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Abstract

GaAs(001) is one of the most important semiconductor surfaces in today's tech-

nology. Since the invention of molecular beam epitaxy in the late 1960s, this surface

has been the substrate to complex heterostructures and diverse nanostructures that

have found and continue to �nd novel applications in optoelectronic devices. For

this reason, the fundamental science of the GaAs(001) surface has been studied in-

tensively over the past few decades, from the diverse reconstructions it exhibits to

the mechanisms of epitaxial growth occurring on it. For the most part these stud-

ies have been documented by ex-situ characterization techniques such as atomic

force microscopy (for morphological analysis) or scanning tunneling microscopy (for

atomistic analysis). During the early years of MBE, investigation of the ongoing

kinetic surface processes during growth was essentially limited to the use of in-situ

re
ection high energy electron di�raction, which can only give structural information

averaged-out across the surface.

The design and assembly of a hybrid system simultaneously a low energy electron

microscope and a molecular beam epitaxy reactor (by Prof David Jesson) has been

a major breakthrough in investigating the fundamental physical processes occur-

ring on GaAs(001) surfaces. In fact, it is the only instrument in the world capable

of imaging III-As surfaces (with III = Ga or In) in real time and under realistic

growth conditions. Over the past few years, the unique capabilities of this sys-

tem have led to numerous experimental �ndings regarding fundamental aspects of

the GaAs(001) surface which were previously inaccessible to conventional molecular

beam epitaxy systems. Together with theoretical modelling, this has enlightened

our understanding of this important surface. However, much still remains unknown

regarding GaAs(001) in relation to growth. Therefore, making use of this unique

experimental system and developing theoretical models, this thesis presents novel

contributions to our understanding of the GaAs(001) surface, in particular regarding

surface phase stability. Having this been team work, the author of this thesis has

specialised in producing theoretical models and computations to help understand

the experimental observations.
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The �rst piece of work presented in this thesis is a novel form of surface phase

coexistence on GaAs(001), occuring when the surface is heated under vacuum above

� 580�C (a typical temperature for epitaxial growth on GaAs(001)). Under these

conditions, Langmuir evaporation of the crystal becomes important and due to this,

we directly imaged the spontaneous formation of metastable surface phase domains

on GaAs(001) corresponding to a (6� 6) periodicity. These metastable phases exist
for some time before spontaneously transforming back to the thermodynamically

stable parent phase (the well-known c(8� 2) reconstruction), producing a dynamic

phase coexistence between the two phases. Monte Carlo simulations were used

to identify the key kinetic processes and investigate the interplay between phase

metastability and evolving surface morphology. This is used to explain the measured

temperature dependence of the time-averaged (6� 6) coverage.

Next we present another piece of work in which we are able to map the surface

phase diagram of GaAs(001) by combining droplet epitaxy with low energy electron

microscopy imaging techniques. Upon subjecting Ga droplets on the GaAs(001)

surface to an As 
ux we observe a sequence of well-de�ned surface phases with dis-

tance to the droplet edge. Using a simple model which links the spatial coordinates

of phase boundaries to the free energy, we are able to interpret these phase patterns

produced during droplet epitaxy. Based on the observed sequential order of the

phases away from the droplet, it is possible to obtain important new information

on surface phase stability. This is used to augment existing T = 0K phase dia-

grams generated by density functional theory calculations. We also establish the

existence of a (3 � 6) phase, and con�rm, that the controversial (6 � 6) phase is

thermodynamically stable over a narrow range of conditions.

The last piece of work presented here is one that is purely theoretical. Since the

mid 2000s a technique called local droplet etching has been used to produce nanohole

templates on di�erent III-As surfaces. It consists of high-temperature annealing

(T � 550�C ! 600�C) of nanoscale group III liquid droplets on these surfaces

under low As 
ux. Its main application is the production of strain-free quantum

dots by subsequent �lling of these holes by means of epitaxial growth. The main
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advantage of this etching technique versus ex situ etching is the absence of defects

and impurities as it is carried under epitaxial conditions and does not include foreign

elements. Despite this technique having been widely used, the physical mechanism

of droplet etching is not yet well understood. Here we present a model for the case

of Ga droplet etching of GaAs which, considering the di�erent kinetic mechanisms

of mass transport, produces dynamic simulations of nanohole formation and is able

to answer the major open questions regarding this technique.
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Chapter 1

Introduction

The family of III-V semiconductors is one of the most important groups of materials

in today's electronic and optoelectronic technology. In their pure state, these ma-

terials are binary compound crystals consisting of an element of column III of the

periodic table and another of column V in a 1:1 ratio. Examples are GaAs, AlAs,

GaP, InP, InSb etc, the most well-known III-V semiconductor being GaAs. This

group of materials tend to have high electron mobilities, giving them improved elec-

tronic properties compared to their 'predecessor' Si. Also, as is the case for GaAs,

many of the III-V materials have direct bandgaps, making them e�cient materials

for both light absorption and emission devices. Added to this, di�erent III-V ma-

terials can be alloyed together to form ternary or even quaternary compounds. For

example, the group III 'half' of GaAs is frequently alloyed with Al to form ternary

AlxGa1�xAs. The group V 'half' can also be alloyed to form quaternaries such as

AlxGa1�xPyAs1�y. This enables 'bandgap engineering', i.e., tuning the bandgap of

the alloy by changing the alloy ratio. These properties of III-V materials �nd nu-

merous applications in optoelectronic devices. For example, they are used in light

emission devices such as light-emitting diodes (LEDs) [13] or lasers [14], as well as

in absorption devices such as photodetectors or solar cells [15]. In fact, the solar cell

with the world record e�ciency is a multi-junction cell made of several successive

micro-layers of III-V alloys [16]. This cell achieves a peak e�ciency of 47.1% under

143 suns concentration. Furthermore, a lot of research has been undertaken in re-

cent years to harness the properties of nanoscale structures of III-V materials, such

as III-V quantum dots or nanowires, when embedded in devices. For example, III-V
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nanowires make photodetectors with high absorption and fast carrier collection [17]

and can potentially produce high e�ciency solar cells [18]. InGaAs quantum dots

can make ultrafast lasers [19] and III-nitride quantum dots are proving to be promis-

ing for single photon emitting devices [20].

The diverse structures of III-V materials that are used in devices are usually

grown epitaxially by means of crystal growth techniques, the most popular ones

being metal-organic chemical vapour deposition (MOCVD) and molecular beam

epitaxy (MBE). While MOCVD is frequently used in industry, MBE remains the

fundamental technique of epitaxial crystal growth and is the preferred technique

for basic science research. MBE is performed under ultra-high vacuum (UHV), i.e.,

at pressures below 10�9Torr, with the III and V components supplied in very �ne

doses, usually by heating ultra-pure solid sources of the individual elements in Knud-

sen cells adjoined to growth chamber. The III and V precursor atoms/molecules in

the �ne vapour can then be adsorbed on to the substrate and begin growing the

III-V crystal. The delicate dosage and the purity of the III and V source elements

enables the crystal to grow epitaxially and form highly crystalline and highly pure

III-V �lms. Most III-V materials tend to crystallize into cubic (zinc-blende) struc-

tures. Some, such as GaN, crystallize into hexagonal (wurtzite) structures instead.

Interestingly, however, phase switching between zinc-blende and wurtzite crystal

structures has been shown to be possible during growth of GaAs nanowires by tun-

ing the growth conditions in the reactor [21].

Out of all the III-V materials, GaAs is the most well-known of all. The most basic

form of GaAs MBE growth is GaAs epitaxy on GaAs(001). The GaAs(001) surface

is hence one of the most technologically important crystal surfaces, and has been

studied extensively through the years for purposes of growth [22{28]. In particular,

the many di�erent surface reconstructions (or surface phases) that GaAs(001) can

present has long fascinated the MBE community [1, 29, 30]. The state of a surface

in MBE is typically monitored in situ by means of re
ection high energy electron

di�raction (RHEED). By observing the di�raction patterns the surface periodicities

are recognised. However, RHEED only gives structural information that is averaged-
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out across the surface, and is generally incapable of supplying information as to

the nanoscale details of GaAs surfaces. As a means of overcoming this di�culty,

complex vacuum systems have been designed which connect MBE growth reactors

to microscopy apparatuses such as atomic force microscopes (AFM) [31] or scanning

tunneling microscopes (STM) [32]. In this way growth experiments can be carried

in the MBE chamber, and the sample can then be transferred out in vacuo through

to the microscopy chamber for charaterization after quenching the sample down to

room temperature. This modus operandi permits observing the surface seconds after

pausing the growth experiment, and, for example, has enabled the direct observation

of the atomistic arrangements of many of the GaAs(001) phases [1]. However, the

act of quenching the sample for transfer to the microscope may alter the surface

unexpectedly, and kinetic surface mechanisms will shut down during the process,

making it unfeasible to really observe the surface under growth conditions.

To investigate growth mechanisms in a precise manner, a few experimental sys-

tems around the world combine epitaxial growth and in situ microscopy, in an e�ort

to visualise growth in real time. For example, there exist transmission electron

microscopes (TEM) with gas-phase sources built onto them. Using such systems,

meaningful conclusions regarding the atomic-scale details of nanowire growth have

been reached [21, 33]. Given its characteristics, TEM is an outstanding tool to ob-

serve and monitor growth of three-dimensional objects such as nanowires, but it

cannot be used to study the GaAs(001) surface. Regarding imaging 2-dimensional

surfaces under growth conditions, there do exist systems which combine MBE and

in situ STM. These have produced interesting results concerning InAs quantum dot

formation on GaAs(001) [34, 35]. However the sample temperature is limited to

about � 300�C for STM imaging and the scanning greatly reduced the time reso-

lution of this technique. Low energy electron microscopy (LEEM) is unparalleled

in imaging 2-dimensional surfaces under growth conditions. LEEM microscopes

provide a 'bird's eye view' of conducting surfaces at the micro/nanoscale, and, be-

ing a non-scanning technique, every point on the surface is imaged simultaneously,

thereby enabling real-time imaging at video rates. Generally speaking, LEEM mi-
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croscopes provide atomic resolution in the direction perpendicular to the surface, so

that atomic steps can be resolved, and resolutions down to � 5 nm in the plane of

the surface, provided the alignment of the system is su�ciently good and vibrations

are minimised. LEEM also tends to provide di�raction contrast, i.e., parts of the

surface presenting di�erent reconstructions will tend to show contrast. These unique

characteristics of LEEM, not to mention the possibility of using the low energy elec-

tron di�raction (LEED) mode and 'dark-�eld' imaging modes, render LEEM an

ideal in situ microscopy technique to investigate the structure and morphology of

GaAs(001) surfaces under growth conditions.

The School of Physics and Astronomy of Cardi� University is home to a LEEM-

MBE hybrid system which is the only one in the world that is capable of imaging

III-As surfaces under growth conditions (III being Ga or In) [36]. By performing

simple experiments in our system, remarkable results have been obtained through

the years regarding fundamental aspects of the GaAs surface and processes occurring

on it [4, 37{39]. The possibilities the system provides and the lack of experimental

set-ups similar to ours motivates performing further experiments to discover funda-

mental aspects of the technologically important GaAs(001) surface. During the time

the author of this thesis has been present, our group has produced signi�cant results

concerning the surface phase stability on GaAs(001) [40, 41]. Given the fundamen-

tal nature of the science that is done in our system, theoretical modelling becomes

a valuable tool in understanding the observational results that are produced and,

more generally, in understanding the GaAs(001) surface. For this reason, the au-

thor's full time during the PhD period has been dedicated to theoretical modelling

and extensive analysis of LEEM data, but not to LEEM experiments. These were

performed by fellow teammates Dr. Yuran Niu, Dr. Daniel Gomez Sanchez, Dr.

Changxi Zheng, and Dr. Juan Pereiro Viterbo.

The outline of the thesis is as follows. In Chapter 2, the background theory

underpinning the models developed in the rest of the thesis is outlined. In partic-

ular, the manner in which the thermodynamics and kinetics of GaAs(001) surfaces

are treated is explained. This involves understanding the statistical properties of
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adsorbed atoms (adatoms) on GaAs(001), surface atoms of the crystal, dissolved

As atoms in Ga droplets, as well as the kinetic descriptions of these when the sys-

tem evolves in time. Adding to this, surface phases are de�ned and the important

concept of phase stability is thoroughly explained. Chapter 2 is also dedicated to

introducing the basic principles of the LEEM technique and the di�erent compo-

nents of our LEEM-MBE system. After this, our sample preparation method is

explained and a novel microscopy technique named selective energy dark �eld imag-

ing (SEDF), which was recently developed in our group and was extensively used in

the results of this thesis, is presented.

Chapter 3 is the �rst of three results chapters. In this Chapter, a novel form

of surface phase coexistence is presented. In this work, we imaged the spontaneous

formation of metastable (6 � 6)-reconstructed domains on the GaAs(001) c(8 � 2)

surface during Langmuir evaporation. Eventually, these metastable phases trans-

form to the thermodynamically stable c(8� 2) parent phase, producing a dynamic

phase coexistence with a temperature-dependent, time-averaged coverage. A Monte

Carlo model was developed to identify the key kinetic processes and investigate the

interplay between phase metastability and evolving surface morphology. This is

used to explain the measured temperature dependence of the time-averaged (6� 6)

coverage.

In Chapter 4, we present a piece of work in which we map the surface phase di-

agram of GaAs(001) by combining droplet epitaxy with LEEM imaging techniques.

We develop a simple model that considers the di�usion of Ga adatoms from the

droplets and their reaction with the incoming As 
ux to link the spatial coordinates

of the phase boundaries to free energy, and hence interpret the phase patterns pro-

duced during droplet epitaxy. The respective order of such phases with distance to

the droplet allows us to incorporate them in an approximate manner on to existing

T = 0K GaAs(001) phase diagrams. Our observations con�rm the stability of the

controversial (6� 6) phase across a narrow range of Ga chemical potential, and we

also establish the existence of a novel (3� 6) phase.

In Chapter 5 a theoretical model for local droplet etching (LDE) of Ga droplets
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on GaAs surfaces is presented. This technique is relatively modern but has been

practiced intensively over the past few years [9,12,42{47]. The main use of LDE is to

produce nanohole templates for subsequent �lling with quantum dots [48{50]. This

enables the formation of quantum dots on lattice matched systems and therefore the

production of strain-free quantum dots. The model incorporates kinetic concepts

of mass transport between the droplet, the crystal, and the adatom population,

to explain the mechanism of droplet etching. The simulation results indicate that

etching originates with GaAs deposition at the droplet contact line position, and

is driven by the droplet's surface tension pulling on the solid. The consequent loss

in As in the droplet induces drilling at liquid-solid interface under the bulk droplet

in order to replenish the equilibrium As content. The simulations also show that,

though seeming to be counterintuitive at �rst thought, a �nite 
ux is necessary

for etching. This fact, which had previously been observed experimentally [12], is

explained within the simple physical concepts of our theoretical model. The model

should, in fact, be applicable to other III-As systems such Al etching of AlAs or In

etching of InAs.

Chapter 6, the �nal chapter, is an outline of the conclusions that have been

drawn from the results presented throughout the previous chapters.
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Chapter 2

Background Theory and Methods

2.1 Thermodynamics of GaAs(001) Surfaces

Thin �lm growth, nanostructure fabrication and other surface processes are the

overall result of mass transport at the atomic scale. Surface atoms perform kinetic

processes on heated surfaces, such as di�usion, reaction with another atom or des-

orption from the surface [51]. These processes are typically limited by potential

barriers which are overcome by thermal excitation. To model processes at GaAs

surfaces it is thus essential to use the tools and concepts of kinetics and thermo-

dynamics [52, 53]. Here we will �rst examine thermodynamic aspects of GaAs(001)

surfaces.

The physical system we consider is a semi-in�nite solid under vacuum, i.e., an

in�nite solid sliced in two across the (001) direction. On the surface there are loosely

bound atoms that are free to di�use across the surface. These are called 'adatoms'

(short for adsorbed atoms), which can have di�erent sources. For example, they can

be deposited on the surface (as done in MBE), they can come from the bulk solid

itself by decomposition of the latter, or they can detach from droplets as we will

see in later chapters. Let us now introduce some basic concepts of thermodynamics

that are of use in modeling the GaAs(001) surface.

In MBE growth experiments, surfaces are heated and held at a certain temper-

ature T and under an ambient pressure P . Therefore, the relevant thermodynamic
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potential is the system's Gibbs free energy G, de�ned as

G(T; P ) = U � ST + PV; (2.1)

where U is the system's internal energy, S is the entropy, T is the absolute temper-

ature, P is the pressure, and V is the volume (see, for example Ref. [54]).

Equilibrium con�gurations of the system will then be ones that minimize this

Gibbs free energy. Of fundamental importance is then the concept of chemical

potential �i of a species i in the system, de�ned as

�i � @G

@Ni
jT;P ; (2.2)

that is, the change in the system's free energy upon adding a particle of species i to

the system. The chemical potentials of the species are central quantities in a system

governed by mass transport, as are heated GaAs(001) surfaces; mass will tend to

be transported to regions where the chemical potential is lower, thus providing a

con�guration for the system with lower free energy. As we will see in the follow-

ing chapters, the concept of chemical potential will be utilized frequently modeling

processes at GaAs(001) surfaces.

Having de�ned chemical potential, the free energy G of the system as given by

Eq. (2.1) can be written as

G =
X
i

�iNi; (2.3)

as stated by Euler's relation. The sum spans over all species i in the system, Ni is

the number of molecules of species i, and �i is the chemical potential of species i.

This alternative form of writing the free energy in terms of the chemical potentials

of the constituents will also be useful in the following sections.

Let us now apply the concepts of free energy and chemical potential to the

di�erent constituents of a GaAs(001) surface. We will consider �rst the adatoms

in Section 2.1.1, then Ga droplets on the GaAs(001) surface in Section 2.1.2, and

last the underlying bulk solid in Section 2.1.3. The concepts introduced herein are

preliminary to the notions of kinetics outlined in Section 2.2, and will be used in
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Chapters 4 and 5.

2.1.1 Adatoms on GaAs(001)

In our simpli�ed model system, the species present will be Ga adatoms, As adatoms,

and GaAs 'molecules' making up the solid. Adatoms are losely bound surface atoms

that are free to di�use along the surface. We assume that the growth/decomposition

reaction between the adatoms and the solid is simply

Ga + As ! GaAs; (2.4)

where a Ga adatom reacts with an As adatom to produce solid GaAs, or vice versa,

a GaAs pair belonging to the bulk solid decomposes into a Ga adatom and a As

adatom. In typical MBE growth experiments, the arsenic 
ux impinging the surface

is usually made of As4 (or As2 molecules if an As cracker is used). The chemistry

of these molecules on GaAs(001) surfaces is very complex, especially for the case of

As4 [26{28], as it is unclear what the growth reaction/mechanism consists of. Even

when As2 is used, the growth mechanisms are thought to be non-trivial [24,55]. For

this reason we assume the simplest of possibilities for the growth reaction; a Ga

and an As adatom encounter each other and react to form GaAs as described by

the growth reaction of Eq. (2.4). In modeling growth in Chapters 4 and 5, it is

necessary to �rst consider the chemical potentials of Ga, As, and GaAs, and what

the conditions are for equilibrium between the adatom population and the bulk

crystal.

Consider now that the number of Ga adatoms changes an amount dN by un-

dergoing the growth reaction of Eq. (2.4). Then the amount of As adatoms would

also change by dN , and the amount of GaAs 'molecules' would change by �dN .

According to Eq. (2.3) the change in the system's free energy would be

dG = (�Ga + �As � �GaAs) dN; (2.5)

where �Ga, �As, and �GaAs are the chemical potentials of Ga, As, and GaAs respec-
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tively. The condition for equilibrium between the adatom population and the solid

is minimization of the free energy G, that is dG = 0 or

�Ga + �As = �GaAs: (2.6)

As we will now demonstrate, the adatom chemical potentials are functions of the

adatoms densities, so that Eq. (2.6) is essentially a condition upon the concentra-

tion of Ga and As on the surface. To derive a simple expression for the chemical

potentials, we assume that the adatoms can occupy certain surface sites, and may

di�use across the surface by hopping from one site to the next. The free energy G of

the system will be the free energy of the crystal Gcrystal plus the contribution of the

adatoms. Neglecting adatom-adatom interactions, we can add the contributions of

the Ga and the As adatoms to the free energy independently, so that the system's

free energy is

G = Gcrystal + UGa � SGaT + UAs � SAsT; (2.7)

where UGa and UAs are the energies of the Ga and the As adatoms respectively,

and SGa and SAs are the contributions to the entropy of the Ga and the As adatom

population respectively. The PV terms, (as per the de�nition of Gibbs free energy

in Eq. (2.1)) are irrelevant for the case of adatoms. If there are nGa surface sites for

Ga adatoms, and NGa Ga adatoms, the number of ways to distribute the adatoms

among the sites is nGa!=((nGa � NGa)!NGa!). Therefore, assuming the only source

of entropy is permutations of the adatoms among the allowed sites, we have that

UGa = NGaEGa, and SGa = kln (nGa!=((nGa �NGa)!NGa!), where k is the Boltz-

mann constant and EGa is the energy of binding to the surface of a Ga adatom.

