the 

traditional power law. Thus the primary flow velocity can be expressed as: 

  )(),,(),,,( pp zftnUtznu                7.17a 

  )(),,(),,,( pp zftnUtznu nn               7.17b 

where ),,(p tnU  and ),,(p tnU n   are the depth-averaged horizontal velocity components in the 

  and n
  directions, respectively. Substituting Equation 7.21 into Equation 7.16a gives: 
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Now integrating Equation 7.18 from bed level h  to water surface level   gives: 
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where the bottom friction stress, incurred by the secondary flow, is represented by Chezy 

coefficient. On the other hand, in order to obtain the near bed secondary flow, Equation 7.18 is 

integrated over the near bed water column, i.e. from bed h  to Hh  , giving as: 
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where   is the proportion of near bed water column and )2.0,0(  according to the effective 

height of bed load;   is a coefficient used to describe the friction coming from both the bed and 

the upper layer water. The resistance force coming from upper layer water is considered to be 

much smaller than that from the bed, thus then it can be assumed that 1 . 

Eliminating the advection term by combining Equations 7.19 and 7.20 gives: 
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where   is defined as: 
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It represents the non-uniformity of vertical distribution of primary flow, especially the defect near  

the bed. Further setting: 
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Equation 7.21 can be re-written as: 
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where the sign of   is determined by 
n


 and its absolute value is less than one according to 

Equation 7.23. 
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If the vertical profile of primary flow obeys the traditional power law, i.e.: 
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where m  is the velocity profile exponent, representing the effect of friction, normally with 

values ranging from 3 to 7 (Odgaard, 1986). Inserting Equation 7.25 into Equation 7.22 gives: 

  m

2

                   7.26 

Considering Equation 7.26 and Equation 7.23, the coefficient   is estimated to range between 

0.0 and 0.3. In this study the value is adjusted within this range. 

 

7.5 Solution procedure for the 2-Dimensional model 

The solution procedure for the 2-Dimensional model to simulate the longitudinal and lateral 

channel deformation can be described as the schematic structure shown in Figure 7.3. 

 

7.6 Summary 

A 2-Dimensional model has been developed which consists of a 2-D flow module, a sediment 

transport module and a bank erosion module. This model is used to simulate lateral bank 

deformation in the alluvial river. The bank geometry is updated each time step. The key processes 

of bed deformation, including bed load and suspended load sediment transport, bank failure, 

secondary flow and wetting and drying are taken into account. The numerical model results by 

this model will be presented in the next chapter. 
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Figure 7.3: Schematic structure for the 2-D model to simulate the longitudinal and lateral channel 

deformation. 
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Chapter 8 

______________________________________ 

Numerical model results and comparison with 

experiments 
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8.1 Introduction 

This chapter describes comparisons between numerical model predictions and physical model 

results. The numerical model was described in Chapter 7 and physical model was shown in 

Chapter 5. In modelling predictions with large and medium channels, the simulation results are to 

compare with experiment results and to analyse channel development process. The numerical 

model parameters used in this study are: t = 0.01 s, Δx=0.02 m, y = 0.01 m. The characteristic 

time scale, f  = 1.5 s, and the secondary flow coefficient,   = 0.13, were determined by the 

method of trial and error. The model was run in a PC, in which the CPU type is Intel Q9550 with 

the processor’s frequency being 2.83GHz. Each case for 1 hour experiment would consume about 

11 hours of computational time. 

 

8.2 Result for numerical modelling with large channel 

Experiments with the large channel were carried out for both steady inflow and unsteady inflow 

conditions. Their test conditions are shown in Table 8.1 and their flow rates are shown in Figure 

5.53 in Chapter 5. 

Table 8.1: Experimental conditions with large initial channel. 

Top width(cm)×bottom 

width(cm)×height(cm) 

Section 

(
2cm ) 

Slope Q(l/s) Time 

(min) 

D9: 31×4×7.5 131.25 0.015 Steady 2 l/s 60 

D10: 31×4×7.5 131.25 0.015 Unsteady 2 l/s 60 
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8.2.1 Numerical model results, steady inflow (Test D9) 

Test D9 was carried out with a steady inflow rate of 2 l/s for 60 min, and its physical model 

results at 0 min, 15 min, 30 min, 45 min and 60 min are shown in Figure 8.1. The channel 

development from a straight channel to a meandering one can be clearly seen, which is due to the 

effect of initial bend upstream. 

 

(a) T=0min  (b) T = 15 min (c) T = 30 min (d) T = 45 min (e) T = 60 min 

Figure 8.1: Physical model of river development for Test D9. 

More details of the physical model results are shown in Chapter 5. Numerical model predictions 

of horizontal channel evolution, bed forms and section shapes are compared with the experimental 

data, with the results being described below. 

 

8.2.1.1 Comparison of horizontal channel evolution 

The comparison of horizontal evolution between physical and numerical model is shown in Figure 

8.2 for T = 0 min, 15 min, 30 min, 45 min and 60 min, respectively. 
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(a) T=0min  (b) T = 15 min (c) T = 30 min (d) T = 45 min (e) T = 60 min 

Figure 8.2: Comparison of horizontal channel shapes between physical and numerical model 

results for Test D9. (Solid lines are the channel boundary obtained from physical experimental 

images.) 

The solid lines are bank outlines obtained from the physical model results in Figure 8.1. In the 

numerical model results the channel became wider and meandering, starting from a narrow 

straight channel, which agreed well with physical model. The predicted bank boundaries almost 

covered the experimental bank lines in most of the test area, except in the second apex after the 

initial bending. The numerical model results lagged behind the physical model at 30 min and this 

delay became obvious at 60 min. In the numerical model, it is also clear to observe a thalweg 

similar to the one shown in physical model record. The bed elevation predicted by the numerical 

model shows that the channel became wider and shallower, which can be further confirmed in the 

following section. The predicted horizontal movement agreed generally well with the physical 

model, which indicates that the key processes are simulated adequately by the present model. 
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8.2.1.2 Comparison of bed forms 

 

(a) Modelling result at T = 30 min, Test D9 

 

(b) Experiment result at T = 30 min, Test D9 

 

(c) Modelling result at T = 60 min, Test D9 

 

(d) Experiment result at T = 60 min, Test D9 

Figure 8.3: Comparison of bed forms by numerical modelling and physical modelling. (Gray 

scales are used to show the bed elevation above flume floor.) 

The bed form comparison is shown in Figure 8.3. It can be seen that properties from the two 

methods agreed closely at T = 30 min, including the shape of bends, alternate bars and especially 
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the crossings. At 60 min, the physical model river had a point bar at x = 5.4 m, but the numerical 

model did not have a point bar there. The overall performance of the numerical results is 

satisfactory. 

8.2.1.3 Comparison of section shapes 

The cross-sectional shapes at four characteristic locations A-A, B-B, C-C and D-D: two at 

crossings (dotted lines A-A and C-C in Figure 8.3) and two at bend apexes (solid lines B-B and 

D-D in Figure 8.3) are plotted in Figure 8.4. The locations of sections for numerical model are not 

exactly the same as the physical model. Their positions are at crossings and apexes in model 

predicted river. In Figure 8.4, the cross-sectional shapes at T = 30 min and 60 min showed that 

during the channel evolution process the bed level at the initial channel increased due to 

deposition, while the bed level at the banks reduced due to erosion. Thus a new channel formed. 

This process has been discussed in physical experiment chapter: the initial cross section was not in 

balance with a given slope, flow rate and sand size. 

The comparison shows a satisfying agreement between the predicted and measured channel 

widths and depths, the locations of deep and shallow areas, although the numerical model 

predicted a deeper channel than the physical model. In fact, the difference of channel depths 

between the physical and numerical models is relatively small; with the prediction is about 20% 

deeper than the experimental results. The difference in channel widths is also small especially at 

60 min. 

 

(a) A-A at T=30 min   (b) A-A at T=60 min 
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(c) B-B at T=30 min    (d) B-B at T=60 min 

 

(e) C-C at T=30 min    (f) C-C at T=60 min 

 

(g) D-D at T=30 min    (h) D-D at T=60 min 

Figure 8.4: Comparison of section shapes by numerical modelling and physical modelling (Points 

labelled by ‘Exp’ are the experimental results; lines labelled by ‘Mod’ are the modelling results; 

thick solid lines are the initial section shapes; locations of cross-sections A-A, B-B, C-C and D-D 

are shown in Figure. 8.3b and 8.3d. 
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8.2.2 Numerical modelling results, unsteady inflow (Test D10) 

 

(a): T=15 min (b): T=30 min (c): T=45 min (d): T=60 min 

Figure 8.5: Physical experiment, Test D10, from straight channel into meandering one. 

Test D10 was carried out with a rapidly varied flow and the channel development process was 

shown in Figure 8.5. D10 had 1 l/s for 15 min, then 3 l/s for 30 min and 1 l/s for the last 15 min, 

as shown in Figure 5.53. 

 

8.2.2.1 Comparison of horizontal channel evolution for D10 

From Figure 8.6 below it can be seen that the numerical model prediction agrees less well with the 

physical model. In the first 15 minutes (when the flow rate was 1 l/s), the numerical predicted 

channel development was slower than the physical model result. The channel kept narrow and 

straight while the experimental channel showed an initial development of a meandering channel 

with the width increased. Then when flow rate was increased to 3 l/s, the numerical model gave a 

quick development until T = 45 min, the computation channel was wider and its thalweg had 
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larger sinuosity than the experiment channel. After that, the predicted channel kept its width but 

had a shallower depth. 

 

(a) T=0min  (b) T = 15 min (c) T = 30 min (d) T = 45 min (e) T = 60 min 

Figure 8.6: Comparison of horizontal channel evolution by numerical modelling and physical 

experiment for Test D10. (Solid lines are the channel boundary obtained from physical 

experimental images.) 

From channel development with numerical model, it is found that when the flow rate was small, 

the channel development by prediction was slower than experiment, and with large flow rate, the 

development by prediction were faster than experiment. Channel development is caused by bank 

erosion which is lead by bed load transport. It means that channel development reflects the bed 

load transport. That prediction results are sensitive to flow rate shows that bed load transport is 

also sensitive to flow rate. 

 



176 
 

8.3 Numerical modelling result for tests with medium channel 

In this section, the numerical model has been applied to physical model test cases D3, D4 and D5. 

Different flow rates were used in these tests and comparisons were made between numerical 

model predictions and physical model results. Their flow conditions are shown in Figures 5.42 

and 5.43 in Chapter 5 and other situations are shown in Table 8.2 below. 

Table 8.2: Experiment conditions with medium channel. 

Top width(cm)×bottom 

width(cm)×height(cm) 

Section 

( 2cm ) 

Slope Q (l/s) Time 

(min) 

D3: 26×6×5.5 88 0.020 Gradually varied 0.6 l/s 60 

D4: 26×6×5.5 88 0.020 Steady inflow 0.6 l/s 60 

D5: 26×6×5.5 88 0.020 Rapidly varied flow 0.6 l/s 60 
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8.3.1 Numerical modelling results, steady inflow (Test D4) 

 

Figure 8.7: Physical experiment of channel development, Test D4 with steady inflow. (a) 0 min; 

(b) 15 min; (c) 30 min; (d) 45 min; (e) 60 min; (f) after being drained at 60 min. 

In this test, flow rate was constant, 0.6 l/s. The channel forms of Test D4 in Figure 8.7 before 30 

min showed two types of movement of a meander pattern in a uniform manner: meander sweep 

and meander swing as described by Schumm et al. (1987). But after 30 min, there was an abrupt 

downstream shift in the thalweg through the bend. And this formed bars and cusps (see in Figure 

8.7e) between the old and new thalweg at the edge of the floodplain. Figure 8.8 shows a 

a b c

d e f

Bar

 
Cusp
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comparison of horizontal evolution between the numerical model predictions and physical model 

data. 

8.3.1.1 Horizontal channel evolution 

 

(a) T=0min  (b) T = 15 min (c) T = 30 min (d) T = 45 min (e) T = 60 min 

Figure 8.8: Comparison of horizontal channel evolution by numerical modelling and physical 

experiment for Test D4. (Solid lines are the channel boundary obtained from physical 

experimental images.) 

The two types of meander movement: meander sweep and meander swing are modelled 

successfully by prediction of numerical model as shown in Figure 8.8. Before 30 min, meander 

shifts forward progressively accompanying with regular bars and dumps. At 30 min, the meander 

is fully developed, then become unstable: there is an abrupt downstream shift in the thalweg 

through the bend and forms bars and cusp as shown in Figure 8.8 at 45 min. Prediction of cusp 
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and meander shift agrees well with physical results as in Figure 8.7. At 60 min, boundary by 

numerical model reaches the flume wall while boundary by physical model does not. In general 

speaking, numerical results agreed with physical results in Figure 8.8. 

8.3.1.2 Bed forms 

 

(a) Modelling result at T = 30 min for D4 

 

(b) Experiment result at T = 30 min for D4 

 

(c) Modelling result at T = 60 min for D4 
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(d) Experiment result at T = 60 min for D4 

Figure 8.9: Comparison of bed forms obtained from numerical model and physical experiment, 

Test D4. (Gray scales are used to show the bed elevation above flume floor.) 