Substituting these expressions (and the analogous ones for As) into Eq. (2.7) we

have

G = Gcrystal+NGaEGa�kT ln
�

nGa!

(nGa �NGa)!NGa!

�
+NAsEAs�kT ln

�
nAs!

(nAs �NAs)!NAs!

�
:

(2.8)

Applying ln
�

nGa!
(nGa�NGa)!NGa!

�
= ln(nGa!) � ln((nGa � NGa)!) � ln(NGa!) and using
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Stirling's approximation 1 we can calculate the chemical potential �Ga = @G=@NGa

by di�erentiating now Eq. (2.8) to get �Ga = EGa + kT ln
�

NGa

nGa�NGa

�
� EGa +

kT ln
�
NGa

nGa

�
as we assume low adatom coverages, i.e., nGa >> NGa. Therefore we

may write

�Ga = EGa + kT ln

�
CGa

�Ga

�
; (2.9)

where CGa is the number of Ga adatoms per unit area, and �Ga is now the number

of sites per unit area, with, of course, an analogous expression applying for As.

Eq. (2.9) is a fundamental equation in this work, and coincides with the expression

in Ref. [56]. It relates adatom chemical potential to adatom concentration, so that

at a given temperature T , the chemical potential is essentially the natural logarithm

of the adatom concentration. For this reason, the terms adatom chemical potential

and adatom concentration are often used interchangeably.

With Eq. (2.9) at hand, we will now consider the concept of adatom concen-

trations in equilibrium with the solid. Setting CGa in terms of �Ga in Eq. (2.9) we

have

CGa = �Gaexp

�
�Ga � EGa

kT

�
: (2.10)

Multiplying by the analogous expression for As, we have

CGaCAs = �Ga�Asexp

�
�Ga + �As � EGa � EAs

kT

�
: (2.11)

Now, the adatom population will be in equilibrium with the solid when Eq. (2.6) is

satis�ed. Therefore, the adatom concentration product CGaCAs of equilibrium with

the solid is

(CGaCAs)eq = �Ga�Asexp

�
�GaAs � EGa � EAs

kT

�
: (2.12)

Note that the (CGaCAs)eq is a property of the solid via the chemical potential �GaAs,

so that a high �GaAs implies a high (CGaCAs)eq. It is also interesting that the

quantity of equilibrium is in particular the product of the Ga and As densities, so

that multiplying one by a factor � implies dividing the other by a factor � in order

to maintain equilibrium. This is consistent with the fact that, as we will see in

1ln(x!) � xln(x)� x for large x

11



Section 2.2, CGaCAs is proportional to the rate of reaction of Ga and As reaction

to form GaAs, and equilibrium means that the rate of reaction equals the rate of

decomposition of the solid.

2.1.2 Thermodynamics of Ga Droplets

In Chapter 5 we will consider Ga droplets under As 
ux, and hence growth at

the liquid-solid interface between a Ga droplet and solid GaAs. Therefore, in this

subsection we will consider the chemical potentials �Ga and �As in a Ga:As alloy,

and how these depend on the As mole fraction xAs. These concepts are explained

in great detail Chapter 3 of Ref. [52]. Here we will give only the basic concepts.

The free energy of an alloy with 2 components is of the form G = G(T; P;N1; N2),

where N1 and N2 are the number of atoms of either component of the alloy. From

this, the free energy per atom of the alloy can be de�ned as

g(T; P; x) =
G(T; P;N1; N2)

N1 +N2
: (2.13)

It can be shown that this g depends upon N1 and N2 only through the molar fraction

x of either of the components, i.e., x1 = N1=(N1+N2) or x2 = N2=(N1 +N2). Note

that x1 and x2 are not independent, as x1+x2 = 1. From here on we will concentrate

on the case of the liquid Ga:As alloy but any of the following expressions apply to

any alloy having two components. We also choose to consider the mole fraction

for As, xAs, as an independent variable, given that As will be considered the solute

inside the Ga solvent.

The free energy per atom g in Eq. (2.13) can be expressed as

g = (1� xAs) g
l
Ga + xAs g

l
As + gmix; (2.14)

where g lGa and g lAs are the free energy of formation of pure liquid Ga and pure

liquid As, respectively, and gmix is the extra free energy per atom, associated with

the mixing. If the Ga:As alloy were an ideal system, i.e., one in which unlike atoms

interact with each other in the same way as like atoms do with each other, then gmix
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would be simply gmix = �Tsmix, where smix is simply the con�gurational entropy

of distributing NAs atoms amongst NGa+NAs sites. This entropy of mixing is then

smix = kln [(NGa +NAs)!=(NGa!NAs!)], or, using Stirling's approximation

smix = �k [(1� xAs) ln (1� xAs) + xAsln(xAs)] : (2.15)

However, in a Ga:As alloy, dissimilar components do not interact with each other

in the same way as similar atoms do, and so the free energy of mixing gmix has

additional contributions to that of the con�gurational entropy, and is expressed as

gmix = kT [(1� xAs) ln (1� xAs) + xAsln(xAs)] + xAs(1� xAs)P (xAs): (2.16)

The extra term xAs(1�xAs)P (xAs) contains these contributions; the xAs(1�xAs) fac-

tor ensures the term is zero when there is no mixing, and P (xAs) is a semi-empirical

polynomial (known as the Redlich-Kister polynomial [57]) whose coe�cients are

obtained by �tting to experimental data. These coe�cients are available in the

database of Ref. [58].

Knowing the free energy per atom g = g(T; P; xAs) of the alloy phase, the chemi-

cal potentials of both components can be computed. Using the de�nition of chemical

potential (Eq. (2.2)) and the de�nition of the molar free energy (Eq. (2.13)) we may

write �As = @G=@NAs = @=@NAs [(NGa +NAs)g] = g + (NGa + NAs)@g=@xAs and

therefore

�As = g + (1� xAs)
@g

@xAs
; (2.17)

and, analogously for Ga

�Ga = g � xAs
@g

@xAs
: (2.18)

This method of calculating the chemical potentials is called the 'tangent' construc-

tion for the following reason: the equation of the tangent to g(xAs) at xAs is TxAs(x) =

g(xAs)+(x�xAs)@g=@xAs, and so, the chemical potentials are �Ga(xAs) = TxAs(x = 0)

and �As(xAs) = TxAs(x = 1), i.e., the intercepts of the tangent line at xAs with the

xAs = 0 and xAs = 1 lines. This is shown schematically in Fig. 2.1
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Figure 2.1: Schematic diagram explaining the 'tangent construction' for the chemical
potentials �Ga and �As in the Ga:As alloy. The blue curved line represents the free
energy g(xAs) per atom of the alloy as a function of xAs. The red dashed line is the
tangent to the g(xAs) curve at a certain As mole fraction value x0As. As is indicated
on the diagram, the Ga and As chemical potentials �Ga(x

0
As) and �As(x

0
As) for x

0
As

are the values at which the tangent line crosses the xAs = 0 and xAs = 1 axes,
respectively.

Substituting the expression for the free energy per atom of Eq. (2.13) into

Eq. (2.18) and Eq. (2.17) (taking into consideration the form of gmix in Eq. (2.16))

yields

�As = glAs + kT ln(xAs) + (1� xAs)
2P (xAs) + xAs(1� xAs)

2P 0(xAs) (2.19)

and

�Ga = glGa + kT ln(1� xAs) + x2AsP (xAs)� x2As(1� xAs)P
0(xAs): (2.20)

Note in Eq. (2.19) and Eq. (2.20) the logarithmic dependence of the chemical po-

tentials with concentration (ignoring the terms containing the Redlich-Kister poly-

nomial P (xAs)), similar to what was obtained for the adatom chemical potential in

Eq. (2.9), and re
ecting the contribution of con�gurational entropy to the chemical

potential.

Knowing how the chemical potentials �Ga and �As depend upon the As mole
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fraction xAs in the liquid, it is now natural to ask what value of xAs is that of

equilibrium with the solid. In analogy to the case of the adatoms, we assume that

the growth reaction at the liquid-solid interface is simply the reaction of an As atom

dissolved in the liquid with a Ga liquid atom at a GaAs lattice site, as described by

Eq. (2.4). Therefore, the arsenic mole fraction, xeqAs, of equilibrium with the solid

will be the one that satis�es �Ga+�As = �GaAs, with �Ga and �As given by Eq. (2.19)

and Eq. (2.20).

The value of xeqAs turns out to be very small at all temperatures; for T = 600�C,

xeqAs it is only 0.18%. For this reason, it is useful to approximate Eq. (2.19) and

Eq. (2.20) for small xAs to obtain simply

�As = glAs + kT ln(xAs) + P (0) (2.21)

and

�Ga = glGa; (2.22)

where �As is e�ectively the natural logarithm of xAs, and �Ga equals the free energy

per atom of pure liquidus Ga, and is therefore independent of xAs. With Eq. (2.21)

and Eq. (2.22) at hand, we can obtain an approximate expression for xeqAs by solving

�Ga + �As = �GaAs to get

xeqAs = exp

�
�GaAs � glGa � glAs � P (0)

kT

�
: (2.23)

As can be observed, it is somewhat analogous to the expression of the adatom

concentration product of equilibrium with the solid (Eq. (2.12)). Both relations

express equilibrium concentrations as a property of the solid via the exponential

of the crystal chemical potential �GaAs. This expression will be of fundamental

importance in modeling the drilling of Ga droplets into solid GaAs (Chapter 5).
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2.1.3 Thermodynamics of the Bulk GaAs Crystal at its Sur-

face

Having analyzed the thermodynamics of adatoms and of liquid Ga droplets, it is

now the thermodynamics of the bulk GaAs crystal that is left to consider. The

basic quantity to consider is the change in free energy when adding a Ga-As pair to

the solid, i.e., the crystal chemical potential �GaAs. To �rst approximation, �GaAs is

simply the free energy of formation of solid GaAs per unit cell, that is, �GaAs = gGaAs.

However, in some contexts (as in Chapter 5) it is important to take into account

the surface free energy per unit surface area 
(n), which generally depends on the

orientation of the surface n (the unit normal), as it is at the crystal surface where

the Ga and As atoms attach to the solid. Let us now consider the surface excess

chemical potential, ��GaAs, associated to the surface free energy 
(n).

The surface free energy of a crystal is the integral
R

(n)dS, extending across

the whole surface of the crystal. Then the change in surface free energy upon adding

an in�nitesimal crystal hump at a point on the surface is [59]

�

Z

 dS =

Z
�
 dS0 +

Z

� dS; (2.24)

where dS0 is the area element of the original surface and dS0 + �dS is the area

element of the �nal surface, and �
 is related to the change in surface orientation

upon adding the hump. It is shown in Ref. [59] that the �rst and second terms of

Eq. (2.24) are Z
�
 dS0 =

�
@2


@n2
x

:
1

Rx
+
@2


@n2
y

:
1

Ry

�
�v (2.25)

and Z

�dS = 


�
1

Rx
+

1

Ry

�
�v; (2.26)

where �v is the change in volume of the hump, 1=Rx and 1=Ry are the principal

curvatures in two perpendicular directions (the x and y axes of the tangent plane

at the point in question), and nx and ny are the projections of the variable vector n

on the x and y directions of the tangent plane. The contribution of the surface free

energy 
(n) to the GaAs crystal chemical potential is usually given in more general
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tensor notation [60{62], i.e.

��GaAs = 
GaAs

�

(n)�+

@2
(n)

@n2
:�

�
; (2.27)

where 
GaAs is the volume of a primitive cell of GaAs, � is the surface curvature

tensor, de�ned as � = �rSn (where n is the outward pointing unit normal and

rS is the surface gradient), � is the trace of the curvature tensor, and @2

@n2

:� is the

scalar contraction of @2
=@n2 and �.

In Chapter 5, however, we will only consider the case of isotropic surface energy


(n) = 
 for simplicity. This simpli�es Eq. (2.27) to just

��GaAs = 
GaAs
�: (2.28)

If the surface is also subjected to a �nite pressure p, the change in volume term in

the Gibbs free energy (see Eq. (2.1)) upon raising the hump is p�v, and so ��GaAs

will contain a term p
GaAs [62]. The total crystal chemical potential �GaAs is then

the bulk plus the surface contributions, that is

�GaAs = gGaAs +��GaAs = gGaAs + 
GaAs (
�+ p) (2.29)

We will use Eq. (2.29) in Chapter 5 in modeling the drilling of Ga droplets into

solid GaAs. In particular, note that substituting Eq. (2.29) into Eq. (2.23) gives

an equilibrium As mole fraction �eqAs that depends on position. This is essential in

producing the nanohole morphologies that are shown in Chapter 5.

2.2 Kinetics at GaAs(001) Surfaces

Having reviewed the thermodynamic concepts and quantities associated to GaAs

surfaces, we now turn to the kinetic aspects of processes occurring at these surfaces.

The nano and atomic-scale details of growth and other processes such as evaporation

are known to be of considerable complexity. These include attachment and detach-

ment of adatoms at surface steps [56], nucleation of new terraces [63], di�usion [39],
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desorption [38] etc. It is out of the scope of this thesis to model the kinetics of

GaAs surfaces so as to include each and every phenomenon involved in a given pro-

cess (such as growth). Rather, we formulate simple kinetic models that encapsulate

the major features of the ongoing processes, and that produce su�ciently satisfying

results within a self-consistent framework.

In Chapter 3, as we will see, we simply measure (as a function of the sam-

ple temperature T ) the rates of the main processes observed in our LEEM videos,

such as the velocity v of the evaporating steps, and then �t these to Arrhenius

temperature-dependences, i.e., v = v0 exp(�E=kT ) where v0 is a pre-factor, E is

an energy barrier, and k is the Boltzmann constant. Then the �tted rates of the

main processes are fed into a Monte Carlo simulation code whose outcome is then

compared to experiment without delving into the physics of the ongoing rate pro-

cesses. In Chapter 4, however, we consider a basic reaction-di�usion model for the

Ga detaching from a Ga droplet and reacting with an incoming As 
ux. We uti-

lize the simple concepts explained above in Section 2.1.1 to model the collective

reaction-di�usion process performed by surface Ga as it reacts with the As being

deposited and more Ga is supplied by the droplets. As we will see, the model pro-

duces Ga adatom chemical potential gradients �Ga = �Ga(r) from the droplet edge,

that serve to explain surface phase patterns observed experimentally. In Chapter 5

we model the net mass exchange between the solid with chemical potential �GaAs as

per Eq. (2.29), and the Ga droplet and adatom population. As we will see, di�erent

points on the surface will have di�erent growth rates, producing non-trivial surface

morphologies as the Ga droplet and surface are subjected to the As 
ux. In this

section we will explain the origin of the kinetic concepts used in Chapters 4 and 5.

Let us assume a GaAs(001) surface, in some instances with nano/microscale Ga

droplets (of radii 0:1�m ! 1�m) distributed across it. In general the surface will

be subjected to an As 
ux, FAs, which is the number of As atoms that arrive at the

surface per unit surface area and time. In pratice, it is well known that As 
uxes in

MBE are usually dimers (As2) or tetramers (As4), in most cases the latter. However,

the chemistry of As molecules on a GaAs(001) surface is relatively complex [26{28],
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so we will assume, for the sake of simplicity, that As is present on the surface in the

form of monomers, and we will consider an As monomer 
ux FAs per unit area and

time. We consider Ga and As adatoms on the surface, as explained in Section 2.1.1.

These are supplied by the Ga droplets, the As 
ux, and the bulk solid. The adatoms

may di�use, attach to a droplet, evaporate into the vacuum or react to form GaAs.

Each of these kinetic processes occurs at a certain rate, and it is the combined e�ect

of these rate processes what produces an overall mechanism of interest, such as the

surface phase boundary dynamics which we will explore in Chapter 4, or the the

nanohole drilling which we will study in Chapter 5. It is therefore important to

consider the rates of each of these kinetic processes, as we will do in the following.

We consider Ga and As adatoms are present on the surface at concentrations

CGa and CAs (i.e., number of adatoms per unit surface area). These can, of course,

vary spatially (for example, with distance to a droplet), and in time (when open-

ing/closing the As 
ux). We will now consider the rates of the di�erent processes

for a generic adatom (Ga or As).

� Adatom desorption Starting with desorption, it is usually considered that

an adatom will desorb from the surface at a rate (or with probability per unit

time) kd. Desorption being a thermally activated process, its rate will depend

upon temperature T according to the Arrhenius relation kd = fexp(�Ed=kT ),

where f is the attempt frequency (of the order of atomic frequency of vi-

bration), and exp(�Ed=kT ) is the fraction of times the attempts to desorb

'succeed'. Ed is the potential barrier to be overcome by the adatom in or-

der to detach from the surface (also called the 'activation energy'), k is the

Boltzmann constant, and T is the absolute temperature. The Arrhenius factor

exp(�Ed=kT ) is a growing function of temperature. This can be interpreted

as that the activation energy is more easily overcome by thermal excitation

as the sample temperature is increased. If we now consider the total rate of

adatom evaporation per unit area from a surface, this will be kdC, where C is

the adatom concentration. It can easily be shown that the average lifetime � of

an adatom before desorption from the surface relates to kd simply as kd = 1=� ,
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and so we have that the rate of evaporation per unit surface area is

C

�
; (2.30)

as is frequently seen in the literature.

� Adatom Di�usion Similarly, an adatom may 'hop' to a neighbouring lat-

tice site with a frequency kdiff . As in the case of evaporation, di�usion is a

thermally activated process and its frequency is assumed to have an Arrhenius

temperature-dependence, i.e., kdiff = fdiffexp(�Ediff=kT ), where fdiff is the

attempt frequency, and Ediff is the activation energy. It can be shown [64]

that the mean square displacement hr2i after a time t of an atom that di�uses

randomly along the surface hopping at a rate kdiff is hr2i = l2kdiff t, where l is

the distance between neighboring sites. From this expression the tracer di�u-

sion coe�cient D� is de�ned, as D� = l2kdiff=4, so that hr2i = 4D�t. Parallel

to this random walk concept of di�usion is the macroscopic version, which is

expressed by Fick's law. It states that given an adatom concentration gradient

rC, there will be a net adatom di�usion current J so as to homogenize the

adatom concentration and proportional to the concentration gradient, i.e.,

J = �DrC: (2.31)

This expression is Fick's Law, and it de�nes the macroscopic or chemical dif-

fusion coe�cient D. The number of adatoms per unit time di�using through a

length element ds in the direction pointed by ds (ds pointing perpendicularly

to the line element ds) is then the dot product J:ds. It can be shown that

for low adatom coverages, i.e. low number of adatoms relative to the number

of lattice sites (as we assume throughout), the tracer and the chemical dif-

fusion coe�cients are equal, i.e., D = D�. Therefore, the chemical di�usion

coe�cient D from Fick's law will e�ectively have an Arrhenius temperature-

dependence D = D0 exp (�Ediff=kT ), where D0 = l2�diff=4 and Ediff is the

activation energy for hopping from one site to a neighbor site. In Chapters 4
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and 5 we consider continuum models for adatoms and the GaAs(001) surface,

and so we will employ Fick's law of di�usion as per Eq. (2.31).

� Adatom Reaction (GaAs growth) Probably the most relevant kinetic pro-

cess of all is that of GaAs growth. As mentioned earlier, crystal growth is a

rather complex matter, and several mechanisms such as island nucleation and

adatom attachment to steps may be at play all at once. Here we simply as-

sume that growth occurs as a consequence of the encounter and reaction of a

Ga atom and an As atom at a lattice site, to form a GaAs 'molecule' at the

surface, i.e., Ga + As ! GaAs. The frequency of encounters of a Ga and a

As adatom at given site will be proportional to the product of the adatom

concentrations CGaCAs. The total number of reactions per unit area and time

is thus

krCGaCAs; (2.32)

where kr is a non-trivial, temperature-dependent reaction rate constant con-

taining the density of sites for reaction.