Figure 8.9 shows a comparison of model predicted and measured channel bed elevations at T = 30 

and 60 min. At T = 30 min, the model predicted point bars are located at the same places as the 

experiment and their sizes are also similar. The predicted meandering thalweg has a similar 

curvature as the experiment. However, at T = 60 min, the predicted bars have different sizes and 

locations from the experiment. The predicted bars are surrounded by a meandering thalweg with a 

large curvature, while the bars in the physical model are separated by a mild slope meandering 

thalweg. The development of these bars indicated that two modelling approaches agree generally 

well. 

8.3.1.3 Cross-sectional shapes 

  

(a) A-A at T=30 min   (b) A-A at T=60 min 
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(b) B-B at T=30 min   (d) B-B at T=60 min 

   

(e) C-C at T=30 min    (f) C-C at T=60 min 

  

(g) D-D at T=30 min    (h) D-D at T=60 min 

Figure 8.10: Comparison of section shapes for Test D4 by numerical modelling and physical 

modelling (Points labelled by ‘Exp’ are the experimental results; lines labelled by ‘Mod’ are the 

modelling results; thick solid lines are the initial section shapes; locations of cross-sections A-A, 

B-B, C-C and D-D are shown in Figure 8.9b and 8.9d. 

The cross-sectional shapes in Figure 8.10 show that the agreement between numerical modelling 

and physical modelling is satisfactory, and result at T = 30 min is better than that at T = 60 min. 

At T = 30 min, the difference between the model predicted and measured channel widths is about 

12.5%, and predicted result is wider. The value of difference is about 20% at T = 60 min, again 

the predicted result is wider. At 30 min, the predicted depth is between 0.06 cm and 0.07 cm, 
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physical depth is between 0.05 cm and 0.07 cm. At 60 min, the model predicted bed level agrees 

well that that measured. 

 

8.3.2 Numerical modelling results, gradually varied flow (Test D3) 

 

(a): T=15 min        (b): T=30 min        (c): T=45 min        (d): T=60 min 

Figure 8.11: Physical experiment development for Test D3 with gradually varied flow. 

In Test D3, the flow rate increased from zero at the beginning and reached the highest value at T = 

30 min and then decreased to zero at T = 60 min. The outer boundaries have smaller curvatures 

(see Figure 8.11) than Test D4, because the convex bank would be destroyed more easily by the 

large flow rate with large erosion ability during T = 15 min- 45 min. 

8.3.2.1 Horizontal channel evolution 

In Figure 8.12, the numerical model prediction agrees generally well with the physical model after 

T = 15 min. As discussed earlier, the bed load is sensitive to flow rate: when flow rate is small, 

channel development is small and slow. That means prediction is underestimating compared with 

reality, so modelling in 15 min lagged the channel development and after that physical modelling 
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had a fast approaching with experiment. It is confirmed at 30 min. At T = 45 min, the numerical 

model predicted a wider channel than the physical model in reaches downstream. Generally 

speaking, results from two methods agree closely. 

 

 

(a) T=0min  (b) T = 15 min (c) T = 30 min (d) T = 45 min (e) T = 60 min 

Figure 8.12: Comparison of horizontal channel evolution between numerical model predictions 

and physical model measurements, Test D3. (Solid lines are the channel boundary obtained from 

physical experimental images.) 
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8.3.2.2 Bed forms 

 

(a) Modelling result for Test D3 at T = 30 min 

 

(b) Experiment result for Test D3 at T = 30 min 

 

(c) Modelling result for Test D3 at T = 60 min 

 

(d) Experiment result for Test D3 at T = 60 min 

Figure 8.13: Comparison of bed forms for Test D3 by numerical modelling and physical 

experiment. (Gray scales are used to show the bed elevation above flume floor.) 
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It can be seen from Figure 8.13 that at  T = 30 min the model predicted channel shape and bed 

forms agree well with the experiment. The point bars produced from the two methods had similar 

sizes and locations, the outer boundaries and thalweg lines also had similar shapes. At T = 60 min, 

numerical model predicted a thalweg, but in the physical model there was not an obvious thalweg 

in Figure 8.13 (d). The difference can also be observed in Figure 8.11(d). 

8.3.2.3 Section shapes 

 

(a) A-A section at T=30 min   (b) A-A section at T=60 min 

 

(c) B-B section at T=30 min   (d) B-B section at T=60 min 

 

(e) C-C section at T=30 min   (f) C-C section at T=60 min 
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(g) D-D section at T=30 min   (h) D-D section at T=60 min 

Figure 8.14: Comparison of section shapes for Test D3 by numerical modelling and physical 

modelling (Points labelled by ‘Exp’ are the experimental results; lines labelled by ‘Mod’ are the 

modelling results; thick solid lines are the initial section shapes; locations of cross-sections A-A, 

B-B, C-C and D-D are shown in Figure. 8.9b and 8.9d. 

The cross-sectional shapes predicted using the numerical model agrees satisfactorily with the 

physical model. The channel depths, locations of pools and shoals agree well, but the widths have 

a difference. The numerical model predicted channel width is about 20% larger than the 

experiment at cross-sections (d), (f), (g) and (h), while at other sections the two methods agree 

better. At 30 min, the error between predicted and measured results (width and depth) is small and 

less than 10%. But the error at 60 min is larger. 
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8.3.3 Numerical modelling results, rapidly varied flow (Test D5) 

    

(a): T=15 min  (b): T=30 min  (c): T=45 min  (d): T=60 min 

Figure 8.15: Physical experiment development for Test D5 with rapidly varied flow. 

In this test, the flow rate was constant, 0.3 l/s for the first 20 min, then increased rapidly to 1.2 l/s 

and kept constant for another 20 min; later decreased rapidly to 0.3 l/s, keeping 20 min, as shown 

in Figure 5.43. Experimental results in Figure 8.15 show that D5 had most erosion ability and 

least curvature in D3, D4 and D5. After 60 min, in D5 one boundary reached the flume wall while 

D3 and D4 not. 

8.3.3.1 Horizontal channel evolution 

With a large flow rate lasting for 1/3 of the simulation period (between T = 20 min and 40 min) in 

Test D5, the channel was eroded rapidly in the lateral direction and the width/depth ratio increased 

until T = 40 min. During that period, the channel was eroded mostly, see Figure 8.15. After that, 

channel almost kept its shape because the flow rate was small and channel size was large. The 

prediction shows a similar channel development trend as the physical model. In the numerical 

model prediction the channel outer boundaries reached the flume side wall downstream, as in the 

experiment. 
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(a) T=0min  (b) T = 15 min (c) T = 30 min (d) T = 45 min (e) T = 60 min 

Figure 8.16: Comparison of horizontal channel evolution by numerical modelling and physical 

experiment for Test D5. (Solid lines are the channel boundary obtained from physical 

experimental images.) 

8.3.3.2 Bed forms 

 

(a) Modelling result for Test D5 at T = 60min 
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(a) Experiment result for Test D5 at T = 60min 

Figure 8.17: Comparison of bed forms for Test D5 by numerical modelling and physical 

experiment. (Gray scales are used to show the bed elevation above flume floor.) 

A comparison of bed levels obtained for the two modelling approaches at T = 60 min is shown in 

Figure 8.17. The right banks from two methods had the same development trend and they were 

both eroded seriously and reached one side of the flume wall. The concave banks were eroded as 

shown by an ellipse in Figure 8.17 at similar positions. Thus, the numerical model prediction 

agrees well with the experiment. 

8.3.3.3 Cross-sectional shapes 

 

(a) A-A section at 60 min   (b) B-B section at 60 min 

 

(c) C-C section at 60 min   (d) D-D section at 60 min 
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Figure 8.18: Comparison of section shapes at T = 60 minutes by numerical modelling and 

physical experiment (Points labelled by ‘Exp’ are the experimental results; lines labelled by 

‘Mod’ are the modelling results; thick solid lines are the initial section shapes; locations of 

cross-sections A-A, B-B, C-C and D-D are shown in Figure. 8.17b. 

A comparison of cross-sectional shapes by numerical modelling and physical experiment is shown 

in Figure 8.18. Cross-sections shown in Figures 8.18 (a) and (d) gave the same wide, deep and flat 

shape. The predicted channels shown in Figures 8.18 (b) and (c) were different from the 

experiments. It was not flat and the main channel was separated by many branches. Error between 

predicted and measured data on width is about 30%. During T = 20 min to 40 min, the channel 

had large flow rate. Because prediction is sensitive to flow rate and overestimate than reality, the 

numerical modelling amplified this flow rate. As discussed in Chapter 5, a large flow rate could 

cause the development of braided channels with many branches, as shown in Figures 8.18 (b) and 

(c). 

The numerical modelling could model the characteristics of rapidly varied flow like boundaries 

curvature, bar position, channel width and depth. The model is sensitive to large flow rate and it 

would have trend of braided development for channel section shapes. 

 

8.4 Analysis of numerical results with different coefficients 

8.4.1 Effect of secondary flow 

In order to assess the performance of new secondary flow formula, Equation 7.24 in Chapter 7, a 

sensitivity analysis was conducted, with the various values of the scale parameter  (see Equation 
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7.23 in Chapter 7) being tested. The results at T = 30 min are shown in Figure 8.19, in which 

picture (b) is the same to the corresponding picture in Figure 8.2. 

 

(a) λ = 0.12 

 

(b) λ = 0.13 

 

(c) λ = 0.14 

Figure 8.19: Channel comparison with various secondary-flow coefficients. (T = 30mins; picture 

(b) is the same to the corresponding picture in Figure 8.2, Grey scales are used to show the bed 

elevation above flume floor by numerical modelling; Solid lines are the channel boundary 

obtained from physical experimental images (Figure 8.1)) 

It can be seen that the planform at the downstream reach varies distinctly with different 

coefficients, while the difference is less obvious at the upstream reach. This is thought to be 

related to the boundary condition of clear water at the inlet, which leads to the deep and steady 
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channel reach at the upstream end near the inlet (Friedkin, 1945). The comparison shows that the 

bigger value the  is, the higher the sinuosity will be, which is caused by the increased sediment 

transport rate related to the higher secondary flow intensity. At the same time, in the case of 

higher meander ratio, the meander belt is wider, but the main stream is narrower with lower bed. 

 

8.4.2 Impact of characteristic time scale on bank failure 

The experiments were generally undertaken 2 days after the sediment was laid. It was observed 

from the experiment that if an experiment was carried out just after the sand bed had been formed, 

without being laid to dry, the evolution of channel would be rather straight without bend being 

formed. Thus the firmness of the sediment bed is an important factor of the channel forming 

processes. 

The characteristic time scale ( f ) introduced in Chapter 7, is a factor representing the insistence 

property. Sensitivity analysis was also carried out to assess the impact of varying f , with its 

value being set to 0.5 s, 1.0 s, 1.5 s, 5.0 s and 10.0 s, respectively. The results are shown in Figure 

8.20, in which, for comparison, picture (c) is the same to the corresponding picture in Figure 8.2. 

 

(a) f = 0.5 s  
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(b) f = 1.0 s 

 

(c) f = 1.5 s 

 

(d) f = 5.0 s 

 

(e) f = 10.0 s 

Figure 8.20: Comparison of channel form with various bank-failure time-scales. (T = 30mins; the 

picture (c) is the same to the corresponding Picture in Figure 8.2, Grey scales are used to show the 

bed elevation above flume floor by numerical modelling; Solid lines are the channel boundary 

obtained from physical experimental images (Figure 8.1)) 

Figure 8.20 (a) and (b) show that the channel is rather straight, when f  is small, i.e. the bank is 

less insistent. With the increase of this value, the meander ratio becomes bigger and the meander 

belt wider, as the bank at front of a bend cannot be eroded immediately and an angle is formed 

between the main stream and the initial straight channel, as shown by pictures from (a) to (d) in 

Figure 8.20. However, when the value of f  is increased further, seen Figure 8.20 (e), the 

channel’s meander ratio would be reduced. Since the bank is too hard to be eroded in a short time, 

then a deeper channel is formed. The bank strength related to the vegetation was investigated by 
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Jang (2005b, 2007b), and it was found that the water depth increased and the width decreased with 

vegetation. This is similar to the case of a large value of f . 

 

8.5 Summary 

In this chapter the numerical modelling results were described for the experiments with steady 

inflows, gradual varied flows, and rapidly varied flows. The channel sizes were considered (large 

and medium sizes). The effect of different parameters on channel evolution was also discussed. 

The numerical model developed in Chapter 7 was used to simulate the channel development 

processes. The results presented in this chapter showed that the predictions made by this 

numerical model agree generally well with the physical model measurements. The key 

characteristics of channel evolution were adequately modelled for different flow rates and channel 

sizes. These characteristics included the channel width and depth, boundary sinuosity and shape, 

thalweg sinuosity, point bar positions, locations of erosion and deposition areas. A sensitivity 

analysis was carried out and it showed that the secondary flow and bank strength are both key 

parameters in the fluvial channel evolution processes. 