Eq. (2.32) gives the rate of reaction of Ga and As to form GaAs. However, we

are interested in the net rate of GaAs growth. Therefore we must take into

account the rate at which the bulk solid decomposes into Ga and As adatoms,

i.e., GaAs! Ga+As, and subtract it from Eq. (2.32). The net rate of growth,

Rgr, is thus

Rgr = krCGaCAs �Rdec; (2.33)

where Rdec is the rate of GaAs decomposition. Writing the adatom concentra-

tions of Eq. (2.33) in terms of chemical potential, as per Eq. (2.9) we get

Rgr = kr�Ga�As exp

�
�Ga + �As � EGa � EAs

kT

�
�Rdec: (2.34)

In such a way as the rate of the Ga + As! GaAs reaction depends upon the

adatom chemical potentials �Ga and �As, the rate of the backward reaction

GaAs ! Ga + As should depend upon the crystal chemical potential �GaAs.
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Applying what is known as the principle of detailed balance, which essentially

states that in equilibrium, the net rate of the process ought to be zero, we

have that when the adatom population is in equilibrium with the solid, i.e.,

when �Ga+�As = �GaAs, then S = 0. Substituting these into Eq. (2.34) yields

Rdec = kr�Ga�As exp

�
�GaAs � EGa � EAs

kT

�
: (2.35)

We can then write the net rate of growth of Eq. (2.34) as

Rgr = kr�Ga�As

�
exp

�
�Ga + �As � EGa � EAs

kT

�
� exp

�
�GaAs � EGa � EAs

kT

��
:

(2.36)

We can also write Eq. (2.36) in terms of adatom concentrations as

Rgr = kr

h
CGaCAs � (CGaCAs)eq

i
; (2.37)

where we recall the expression for the equilibrium product of adatom concen-

trations (CGaCAs)eq of Eq. (2.12). These expressions for the net rate of GaAs

growth will be employed in Chapters 4 and 5 to model the motion of surface

phase boundaries on GaAs(001) and the evolution of the GaAs(001) surface

during droplet etching, respectively.

� GaAs growth at the Ga liquid/GaAs solid interface Similarly, we may

derive an analogous expression for growth at the liquid-solid interface of a

Ga droplet and the GaAs(001) substrate. Given the low As content in a Ga

droplet, the frequency with which an As atom dissolved in the droplet will

arrive upon a lattice site at the interface will simply be proportional to be

As content xAs. At that point the As atom is able to react with one of the

numerous Ga atoms surrounding it to form solid GaAs, as per Ga + As !
GaAs. Similarly, the GaAs substrate may dissolve into Ga and As a per

GaAs! Ga + As. Reasoning analogously as for the case of the adatoms, the
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net rate of the forward (growth) reaction per unit surface area will be

Rgr = kl (xAs � xeqAs) ; (2.38)

where kl is a rate constant, and x
eq
As is the As mole fraction of equilibrium with

the solid, as given by Eq. (2.23). This expression will be of use in modeling

the dynamics of droplet etching in Chapter 5.

� Continuity equations for adatoms on GaAs Here we will now derive

a mass balance or continuity equation for adatoms undergoing the above-

explained processes of di�usion, desorption and reaction. We will consider

Ga adatoms, but the same concepts apply to As. If we consider a region of

the surface contained within a closed loop with length element ds (outward

pointing), the net rate of change of Ga atoms within the loop will be given by

d

dt

Z
CGadA = �

Z
J:ds+

Z �
�kr [CGaCAs + (CGaCAs)eq]� CGa

�Ga
+ FGa

�
dA;

(2.39)

where dA is the surface area element enclosed within the loop, J is the Ga

adatom current given by J = �DGarCGa, and FGa is the Ga 
ux arriving upon

the surface (number of atoms per unit area and time). The
R
J:ds accounts

for Ga adatoms di�using out of the loop, and the rest of terms within the area

integral account for the Ga adatoms being lost by reaction with As, desorption

from the surface, and those being adsorbed on the surface by the incoming 
ux.

Applying the divergence theorem to the closed loop integral
R
J:ds we have

� R J:ds = R
DGar2CGadA, and pulling the time derivative on the left hand

side inside the integral, we have

Z
@CGa

@t
dA =

Z �
DGar2CGa � kr [CGaCAs + (CGaCAs)eq]� CGa

�Ga
+ FGa

�
dA:

(2.40)

As Eq. (2.40) applies for any closed loop, we ought to have

@CGa

@t
= DGar2CGa � kr [CGaCAs + (CGaCAs)eq]� CGa

�Ga
+ FGa: (2.41)
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Eq. (2.41) is the mass balance equation for surface Ga. We will use it in

Chapter 4 to describe phase boundary dynamics on GaAs(001) in the vicinity

of a Ga droplet. Usually during droplet epitaxy, no Ga 
ux is used FGa = 0

and the temperatures are low enough (300 � 500�C) to make evaporation of

Ga negligible, i.e., CGa=�Ga � 0. This leaves

@CGa

@t
= DGar2CGa � kr [CGaCAs + (CGaCAs)eq] ; (2.42)

for standard droplet epitaxy experiments.

� Ga adatom attachment and detachment from a Ga droplet

Last but not least we must consider Ga exchange between a droplet and the

adatom population. Ga adatoms di�using along the GaAs(001) surface may

encounter a Ga droplet and attach to it at the droplet contact line, thereby

becoming part of the Ga droplet. If we consider a length element of the contact

line, the frequency of Ga adatoms making contact with the droplet at that line

element will be proportional to the Ga adatom concentration CGa. Therefore,

the rate of Ga adatom attachment to a droplet, per unit contact line length is

kD CGa; (2.43)

where kD is a temperature-dependent rate constant. Again, we are interested

in the net rate of Ga attachment to the droplet, so we must consider the rate

at which Ga from the droplet detaches from the contact line and becomes

Ga adatoms. Applying again the principle of detailed balance, analogously as

done previously with GaAs growth in Eq. (2.33), we get that the net rate of

Ga attachment to a Ga droplet (per unit contact line length) is

kD
�
CGa � C l

Ga

�
; (2.44)

where C l
Ga is the Ga adatom concentration of equilibrium with liquid Ga, i.e.,

the adatom concentration that makes the adatom chemical potential �Ga equal

24



the chemical potential of Ga in the droplet. Using the relation between adatom

chemical potential and adatom concentration of Eq. (2.10), C l
Ga writes

C l
Ga = �Gaexp

�
glGa � EGa

kT

�
; (2.45)

where we assume that the chemical potential of Ga in the droplet is simply the

free energy per atom of formation pure liquidus Ga glGa, as done previously in

Eq. (2.22), and in line with the assumption of low As solubility in Ga droplets.

As we will see in Chapter 4, the above-explained concepts of Ga attachment-

detachment at the droplet contact line will serve to set a boundary condi-

tion for the reaction-di�usion governing the Ga adatoms on the surface (see

Eq. (2.42)). Arsenic exchange between the droplets and the surface is ne-

glected because of the low As content in Ga droplets and to the short di�usion

length of As adatoms at temperature above 300�C (due to the short residence

time �As before desorption above these temperatures).

2.3 GaAs(001) Surface Phases and their Stability

Understanding the structure of GaAs(001) surfaces is paramount in investigating

the mechanisms of epitaxial growth [65]. Therefore, a lot of e�ort has been devoted

to investigating the atomic structure of these surfaces under UHV conditions [1, 2,

29, 66{76]. By means of in situ di�raction techniques such as RHEED, GaAs(001)

surfaces have been observed to display a variety of periodicities at the atomic scale.

Let us now consider the origin of these surface periodicities.

A nominal (001) surface, as shown in Fig. 2.2, be it As terminated or Ga ter-

minated will have 'dangling' bonds, i.e., the uppermost atoms will be left with

unsaturated bonds. Such con�gurations are energetically unfavorable. Surfaces can

thus present atomic con�gurations di�erent to that corresponding to the bulk solid,

in which the unsaturated bonds are �lled as best as possible. Such structures are

called surface reconstructions or surface phases, and the surface will generally exhibit

the reconstruction that minimizes the system's free energy. However, the stability
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Figure 2.2: Schematic diagram of a GaAs crystal. As can be seen, it can be viewed
as a sequence of Ga and As layers along the (001) direction. The atoms of the
uppermost layer are left with two dangling bonds each. Reprinted from Ref. [1]

.

of the surface phases generally depends upon the experimental conditions (T and

ambient stoichiometry), so under di�erent conditions, minimized free energy may be

reached by a di�erent reconstruction. It is then usual to observe phase transitions

upon changing the conditions in the growth chamber.

The reconstruction the surface presents is of critical importance to crystal growth,

as the growth mechanism will be completely di�erent on two di�erent reconstruc-

tions [65]. Under the conditions in which MBE growth of GaAs(001) is usually

performed (T � 580�C and high As to Ga 
ux ratios) the surface exhibits the

(2 � 4) reconstruction, but there are many other reconstructions of the GaAs(001)

surface. Chapters 3 and 4 present experimental and theoretical work on the sta-

bility of the di�erent phases of GaAs(001). In this section we will introduce the

most relevant surface phases of the GaAs(001) surface and we will elaborate on the

concept of surface phase stability.

Surface phases are usually named after their periodicity relative to that of the

bulk crystal [77]. The (2�4) reconstruction is named in such a way because the unit
cell of the surface lattice is 4 times larger than the periodicity of the underlying bulk

lattice in the [1 1 0] direction, and 2 times larger than the underlying bulk periodicity

in the [1 1 0] diretion (which is perpendicular to the [1 1 0] direction). [77]. Fig. 2.3

shows a schematic of the atomistic details of the �2(2� 4) model. There are more

models of the (2 � 4) reconstruction (hence the �2 pre�x), but the �2(2 � 4) is

26



Figure 2.3: Schematic diagrams of the �2(2�4) model reconstruction. a) is a birds-
eye view of the surface, while b) is a cross-section with the [1 -1 0] direction pointing
into the page. The dark circles represent As atoms, while the light circles represent
Ga atoms. Reprinted from Ref. [1].

the best accepted of them all. Fig. 2.3a) shows a bird's eye view of the surface,

with the (2 � 4) unit cell marked on it, while Fig. 2.3b) shows a pro�le of the

surface along the [1 1 0] direction. As can be seen, the major characteristics of the

�2(2� 4) reconstruction are, �rstly, that it is an As-terminated surface. Second, it

has monolayer-deep trenches along the [1 1 0] direction of the surface, and, thirdly,

the As rows in the trenches and upon the crests dimerize along the [1 1 0] in order

to saturate the dangling bonds. As mentioned earlier, this reconstruction is of

great technological importance, as it is the one that is usually prepared for MBE

homoepitaxy on GaAs(001). There are however many more reconstructions of the

GaAs(001) surface. Probably the best-known ones are the As-rich c(4� 4) and the

Ga-rich c(8� 2) phases.

At standard growth temperatures (T � 580�C), the (2 � 4) reconstruction can

generally be seen under As-
ux. However, in the absence of 
ux, it is usually the

c(8� 2) phase that is present at such temperatures [4]. This manifests clearly that

phase stability on GaAs(001) depends upon the Ga-As ambient stoichiometry in

the growth chamber. This phenomenon is explained within the context of surface

thermodynamics and phase diagrams. Now we will explain the basic elements of

phase stability of GaAs(001). A more detailed explanation can be found in Ref. [78].

Let us consider a GaAs(001) slab in contact with reservoirs of Ga and As at

chemical potentials �Ga and �As respectively. In practice these reservoirs can be
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thought of as the ambient vapour in the chamber. The fact that they are reservoirs

means that they can exchange Ga and As atoms with the slab without the reservoir

chemical potentials being a�ected. Let us suppose that the GaAs slab presents a

certain reconstruction that we take as a reference reconstruction (say the �2(2� 4)

reconstruction for instance). The free energy of the system G is then the free energy

of the slab plus the free energy of the reservoirs, that is

G = Gslab +N res
Ga �Ga +N res

As �As; (2.46)

where N res
Ga and N res

As are the (very large) number of Ga and As atoms contained in

either reservoir.

Let us consider now that we take �NGa Ga atoms from the Ga reservoir, as well

as �NAs atoms from the As reservoir and place them on the surface to produce a

di�erent reconstruction (say the c(8�2) reconstruction). The change in the system's
free energy will thus be

�G = �Gslab ��NGa �Ga ��NAs �As: (2.47)

This equation enables us to analyze the relative stability of either phase for given

ambient conditions, i.e., given �Ga and �As. If �G < 0 then the new phase is the

more stable one of the two, and if �G > 0 then the original phase is the more

stable one of the two. However, such conditions may change for di�erent values of

the ambient chemical potentials �Ga and �As. For simplicity we assume that the

reservoirs are in equilibrium with the bulk GaAs crystal, i.e., �Ga + �As = gGaAs,

where gGaAs is the free energy of formation per unit cell of bulk GaAs. This leaves

only one free parameter (�Ga for instance). Substituting the equilibrium condition

into Eq. (2.47) yields

�G = �Gslab ��NAs gGaAs + (�NAs ��NGa)�Ga: (2.48)

Therefore, knowing �Gslab, gGaAs and the di�erence in stoichiometry �NGa and

�NAs between either phase, Eq. (2.48) provides and indicator of the relative stability
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of either phases, as a function of ambient �Ga. In practice Eq. (2.48) is used per

unit surface area, so that �G and �Gslab are free energies per unit area, and �NGa

and �NAs number of atoms per unit area.

This is exactly the approach taken by researchers of the GaAs(001) reconstruc-

tions. Atomistic models are proposed for the di�erent reconstructions observed

experimentally. One of the reconstructions is usually taken as reference, and the

di�erence in free energy of each reconstruction relative to the reference is computed

via Eq. (2.48). For simplicity, the T -dependence of �Gslab, gGaAs is usually neglected

and total energies are used instead. Those are the di�erence in formation energy

�Eslab per unit area of either slab, and the formation energy EGaAs per unit cell of

bulk GaAs, respectively. This is equivalent to assuming a GaAs(001) at absolute

zero, i.e., at T = 0K. Eq. (2.48) then reads

�G = �Eslab ��NAsEGaAs + (�NAs ��NGa)�Ga: (2.49)

Researchers compute the di�erence in formation energy of either slab �Eslab via

Density Functional Theory (DFT) methods. A �G versus �Ga linear function is then

de�ned for each phase, where �NAs��NGa is the gradient and �Eslab��NAsEGaAs

is the y-intercept. The �G versus �Ga lines may then be plotted on a phase diagram

at T = 0K as that shown in Fig. 2.4.

Phase diagrams like that of Fig. 2.4 provide a clear explanation as to the depen-

dence of the the GaAs(001) surface phases with ambient stoichiometry in the growth

chamber. For given �Ga, the stable reconstruction will be that that minimizes the

free energy �G. Under As-rich conditions, for example at �Ga = �0:6 eV in Fig. 2.4,

the equilibrium phase will be the c(4�4)� reconstruction. As �Ga is increased, there

comes a point where the c(4�4)� line crosses the �2(2�4), and the latter becomes

the stable phase. Experimentally, one would observe a phase transition upon reach-

ing this crossover point. As �Ga is increased further, �rst c(8 � 2) becomes the

equilibrium phase and eventually the (4 � 6) phase does so. As can be observed,

the stable phases at higher �Ga have a more negative gradient �NAs��NGa on the

phase diagram, i.e, Ga-richer ambient conditions favor Ga-richer reconstructions,
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Figure 2.4: DFT-calculated surface phase diagram plotting free energy �G ver-
sus ambient Ga chemical potential �Ga for four important reconstructions of the
GaAs(001) surface at T = 0K. �Gs are with respect to the �2(2 � 4) surface and
are computed per unit (1� 1) cell. This has been adapted from Ref. [2].

and As-richer conditions favor As-richer reconstructions.

The transition from c(8 � 2) to �2(2 � 4) upon opening the As 
ux to prepare

the surface for growth can now be explained. At growth temperatures (T � 580�C),

As evaporates readily from the surface, i.e., the lifetime before desorption �As for

As adatoms is a lot smaller than the lifetime before desorption �Ga for Ga adatoms.

This leaves behind a Ga-rich adatom population on the GaAs surface, i.e., a high

ambient �Ga. For this reason the Ga-rich c(8 � 2) surface is observed at these

temperatures. However, on turning on the As 
ux the As adatom population on the

GaAs surface increases and hence �As increases. The numerous As adatoms react

with the Ga adatoms and hence the Ga density decreases. The ambient �Ga is hence

decreased, which takes us to the left on the phase diagram of Fig. (2.4). Under these

As-richer (or Ga-poorer) conditions the �2(2 � 4) reconstruction becomes the one

that minimizes the free energy, and is hence the equilibrium reconstruction for these

conditions.

In summary, phase stability on the GaAs(001) surface depends upon the ambi-

ent stoichiometry to which the surface is exposed to. Ga-rich phases are observed

under Ga-rich conditions and As-rich phases are seen under As-rich conditions. Con-

cretely, the stable phase is the one that minimizes the system's free energy for given
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conditions. The e�ects of �nite temperature such as con�gurational entropy or vi-

brational modes of the di�erent reconstructions are neglected in DFT computations,

and therefore phase diagrams describe surfaces at T = 0K. Interestingly, in Chapter

3 we will explain our �ndings of a novel phenomenon where, using LEEM, we observe

metastable domains of a (6�6) phase aside the stable c(8�2) phase on heating the

GaAs(001) surface under vacuum above � 580�C, where we would expect to see the

c(8� 2) reconstruction only. As we will see, this is due to the fact that evaporation

of GaAs(001) into the vacuum becomes important at these temperatures. Addi-

tionally, we will see in Chapter 4 how �nite temperature (entropic) e�ects do a�ect

the GaAs(001) phase diagram, and we superimpose the lines of (6� 6) and (3� 6)

phases given some interesting experimental results in our LEEM-MBE system.

2.4 Experimental Methods

In this section we will introduce the main experimental techniques that were used

in this work. The key experiments were performed in an ultrahigh-vacuum (UHV)

low energy electron microscope (LEEM), especially modi�ed for III-V MBE. We

will �rst explain the basic general principles of the LEEM technique. Then we will

introduce the components of our LEEM-MBE system. After this we will explain

our method for planarizing the GaAs(001) surface before observing it with LEEM.

Last we will explain a novel technique developed in our laboratory that exploits so

called 'dark-�eld' imaging to spatially resolve and identify regions of the GaAs(001)

surface exhibiting di�erent surface reconstructions. This technique is the essence of

the experimental results of Chapters 3 and 4.

2.4.1 The LEEM Technique

Low energy electron microscopy (LEEM) is a technique that is highly suited for

surface science of electrically conducting crystals under growth conditions. In this

Section we will review the basic concepts of the LEEM principle and how these make

the unique characteristics of the technique. More detail can be found in Ref. [3].

In LEEM, electron emission is stimulated by a coherent, monoenergetic electron
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beam that is incident on the surface at normal angle. This beam is originated

by an electron gun and is accelerated to the microscope potential (typically around

15! 20 keV). Before impinging upon the sample, the electron beam is collimated by

a series of apertures and lenses in the illumination column. It then passes through

the beam separator. This component contains a magnetic �eld that de
ects the

beam and directs it toward the sample. The beam is then focused to a point on the

back focal plane of the objective lens. In the objective, the beam is focused to a

parallel beam and is de-accelerated to the desired incident energy (typically below 30

eV). According to the curve of electron mean free paths in inorganic compounds [79],

the penetration depth of electrons impinging on the surface at 10 eV is around 20

monolayers. When tuning the electron energy up to 50 eV, the penetration depth

goes as low as � 3:5 monolayers. For higher energies than these, the electron mean

free path rises monotonically. This makes LEEM a surface-sensitive technique. A

schematic diagram summarising the LEEM principle is shown in Fig. 2.5.

The backscattered electrons are then reaccelerated to the microscope potential

and are focused by the objective. In the case of a crystalline sample, electrons will

be di�racted and thus backscattered at speci�c angles. Electrons emitted at the

same angle will be focused to the same point in the back focal plane. This produces

di�raction patterns on the back focal plane. The re
ected beam is de
ected into the

imaging column by the beam separator and, after passing through a series of lenses

an image is formed after impinging on a microchannel plate image intensi�er and a

phosphor screen.

Either the whole di�raction pattern may be viewed, or one of the di�racted

beams could be selected using a contrast aperture. The former mode would be low

energy electron di�raction (LEED), and the latter would be LEEM imaging. When

the specular or (00) spot is �ltered, the imaging is named bright-�eld imaging, as

this beam tends to be the more intense. However, another of the di�racted beams

may be �ltered instead. This kind of imaging is named dark-�eld imaging, and, as

we will see in Chapters 3 and 4 it is a useful tool to spatially resolve and identify

areas of the surface with di�erent surface structures.
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Figure 2.5: Schematic diagram explaining the LEEM technique. Reprinted from
Ref. [3]

In contrast to the widely practiced scanning electron microscopy (SEM), LEEM

is a non-scanning technique, in which information is obtained simultaneously at

every point in the image. Furthermore, given the low energy of the incident electrons,

the re
ected intensity is very high. This enables the acquisition of real-time in-situ

imaging at video rates, which is probably the trademark characteristic of the LEEM

technique.