 

Finally, it should be pointed out that parameters used in this study were based on the experimental 

conditions reported herein. Further calibration, adjustment and development of this model are 

necessary for other conditions, especially in natural rivers. 
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Chapter 9 

______________________ 

Conclusions and recommendations 
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9.1 Conclusions 

The main objectives of this study are to understand the morphological development in fluvial 

rivers with meandering thalweg and to develop a numerical model to simulate this process, taking 

bank erosion and secondary flow into consideration. Chapters 3, 4 and 5 described the 

development of a physical model of a fluvial river in the laboratory, including sand characteristics, 

sand transport equations, experimental method and experimental results. A numerical model was 

developed in Chapters 6 and 7, considering bank erosion and secondary flows. The numerical 

model is applied to the small model river in the laboratory to study its morphological development. 

A comparison of results between the physical model and numerical model was given in Chapter 8. 

This final chapter gives a summary of the main results obtained from this research programme. 

More detailed discussions about the physical and numerical models can be found in individual 

chapters. 

 

9.1.1 Physical model of channel development 

Flume experiment is an effective method to study channel development. In natural rivers the 

processes of channel development may take a long time, but in the laboratory these processes can 

take as little as a few hours or few days. In the current project a series of experiments are carried 

out in the Hyder Hydraulics Laboratory in Cardiff University. All of the experiments were carried 

out using non cohesive sand as bank and bed materials. The tests had small, medium and large 

initial channel section sizes, different flume slopes, steady and unsteady inflows. Diagrams 

showing the layout of the flume can be found in Figures 4.4a and 4.4b in Chapter 4. 
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9.1.1.1 Steady inflow 

In order to investigate the channel development in the nature for efficient water resource 

management, reducing hazard, improving benefits from rivers, many physical experiments with 

steady inflow were carried out in the laboratory to model the fluvial river development. A review 

of these experiments was given in Chapter 2. A straight trapezoidal section channel with a 

bending upstream was excavated in the sand bed in the flume to form initial experiment 

conditions in this study. The channel preparing procedure was described in details in Chapter 4, 

including the introduction of experiment methods, tools and quipment operation. 

 

The findings from the steady inflow experiments confirmed that a small channel in the laboratory 

could model many of the characteristics of fluvial rivers in the nature, such as ripple-pool form 

and point bars. The modelling results showed that in the laboratory, the bed slope for modelling 

river is much steeper than that in a real river. The physical model provided a good method to 

study real rivers. In the current study, channels only had meandering thalweg, but they were not 

real meandering rivers. The main reason is that the sand used as the bed material was non 

cohesive and point bar could not be stable for a long time after it was formed. The cohesive clay 

plays a key role to stabilise point bars and to form a real meandering river, not just sinuous 

thalweg. 

 

At the beginning of channel development, a bank was eroded by the flow at the bend upstream, 

and then the flow was turned to the bank on the other side of the channel and with the effect of 

bending to erode that bank. This process continued. Thus a meandering thalweg was formed and 
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developed along the channel, with alternate pools and bars being formed. The forming process 

was relatively fast and the channel section shapes became shallow and wide quickly at the 

beginning. The development gradually became slower both on channel width and depth. 

 

The section shapes in the experiments were measured by an ADV when the flume was filled with 

water after the experimental operation. This process may have caused slight changes to the bank 

boundaries but it did not affect the bed profile in the channel. Channel cross-sections were also 

measured by a point gauge. It is found that using the ADV was more effective. The boundary lines 

were record by a digital camera. The measured cross-sectional shapes and boundary lines during 

the channel evolution were presented in Chapter 5. 

 

With the help of above measurement techniques, the reproducibility of the experiments was 

confirmed. This study investigated the impact of bed slope on channel morphology (in section 

5.4.5.1) and confirmed that the slope is a key factor in distinguishing straight, meandering and 

braided channels. A mild slope would lead to straight channels; a medium slope leads to 

meandering thalweg channels and a high slope leads to braided channels. The effect of flow rate 

on channel development was also researched in section 5.4.5.2. A large flow rate had larger 

meander length, width and amplitude. The cross-sectional area was investigated next. From 

analysing different controlling parameters, the essential control factor was found to be Froude 

number. A channel with small width/depth ratio, or a large bed slope, or a large flow rate which 

leads to meandering all have a large Fr. In the experiments, Fr became smaller and finally less 

than 0.70. In these meandering thalweg channels, a large Fr caused a smaller sinuosity value. 
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Experimental results were then discussed with regime theory in section 5.5. Generally speaking, 

the stable channel sizes from the regime theories agree with the experimental results, but these 

theories should be carefully chosen, especially considering their ranges of application. 

 

9.1.1.2 Unsteady inflow 

In real circumstance, the hydrological condition is more complex, the condition of steady inflow is 

less common than unsteady inflow. This study investigated the channel morphology with 

gradually varied flow and rapidly varied flow and compared results obtained under steady inflow 

conditions. 

From the results, it was seen that contour for the case of unsteady inflow is more smooth than 

steady inflow. Section developments tell that steady inflow could deepen the channel and 

unsteady inflow has more effect on bank erosion and makes the channel wider. 

It is concluded from the measured bed profiles, steady inflow produces more stable ripples, 

smooth point bars, curved channel banks. Rapidly varied flow produces straight channel, wider 

upstream. Gradually varied flow produces unstable ripple in the main channel and deepest pools. 

Charlton’s equations works well for the steady inflow condition and to make them work well for 

the conditions of gradually varied flow and rapidly varied flow, Charlton’s equations should have 

a ratio as 1.2 for the gradually varied flow and 0.9 for rapidly varied flow, as shown in Table 5.20 

in Chapter 5. It must be emphasized that the ratios here were only suitable for the conditions used 

in current study, for other model rivers or natural rivers, more investigations are needed. 
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9.1.2 Numerical model 

9.1.2.1 Numerical model development 

The governing equations used in present study have been given briefly in order to give a clear 

definition in Chapter 6. The solution processes for these equations were described in Chapter 7, 

which is the same as DIVAST. Then model was modified to consider the bank erosion and 

secondary flow effects in the bending areas. In this study, a new method was introduced to 

calculate the near bed secondary flow by linking it to the transverse water level gradient. This 

method is based on the balance of force in the transverse direction, which is similar to an existing 

method, but it is based on the Cartesian coordinate system without the constraint of a constant 

radius of curvature. The bank erosion model is based on the slope stability theory: when the bank 

slope is larger than the critical slope, bank failure happens. The new model was applied to 

physical model to predict the channel evolution process for both steady inflow and unsteady 

inflow conditions. The numerical results and their comparisons with experimental results were 

presented in Chapter 8. 

 

9.1.2.2 Numerical model application 

From result introduced in Chapter 8, the predictions by this new numerical model agreed 

generally well with the physical model observations. The key characteristics on channel evolution 

were adequately predicted for different flow rates and channel sizes, including channel widths and 

depths, boundary sinuosity and shape, thalweg sinuosity, point bar positions, erosion and 

deposition place. The manners of meander movement: meander sweep and meander swing are 
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modelled well. The cusps caused by abrupt downstream shift in the thalweg agree well with 

physical results. A sensitivity analysis was als carried out and it showed that secondary flow and 

bank strength are both key parameters in fluvial channel evolution. It must be pointed out that the 

parameters used in this study are based on experimental condition reported herein. Further 

calibration, adjustment and development on this model are necessary for other conditions, 

especially for natural rivers. 

 

9.1.3 Summary of findings 

 From the steady inflow flume experiments it has been shown that many of the 

characteristics of fluvial rivers found in the nature can be represented by the model river in 

the laboratory. Since non-cohesive sediments were used in this study, the model channel 

only had curved boundaries with a meandering thalweg, but was not a real meandering 

river. The experiments are repeatable if the same governing parameters are used. 

 From the analysis of different controlling parameters, Froude number is the main 

controlling factor. A channel with a small width/depth ratio, or a large bed slope, or a large 

flow rate, leads to a meandering thalweg to occur if there is a large Froude number (more 

than 1). 

 Steady inflow could deepen the channel and unsteady inflow has more effect on bank 

erosion and makes channel wider. Steady inflow produces stable ripples, smooth point bars, 

curved channel banks. Rapidly varied flow got a straight channel, which is wider upstream. 

Gradually varied flow got unstable ripples in the main channel and the deepest pools. 
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Charlton’s equations work well for steady inflow and Charlton’s equations should have a 

ratio for gradually varied flow and rapidly varied flow in this study. 

 A new secondary flow model was developed based on the balance of force in the 

transverse direction, and on the Cartesian coordinate system without the constraint of 

constant radius of curvature. The bank erosion model is based on the theory of slope 

stability. 

 The predictions of channel characteristics and channel evolution processes by this 

numerical model agree generally well with the physical model for different flow rates and 

channel sizes. A sensitivity analysis showed that the secondary flow and bank strength are 

both key parameters in the fluvial channel evolution. 

 

9.2 Recommendations for future work 

Following on from the studies reported herein some shortcomings were identified and the 

following recommendations are made for future research. 

 

9.2.1 Physical model in the laboratory 

 Further full bed profile measurement should be carried out on one test with steady inflow 

like D4 or D9. In this study, only part of river channel was selected to be measured for 

comparison purpose. Less attention was focused on the entrance of the channel and 

bending area because no measurement information was available. The whole channel bed 

profile measurement could provide opportunity of new finding. Also the full measurement 
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could compare clearly with numerical results because the numerical model covered the 

whole area of flume. 

 

 Further experimental studies are still needed to address the deficiencies in the 

development of small channel in the laboratory, especially in the following situations: (i) 

the fluvial river morphology changes with much steeper flume slopes, like 0.025, 0.030. 

(ii) physical experiments for longer period of operation, such as 6 hours or longer, to see 

further channel development and compare with that in 1 hour, (iii) considering accurate 

moisture measurements for the channel banks and in different moisture conditions (it 

could be obtained by different days of drying), further investigations are needed to see its 

effect. 

 

 More details of measurement are required to help analyse the flow conditions such as 

Froude number, Reynolds number, these include: (i) flow velocity measurement by a flow 

meter at different times and at different positions, (ii) channel depth measurement at 

different times and at different positions, (iii) bed profiles in the longitudinal direction. 

Further experiments should also be carried out with non-uniform sediments. The sorting 

effect may be important in the bending sections. It is important to analyse the river 

curvature effect in the bending sections. 

 



204 
 

9.2.2 Numerical model development 

 To undertake further numerical model simulation to investigate long term channel 

development trends, especially the thalweg movement, and compare model predictions 

with short time results presented in this study. To study neck cut-off, chute cut-off and 

other long term migration phenomena. 

 

 To apply the numerical model developed in this study to natural rivers. At the moment, 

this model only has been used to simulate the small model rivers in the laboratory and 

obtained good agreement. In a real situation, the process will be more complex. Thus, 

further investigation is needed in order to predict the complex situation of a real river. 

 

 Further numerical model enhancements are needed in order to investigate the following 

situations: (i) river morphological development with steep bed slopes, (ii) channel banks 

with different moisture contents, (iii) effects of a larger range of flow rates on the channel 

development and, (iv) wider rivers with free migration in the transverse direction. 
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Appendix 1: Programme for experimental data 

! 

!         This programme is used to deal with data from experimental measurements which are 

not in correct order. The programme puts data in correct order with time. 

! 

! The requirement for input data is from large to small and minus.  

! 

 

PROGRAM DATA_UNIFITED 

 implicit none  

 INTEGER I,J,K,N,M,IOCHK,SIZE01,SIZE02 

 REAL, PARAMETER::ERROR = 0.00001 

 REAL, ALLOCATABLE :: REFET(:), EXPT(:), EXPDATA(:), CALDATA(:) 

 REAL(8) :: MINL,TEMP,MAXWID,WIDTEP01,WIDTEP02,MAXWP,MAXL,MAXQ 

 CHARACTER(LEN=20) :: INPUTFILE = "INPUT.TXT", INPUTFILE01 = "INPUT01.txt" 

 CHARACTER(LEN=20) :: OUTPURFILE = "OUTPUT.txt" 

 CHARACTER(LEN=30) :: OUTPURFILE2 = "OUTPUT2.txt" 

 

 CHARACTER(LEN=1) O 

 CHARACTER ASD,ASDF 

 LOGICAL ALIVE 

! 
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! REFET  : REFERENCED TIME 

! EXPT  : EXPERIMENTAL TIME 

! EXPDATA  : EXPERIMENTAL DATA 

! CALDATA  : CALCULATED DATA 

! 

! 

 

 INQUIRE(FILE = INPUTFILE, EXIST = ALIVE) 

  IF(.NOT.ALIVE)THEN 

  WRITE(*,*)TRIM(INPUTFILE),"  DOESN'T EXIST OR WRONG FILENAME." 

  STOP 

 END IF 

 

 OPEN (10, FILE = INPUTFILE) 

 OPEN (11, FILE = INPUTFILE01) 

 OPEN (20, FILE = OUTPURFILE) 

 OPEN (30, FILE = OUTPURFILE2) 

! 

! To calculate the number of data in section measurement and to set the variable array 

! 