LEEM/LEED also o�ers several advantages over the more conventional re
ec-

tion high energy electron di�raction (RHEED) technique for structural analysis of

crystal surfaces during epitaxial growth. In RHEED, a beam of electrons with en-

ergies of around 30 keV is produced by an electron gun and is made to impinge on

the surface at very small angles (typically less than 5�). The electrons then interact

with the surface atoms and are scattered by these, producing a di�raction pattern

upon reaching a phosphor screen located directly opposite the electron gun. While

RHEED is a very useful technique for monitoring growth rates and surface struc-

tures, it can only give averaged-out information of the surface. With LEED, on the

other hand, it is possible to obtain di�raction information of microscale regions of

the surface as contrast apertures of di�erent sizes can be used. Moreover, one can

previously image the surface using LEEM before selecting what region to analyze
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using LEED.

When it comes to contrast, there are basically two kinds. Di�raction contrast

and phase contrast (here the word 'phase' refers to the displacement of two plane

waves that have the same frecuency). Di�raction contrast occurs if di�erent regions

of the surface have di�erent re
ectivities. For example, if there are two phases

present on the surface (this may happen, due to the long range elastic interaction

between phase domains [6]), these may have di�erent re
ectivities, and therefore

a bright-�eld LEEM image would show contrast between regions corresponding to

di�erent phases. Fig. 2.6 is a bright-�eld LEEM image of a GaAs(001) surface under

vacuum. As can be observed there is marked contrast de�ning regions of dark and

light intensities. These regions correspond to the (6�6) and c(8�2) reconstructions
respectively. The (6 � 6) reconstruction decorates the steps, and, as it has a lesser

re
ectivity for the incident electron energy in use, it appears darker than the c(8�2)
regions farther from the steps.

Figure 2.6: Bright-�eld LEEM image of a GaAs(001) surface under vacuum. The
electron energy is 8.6 eV. Two surface phases, the (6�6) and the c(8�2), are present
simultaneously on the surface can be contrasted due to the di�erent re
ectivities of
either phase to the incident electrons.

Phase contrast occurs as a consequence of the interference of electrons re
ected

from the surface with phase shifts relative to one another. For example, step contrast

is a type of phase contrast generated by the interference of electrons re
ected from

either side of an atomic step. These electrons will have a phase shift relative to one

another given the di�erence in path length taken by either of them. For the electron

energies used in LEEM, the wavelength of the electrons will be of the order of the

step height. Therefore by carefully tuning the electron energy, the phase di�erence

and hence the interference of the electrons can be tuned so as to provide sharp step
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contrast. Fig. 2.7 shows a bright �eld image of a GaAs(001) surface under vacuum.

As can be observed, dark lines corresponding to atomic steps can be clearly resolved.

Figure 2.7: Bright-�eld LEEM image of a GaAs(001) surface under vacuum. The
electron energy is 8.6 eV. As can be observed, atomic steps (the dark lines) are
clearly resolved.

Because of the mechanism of step contrast explained above, LEEM is said to have

atomic resolution in the direction perpendicular to the surface. Spatial resolution

in the plane of the surface is not as high, but it can come down to around 5 nm.

Together with the fact that LEEM can be operated at chamber pressures of up to

� 10�6Torr and at sample temperatures up to � 2000�C, LEEM is an optimal tool

to investigate semiconductor and metallic surfaces under growth conditions.

2.4.2 The LEEM-MBE System

LEEM has been used to study many metal surfaces such as molybdenum [80] or

lead [81] as well as semiconductor surfaces (mosty silicon [82]). Our system is an

Elmitec LEEM microscope with MBE e�usion cells incorporated onto it. It was

designed by Prof David Jesson at Monash University and is the only one in the

world that is capable of imaging III-As surfaces under realistic growth conditions.

Fig. 2.8 shows a photograph of our LEEM-MBE system. As can be seen at the

top-right, the electron beam is generated by an electron gun. The beam goes through

the illumination column, and it is redirected � 60� toward the main chamber where

the sample resides. Gallium and arsenic 
uxes can be supplied to the sample by

opening the As cracker source (middle-left) or the Ga source (middle-right). The

electron beam re
ected from the sample is re-directed by the beam separator toward

the imaging column, and the image formed is recorded by the CCD camera located
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at the end of the imaging column.

Figure 2.8: Top view of our LEEM-MBE system at Cardi� University.

Important results have been achieved in this system concerning the behaviour of

Ga droplets on heated GaAs(001) surfaces [37, 83], growth mechanisms have been

observed [39] and novel surface phases have been identi�ed [4]. As we will see in

Chapters 3 and 4, unprecedented results concerning novel forms of phase coexistence

have been observed using this system, and controversial issues concerning surface

phase stability have been addressed by experiments in our LEEM-MBE instrument.

2.4.3 Sample Preparation

One important step in investigating the GaAs(001) surface using LEEM is the prepa-

ration of the surface. In conventional MBE systems, a GaAs(001) surface is usually

prepared for subsequent growth experiments by a procedure that follows two steps.

The �rst is to remove the surface oxide by annealing the sample at a moderately

high temperature (around 580�C) for around 2 hours. This, however, leaves a rough

surface with a high density of pits that is unsuitable for further experiments. The

subsequent step is, therefore, the growth of a GaAs bu�er layer, in order to planarise

the surface and prepare it for further growth experiments.

In our LEEM-MBE system we cannot prepare GaAs(001) surfaces following the

standard steps because growing thick layers of GaAs would contaminate the objec-
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tive lens too quickly. Therefore we take a slightly di�erent approach to prepare a

GaAs(001) surface for imaging. After degassing our samples during 24 hours in the

preparation chamber and annealing it at 580�C during 2 hours in the main chamber,

we heat the sample to around 650�C to produce Ga droplets on the surface and let

them run across it [37]. The running droplets leave smooth GaAs(001) trails behind

them as a result of drilling of the droplets into the GaAs solid. Fig. 2.9 shows one

such smooth trail of GaAs(001) that is left behind as the Ga droplet moves to the

left.

Figure 2.9: Bright-�eld LEEM image of a Ga droplet on a GaAs(001) surface. A
rough surface surrounds the droplet except for a smooth trail that is left behind as
the droplet moves. The arrow indicates the direction in which the droplet is moving.

Having used this method of sample preparation consistently through the years,

let us consider each of its steps in physical terms. Firstly, we will address how

Ga droplets are formed when heating the sample. Let us consider now a heated

GaAs(001) surface. At steady state, Ga and As evaporate from the surface at equal

rates. This means that

CGa

�Ga
=
CAs

�As
; (2.50)

where �Ga and �As are the lifetimes of Ga and As adatoms before desorption. Rear-

ranging and introducing the temperature-dependence of the lifetimes gives

CGa

CAs
=
�Ga

�As
=

fAs

fGa
exp

�
EGa;d � EAs;d

kT

�
; (2.51)

where fGa and fAs are the attempt frequencies for desorption of Ga and As re-

spectively, and EGa;d and EAs;d are the activation energies. As arsenic has a higher

barrier for desorption than Ga does, i.e. EAs;d > EGa;d, with increasing T As desorbs
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more readily than Ga. Therefore �Ga=�As increases and hence CGa=CAs increases, as

per Eq. (2.51). This means that the GaAs(001) surface becomes more Ga-rich with

increasing T . Fig. 2.10 shows a plot from Ref. [4] of Ga adatom chemical potential

as a function of T aside the chemical potential �lGa (= glGa) of liquid Ga. At low T ,

the Ga adatom chemical potential lies below that of liquid Ga, i.e., �Ga < �lGa. How-

ever, with the increasingly Ga-rich surface, �Ga approaches �
l
Ga until �Ga = �lGa at a

certain temperature Tc close to 650
�C (see Fig. 2.10). For temperatures higher than

Tc droplets may form on the surface, since �lGa < �Ga, i.e., a Ga adatom as part of

liquid Ga is energetically more favorable than Ga as an adatom. This explains how

droplets may form on the GaAs(001) simply by annealing above Tc under vacuum.

This critical temperature is the maximum temperature for congruent evaporation

of Ga and As from the surface. It thus receives the name of congruent evaporation

temperature of GaAs(001), and lies around � 650�C.

Figure 2.10: Ga chemical potential graph versus temperature T . The brown/orange
line corresponds to the Ga adatom chemical potential �Ga. The dark line corresponds
to the chemical potential of liquid Ga, �lGa. As can be seen �Ga surpasses �lGa at
a certain temperature Tc. Note that �Ga + 4kT is plotted instead of simply �Ga.
This is simply because �Ga in practice contains a contibution of vibrational entropy
of approximately 4k (neglected in Section 2.1.1), which makes �Ga decrease with T
although CGa increases. �Ga+4kT is thus used in order for it to be a better measure
of the Ga adatom concentration CGa. This �gure has been adapted from Ref. [4].

Having understood how droplets form upon annealing GaAs(001) above congru-

ent evaporation temperature Tc, we still ought to understand why they run across
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the surface and leave smooth GaAs(001) trails behind. This is explained in detail

in Ref. [37] but here we will provide a brief explanation.

Initially, the droplet sits on the surface surrounded by a GaAs surface with Ga

adatom chemical potential �Ga de�ned by the Ga and As evaporation kinetics. This

is a symmetric situation in which the droplet will not experience a net force at the

contact line. However, if the droplet is spontaneously displaced to one side by a

thermal 
uctuation, the freshly exposed surface will be at chemical potential �lGa

(the chemical potential of liquidus Ga), given the droplet acts as a reservoir for

Ga. In this situation, the symmetry is broken as the surface Ga chemical potential

will be �Ga on one side, and �lGa on the other. As explained in Section 2.3, the

surface free energy depends upon the ambient chemical potential. Therefore it will

be di�erent on either side of the droplet. On the side toward which the droplet has

moved we denote the surface free energy will by 
, while on the side of the freshly

exposed surface we denote it by 
l. This di�erence in surface free energy on either

side of the droplet gives a net force on the contact line that is given by

F =
�

 � 
l

�
d; (2.52)

where d is the total length of the droplet contact line. If the surface free energy of

the freshly exposed surface is lower than the that of the rest of the surface, i.e., if


 > 
l, then the force F will be in the direction of the displacement, and the droplet

will run across the surface. In Ref. [37] it is shown that this is indeed the case.

Furthermore it is shown that
�

 � 
l

�
= � (T � Tc)

2, where � is a proportionality

constant. Therefore, the force F on the droplet depends on temperature as

F = � (T � Tc)
2 d: (2.53)

Note that F = 0 at T = Tc, as the surface will be at �
l, and thus the general surface

and freshly exposed surface will have the same structure and surface free energy,

i.e., 
 = 
l.

As we will see in Chapter 5, Ga droplets exchange material with the GaAs
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surface beneath them. The droplets then leave behind smooth trails of GaAs(001)

as they run along. Once enough of the surface has been smoothed, the droplets are

made to disappear by lowering T appreciably below Tc. Under these conditions the

surface chemical potential �Ga is below the Ga liquidus chemical potential �lGa (as

can be appreciated in Fig. 2.10) and hence the droplets shed their Ga to the adatom

population, which eventually desorbs into the vacuum. After a few hours (typically

overnight), the microscale Ga droplets have disappeared completely, leaving behind a

GaAs(001) surface with smooth trails on which we perform our LEEM observations.

2.4.4 Surface Phase Discrimination using Selective Energy

Dark Field Techniques

As explained in Section 2.4.1, when observing a crystalline sample in a LEEM in-

strument, electrons will be di�racted and backscattered at speci�c angles. Electrons

emitted at the same angle will be focused to the same point in the back focal plane,

where a di�raction pattern is produced. This technique for di�raction is named low

energy electron di�raction (LEED), and it is widely used in LEEM instruments to

examine the structure of the surface under study given the surface periodicity is

manifested in the di�raction pattern.

The specular beam tends to be the most intense of the backscattered beams.

Therefore, the (00) spot is the one that is �ltered in conventional LEEM imaging,

and is called bright-�eld imaging. However, a di�racted beam other than the (00)

spot can be �ltered. This sort of imaging is named dark-�eld imaging. Though

less intense than bright-�eld imaging, dark-�eld imaging is particularly useful in

identifying regions of the surface corresponding to a certain phase when more than

one phase is present (in Chapters 3 and 4 we will see that it is possible to have more

than one surface phase simultaneously).

Fig. 2.11(c) and (d) show dark-�eld LEEM images of a c(8 � 2)-reconstructed

GaAs(001) surface containing a region of (6� 6). In the case of Fig. 2.11(c), it is a

spot corresponding to the (6 � 6) pattern that is �ltered for imaging (as indicated

in (a)). For this reason, the region of the surface corresponding to the (6 � 6) re-
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Figure 2.11: (a) Representative LEED pattern from a GaAs(001) surface showing
a superposition of (6 � 6) and c(8 � 2) patterns. (b) Schematic diagram showing
the superposition of (6 � 6) (in red) and c(8 � 2) (in yellow) LEED patterns. (c)
Dark �eld image of a GaAs(001) surface obtained from �ltering the (0,3/6) spot of
the di�raction pattern. (d) Dark �eld image of a GaAs(001) surface obtained from
�ltering the (1/4,0) spot of the LEED pattern. (a) was acquired by Dr. Daniel
Gomez Sanchez. (b), (c), and (d) were reprinted from Ref. [5]

construction appears bright, while the rest of the surface is dark. In Fig. 2.11(d),

in contrast, it is a spot of the c(8 � 2) di�raction pattern that is �ltered (the one

indicated in (a)). Therefore, the region of the surface covered in c(8 � 2) appears

bright, while the rest appears dark. Note that Figs. 2.11(c) and (d) are complemen-

tary images of one another, since the surface contains only the c(8� 2) and (6� 6)

reconstructions. This shows the convenience of dark-�eld imaging in identifying and

spatially resolving regions of a surface exhibiting di�erent reconstructions.

As mentioned earlier, di�raction spots tend to be signi�cantly less intense that

the specular (00) spot. In a study published in Ref. [5], our group has further

developed a technique that combines energy selection and dark-�eld imaging. It

was found that the energy of the electrons impinging the sample (i.e., the sample

voltage) can then be �ne-tuned in order to maximize the intensity of the LEED

spots. Imaging at this maximizing electron energy provides strong contrast between

regions of di�ering surface structure, giving rise to images as those in Fig. 2.11(c)

and (d).
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Figure 2.12: I(V) curves performed on the di�raction spots highlighted on the LEED
patterns on the left.(a)(1/4,0) spot of c(8� 2). (b) (0,3/6) spot of the (6� 6). The
arrows indicate the optimal energies of the I(V) curves. These are 6.2 eV for the
c(8� 2) spot, and 5.0 eV for the (6� 6) spot. Reprinted from Fig. [5].

These maximizing electron energies are found by scanning through the full range

of sample voltages V and registering the di�raction spot intensity I, thereby pro-

ducing what is know as an I(V ) curve. The I(V) curve of the (0,3/6) spot of the

(6 � 6) and that of the (1/4,0) spot of the c(8 � 2) are shown in Fig. 2.12. As can

be observed, the c(8 � 2) spot reaches the maximum energy at 6.2 eV, while the

(6 � 6) does so at 5.0 eV. It is therefore at these electron energies that dark-�eld

imaging is optimised. In fact, the images in Figs. 2.11(c) and (d) are taken at these

optimal energies. We name this novel dark-�eld technique selective energy dark

�eld (SEDF). As we will see in Chapters 3 and 4, SEDF proves to be a powerful

technique to investigate surfaces showing several reconstructions simultaneously.
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Chapter 3

Surface Phase Metastability

during Langmuir Evaporation

In this chapter we present a piece of work that was undertaken recently by our

group regarding a novel form of surface phase coexistence on GaAs(001). This work

is published in K. Hannikainen, D. Gomez, J. Pereiro, Y. R. Niu, and D. E. Jes-

son, Phys. Rev. Lett. 123, 186102 (2019). In summary, we directly imaged the

spontaneous formation of metastable surface phase domains on GaAs(001) during

Langmuir evaporation. Eventually, these metastable phases transform to the ther-

modynamically stable parent phase, producing a dynamic phase coexistence with

a temperature dependent, time-averaged coverage. Monte Carlo simulations were

used to identify the key kinetic processes and investigate the interplay between phase

metastability and evolving surface morphology. This is used to explain the measured

temperature dependence of the time-averaged coverage.

3.1 Introduction

As was argued in the previous Chapter, given certain ambient conditions in the

growth chamber, the stable GaAs(001) surface phase is the one that minimizes

the system's free energy for those conditions. Therefore it is this and only this

equilibrium phase that is expected to be observed experimentally, provided it is

kinetically accessible from the surface's initial state and su�cient time is let for the
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system to relax.

Surprisingly, it is possible to observe thermodynamically stable phase coexis-

tence on a crystal surface, where two phases are present side-by-side on the surface

in a stable fashion. In the early 2000s, this was shown to occur during the Si(111)-

(7�7) to (1�1) surface phase transition with temperature [6] (note that on Si there

is no variation of the ambient stoichiometry as it is a monocomponent crystal, and

so other factors such as thermal vibrations of the surface lattice ought to be what

determines stability). Instead of observing a sharp phase transition from (7� 7) to

(1� 1) upon attaining the thermodynamic phase transition temperature Tc, some-

thing quite di�erent was observed. On the stepped and slightly misoriented (111)

surface, consecutive stripes of the (7�7) and (1�1) phases were seen to coexist, as

shown in the LEEM image of Fig. 3.1. The (7� 7) stripes are bounded by a step on

one side (the upper side of the step), while their other boundary lies in the middle

of the terrace. These boundaries are labeled S and T respectively on Fig. 3.1. In

Ref. [6] it is argued that this phase coexistence is due to the long-range elastic and

electrostatic interactions between the phase domains. These interactions are such

that having the two phases coexisting in the above manner in a certain proportion

minimizes the free energy. Having one phase or the other would present a higher

energy con�guration. At lower temperatures the proportion of (7 � 7) is higher,

but, upon increasing the temperature and going into the regime where the (1 � 1)

is the thermodynamically stable phase, the (1 � 1) stripes progressively take over

the terraces between successive steps, as is shown in Fig. 3.2. This temperature

dependence of the phase coverage can be visualized in Fig. 3.2.

In the GaAs(001) system we see an analogous phenomenon occur. At T = 580�C

(a typical temperature for MBE growth), the surface exhibits the Ga-rich c(8 � 2)

reconstruction in the absence of 
uxes [4]. As the sample is cooled, the adatom

population becomes As-richer (see Eq. (2.51)), and one eventually observes a (6�6)
phase (the (6 � 6) line does not appear on the phase diagram of Fig. 2.4; this will

be addressed in Chapter 4). However, the phase transition does not occur abruptly

as one would expect. As in the case of Si, the (6 � 6) coverage increases gradually
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Figure 3.1: Bright-�eld LEEM image of an Si(111) surface. Dark and light stripes are
seen to coexist, corresponding to the (1�1) and (7�7) reconstructions respectively.
The phase boundaries occur at steps (S) and in the middle of terraces (T). The
steps ascend toward the right. The white arrows show the orientation of the elastic
force at the phase boundaries (force 'monopoles') due to di�erences of surface stress
between either reconstruction. Reprinted from Ref. [6].
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Figure 3.2: Bright-�eld LEEM images of a Si(111) terrace at di�erent temperatures.
At the lower temperatures the (7 � 7) stripes appear wide. Upon increasing the
temperature, the phase boundaries in the middle of the terraces move so as to
provide thinner (7 � 7) stripes and wider (1 � 1) stripes. Approximately a range
of 15�C is spanned. The horizontal width of the images is 1 �m. Reprinted from
Ref. [6].

as the sample is cooled. This can be clearly appreciated in the bright-�eld LEEM

images of Fig. 3.3, where the bright surface corresponds to c(8 � 2) and the dark

surface corresponds to (6� 6). In Fig. 3.3(a) (at T � 600�C) the surface displays a

c(8� 2) reconstruction only. As the temperture is decreased ((b) and (c)), it can be

observed that (6�6) appears pinned to the steps, and the width of the (6�6) stripes
gets larger with decreasing temperature. At su�ciently low temperature the (6� 6)
takes over the whole surface (Fig. 3.3(d)). Therefore, thermodynamic coexistence

of two phases occurs also on GaAs(001) as a consequence of long range interactions

between the phase domains, analogous to the case of Si in Ref. [6].

In this piece of work, however, we �nd a completely novel form of phase co-

existence between the (6 � 6) and c(8 � 2) phases when heating GaAs(001) above

T � 580�C. As we will see, this novel form of phase coexistence has nothing to

do with the thermodynamic coexistence known to date, but rather it is intrinsically

linked to the kinetics of Langmuir evaporation (free evaporation into the vacuum),

which becomes important at elevated temperatures.

Langmuir evaporation has been extensively investigated throughout the years

[38,52,84{87]. It is the non-equilibrium evaporation occuring when heating a surface
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Figure 3.3: Bright-�eld LEEM images of the GaAs(001) surface under vacuum at
di�erent temperatures ranging from (a) T � 600�C to (d) T � 500�C, and showing
the c(8� 2) to (6� 6) surface phase transition. At the highest temperature (panel
(a)) the surface exhibits a c(8 � 2) reconstruction. As it is cooled (panels (b) and
(c)) the c(8� 2) begins coexisting along with the (6� 6) phase, with an increasing
coverage of the latter phase. At the lowest temperature (panel (d)), the (6 � 6)
covers the surface completely. This is why the entire surface appears dark. These
images were acquired by Dr. Daniel Gomez Sanchez using our LEEM-MBE system
at Cardi� University.

under vacuum. Not only is it of fundamental scienti�c importance, but it is directly

relevant to the processing and growth of thin �lms and nanostructures across a wide

range of technologies [38, 52, 67, 84{91]. In this piece of work we investigate the

GaAs(001) surface using LEEM, and we observe a surprising new feature occuring

during Langmuir evaporation. We see metastable surface phases form spontaneously

when unstable subsurface layers are exposed by evaporation. These metastable

phases eventually convert to the thermodynamically stable parent phase, thereby

producing a temperature-dependent, time-averaged metastable phase coverage. This

dynamic phase coexistence has important implications in the application of phase

diagrams, since these neglect evaporation and in which a single phase is usually

assumed to be present. It is likely that this phenomenon of phase metastability,

which is linked to evaporation is relevant for the optimization of thin �lm growth

conditions across a wide range of materials.

3.2 Experimental details

Our experiments were carried under ultrahigh vacuum, in the LEEM-MBE sys-

tem described in Chapter 2, which is especially modi�ed for III-V MBE [36]. The
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temperature was calibrated by observing Ga droplet generation [52] and various sur-

face phase transformations [1]. As explained in Chapter 2, we prepare an undoped

GaAs(001) sample by degassing at 300 �C for 24 h and subsequently annealing at

580 �C for 2 h to remove the surface oxide. In order to produce smooth regions of

GaAs(001), the sample was heated above the congruent evaporation temperature to

650 �C in order to generate Ga droplets of radius � 2�m. As delineated in Chap-

ter 2, these are let to run across the surface [37, 92], leaving a smooth GaAs(001)

trail behind which we can use for our imaging experiments [93]. Finally, the Ga

droplets were completely removed by annealing below the congruent evaporation

temperature at 570 �C.

3.3 Main Results

The sample was then heated above 580 �C for our imaging experiments. At these

temperatures the surface is expected to exhibit the well-studied c(8� 2) reconstruc-
tion, which is widely accepted to be stable under these conditions [1,4,71,73]. Figure

3.4 contains snapshots taken from a LEEM movie 1 of GaAs(001) at 598 �C. These

were acquired under bright-�eld imaging conditions at an incident electron energy

of 8:6 eV. At the initial instant, panel (a) displays uniform, bright intensity cor-

responding to the expected c(8 � 2) reconstruction. Two atomic steps, which are

receding due to evaporation, are indicated by the arrows. These steps are of bilayer

height [94], and they separate c(8 � 2) reconstructed terraces. Surprisingly, after

384 s, a dark patch appears in the center of the terrace (panel (b)) and grows (panels

(c) and (d)). As was explained in Chapter 2, di�erent surface phases generally have

di�erent re
ectivities with respect to the incoming electrons. Therefore the dark

contrast indicates the probable presence of a phase di�erent to the c(8 � 2). The

dark patch continues to grow until t = 1416 s when a small region of c(8� 2) phase

nucleates within the dark patch (panel (e)). The c(8� 2) region then grows at the

expense of the dark phase until it is completely consumed, and only c(8�2) remains
1See the supplemental material of Ref. [40] at https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.123.186102

for a LEEM movie of GaAs(001) Langmuir evaporation.
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bounded by a bilayer height step loop.

Figure 3.4: Snapshots taken from a LEEM movie revealing the fundamental mecha-
nism of surface phase metastability. The c(8�2) phase appears bright, whilst (6�6)
and steps (indicated with arrows in (a)) appear dark. The scale bar in (a) is 0:1�m
and the sample temperature is 598 �C. These images have been smoothed utilizing
standard interpolation methods.

Suspecting this dark phase could correspond to (6� 6) we performed a di�erent

experiment in order to �nd an optimal location for the contrast aperture, i.e., one

that �lters only electrons di�racted by the (6 � 6) structure, only to then perform

(6 � 6) dark-�eld imaging on our original experiment. In this side experiment, a

GaAs(001) sample was cooled to around 540�C, where we know (6� 6) exists aside

the c(8 � 2) phase in a thermodynamically stable manner, and a LEED pattern of

the surface was acquired. This LEED pattern is shown in Fig. 3.5(c), and, as can

be observed, it presents an expected superposition of c(8� 2) and (6� 6) patterns.

A schematic diagram showing superimposed (6 � 6) and c(8 � 2) LEED diagrams

is shown in Fig. 3.5(d), where the blue spots correspond to the c(8 � 2) phase and

the pink spots correspond to the (6� 6) phase. The position of the (0; 1=6) spot of

the (6� 6) pattern was conveniently chosen, given it is far from overlapping a spot

corresponding to the c(8� 2). This spot is encircled in blue in 3.5(c).

Reproducing our original experiment to observe again metastable patches, we in-

creased the sample temperature to 580�C and performed SEDF-imaging (see Chap-
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ter 2) on our sample, placing the contrast aperture at the convenient position (lo-

cated during the previous experiment described above) and tuning the electron en-

ergy to 3.5 eV. The result was that the domains that appeared dark during bright-

�eld imaging appeared bright when switching to dark �eld, thereby con�rming that

they correspond to the (6 � 6) reconstruction. On the other hand, the rest of the

surface, corresponding to the c(8 � 2) phase appeared dark as was expected. This

can be seen in the bright-�eld and dark-�eld images of the GaAs(001) surface shown

in Fig. 3.5(a) and (b) respectively.

Figure 3.5: (a) BF image obtained at 8:6 eV from the (0; 0) spot encircled in red in
(c). (b) DF image obtained at 3:5 eV from the (0; 1=6) spot encircled in blue in (c).
(c) Representative LEED pattern of GaAs(001) revealing a superposition of c(8�2)
and (6� 6) patterns and indicating the di�raction spots used to obtain the images
in (a) and (b). (d) Schematic pattern showing a superposition of c(8�2) (blue) and
(6� 6) (pink) LEED patterns. The scale bars in (a) and (b) are 0:3�m.

The nucleation and growth of (6� 6) patches, followed by subsequent annihila-

tion by c(8� 2) occurs as discrete events across the entire surface when heating the

GaAs(001) surface above T � 580�C. This produces a dynamic phase coexistence

between (6�6) and c(8�2) domains with a time-averaged coverage of (6�6). Note
again that this dynamic phase coexistence is entirely dissimilar to the thermody-

namic phase coexistence explained previously (that of Fig. 3.3), and is intrinsically

linked to the processes occuring during Langmuir evaporation.

To explain the appearance of the (6 � 6) patches in Fig. 3.4, we must consider

the mechanisms of Langmuir evaporation. The nucleation and growth of surface

macrovacancies (Lochkeim formation) is known to play an important role in the

evaporation of surfaces [95{97]. Here, surface vacancies typically nucleate into stable

monolayer height clusters in a terrace (on generic crystal surfaces), and the resulting

step loop expands as atoms desorb from the surface, causing the macrovacancy to

grow. This mechanism is consistent with our observations in Fig.3.4, but with one
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Figure 3.6: Cross-sectional schematic of Lochkeim formation and surface phase
metastability. (a) A Lockheim forms in the c(8 � 2) phase (green line) and bilayer
height steps propagate as atoms evaporate into the vacuum. The freshly exposed
surface is the (6�6) phase (purple line). (b) c(8�2) nucleates within the (6�6) phase
and the phase boundaries propagate until only c(8 � 2) is present. (c) Schematic
representation of the change in surface free energy (per unit area) of the exposed
surface. The exposed surface is unstable and transforms into the metastable (6� 6)
phase. An activation energy barrier �G exists for the conversion of the metastable
(6� 6) to the thermodynamically stable c(8� 2).

important exception. The subsurface layer being unveiled by the macrovacancy in

panel (b) presents a (6� 6) reconstruction rather than the stable c(8� 2). This is

illustrated schematically in Fig. 3.6(a). To explain this, we note that the freshly

exposed surface during macrovacancy nucleation is in an unstable state and does

not necessarily have to transform directly into the most thermodynamically stable

state. Rather, it can transform into a metastable intermediate state as conjectured

by Ostwald [98{101] (see Fig. 3.6(c)). It is likely that the route to (6� 6) from the

freshly exposed, unstable surface will be in
uenced by surface strain generated by the

initial small step loop. However, the atomic-scale details of the initial nucleation

process is below our instrumental resolution. Eventually, the metastable (6 � 6)

phase converts to the stable c(8 � 2) phase via the nucleation of c(8 � 2) within

the (6� 6) phase (panels 3.4(e), 3.6(b)and 3.6(c)). The c(8� 2) phase then rapidly

grows, leaving behind a bilayer height step loop on pure c(8� 2) (panel 3.4(f)).

To quantify this dynamic mechanism we have measured the time-averaged cov-
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Figure 3.7: Time-averaged (6�6) coverage as a function of temperature. The circles
are experimental values and the crosses were calculated from the MC simulations.
The inset shows the time evolution of the (6� 6) coverage produced by the Monte
Carlo simulation at 592 �C. The dashed line shows the time-averaged coverage
obtained from the shaded region (see text). Error bars are computed as standard
deviations from the mean.

erage of (6 � 6) as a function of temperature T . This is displayed in Fig. 3.7. It

shows the percentage (on average) of the surface that is covered by (6 � 6). The

data was averaged over progressively shorter times and surface areas with increasing

T due to the faster evaporation kinetics at higher temperatures. This ranged from

3 h=15�m2 at the lowest T (581 �C) to 30min=3�m2 at the highest (639 �C). Below

580 �C, the kinetics of evaporation became too slow to obtain time-averaged data.

It can be seen that the (6 � 6) coverage decreases from � 9% at 580 �C to around

0:1% at 640 �C. The existence of (6� 6) in this temperature range is surprising as

it is generally assumed that only one phase, c(8� 2), is present. It is likely that the

transient nature and relatively small time-averaged (6 � 6) coverage explains why

this surface phase metastability has not been observed previously.

3.4 Monte Carlo modeling

We have developed a Monte Carlo (MC) simulation model to explain the tempera-

ture dependence of the coverage. It is governed by a set of simple rules derived from
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our LEEM movies. Here we describe the fundamental concepts on which the model

is based. For a detailed description of the methodology used see Appendix B.

We consider a 10�m square portion of a GaAs(001) surface, held at temperature

T and subject to periodic boundary conditions. Point-like Lochkeime nucleate on

the surface at a uniform rate of Jw per unit area. The macrovacancy step loop

associated with the Lochkeim is then expanded at a uniform velocity v, as GaAs

evaporates, revealing a bilayer deep, circular (6 � 6) terrace. This resembles Fig.

3.4(a)-(d) and the cross-sectional schematic in Fig. 3.6(a). The nucleation of c(8�2)
on this terrace (Fig. 3.4(e), 3.6(b)) is taken to occur at a rate � per unit area. Since

our movies show that the transformation of (6�6) to c(8�2) is fast on the timescale
of all other evaporation-related kinetic processes, including Lochkeim formation and

(6� 6) terrace growth, we allow an instantaneous conversion of (6� 6) to c(8� 2)

across the entire (6� 6) terrace.

These simple rules adequately describe the fundamental process of (6� 6) phase
metastability shown in Fig. 3.4. However, to obtain a full, quantitative agreement

with the experimentally observed coverage, our LEEM movies indicate that we must

also incorporate several secondary processes into the MC model:

(i) We observe that Lochkeime form more readily on (6 � 6) than on c(8 � 2)

(see Fig. 3.8). We therefore introduce an additional rate Jb for the rate of

Lochkeim formation per unit area of (6� 6). In accordance with observation,

Jb is taken as uniform across a (6 � 6) domain but only up to one Lochkeim

is allowed to form per (6� 6) terrace. In addition, we observe that when this

mechanism results in an `inverted wedding cake' of (6�6) terraces, it is always
the outer (highest) terrace which �rst transforms to c(8 � 2) (propagation of

the stable phase stops at the step). This may re
ect some stabilization of the

inner (6� 6) domains by surface stress.

(ii) When a c(8 � 2) terrace attains a critical radius Rc, one or more Lochkeime

form at the center of the terrace (see Fig. 3.9). We note that an analogous phe-

nomenon has been observed during the epitaxial growth of Ag [63]. For simplic-

ity, we assume only one Lochkeim nucleation event per critically-sized c(8� 2)
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terrace. This mechanism serves to maintain inverted wedding cake structures

when (6 � 6) domains transform to c(8 � 2) before undergoing Lochkeim nu-

cleation.

(iii) (6 � 6) domains may coalesce such that a single nucleation event at rate �

transforms the entire terrace to c(8� 2) (see Fig. 3.10).

(iv) When a (6� 6) domain coalesces with a c(8� 2) terrace, it rapidly transforms

to c(8 � 2) (see Fig. 3.11), as the latter propagates to cover the whole com-

bined terrace. This conversion to c(8 � 2) is incorporated in the model as an

instantaneous event.

Figure 3.8: Sequence of LEEM images taken from a movie of a (6 � 6) terrace
transforming to c(8 � 2). This initiates in panel (c) and continues through panels
(d) and (e) until the transformation completes in (f), revealing a lower central (6�6)
terrace. This indicates that multiple layers of (6� 6) exist as inverted wedding cake
structures and that Lochkeime form more readily on (6 � 6) than on c(8 � 2).
Furthermore, we �nd it is always the outermost (uppermost) (6 � 6) terrace that
transforms to c(8 � 2) �rst. The sample temperature is T = 586 �C, and the scale
bar is 0:2�m.

Figure 3.9: (Continued from Fig. 3.8) Sequence showing that one or more Lochkeime
(in this case up to three) form almost simultaneously around the middle of a c(8�
2) terrace upon it reaching a critical terrace radius Rc (panel (e)). The sample
temperature is T = 586 �C, and the scale bar is 0:2�m.

3.5 Discussion

As opposed to feeding arbitrary values for the rates, we measured Jw, Jb, �, and v

directly from the LEEM movies at nine di�erent temperatures in the 580 � 640 �C
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Figure 3.10: Sequence of LEEM images taken from a movie showing the coalescence
of two (6�6) terraces, forming a larger (6�6) terrace. The combined (6�6) terrace
transforms to c(8� 2) as a single domain (panel (e), (f)). The sample temperature
is T = 592 �C, and the scale bar in (a) is 0:15�m.

Figure 3.11: Sequence of LEEM images obtained from a movie showing that a (6�6)
terrace transforms to c(8 � 2) on coalescing with a c(8 � 2) terrace. The sample
temperature is T = 586 �C, and the scale bar is 0:15�m.

range (Fig. 3.12). To a good approximation, the step velocity is independent of the

nature of the phases either side of the step. So only one velocity is used for all steps

at a given T . Step bunching can a�ect the velocity, but this has a negligible e�ect

on the simulations and so is neglected. Jb and � are determined from the measured

distribution of (6�6) terrace size during respective Lochkeim and c(8�2) nucleation
(See Appendix A). The measured value of Rc = 0:17�m is found to be approximately

constant over the temperature range of interest.

We �t the T -dependence of Jw, Jb, � and v to the standard Arrhenius form,

x = x0 exp (�Ea=kT ) where x0 and Ea are the respective pre-factor and energy

barrier with k equal to Boltzmann's constant (see Fig. 3.12). The determined pre-

factors and energy barriers contained in the Fig. 3.12 caption are used in the MC

simulations. However, these values should not be interpreted physically since it is

well appreciated that non-Arrhenius temperature dependence can arise during the

complex kinetic processes associated with evaporation [97]. Rather, the Arrhenius

form used here should be viewed as a convenient �t to the measured data. Also, it

ought to be mentioned that the linear �ts shown in Fig. 3.12 are not exact least-

squares �ts to the experimental data. Rather they are only approximate �ts within

the experimental error bars.
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Figure 3.12: Measured rates of the key kinetic processes used in the MC simulations
as a function of T . ln(Jw), ln(Jb), ln(�) and ln(v) are plotted against 1=kT with Jw,
Jb and � in units of �m�2s�1 and v in �ms�1. The respective pre-factors of Jw, Jb,
� and v obtained from the linear �ts to the measured data are 7:0� 1031 �m�2s�1,
1:6�105 �m�2s�1, 2:0�1051 �m�2s�1 and 2:3�1017 �ms�1 and the respective energy
barriers are 6:0 eV, 1:0 eV, 9:0 eV and 3:7 eV (see text).

MC simulations were run for the nine temperatures corresponding to the LEEM

measurements (see the MC simulation movie 2). They begin with a pristine c(8�2)
surface (with no steps or metastable (6 � 6) patches) exposed to the vacuum. As

the simulations proceed, Lochkeime begin forming all across the surface and the

(6�6) coverage initially increases rapidly. The absence of steps on the initial surface
prevents many of these (6�6) patches to phase-transform by coalescence with c(8�2)
terraces. As time passes the surface �lls with steps and coalescence of terraces is

enhanced. For this reason, the initial excess (6 � 6) coverage eventually decays

and settles in to a steady state. The coverage and surface morphology associated

with this steady state are used to compare with experiment. For the three lowest

temperatures, rather than a strict steady state, we �nd a long-period decrease in

(6 � 6). Fig. 3.13 shows the evolution of the coverage at low T (T = 581�C),

intermediate T (T = 592�C), and high T (T = 639�C). As can be seen the low and

intermediate T graphs show a long-period decrease in (6� 6) coverage. This is the

consequence of multilayer evaporation, and will be explained later. However, this

2See the supplemental material of Ref. [40] at https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.123.186102
for a Monte Carlo simulation movie of surface phase metastability during Langmuir evaporation
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long decay is experimentally inaccessible and the shaded quasi-steady-state plateau

region is used to determine the coverage for the three lowest temperature cases.

Figure 3.13: (6 � 6) coverage versus time graphs for the T = 581�C MC simu-
lation (left), the T = 592�C simulation (middle), and the T = 639�C simulation
(right). The shaded regions are the steady-state regions that are used to calculate
time-averaged coverages. As can be seen this plateau is limited (for the low and
intermediate T simulations), but it is inde�nite for the high T simulation, as strict
steady is obtaind in the latter case. The calculated time-averaged (6� 6) coverages
are 9.04% (left), 1.89% (middle), and 0.15% right.

The time-averaged (6 � 6) coverage evaluated by MC is compared with experi-

ment in Fig. 3.7. Excellent agreement is found across the entire temperature range.

Note that the �ts in Fig. 3.12 were carefully tuned within the error bars to opti-

mize agreement with experiment. To explain the decrease in (6� 6) coverage with

increasing T we compare snapshots of the experimental and simulated surface mor-

phology at low, intermediate and high temperatures in Fig. 3.14. Again, the general

reproduction of the salient experimental features by the simulations is very good.

Fig. 3.15 shows the full 10�m � 10�m surfaces for our MC simulations at low T

(T = 581�C), intermediate T (T = 592�C), and high T (T = 639�C). Both exper-

iment and simulation indicate that there is a clear change in surface morphology

intrinsically linked to the varying (6 � 6) coverage with T . By combining the MC

simulation of surface morphology in Figs. 3.14 and 3.15 with the measured rates of

the key kinetic processes in Fig. 3.12, we can now explain the link between evolving

morphology and the T -dependent (6� 6) coverage measurements in Fig. 3.7.