 DO 

  READ(10,'(O)', IOSTAT=IOCHK) O 
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  IF (IOCHK < 0) EXIT 

  SIZE01 = SIZE01 + 1 

 END DO 

 REWIND (10) 

 IF(SIZE01 .LT. 1)THEN 

  WRITE(*,*)TRIM(INPUTFILE),"  IS AN EMPTY FILE OR DATA WRONG." 

  STOP 

 END IF 

 ALLOCATE (REFET(SIZE01),CALDATA(SIZE01)) 

 

 DO 

  READ(11,'(O)', IOSTAT=IOCHK) O 

  IF (IOCHK < 0) EXIT 

  SIZE02 = SIZE02 + 1 

 END DO 

 REWIND (11) 

 IF(SIZE02 .LT. 1)THEN 

  WRITE(*,*)TRIM(INPUTFILE01),"  IS AN EMPTY FILE OR DATA WRONG." 

  STOP 

 END IF 

 ALLOCATE (EXPT(SIZE02-2),EXPDATA(SIZE02-2)) 

! 
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! Read the data from file for section measurement and store them in different arrays separately. 

! 

 SIZE02=SIZE02-2 

 

  READ(11,*) 

  READ(11,*) 

 DO I=1,SIZE01 

  READ(10,*) REFET(I) 

 END DO 

 

 DO J=1,SIZE02 

  READ(11,*) EXPT(J),EXPDATA(J) 

 END DO 

! 

! If the input data is minus and then change it to be positive.! 

 DO I=1,SIZE01 

  REFET(I) = -REFET(I) 

 END DO 

 

 DO J=1,SIZE02 

  EXPT(J) = -EXPT(J) 

  EXPDATA(J) = -EXPDATA(J) 
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 END DO 

 

! 

! The interpolation begins by linear interpolation. 

! 

 DO I=1,SIZE01 

  DO J=1,SIZE02 

   IF (REFET(1).LE.EXPT(1).AND.REFET(SIZE01).GE.EXPT(SIZE02)) THEN 

    IF (REFET(I).LE.EXPT(1)) THEN 

     CALDATA(I) = 

((EXPT(1)-REFET(I))*EXPDATA(2)-(EXPT(2)-REFET(I))*EXPDATA(1))/((EXPT(1)-REFET(

I))-(EXPT(2)-REFET(I))) 

    ELSE IF (REFET(I).GT.EXPT(J-1).AND.REFET(I).LE.EXPT(J)) THEN 

     CALDATA(I) = 

EXPDATA(J-1)+(REFET(I)-EXPT(J-1))*(EXPDATA(J)-EXPDATA(J-1))/(EXPT(J)-EXPT(J-1)

) 

    ELSE IF (REFET(I).GE.EXPT(SIZE02)) THEN 

     CALDATA(I) = 

((EXPT(SIZE02)-REFET(I))*EXPDATA(SIZE02-1)-(EXPT(SIZE02-1)-REFET(I))*EXPDATA(

SIZE02))/((EXPT(SIZE02)-REFET(I))-(EXPT(SIZE02-1)-REFET(I))) 

    ENDIF 
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   ELSE IF (REFET(1).GE.EXPT(1).AND.REFET(SIZE01).LE.EXPT(SIZE02)) 

THEN 

    IF (REFET(I).GT.EXPT(J).AND.REFET(I).LE.EXPT(J+1)) THEN 

     CALDATA(I) = 

EXPDATA(J)+(REFET(I)-EXPT(J))*(EXPDATA(J+1)-EXPDATA(J))/(EXPT(J+1)-EXPT(J)) 

    ENDIF 

 

   ELSE IF (REFET(1).GE.EXPT(1).AND.REFET(SIZE01).GE.EXPT(SIZE02)) 

THEN 

    IF (REFET(I).GT.EXPT(J-1).AND.REFET(I).LE.EXPT(J)) THEN 

     CALDATA(I) = 

EXPDATA(J-1)+(REFET(I)-EXPT(J-1))*(EXPDATA(J)-EXPDATA(J-1))/(EXPT(J)-EXPT(J-1)

) 

    ELSE IF (REFET(I).GE.EXPT(SIZE02)) THEN 

     CALDATA(I) = 

((EXPT(SIZE02)-REFET(I))*EXPDATA(SIZE02-1)-(EXPT(SIZE02-1)-REFET(I))*EXPDATA(

SIZE02))/((EXPT(SIZE02)-REFET(I))-(EXPT(SIZE02-1)-REFET(I))) 

    ENDIF 

 

   ELSE IF (REFET(1).LE.EXPT(1).AND.REFET(SIZE01).LE.EXPT(SIZE02)) 

THEN 

    IF (REFET(I).LE.EXPT(1)) THEN 
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     CALDATA(I) = 

((EXPT(1)-REFET(I))*EXPDATA(2)-(EXPT(2)-REFET(I))*EXPDATA(1))/((EXPT(1)-REFET(

I))-(EXPT(2)-REFET(I))) 

    ELSE IF (REFET(I).GT.EXPT(J).AND.REFET(I).LE.EXPT(J+1)) THEN 

     CALDATA(I) = 

EXPDATA(J)+(REFET(I)-EXPT(J))*(EXPDATA(J+1)-EXPDATA(J))/(EXPT(J+1)-EXPT(J)) 

    ENDIF 

  

   ENDIF 

  ENDDO 

! 

! Data output and change between positive and negative data! 

  WRITE(20,20) (-CALDATA(I)+308+80)/10 

  WRITE(*,20) (-CALDATA(I)+308+80)/10 

  WRITE(30,20) (-CALDATA(I)+308+80)/10+(720-REFET(I)/10)*0.020 

 ENDDO 

 

10 FORMAT(A12) 

20 format(f12.4) 

STOP 

END 
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Appendix 2: Experiment with theory calculation 

In Lacey’s equation ( CP  is calculated wetted perimeter, when channel is wide and shallow, 

wetted perimeter is channel width):   

Medium channel: ( Cunsteadygradual PP *33.1 )＞( Csteady PP *17.1 )＞( Cunsteadysudden PP *00.1 ) 

Large channel: ( Cunsteadysudden PP *04.1 )＞( Csteady PP *91.0 ) 

The Lacey’s equation could be edited as: 

With medium channel: 5.062.5 QPsteady  , 5.038.6 QP unsteadygradual  , 5.08.4 QP unsteadysudden   

With large channel: 5.037.4 QPsteady  , 5.099.4 QP unsteadysudden   

In Charlton’s equation ( CB  is calculated width): 

For medium channel: ( Cunsteadygradual BB *20.1 )＞( Csteady BB *97.0 )＞

( Cunsteadysudden BB *90.0 ) 