At low T , it can be seen from Fig. 3.12 that Jb > �. This means that Lochkeim

nucleation is more likely to occur on metastable (6� 6) domains before they trans-

form to c(8�2). Furthermore, the relatively high Jb=v ratio in this regime produces

densely packed concentric (6 � 6) terraces, and gives rise to a surface populated
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Figure 3.14: Snapshots of evolving surface morphology taken from LEEM movies at
(a) 581 �C, (b) 598�C and (c) 639 �C and MC simulation movies at (d) 581 �C, (e)
598 �C and (f) 639 �C. Dark areas correspond to (6 � 6) terraces. The scale bar in
(a) is 0:2�m. The simulation panels were chosen out of several simulation images
in order to optimise correspondence with the experimental panels.

Figure 3.15: Snapshots of our MC simulations at 10�m� 10�m panel at T = 581�C
(left), T = 592�C (middle), and T = 639�C (right). The panels are 10�m� 10�m.
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with inverted wedding cakes resulting from multi-layer evaporation, as shown in

Figs. 3.14(a),(d), and Fig. 3.15(left). Note that the outer (upper) (6 � 6) terrace

of an inverted wedding cake is of an annular shape and provides a limited surface

area for c(8 � 2) nucleation. This tends to preserve these inverted wedding cake

structures which are responsible for the high (6� 6) coverage measured at low T in

Fig. 3.7.

These inverted wedding cake structures at low T are also responsible for the long-

period attaining of the steady state and the long-term decrease in (6� 6) coverage

(see Fig. 3.15(left)). The reason is that neighbouring wedding cake structures end up

merging together to form one sole wedding cake structure after several consecutive

coalescence events of terraces belonging to either structure. This mechanism of

wedding cake coalescence results in a decreasing density of progressively deeper

inverted wedding cakes, which explains the progressive (6 � 6) coverage drop after

the initial peak. The coverage eventually settles as the density of wedding cakes

reaches its quasi-steady-state value. However this steady state is only 'quasi', as

the mechanism of wedding cake coalescence becomes more progressive but does not

cease. This explains the long-term decrease in (6� 6) coverage that can be seen in

Fig. 3.15(left) and (right).

With increasing T , � increases faster than the step velocity v (Fig. 3.12) so

that outer (6 � 6) domains transform to c(8 � 2) at smaller sizes (panels 3.14(b)-

(c), 3.14(e)-(f), 3.15(centre) and (right)). Added to this, the rapidly increasing �

approaches Jb. This means that more (6 � 6) terraces phase-transform without

having had a new Lochkeim nucleate within them. In these instances, the next

(6 � 6) patch will not form until the terrace reaches the critical radius Rc. This

renders the wedding cake structures less pronounced (see Figs.3.14(b), (c), as well

as Fig. 3.15(centre)) and decreases the overall time-averaged (6� 6) coverage with

increasing T (Fig. 3.7).

Eventually, � surpasses Jb at higher T (Fig. 3.12) and so fewer (6 � 6) do-

mains undergo a second Lochkeim nucleation event during their shorter lifetime.

Furthermore, the large value of Jw in this regime facilitates terrace coalescence. As
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discussed earlier, coalescence can also further decrease the overall (6 � 6) coverage

via the mechanisms (iii) and (iv) described in the previous section. As a consequence

of this enhanced terrace coalescence, evaporation proceeds in a layer-by-layer mode

at high T , where fewer atomic layers are exposed at the surface (see panels 3.14(c),

3.14(f), and 3.15(right)). In contrast to the low T case, this layer-by-layer fashion

for the evaporation ensures a long-term steady state. The enhanced rate of c(8� 2)

nucleation and the absence of inverted wedding cake structures explains the low

(6� 6) coverage in this regime.

The observation of surface phase metastability during Langmuir evaporation

is surprising but the phenomenon should, in fact, occur quite widely. An unsta-

ble subsurface layer, suddenly exposed by evaporation, does not necessarily have

to transform directly into the most thermodynamically stable state. Instead, the

unstable surface can transform into a metastable intermediate state, as empirically

described by Ostwald [98]. Figures 3.14 and 3.15 illustrate the intricate interplay be-

tween the kinetic processes of Langmuir evaporation and phase metastability which

determines the time-averaged coverage as a function of T (Fig. 3.7). Such phase co-

existence is a result of kinetics, not thermodynamics. It is totally di�erent from the

coexistence resulting from long-range electrostatic and elastic interactions between

surface domains [6, 102], which was presented above in Section 3.1.

3.6 Conclusions

In summary, we have observed surface phase metastability during Langmuir evap-

oration of GaAs(001). This gives rise to a dynamic phase coexistence which has

previously gone unnoticed, possibly due to a lack of real-time imaging of this sur-

face. The direct observation of metastable phases provides new insights into the

kinetic processes of Langmuir evaporation. Evaporation is dominated by inverted

wedding cake structures at low T , creating a signi�cant time-averaged metastable-

phase coverage. With increasing T , such structures become less pronounced, with

a concomitant decrease in (6 � 6) coverage as evaporation tends towards a layer-

by-layer mode. Often, for purposes of growth, a single surface phase is required.
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Since surface phase metastability is likely to occur across a wide range of materials

systems and may occur analogously during epitaxial growth as new islands nucleate.

It might therefore have broad technological relevance for the growth and processing

of thin �lms under vacuum.
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Chapter 4

Mapping the Surface Phase

Diagram of GaAs(001) using

Droplet Epitaxy

In this chapter we map the surface phase diagram of GaAs(001) by combining droplet

epitaxy with low energy electron microscopy imaging techniques. This work is pub-

lished in C. X. Zheng, K. Hannikainen, Y. R. Niu, J. Terso�, D. Gomez, J. Pereiro,

and D. E. Jesson Physical Review Materials 3, 124306 (2019). We interpret the

phase patterns produced during droplet epitaxy using a simple model which links

the spatial coordinates of phase boundaries to the free energy. Based on the ob-

served sequential order of the phases away from the droplet edge, it is possible to

obtain important new information on surface phase stability. This can be used to

augment existing T = 0K phase diagrams generated by density functional theory

calculations. We establish the existence of a (3�6) phase, and con�rm, that the con-
troversial (6�6) phase is thermodynamically stable over a narrow range of chemical

potential.

4.1 Introduction

Droplet epitaxy has emerged as a 
exible technique for growing quantum dots and

more complex nanostructures [103]. In this technique, nano/microscale metal liquid
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Figure 4.1: Schematic illustration of the principle of droplet epitaxy. Ga droplets
are depostited on a GaAs(001) surface. These are subsequently subjected to an As4

ux which crystallizes them. The conditions of this crystallization determine the
morphology of the nanostruture that is formed.

droplets of group III are �rst deposited on a III-V semiconductor surface, for example

Ga on GaAs(001). Then exposure to a group-V 
ux, such as As4, results in the

formation of an epitaxial GaAs quantum structure. This is schematically illustrated

in Fig. 4.1.

Depending on the conditions of a droplet epitaxy experiment, one can achieve a

certain nanostructure morphology or another. For instance, quantum dots can be

achieved using low temperatures T � 200�C and high As 
uxes [7,104{108]. The low

temperature limits Ga di�usion from the droplet, and the high As 
ux crystallizes

the Ga in the immediate vicinity of the droplet. This produces GaAs mounds virtu-

ally con�ned to the same area as that where the Ga droplet sat. Fig. 4.2(a) shows

an array of quantum dots grown in this manner. However, the low temperature at

which crystallization occurs produces poor crystalline quality.

Utilizing slightly higher temperatures (T � 300�C) and more moderate As 
uxes,

Ga di�usion from the droplet is enhanced and the lower As 
ux increases the Ga

di�usion length before reacting with As to form GaAs. This produces nanometric

ringlike GaAs structures around the droplet known as quantum rings [8,109,109{115,

115]. Semiconductor nanometric rings are interesting nanostructures as electrons

con�ned within them undergo a topology related quantum interference e�ect called

the Aharonov-Bohm e�ect [116]. The magnetic properties of quantum rings are

particularly interesting, as these can induce persistent current within the ring [117].
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Di�erent types of ring morphologies can be grown by tuning the growth conditions.

Even multiple rings can be grown, as those shown in Fig. 4.2(b). In this particular

experiment (see Ref. [8]), the droplet was annealed under As 
ux at 4 di�erent

temperatures: 250, 300, 325, 350 �C. The �rst 3 temperatures for 20 seconds, and

the last for 20 min, to ensure the crystallization of the droplet. Each annealing

temperature produced each one of the GaAs rings. The ring closest to the droplet

was produced at the lowest temperature, and each successive ring was produced

with each increase in temperature. This is because, as was explained in Section 2.2,

adatom di�usion is enhanced with increasing temperature, so that Ga adatoms are

able to di�use farther on the surface before being crystallized.

Annealing Ga droplets at high temperature (T � 550�C! 600�C) and a low As


ux (merely the As background pressure in the growth chamber) produces nanohole

morphologies like that shown in Fig. 4.2(c). Under these conditions, the Ga from

the droplet di�uses readily and is crystallized all across the surface. While this

happens GaAs is deposited at the contact line, and the droplet drills into the GaAs

surface simultaneously, thereby producing the observed nanohole morphology. This

technique is named local droplet etching (LDE). The physical mechanism by which

it occurs will be explained in more detail in Chapter 5. In contrast to ex situ etching

techniques, LDE is an impurity and defect-free technique for 'nanopatterning' given

it occurs under epitaxial growth conditions. Arrays of nanoholes produced by LDE

can be used as templates for subsequent �lling with quantum dots [11, 118]. This

method of quantum dot fabrication is a good alternative to the well-known Stranski-

Krastanov method when the dot and the substrate form a lattice-matched system.

Its most attractive feature is that it produces high-temperature strain-free quantum

dots. [11, 119,120].

In this work we adapt the droplet expitaxy technique as a novel tool for mapping

the surface phase diagram of GaAs(001) by combining it with advanced LEEM

imaging [5]. As was metioned in Chapter 1, the GaAs(001) surface is of great

importance for electronic applications and has been intensively studied over the

years (see, e.g., Refs. [1, 2, 66{76]). Surface phases with di�erent structures and
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Figure 4.2: (a) AFM image of an array of GaAs quantum dots produced by droplet
epitaxy. The width of the panel equals 450 nm. Reprinted from Ref. [7]. (b)
AFM image of a sample displaying multiple concentric quantum ring structures
prepared by droplet epitaxy. The inner ring is priduced by GaAs deposition at
the contact line, whilst the outer rings are produced by Ga di�using out from the
droplet and reacting with the incoming As 
ux. Up to four outer rings are produced
by annealing the sample at 250, 300, 325, and 350�C. Each ring corresponds to one
temperature, the innermost one corresponding to the lowest temperature and the
outer ring corresponding to the highest temperature. Reprinted from Ref. [8]. (c)
AFM image of a nanohole prepared by high temperature (T = 540�C) annealing of a
Ga droplet under a low As background pressure. The width of the panel corresponds
to � 400 nm. Reprinted from Ref. [9].

di�erent compositions are used in the growth of optoelectronic materials, InGaAs

quantum devices, and dilute magnetic semiconductors by molecular beam epitaxy

(MBE). This has led to signi�cant e�orts to understand and control the stability

of surface phases as a function of experimental conditions. As was decribed in

Section 2.3, the conventional approach is to calculate the Gibbs surface free energy

as a function of Ga surface chemical potential �Ga (or equivalently As chemical

potential �As, since the sum is �xed [52, 78]). Then �Ga (or �As) can be related

to experimental conditions (see, for example [2, 78]). However, �Ga is di�cult to

control experimentally since it depends sensitively on temperature [37] and material

deposition [121]. In a recent publication [4], e�orts were made to control �Ga by

slowly varying the substrate temperature in the presence of Ga droplets [4]. In this

study, the Ga-rich (4� 6) (see phase diagram in Fig. (2.4)) was observed coexisting

with an ultrarich novel c(2 � 12) phase using LEED. It is argued that the surface

approaches equilibrium with the Ga droplets (at liquidus Ga chemical potential �lGa)

and hence increases in Ga-richness when cooling below � 530�C. This is due to a

smaller activation barrier for Ga attachment/detachment than for Ga evaporation

from the surface. However, key questions still remain regarding phase stability across
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the wider range of �Ga, extending towards and including the As-rich regime.

During droplet epitaxy under standard conditions, there usually forms a gradient

of Ga adatom chemical potential with distance from the Ga droplet. Using LEEM

we can directly observe a sequence of distinct surface phases re
ecting the spatially

varying chemical potential. By determining which phases occur, and their ordering

from the droplet edge, we can map out the surface phase diagram across a wide range

of continuously varying �Ga at �xed temperature. In this way we will establish the

existence of a (3� 6) phase. As we will see, additional experiments, combined with

theoretical modeling of the chemical potential gradient, allow us to con�rm that

the controversial (6 � 6) phase is thermodynamically stable over a narrow range

of chemical potential. These phases are absent in the theoretical T = 0K phase

diagram, and we will discuss how thermal e�ects may stabilize them at experimental

temperatures.

Although we apply a novel combination of LEEM and droplet epitaxy to specif-

ically study the GaAs(001) surface, the methods presented here should be general

and are highly complementary to density functional theory (DFT) calculations. As

such, we believe this speci�c study presents a novel method for mapping surface

phase diagrams across a wide range of material systems. This includes other tech-

nologically important III-V compounds, such as nitrides.

4.2 Sample Preparation

Our experiments were performed in the ultrahigh-vacuum (UHV) LEEM-MBE sys-

tem [36] described in Section 2.8. Temperatures were measured using an infrared

pyrometer calibrated to the congruent evaporation temperature of 625 �C [52, 121].

As was explained in Chapter 2, we degass an undoped GaAs(001) sample at 300 �C

for 24 h and then annealed at 580 �C for 2 h to remove the surface oxide. We pla-

narise the surface by annealing above the congruent evaporation temperature at

650 �C and producing Ga droplets of radius � 1�m. These are then allowed to run

across the surface [37,92], creating smooth planar (001) regions on which we perform

our droplet epitaxy imaging experiments [93].
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4.3 Results and Discussion

4.3.1 Droplet Epitaxy Phase Patterns

Figure 4.3 contains a bright �eld LEEM image of a Ga droplet on GaAs(001) under

an As4 
ux of 10�5Torr beam e�ective pressure (BEP) at 550 �C. As can be ob-

served, there is a stationary, dark concentric ring surrounding the droplet enclosed

by boundaries I and II. The ring is slightly elliptical, due to anisotropic Ga surface

di�usion on GaAs (001). The contrast is a consequence of the spatial variation

in surface phases, which produce variations in incident electron re
ectivity, as was

explained in Section 2.4.1 (see, for example, Ref. [122]). We term this contrast vari-

ation a droplet epitaxy phase pattern (DEPP). By means of microspot low energy

electron di�raction (�LEED) we identify the inner bright region as corresponding

to the c(8 � 2) structure. We further identify the outer bright region as �2(2 � 4)

and the dark ring itself as a (3 � 6) surface reconstruction. However, as we show

below, we �nd boundary I is also associated with a narrow region of (6� 6) phase.

Figure 4.3: Droplet epitaxy phase pattern (DEPP) of GaAs(001). The bright-�eld
contrast spatially separates surface phases surrounding a central droplet. The scale
bar corresponds to 2�m.

To explain the origin of this phase pattern and establish the link to surface free
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energy, we consider a simple model for DEPP formation. The Ga droplet acts as

a source of Ga adatoms which interact with the surface and any As adatoms. To

calculate the Ga adatom concentration surrounding the droplet, let us consider a

random array of droplets of radius rD (assumed constant throughout the course of

the experiment), with typical nearest neighbor distance 2L (with L � rD). The

droplet array is subjected to an As 
ux FAs and the reaction-di�usion equation for

the Ga concentration outside the droplet at radial coordinate r and time t is,

@CGa

@t
= DGa

�
@2CGa

@r2
+
1

r

@CGa

@r

�
� kr

h
CGaCAs � (CGaCAs)eq

i
: (4.1)

This equation was derived previously in Section 2.2; CAs and CGa are the respective

As and Ga surface adatom concentrations and DGa is the Ga di�usion coe�cient.

kr is a reaction rate constant governing the reaction between As and Ga to form

GaAs solid and (CGaCAs)eq is the adatom concentration product in equilibrium with

the solid. We neglect Ga adatom desorption into the vacuum. As a reasonable

approximation, the geometric distribution of the droplet array renders Eq. (4.1) with

radial symmetry and we impose the boundary condition @CGa=@r = 0 at r = L.

Above 350 �C, the As residence time �As is short [39], much shorter than other

relevant timescales. Compared to desorption, reaction with Ga is only a small

perturbation (which we neglect) to the As concentration. We therefore treat the As

density as uniform, with steady-state value CAs = FAs�As for su�ciently large 
ux

FAs. Furthermore, we can assume it comes instantly into steady state with 
ux (on

a timescale �As). This is equivalent to �As � �Ga = 1=(krCAs) where �Ga is the Ga

adatom mean lifetime before reaction with As.

Given LGa =
p
DGa�Ga is the Ga di�usion length before reacting with As, then

for L � LGa, one can show that the steady-state solution to Eq. (4.1), i.e. with

@CGa=@t = 0, is

CGa(r) = BK0(r=LGa) +
(CGaCAs)eq
FAs�As

; (4.2)

where B is a constant for given temperture T and 
ux FAs (see Appendix B). Here,

K0 is a modi�ed Bessel Function of the second kind [123]. In the limit of fast Ga
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Figure 4.4: (a) Ga chemical potential at radial position r away from the droplet
edge located at rD. For illustration we have taken C l

Ga=�Ga = 0:2, CL
Ga=�Ga = 0:01

and rD=LGa = 1 (see Appendix A). (b) Schematic representation of the free energy
G (per (1� 1) unit cell) of phases � and � plotted as a function of �Ga. The phases
have the same free energy at �Ga(rc) corresponding to radial position rc in (a).

attachment/detachment from the droplet edge, the droplet shrinkage is di�usion

limited and CGajr=rD = C l
Ga where C

l
Ga is the Ga adatom concentration in equilib-

rium with the liquid Ga droplet (as given in Section 2.2). Using the relationship

between the surface adatom concentration and chemical potential derived in Chap-

ter 2, that is, �Ga = EGa + kT ln (CGa=�Ga) [56], the Ga chemical potential at radial

position r and temperature T , for 
ux FAs is simply,

�Ga (r) = EGa + kT ln

�
BK0 (r=LGa)

�Ga
+
(CGaCAs)eq
�GaFAs�As

�
; (4.3)

which is plotted in Fig. 4.4(a). Here, k is Boltzmann's constant and we assume the

Ga adatoms may sit at �Ga equivalent surface sites per unit area, of energy EGa. For

simplicity, we neglect vibrational entropy contributions.

The incoming As 
ux therefore reacts with surface Ga to form GaAs. Ga adatoms
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are replenished by the droplet which acts as a source of Ga adatoms. This results in a

monotonically decreasing Ga chemical potential as a function of radial distance from

the droplet edge, as illustrated in Fig. 4.4(a). The spatial phase pattern observed

in Fig. 4.3 can now be explained using this simple model, as follows. Consider

�rst a radial position rc associated with the boundary between phases � and �,

as represented schematically in Fig. 4.4(a). Such a boundary might approximate

experimental boundaries I or II in Fig. 4.3, for example. This is associated with a

chemical potential �Ga(rc) such that the surface free energies (per (1 � 1) cell) of

the two phases are equal,

G� (�Ga (rc)) = G� (�Ga (rc)) ; (4.4)

as shown schematically in Fig. 4.4(b). In other words, one will observe a phase

boundary where the Ga chemical potential gradient attains a critical value where

the free energy lines corresponding to two phases cross each other on the surface

phase diagram. Thus, the real-space position of phase boundaries around droplets

can be used to map surface free energies as a function of chemical potential.

DEPPs, as contained in Fig. 4.3, provide a continuously varying [124] and mono-

tonically decreasing �Ga and are, therefore, a perfect tool for carefully and exten-

sively exploring �Ga phase space. However, the structure of the surface within the

dark ring (see Fig. 4.3) may be di�cult to analyse even when using �LEED. In order

to improve our spatial �LEED resolution we can make use of the time dependence

of DEPP formation and hence the varying width of the dark ring.

4.3.2 Time-Dependent Droplet Epitaxy Phase Patterns; Im-

proved Resolution

To explain how the resolution of the technique can be improved we consider the

time-dependent droplet epitaxy experiment contained in Fig. 4.5. Panel (a) shows a

droplet and smooth planar trail region, created by previous droplet motion, which we

utilize for our imaging experiments [93]. Initially, the sample is at 550 �C with the As

70



shutter closed. Under these conditions the entire trail region is composed of the Ga-

rich c(8� 2) phase. If it were not for the presence of the droplets, the surface might

have shown some (6 � 6) at these temperatures [4]. However, the droplets supply

the surface with Ga, increasing the steady-state surface �Ga. Upon opening the As

shutter at t = 0, boundaries I and II can be seen moving inwards towards the droplet

(Fig. 4.5(b)). The radial position of boundaries I and II is shown in Fig. 4.6(b) as

a function of time. At t = 33 s they approach their steady-state positions, at which

point the As is turned o�. The boundaries then move outwards along the trail

(Fig. 4.5(c)), as displayed in Fig. 4.6(b). An experimental LEEM movie of phase

boundary motion dynamics when the As 
ux is turned on and o�, corresponding

to the sequence of Fig. 4.5 can be found in the supplementary material of Ref. [41] at

https://journals.aps.org/prmaterials/supplemental/10.1103/PhysRevMaterials.3.124603.

Time-resolved �LEED data can be acquired as the di�erent phases move along

the trail. The illumination aperture used to collect �LEED data can be strategically

placed at a given trail position to obtain di�raction information as a function of

time. Experimentally, we �nd that improved chemical potential resolution and phase

identi�cation occurs when the aperture is placed at a position away from the droplet

edge, as indicated in Fig. 4.5(a). Furthermore, when the As 
ux is turned o� and

the phase boundaries move outward, their motion is slower than when the As is

turned on (and they move inward). This results in improved time resolution when

the As 
ux is turned o�.

Fig. 4.6(a) displays the �LEED di�raction patterns (i) to (iv) obtained from the

illumination aperture position indicated in Fig. 4.5(a). The patterns were acquired

at the corresponding times indicated by the crosses in Fig. 4.6(b). We also show

schematic di�raction patterns for clarity, where large circles indicate the positions

of (1� 1) spots. Di�raction patterns (iv), (iii) and (i) correspond to the �2(2� 4),

(3�6) and c(8�2) phases, respectively, which is consistent with Fig. 4.3. However,
we surprisingly obtain a new di�raction pattern at time (ii), close to the passing of

boundary I. The observed �LEED di�raction pattern is a superposition of (6 � 6)

and c(8 � 2) phases as shown in Fig. 4.6(a). This indicates the presence of an

71

https://journals.aps.org/prmaterials/supplemental/10.1103/PhysRevMaterials.3.124603


Figure 4.5: Bright �eld LEEM image of a Ga droplet and smooth trail region of
GaAs(001). (a) at t = 0 s before the As 
ux is turned on. (b) 30 s after the As 
ux
is turned on and (c) 33 s after the As 
ux is turned o� (i.e. 66 s after it was �rst
turned on). The black dashed circle in (a) indicates the position of the illumination
aperture, and the scale bar corresponds to 2�m. The sample temperature is 550 �C.

additional (6� 6) phase in this region.

In order to understand the phase boundary motion on turning As on and o� and

the apparent improvement in �Ga resolution away from the droplet edge, we turn to

the reaction-di�usion equation of Eq. (4.1). Initially, before the As 
ux is turned on,

the surface is in quasi-equilibrium with the liquid Ga droplets and the Ga adatom

density is equal to C l
Ga across the entire surface. This corresponds to the initial,

uniform Ga adatom chemical potential pro�le �0
Ga(r) = �lGa at t = 0 as shown in

Fig. 4.7(a). This 
at initial chemical potential pro�le lies above critical chemical

potentials �I
Ga and �

II
Ga (represented by dotted lines), which respectively correspond

to boundaries I and II (see Fig. 4.3 and 4.5(c)). Therefore, the entire trail for zero

As 
ux displays the c(8� 2) reconstruction (Fig. 4.5(a)) (see also [4]).
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Figure 4.6: (a) Time-resolved �LEED data collected from the illumination aperture
shown in Fig. 4.5(a) located 8�m from the droplet. Schematic di�raction patterns
are also shown, where large circles indicate the positions of (1 � 1) spots. (b)
Measured r vs t trajectories of phase boundaries I and II, when turning the As

ux on and o�. The horizontal dotted line marks the position of the aperture in
Fig. 4.5(a), with the crosses corresponding to the acquisition times of the LEED
data contained in (a). The dotted vertical lines represent the times at which the
As shutter was opened and closed. (c) Theoretical trajectories of boundaries I and
II calculated from Eq. 4.1 (see Appendix 2). Time is given in units of reaction
time �Ga = (krFAs�As)

�1, and radial coordiante r is given in droplet radii rD. The
computational parameters are set to the representative values of C l

Ga=�Ga = 0:25,
CL
Ga=�Ga = 5 � 10�3, �D = 0:1, and �L = 7. The chemical potentials de�ning

boundaries I and II give stationary boundary positions at rI=rD = 2 and rII=rD = 3,
respectively.
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Figure 4.7: Ga chemical potential pro�les �Ga(r; t) after turning the As 
ux (a) on,
and (b) o�. The droplet edge is located at r = rD. The critical chemical potentials
�I
Ga and �II

Ga corresponding to boundaries I and II are represented by the upper
and lower horizontal dashed lines, respectively. The shaded regions represent the
evolving real-space region �r corresponding to ��Ga = �I

Ga � �II
Ga (each shaded

region relates to one instantaneous �Ga(r; t)-pro�le, where time is displayed in units
of �Ga = (krFAs�As)

�1 in both (a) and (b)). We set the computational parameters
to the representative values of C l

Ga=�Ga = 0:25, CL
Ga=�Ga = 5� 10�3, �D = 0:1, and

�L = 7 (see the Appendix). The values of �I
Ga and �II

Ga give stationary boundary
positions at rI=rD = 2 and rII=rD = 3, respectively.
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Before opening the As 
ux, the As concentration is that of quasi-equilibrium with

the solid, that is, C0
As = (CGaCAs)eq=C

l
Ga. Upon turning on the As 
ux at t = 0,

we assume the As concentration CAs increases instantly to FAs�As given the fast

timescale of As evaporation. Under these conditions we solve the reaction-di�usion

Eq. (4.1) for CGa(r; t) (and hence �Ga(r; t)) at later times t > 0 (see Appendix B

for details). This means setting CAs = FAs�As in Eq. (4.1) and an initial CGa-pro�le

equal to C l
Ga. See the movie simulating the time evolution of �Ga pro�les in the sup-

plemental material of Ref. [41] at https://journals.aps.org/prmaterials/supplemental/10.1103/PhysRevMaterials.3.124603.

Figure 4.7(a) shows the evolution of the Ga chemical potential pro�les �Ga(r; t)

upon turning on the As 
ux. As can be observed, far from the droplet the Ga

chemical potential decreases with time as the incoming As reacts with surface Ga,

on a timescale determined by the reaction time �Ga = (krFAs�As)
�1. However, the

droplet readily replenishes the surface with Ga. This pins the chemical potential at

the droplet edge at the liquidus value �lGa. Eventually, �Ga(r; t) crosses �
I
Ga at some

distance from the droplet. At this instant, boundary I appears at radial coordinate

rI such that �Ga(rI; t) = �I
Ga. As �Ga(r; t) continues to decreases with time, rI and

boundary I move inwards toward the droplet. Similarly, boundary II appears at rII

at a later time (where �Ga(rII; t) = �II
Ga) and also moves inwards along the trail with

time. Eventually, both boundaries reach their steady-state positions (cf. Figs 4.3

and 4.4) when the steady-state �Ga(r; t) pro�le is attained.

When the As 
ux is turned o�, we assume that the As adatom concentration CAs

goes instantly from FAs�As back to its original zero-
ux value C
0
As. This assumption

is consistent with the fast timescale of As evaporation, i.e., a small �As. In calculating

now the evolving Ga adatom concentration pro�les CGa(r; t) (and hence the chemical

potential pro�les �Ga), we note that the CAs in Eq. (4.1) is now CAs = C0
As, and the

initial Ga concentration pro�le is now the CGa(r) of Eq. (4.2).

As can be observed in Fig. 4.7(b), �Ga(r; t) begins to rise as the bulk solid and

the droplets supply the surface with Ga. This causes the phase boundary positions

rI(t) and rII(t) to move away from the droplet. Eventually both phase boundaries

accelerate and disappear as soon as �Ga(r; t) exceeds �
II
Ga and �

I
Ga, leaving behind a
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stable c(8� 2) surface.

Having calculated the evolving chemical potental pro�les �Ga(r; t) when turning

the As 
ux on and o�, one can easily calculate theoretical boundary trajectories rI(t)

and rII(t). These are simply given by equations �Ga(r; t) = �I
Ga and �Ga(r; t) = �II

Ga.

The solutions are shown in Fig. 4.6(c).

When the As 
ux is �rst turned on, the chemical potential pro�le �Ga(r; t) �rst

crosses �I
Ga at a large distance from the droplet. At this point, �Ga(r; t) is almost

tangential to �I
Ga which means that boundary I propagates rapidly with time (Fig

4.6(c)). However, as the boundary approaches the droplet it encounters a gradient in

�Ga(r; t) and therefore slows down. It gradually converges to a stationary position,

determined by the steady-state �Ga(r) given by Eq. (4.3). All of these qualitative

characteristics of the calculated boundary trajectories in Fig. 4.6(c) as As 
ux is

turned on are in excellent agreement with the experimental data in Fig. 4.6(b).

When As is turned o�, it can be clearly seen from Fig. 4.6(b) and (c) that the

As-o� trajectories are not time-reversals of the As-on trajectories. Furthermore, the

overall timescale of the evolution is notably longer, as manifested by the larger �Ga,

which is now � 0Ga = 1=(krC
0
As). This is because the initial disequilibrium between the

adatom population and the solid is smaller, i.e. the initial rate of GaAs decomposi-

tion is smaller than the initial rate of crystal growth when turning the As 
ux on.

In addition, the outgoing boundaries do not accelerate until far from the droplet.

This re
ects the contrasting geometries of the initial �Ga-pro�les when As is turned

on or o�. Also, the re-supply of surface Ga from the droplets in the absence of As


ux progressively 
attens out the �Ga(r; t) pro�le, whereas in As-on evolution the

initially 
at chemical potential pro�le quickly curves close to the droplet (see Fig.

4.7(a) and (b)). Note that this slower As-o� boundary evolution provides improved

time resolution compared with the As-on boundary dynamics when obtaining the

�LEED di�raction patterns contained in Fig. 4.6(a). Again, the overall simulated

behavior of the boundary trajectories when As is turned o� (Fig. 4.6(c)) is in good

qualitative agreement with experiment (Fig. 4.6(b)).

Figure 4.7 shows clearly why the chemical potential resolution increases with
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distance from the droplet. Consider the chemical potential range ��Ga = �I
Ga��II

Ga

which corresponds to the stability of the (3 � 6) phase. For a given �Ga(r; t), this

will correspond to a region in real-space �r = rII � rI. For small ��Ga we have

�r = ��Ga=j@�Ga=@rj, where @�Ga=@r is the gradient within �r. At As-on steady

state, this region lies close to the droplet, and the steep gradient gives a narrow

�r, as can be seen in Fig. 4.7(a). Such a spatially narrow ring is di�cult to fully

resolve with �LEED. However, by observing DEPPs before steady state is attained,

the lower �Ga-gradient associated with incoming or outgoing boundaries when As is

turned on or o� translates into a wider �r in real-space (see Figs. 4.7(a) and (b)),

thus improving the resolution. This explains why improved phase discrimination

occurs when the illumination aperture is placed at a position away from the droplet,

as indicated in Fig. 4.5(a). We may therefore utilize the time dependence of the

adatom concentration to control the chemical potential gradient, and hence improve

the resolution of the DEPP technique.

4.3.3 Mapping the Surface Phase Diagram of GaAs(001)

using Time-Dependent DEPPs

To study the structure of boundary I in more detail we can now take advantage of

the time dependence of the DEPP technique. Combining this with selected energy

dark-�eld (SEDF) LEEM [5] (see Section 2.4.4) we can combine dark-�eld images

corresponding to di�erent surface phases and assign colors to phase-speci�c intensi-

ties, thereby providing a composite surface phase map [5]. Fig. 4.8 displays such a

map where blue, green, orange and yellow correspond to �2(2� 4), (3� 6), (6� 6)

and c(8 � 2) phases, respectively. This map has been obtained following the As


ux being turned on as the phase boundaries move towards the droplet. This map

optimally reveals the sequential order of the phases and also clearly resolves bound-

ary I in more detail. It clearly shows a stable (6 � 6) region, as well as a region of

phase intermixing between the (6� 6) and c(8� 2) phases. In this section we show

how such information can provide important new insight into the GaAs(001) phase

diagram.
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Figure 4.8: SEDF LEEM image where blue, green, orange and yellow correspond
to �2(2 � 4), (3 � 6), (6 � 6) and c(8 � 2) phases, respectively (see [5]). This map
clearly resolves boundary I in more detail, revealing a stable (6�6) region and phase
intermixing between the (6� 6) and c(8� 2) phases. The scale bar corresponds to
2 �m. Ga droplet on right.

As mentioned earlier in Section 2.3, GaAs(001) exhibits many surface recon-

structions [1, 2, 66{76]. This is because the structure of surface is sensitive to the

experimental conditions in the chamber. As explained in Section 2.3, in attempting

to understand the stability of various phases, the standard procedure is to calculate

the zero temperature formation free energies of the di�erent structures using DFT,

and plot these against Ga chemical potential �Ga (see, for example, [1, 10, 52, 78]).

An example of such a phase diagram is that of Fig. 2.4 in Chapter 2. The aim

is then to relate �Ga to experimental conditions [78]. However, the �ne control

of �Ga in conventional experiments is di�cult due to the sensitivity of chemical

potential to temperature and deposition. In addition, uncertainty as to whether

surfaces have attained equilibrium due to kinetic limitations are also major limiting

factors [1]. However, the DEPPs contained in Figs 4.3 and 4.8 provide a contin-

uous and monotonically decreasing �Ga [124] and therefore are a convenient tool

for carefully exploring the �Ga phase space. As we will now demonstrate, this can

provide important new information on surface free energy and resolve key issues in

GaAs(001) surface thermodynamics.

The (6� 6) phase observed in Fig. 4.13(a) is very controversial [1, 10, 69, 73, 76,

125]. However, it can be easily prepared. For example, one can �rst heat the surface

to about � 600�C to observe the c(8 � 2) structure (in the absence of droplets or


uxes), and then cool it below � 525�C to see the pure (6 � 6) structure [1, 4].

However, the atomic structure and energetics of the (6 � 6) structure are not well

understood [10, 73, 125]. Several models for the structure have been proposed, such
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Figure 4.9: Phase diagram of the GaAs(001) surface containing the DFT-calculated
formation energy lines of the McLean, Xu, Kuball, and Kocan models of the (6� 6)
structures. As can be seen, none of these structures are stable for any value of �Ga.
Reprinted from Ref. [10].

as those of Kuball [125], McLean [69], Xu [126] or Kocan [127]. However, all of these

structures present very high formation energies, and are unstable for all values of

�Ga. This can be clearly seen in the phase diagram Fig. 4.9.

As shown in Fig. 4.9, the Kocan model is the structure with lowest free energy.

The atomic con�guration of this structure is shown in Fig. 4.10. It consists of crests

of Ga-As dimers running along the [110] direction, separated by troughs. The �6
periodicity along the [110] is given by the distance between the crests, while the

periodicity in the [110] is given by the atomic arrangement within the troughs.

Variants of the Kocan model have been considered with di�erent proportions of

missing As-As dimers within the troughs [10]. The structure with one out of four

As-As dimers missing presents the lowest formation energy compared with other

structural models proposed to date, and produces a (12 � 6)-sized unit cell. The

atomic con�guration of this (12 � 6) variant of the Kocan model is shown in Fig.

4.11.

The DFT-calculated free energy line of this (12 � 6) structure is shown in the

phase diagram of Fig. 4.12 (see Ref. [10]). It also shows the lines corresponding to

the models with other proportions of missing As-As dimers. The standard Kocan

(6�6) unit cell can have up to two As-As dimers (see Fig. 4.10). Therefore, the phase
diagram of Fig. 4.12 shows the free energy lines of the structures containing zero, one
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Figure 4.10: Atomic con�guration corresponding to the Kocan model for the (6�6)
structure. Empty circles correspond to Ga atoms, while �lled circles correspond to
As atoms. The top panel shows a bird's eye view of the surface. Bigger circles
correspond to atoms that are higher up in the crystal lattice (i.e., closer to the
reader). The square represents a (6� 6) unit cell. The bottom panel shows a pro�le
of the surface, cutting through the [110] direction. Reprinted from Ref. [1].

or both As-As dimers. As can be seen, the (12� 6) structure (corresponding to one

missing As-As dimer out of every four) has the lowest free energy compared to the

the rest of (6�6) structures. However, this structure is still not stable for any value
of �Ga. It has therefore been speculated that the (6� 6) phase is metastable [125],

especially since it has never previously been seen under As 
ux [1].

Our results, however, provide compelling evidence that the (6�6) phase is indeed
stable, and not just metastable. Typically, a metastable phase will only show up

when sweeping �Ga in one direction. However, the (6� 6) phase is observed both in

di�raction and real space during the droplet trail experiments in Fig. 4.5 when As

is turned on and o�. Indeed we see the same sequence of phases at a given location,

including (6� 6), whether �Ga is increasing or decreasing with time.

Figure 4.8 suggests that at high �Ga (6�6) transforms to c(8�2) via a region of

phase coexistence between (6� 6) and c(8� 2) [6]. At lower Ga chemical potential

(6� 6) transforms to a (3� 6) phase (Fig. 4.8). This (3� 6) phase is stable over a

relatively large range of �Ga and yet has not received wide attention in the literature.

In particular, no detailed model has been proposed for this structure. Instead, a wide
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Figure 4.11: Atomic con�guration corresponding to a unit cell of the (12�6) variant
of the Kocan model. Empty circles correspond to Ga atoms, while �lled circles
correspond to As atoms. Bigger circles correspond to atoms that are higher up in
the crystal lattice (i.e., closer to the reader). The As-As dimers within the troughs
are denoted by 'AD', whilst the missing As-As dimer is represented by an 'X'. As
can be seen, 1 out of 4 As-As dimers are missing. This presents the lowest free
energy model for the (6� 6) structure conceived to date. Reprinted from Ref. [10].

Figure 4.12: Phase diagram of GaAs(001) containing the formation energy lines for
di�erent variants of the Kocan model for the (6 � 6) structure. Reprinted from
Ref. [10].
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variety of reconstructions based around (n�6) periodicities have been discussed (see,
for example, [1, 69, 73]). One possibility is that the many phases reported may not

have attained equilibrium which is based around a (3�6) periodicity as displayed in
Fig. 4.8. It is likely that other phase variants have similar free energies as a function

of �Ga which may explain the wide ranging observations in the literature. At lower

�Ga, it can be seen that the (3 � 6) phase converts to the well-known �2(2 � 4)

structure (Fig. 4.8).

The radial sequence of phases observed in the DEPP (Fig. 4.3 and 4.8) directly

reveals the sequence of phases occurring as a function of �Ga. With this information,

we can superimpose these phases on DFT phase diagrams via Eq. (4.4). Consider

�rst the (3 � 6) phase. Since no (4 � 6) or �2(2 � 4) structures exist on the high

�Ga side, its free energy line must intersect c(8� 2) somewhere between A and B in

Fig. 4.13(b). We choose a reasonable point to illustrate, and label it D. Similarly,

at lower �Ga, the phase transforms to �2(2� 4) with no c(4� 4)� or c(8� 2) phases
visible. The (3 � 6) free energy line must therefore intersect �2(2 � 4) somewhere

between B and C. We label this point E. It is therefore possible to approximately

superimpose the (3 � 6) free energy line on the phase diagram (Fig. 4.13(b)) as

shown. Similarly, the (6 � 6) phase lies in between c(8 � 2) and (3 � 6). It must

therefore intersect with (3� 6) between points D and E, and cross c(8� 2) between

points A and D, allowing us to approximately add the (6�6) free energy line to the
DFT calculation as shown in Fig. 4.13(b).

Finally, it is important to directly address the apparent discrepancy between our

results and published calculations of surface energy in Figs. 4.9 and 4.12. Figures

4.13(a) and 4.6(b) show a sequence of phases �2(2�4)! (3�6)! (6�6)! c(8�2)
with increasing �Ga, while theoretical calculations show �2(2� 4)! c(8� 2) [1,2].