                                                                                   

( Csteady VV *06.1 ) 

For large channel: ( Cunsteadysudden BB *01.1 )＞( Csteady BB *88.0 ) 

                             Cunsteadysudden VV *36.1 , Cunsteadysudden yy 00 *05.1  

Charlton’s equation can be edited as: 

With middle channel: 45.074.3 QBsteady  , 45.049.4 QB unsteadygradual  , 45.037.3 QB unsteadysudden   

15.086.0 QVsteady   

With large channel: 45.029.3 QBsteady  , 45.078.3 QB unsteadysudden   

15.017.1 QV unsteadysudden  , 40.0
0 32.0 Qy unsteadysudden   

 

In Ackers’s equation ( CB  is calculated width): 
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For medium channel: ( Cunsteadygradual BB *37.1 )＞( Csteady BB *11.1 )＞

( Cunsteadysudden BB *02.1 ) 

                                                                                   

Csteady VV *47.0  

For large channel: ( Cunsteadysudden BB *18.1 )＞( Csteady BB *03.1 ) 

                             Cunsteadysudden VV *60.0 , Cunsteadysudden yy 00 *99.1  

Acker’s equation could be edited as: 

With medium channel: 

42.093.2 wsteady QB  , 42.062.3 wunsteadygradual QB  , 42.069.2 wunsteadysudden QB   

15.090.0 wsteady QV   

With large channel: 

42.072.2 wsteady QB  , 42.012.3 wunsteadysudden QB   

                               15.015.1 wunsteadysudden QV  , 43.0
0 40.0 wunsteadysudden Qy   

In Blench’s equation:  

For medium channel: ( Cunsteadygradual SS *24.12 )＞( Csteady SS *75.10 ) 

For large channel:                                                        

( Csteady SS *0.13 )  

( Cunsteadysudden BB *88.0 )＞( Csteady BB *77.0 ), Cunsteadysudden yy 00 *46.0  

Blench’s equation could be edited as: 

With medium channel: 5.0

5.0
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* Q
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F
W

s

bc
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sbc
steady Q

gQ

FF
S





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                                     5.0

5.0

5.0
* 14.1 Q

F

F
W

s

bc
unsteadygradual  , 

)
2330

1(63.3

24.12
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25.0083.0833.0

s
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unsteadygradual Q
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
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
 

                                      5.0

5.0

5.0
* 86.0 Q

F

F
W

s

bc
unsteadysudden   

With large channel: 5.0

5.0

5.0
* 77.0 Q

F

F
W

s
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                                 5.0

5.0

5.0
* 88.0 Q

F

F
W

s

bc
unsteadysudden  , 

33.0

66.0

33.0
* 46.0 Q

F

F
d

bc

s
unsteadysudden   

Table 5.2.5: Comparison of calculated results with experimental results (where Br is channel width and 

Bm is thalweg width, y0 is depth, λ is meandering wave length, S is channel slope, V is flowing velocity, A is cross 

section, P wetted perimeter).  

 Q=0.6L/S=0.0006 sm /3  Q=2L/S=0.002 sm /3  

                  

Experiment results 

 

 

 

Calculations 

D4: B=0.14m, λ=2.3m,s=0.0101 

(steady) 

D9: B=0.20m, λ=3.0m, s=0.0101  

(steady) 

D3: B=0.16m, λ=2.5m, s=0.0115 

 (gradually varied flow) 

D5: B=0.12m, λ=2.7m (rapidly varied 

flow) 

D10: B=0.23m, λ=3.1m,  

V=0.458m/s, y0=0.025-0.03m (rapidly 

varied flow) D6: B=0.30m, V=0.35m/s 

(slope=0.015) 
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D7: B=0.12m, λ=3.2m, V=0.30m/s 

(slope=0.025) 

5.08.4 QP     (Lacey, 

1929)                   

P=0.12 

For steady: CPP *17.1  

For gradually varied: CPP *33.1  

For rapidly varied: CPP *00.1  

P=0.22 

For steady: CPP *91.0  

For rapidly varied: CPP *04.1  

5.03.54 bQ  Dury 

(1965) 

 

λ =1.33 

For steady: C *73.1  

For gradually varied: C *88.1  

For rapidly varied: C *03.2  

λ =2.43 

For steady: C *23.1  

For rapidly varied: C *27.1  

Charlton et al. (1978) 

gravel bed rivers: 

45.074.3 QB  , 

40.0
0 31.0 Qy  , 

15.086.0 QV   

B=0.133, y0=0.016, V=0.283 

For steady: 

CBB *)05.190.0(  ,  

                   

CVV *06.1  

For gradually varied: CBB *20.1

For rapidly varied: CBB *90.0  

B=0.228, y0=0.026, V=0.338 

For steady: CBB *88.0  

For rapidly varied: CBB *01.1  

CVV *36.1  

Cyy 00 *)15.196.0(   

Ackers (1964) straight 

channels in medium sand, 

( wQ ) between 0.011 and 

0.153 sm /3 , were: 

85.052.0 wQA  , 

B=0.117, y0=0.00823, V=0.631 

For steady: 

CBB *)20.102.1(  , 

CVV *47.0  

For gradually varied: CBB *37.1

A=0.00264, B=0.194, y0=0.0138,  

V=0.756 

For steady: 

CBB *03.1  

For rapidly varied: 
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42.064.2 wQB  , 

43.0
0 20.0 wQy  , 

15.092.1 wQV        

For rapidly varied: CBB *02.1  CBB *18.1  

CVV *60.0  

Cyy 00 *)17.281.1(   

Bench equation: 

Mean width: 

5.0
5.0

5.0
* Q

F

F
W

s

bc （m）, 

Bed depth: 

33.0
66.0

33.0
* Q

F

F
d

bc

s (m) 

Slope: 

233
1(63.3 166.0

25.0083.0833.0

s

sbc

Q
gQ

FF
S






 

Mean width: 0.14, Bed depth: 0.040 

Slope: 0.0007516*2=0.0015032 

           

0.0007516*1.25=0.0009395 

For steady: Csteady BB  ,  

Csteady SS *75.10  

For gradually varied:  

Cunsteadygradual BB 14.1 , 

CSS *24.12  

For rapidly varied:  

Cunsteadysudden BB 86.0  

Mean width:0.26, Bed depth: 0.060 

Slope: 0.00062 

          2S=0.00124 

      1.25S=0.000775 

For steady: CSS *0.13  

                   

CBB *77.0  

For rapidly varied:  

        CBB *88.0  

Cyy 00 *)50.042.0(   

 

Charlton’s equations give a good result for steady flow on width and velocity. 
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