As previously discussed, variants of the (6� 6) structure have been investigated in

detail using DFT [1, 10]. However, all structures considered to date have a higher

energy than �2(2� 4) or c(8� 2) for all �Ga. Of course, the calculations are based

on DFT at T = 0K, while the experiments are at temperatures � 550 �C. Therefore

it is natural to consider whether entropy could stabilize the (6 � 6) phase [10]. As
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Figure 4.13: (a) The same image as that of Fig. 4.8 (b) Existing DFT calculation
of the GaAs (001) phase diagram (black lines) [1,2], plotting formation energy with
respect to the �2(2 � 4) surface per (1 � 1) unit cell against relative Ga chemical
potential ��Ga with respect to Ga bulk at 0K. From the image in panel (a) we
can schematically superimpose the formation energy lines of the (3� 6) and (6� 6)
phases as shown, to suggest a surface phase diagram at 530 �C. The dashed vertical
lines are the chemical potential values de�ning boundaries I and II. The scale bar
in (a) is 2�m.
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mentioned previously, the most favorable (6�6)-like structure calculated at T = 0K

is (12 � 6) [10]. However, the proposed structure (Fig.4.11) has the same slope

(composition) as c(8� 2) and so cannot be the �nal answer. In particular, Fig. 4.13

constrains the slope of (6� 6) to be less Ga-rich than the proposed (12� 6) so that

it can intersect c(8� 2) and (3� 6) appropriately. Note, however, that some of the

dimers upon the crests along the [110] direction of the (12� 6) structure are As-As

dimers, and not Ga-As dimers as those of the standard Kocan model of Fig. 4.10.

Therefore, As-richer versions of the (12�6) structure of Fig. 4.11 can be constructed
by replacing Ga-As dimers by As-As dimers. In fact, there is experimental evidence

of there being (6� 6) structures with di�erent stoichiometries. In Ref. [76], Ohtake

de�nes a low-temperature and a high-temperature version of the (6� 6) strucuture.

In the latter, there is an estimated 78% � 11% of Ga-As dimers upon the crests

(the rest being As-As dimers). In the former, however, there is only an estimated

13% � 8% of Ga-As dimers. Therefore, relatively As-rich versions of the (12 � 6)

structure of Fig. 4.11 can be conceived. In fact, the superimposed (6�6) free energy
line in the phase diagram of Fig. 4.13(b) has been given the slope corresponding to

the (12 � 6) structure of Fig. 4.11 with only 10% of Ga-As dimers, and has been

lowered roughly 50 meV/(1 � 1) cell with respect the (12 � 6) line of Fig. 4.12

to render it stable. The combination of Ga-As and As-As dimers upon the crests

of the structure, as well as the missing As-As dimers within the troughs provide

con�gurational entropy [1, 10]. With kT � 70meV, it seems reasonable to envisage

that such structural elements could contribute su�cient con�gurational entropy to

stabilize (6� 6).

4.4 Conclusion

In summary, we have combined LEEM imaging and �LEED techniques to map

surface phases around liquid Ga droplets during droplet epitaxy. This can be used

to approximately map the GaAs(001) phase diagram and is highly complementary to

existing DFT calculations. The method re
ects phase stability at �nite temperature

and so naturally incorporates the in
uence of entropy. We envisage DEPPs will be
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used to map surface free energy for a wide range of technologically important III-V

materials, including nitrides.
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Chapter 5

Dynamics of Local Droplet

Etching

5.1 Introduction

Local Droplet Etching (LDE) emerged in the mid 2000s as a variant of the general

droplet epitaxy technique that produces nanoholes in the place of the droplets [42,

48,128]. It consists of high-temperature annealing of group III droplets (T � 500!
600�C for the case of Ga) on III-As surfaces under a low As pressure in MBE

reactors. The main application of LDE is to produce nanohole templates for �lling

with lattice-matched and hence strain-free quantum dots [49,50,118].

Since the early 1990s, the state-of-the-art method of production of quantum dots

has been the Stranski-Krastanov method [129]. In this technique, the formation

of quantum dots occurs during heteroepitaxial growth of one material on another

which produces a lattice mismatch. In III-Vs, the classic example is growing InAs

on GaAs(001), followed by subsequent capping with GaAs. During deposition, InAs

begins growing in an epitaxial fashion and forming what is known as the wetting

layer. However, the lattice mismatch between the GaAs and InAs systems makes the

InAs layer accumulate strain. This continues until a critical thickness is achieved,

and strain relaxation converts the 2-dimensional layer into 3-dimensional islands

(quantum dots) accross the surface.

The Stranski-Krastanov method to produce quantum dots been highly success-
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ful, and has thus been used widely throughout the years [130{132]. It does, how-

ever, have a number of drawbacks. Most importantly, the nature of the Stranski-

Krastanov method requires the substrate material and the wetting layer material

to be lattice-mismatched. This limits the possibilities of material combinations for

quantum dot formation. Secondly, the residual strain induces an associated piezo-

electric �elds within the quantum dots. Thirdly, the strain that forms within the

wetting layer will tend to produce mis�t dislocations in the quantum dots formed.

Lastly, the unavoidable intermixing of the wetting layer material with the underlying

substrate, as well as with the capping layer.

The advent of LDE has enabled the community to address some of the limitations

of the Stranski-Krastanov method. The basic procedure for GaAs quantum dot

formation using LDE is the following: Firstly, a �500 nm AlxGa(1�x)As (with x �
0:3) bu�er layer is grown on GaAs(001). Next, Ga or Al droplets are formed on the

surface by opening the Ga or Al shutter and depositing Ga or Al on the surface. The

droplets form as per the Volmer-Weber growth mode [52]. The temperature at which

this deposition is performed determines the density of droplets [133]. Concretely,

the density of droplets decreases with increasing temperatures. For the case of

Ga droplets, one can get a density of nanodroplets of around 100�m�2 depositing

at T = 150�C. However, depositing Ga at the same 
ux and during the same

amount of time (and hence depositing the same Ga coverage) but at a temperature of

T = 250�C yields a density of nanodroplets of just � 1�m�2 [133]. This enables the

experimentalist to select the density of droplets, and hence the density of quantum

dots. Furthermore, the size of the droplets can be tuned by selecting a deposition

time, i.e., a longer deposition time would produce larger droplets. This is a clear

advantage over the Stranski-Krastanov method, as in the latter it is more di�cult to

control the density and size of dots. After the formation of droplets, metal deposition

is shut down, and the substrate temperature is tuned to etching temperatures. In

contrast to quantum dot or quantum ring formation, LDE is typically carried out

at relatively high temperatures in the T � 550�C ! 600�C regime. The sample is

annealed at this temperature for a length of time of seconds/minutes usually with
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the As shutter closed. This is because, for nanohole drilling, low As 
uxes are

needed, and the background As vapor in a standard MBE reactor is usually more

than su�cient. After the droplets have been completely crystallised and an array

of nanoholes is left on the surface, these are �lled with GaAs. The �nal step is to

grow another AlGaAs layer on top in order to produce the quantum well within the

GaAs dot. Note that such GaAs dots are strain-free, and would not have been able

to be grown as per the Stranki-Krastanov method given this is a lattice-matched

system.

Figure 5.1: AFM linescans of a nanohole on AlGaAs both before (red, purple) and
after (black) being �lled with the GaAs dot. Reprinted from Ref. [11].

Therefore the mechanism LDE has been studied experimentally extensively through-

out the years using di�erent group III metals such as such as Ga, In or Al and on

di�erent III-V surfaces [9,12,42{47]. Also kinetic models of the mechanism of etch-

ing have been developed that address the phenomenology of nanohole formation in

a precise manner [134, 135]. However, the mechanisms of mass transport during

etching are not yet completely understood [47], and there still remain open ques-

tions such as the origin of the ring immediately outside the hole (see Fig. 5.1) or

the necessity of a �nite 
ux for drilling to occur [12]. Here we present a simple

model for the case of Ga droplet etching of GaAs. It is based on the thermodynamic

and kinetic concepts presented in Chapter 2. As we will see, the simulations that

we produce are able to explain the formation of nanoholes from a purely physical
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standpoint, and addresses the remaining open questions.

5.2 Theoretical Formalism

In this section the basic elements of the theory that underpin the simulations are

presented. In our model we consider an array of identical Ga droplets on GaAs(001),

distributed uniformly across the surface, with n nanoscale droplets per unit surface

area. The surface is then annealed at high temperature (T � 600�C) under an As


ux. Mass transport between the vacuum, the solid, the adatom population and the

droplet are considered, and the evolution of the surface is integrated. We consider

the surface under and in the vicinity of one such droplet, and describe it mathemat-

ically as a surface of revolution about the axis of the droplet, i.e., by a function h(r)

which gives the height of the surface as a function of radial coordinate r. We assume

a small-slope approximation in which dh=dr � 0 at all times, and so r represents

'distance along the surface'. Also, in line with the small slope approximation, the

surface is displaced only in the vertical direction as the simulation proceeds. The

rates of these processes determine the evolution of the system and the �nal mor-

phology of the structure formed. The �nal surface geometries are then compared

with experimental results.

5.2.1 Vapor-Solid growth; Ga and As adatoms

We begin by considering mass exchange between the adatom population and the

solid during the droplet etching experiments. For this, we must calculate the Ga and

As concentrations, CGa and CAs across the surface between the droplets. Knowing

these we can then calculate the local growth velocity using Eq. (2.37) (Chapter

2) and integrate the evolution of the surface. Let us therefore �rst consider the

steady-state adatom densities on the surface subjected to a certain As 
ux FAs.

Let us consider �rst the As density. In order to evaluate its magnitude, we turn

to the continuity equation derived in Chapter 2 (Eq. (2.41)) for the case of As and
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consider its steady-state version, i.e., that with @CAs=@t = 0. This is

DAsr2CAs � kr [CGaCAs � (CGaCAs)eq]� CAs

� dAs

+ FAs = 0; (5.1)

where DAs is the di�usion coe�cient of As adatoms on the surface, � dAs is their

lifetime before desorption, and FAs is the As 
ux being deposited on the surface.

However, in the high temperature regime (� 600�C) associated with local droplet

etching (LDE) arsenic evaporates readily, so that its di�usion length on the sur-

face can be considered negligible. Therefore we neglect the di�usion term in the

continuity equation and write simply

� kr [CGaCAs � (CGaCAs)eq]� CAs

� dAs

+ FAs = 0: (5.2)

Now, making the further assumption that Ga migrates very rapidly across the surface

and hence that CGa is uniform (to be evaluated shortly), we may solve Eq. (5.2) for

CAs to obtain

CAs =
Fb + FAs

krCGa +
�
� dAs

�
�1 (5.3)

where Fb � kr(CGaCAs)eq is the segregation 
ux from the bulk solid. Note that

CAs is not in general homogeneous, since (CGaCAs)eq depends on position through

the crystal chemical potential �GaAs, As per Eq. (2.12) in Chapter 2. Decomposing

�GaAs into �GaAs = gGaAs+��GaAs, i.e., a bulk component plus a position-dependent

surface excess, and assuming a small ��GaAs=kT we have may write

(CGaCAs)eq � (CGaCAs)
1

eq

�
1 +

��GaAs(r)

kT

�
; (5.4)

where (CGaCAs)
1

eq is the (CGaCAs)eq for ��GaAs = 0. Introducing this in Eq. (5.3)

gives

CAs(r) =
F1

b (1 + ��GaAs(r)=kT ) + FAs

krCGa +
�
� dAs

�
�1 ; (5.5)

where F1

b is the segregation 
ux from the solid for ��GaAs = 0. Eq. (5.5) shows

explicitly how the As adatom concentration will be higher at points where the surface

chemical potential ��GaAs is higher and thus where the decomposition of the solid
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is faster.

Let us turn now to the Ga adatom density. Given Ga di�uses readily at these

temperatures, we consider a global form of its steady-state mass balance equation,

i.e., one that states that the rate of Ga in
ux to the whole surface equals the rate

of Ga out
ux. Such as equation writes

� kr

h
CGaCAs � (CGaCAs)eq

i
� CGa

� dGa

+ 2�rDnkD(C
l
Ga � CGa) = 0: (5.6)

Here CAs denotes spatial average of CAs(r), i.e. CAs � 1=Atot

R
CAs(r)dA (likewise

for (CGaCAs)eq), where dA is an area element of the surface and Atot is the total area

of the surface. The �rst term of Eq. (5.6) relates to Ga exchange between the adatom

population and the solid, the second is the rate of Ga evaporation (� dGa is Ga adatom

lifetime before desorption), and the third is the net rate of Ga supply of the droplet

array to the surface. Let us recall from Chapter 2 (Eq. 2.44) that kD(C
l
Ga�CGa) is

the net rate of Ga detachment from the droplet to the adatom population per unit

contact line length. Therefore, the net rate of Ga supply per unit surface area from

the droplet array to the adatom population is 2�rDnkD(C
l
Ga �CGa), where 2�rD is

the instantaneous contact line perimeter length of the droplets (rD is their radius),

and we recall n is the number of droplets per unit surface area. We neglect the

rate of shrinkage of the droplets, compared to the fast atomistic processes at these

temperatures. In order to solve Eq. (5.6) for the Ga concentration CGa, we de�ne

the Ga lifetime before attachment to a droplet,
�
�DGa

�
�1 � 2�rDnkD, and a total Ga

lifetime as ��1Ga =
�
� dGa

�
�1

+
�
�DGa

�
�1
. We further approximate the spatially-averaged

terms of Eq. (5.6) by their value for ��GaAs = 0 (i.e. we change the overline by a1
superscript) since this will only stop holding in the immediate vicinity of droplets

and thus over a small fraction of the total area of the surface. Introducing also Ga


ux FGa = C l
Ga=�

D
Ga, we may put Eq. (5.6) in a more compact form to solve, which

is

� krCGaC
1

As �
CGa

�Ga
+ F1

b + FGa = 0; (5.7)

with in
uxes and out
uxes written explicitly. Although Eq. (5.7) looks linear in
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CGa and trivial to solve, we ought to note that the As density C1

As depends upon

CGa (see Eq. (5.3)) through

C1

As =
F1

b + FAs

krCGa +
�
� dAs

�
�1 : (5.8)

Therefore substituting Eq. (5.8) into Eq. (5.7) gives quadratic equation

kr�
d
AsC

2
Ga +

�
(FAs � FGa) kr�Ga�

d
As + 1

�
CGa � �Ga (F

1

b + FGa) = 0; (5.9)

whose solution is

CGa =
(FGa � FAs) kr�Ga�

d
As � 1 +

q�
(FGa � FAs) kr�Ga� dAs � 1

�2
+ 4kr�Ga� dAs (F

1

b + FGa)

2kr� dAs
:

(5.10)

Note that CGa depends on the density of droplets n and on the instantaneous radius

rD (through �Ga), and will thus change throughout the course of the experiment.

However, it is not obvious at �rst sight how CGa will evolve throughout the experi-

ment until the simulations are run.

Knowing the Ga and As surface concentrations we can compute the locally-

de�ned growth velocity outside of the droplet as

vO = 
GaAskr [CGaCAs � (CGaCAs)eq] ; (5.11)

where 
GaAs is the volume of a primitive cell in GaAs, CGa is given by Eq. (5.10), CAs

is given by Eq. (5.5), and (CGaCAs)eq is given by Eq. (5.4). Integrating Eq. (5.11)

in time yields the evolution of the surface outside of the droplets, as a after a time

interval of dt the surface will be displaced an amount dhO = vOdt.

5.2.2 Liquid-solid growth

Now we consider mass exchange between the liquid and the solid. As explained in

Chapter 2, the growth reaction at the liquid-solid interface under the droplet again

Ga(l) + As(l) $ GaAs(s), where the sparsely dissolved atoms of As in the droplet
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react with Ga (the solvent) to form GaAs at the liquid-solid interface. As the arsenic

solubility in liquid Ga is very low (below 0:2% at 600�C), the rate of reaction to

form GaAs at the liquid-solid interface will be approximately proportional to the

arsenic mole fraction xAs given the low As solubility in GaAs. We will assume xAs

remains homogeneous throughout the droplet at all times, as di�usion in the liquid

is fast [136]. Therefore, recalling the expression for the net growth rate at the liquid-

solid interface from Chapter 2 (Eq. (2.38)), we can write the net growth velocity

under the droplet as

vI = 
GaAskl(xAs � xeqAs); (5.12)

where xeqAs is the locally-de�ned As mole fraction in equilibrium with the solid, and

relates to the crystal chemical potential �GaAs exponentially, as given by Eq. (2.23)

(Chapter 2). Given that �GaAs separates into a bulk component plus a surface

component, i.e., �GaAs = gGaAs + ��GaAs, and assuming the surface component

remains small, that is, ��GaAs=kT << 1 we may write the xeqAs in Eq. (5.12) as

xeqAs(r) � xeq;1As

�
1 +

��GaAs(r)

kT

�
; (5.13)

where xeq;1As is the value of xeqAs for ��GaAs = 0.

Let us now consider the form of the surface chemical potential ��GaAs. As-

suming, for simplicity, that the solid has isotropic surface energy 
, and recalling

Eq. (2.29) from Chapter 2 we may write

��GaAs = 
GaAs(
�+ p); (5.14)

where � is the curvature of the surface and p is the pressure applied to the surface.

Surface energy 
 will be the liquid-solid energy 
ls for the surface under the droplet.

However Eq. (5.14) also applies to the surface outside of the droplet. In this case we

would have that 
 equals the vacuum-solid surface energy 
vs. Furthermore, pressure

p will be zero under the droplet (we neglect the capillary pressure in the droplet)

and also outside the droplet, as the surface is exposed to the vacuum. Therefore p

will only be nonzero at the droplet contact line, where it should express the pulling
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of the droplet on the surface due to the droplet surface tension 
vl. The question

now is how to treat the discontinuity introduced by the contact line.

5.2.3 Smearing the contact line

In order to address the discontinuity, we note that a realistic droplet contact line at

these temperatures ought to be subject to thermal 
uctuations. Therefore it makes

physical sense to smooth the contact line over some �nite width w. We will now

illustrate how this is done for the case of the surface energy 
.

The surface free energy 
 maybe written as [62]


(r) = �(r)
vs + (1��(r))
ls; (5.15)

where �(r) is a step function, taking a value of 0 under the droplet and 1 outside

the droplet. In the absence of smoothing �(r) would be the Heaviside step function

centered at the contact line position. However, we smooth the step function over a

width w by setting

�(r) =
1

2
erfc

�
rD � rp

2w

�
; (5.16)

where erfc is the complementary error function.

Analogously, the (negative) pressure exerted onto the surface of the solid at the

contact line position due to the droplet surface tension pulling on the solid is given

by [62]

p(r) = �
 vl sin �c �c(r); (5.17)

where �c(r) is a Delta function centered at the contact line. However, we smooth this

Delta function by taking it as the derivative of our smoothed step function de�ned

in Eq. (5.16), that is

�c(r) =
d�(r)

dr
=

1p
2�w

exp

�
�(rD � r)2

2w2

�
; (5.18)

which gives a Gaussian of width w centered at the contact line. Numerically we take

this width as w = 1nm.
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The surface chemical potential of Eq. (5.14) is then

��GaAs(r) = 
GaAs(
(r)�(r) + p(r)); (5.19)

where 
(r) is given by Eq. (5.15) and p(r) is given by Eq. (5.17). The curvature of

the surface is the sum of its radial component and its angular component, that is

� = � h 00

(1 + h 0 2)3=2
� h 0

r (1 + h 0 2)1=2
; (5.20)

where 0 = d=dr. However, in our small-slope approximation we can set h 0 = dh=dr �
0. This sets the angular curvature equal to zero and simpli�es the total curvature

to

� � �h00; (5.21)

5.2.4 Evolution of the system; Integrating the LDE problem

Let us now explain how the evolution of the system is integrated. We begin with

a 
at surface at temperature T � 580 �C subjected to a certain 
ux FAs, on which

there sits a droplet array with n identical, evenly distributed droplets per unit area,

each containing NGa Ga atoms and NAs As atoms. For simplicity we set these

such that the arsenic mole fraction is that of equilibrium with the bulk solid, i.e.,

xAs = xeq;1As . Note that NGa and NAs determine the volume V of the droplet, as

V = 
 l
GaNGa + 
 l

AsNAs; (5.22)

where 
 l
Ga and 
 l

As are the respective volumes of Ga and As in the liquid. In turn

V determines the position rD of the contact line, as we will make �c remain at its

equilibrium value at all times, given by

cos �c =

 vs � 
 ls


 vl
: (5.23)

Concretely, the volume of a spherical cap with contact angle �c is V = �(�c)r
3
D,

where �(�c) is a geometrical constant for a spherical cap of contact angle � [137].
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These quantities determine the growth velocity of the solid both outside the

droplets (vO(r)) and under them (vI(r)). We de�ne the total growth velocity �eld

by smoothing vO(r) and vI(r) across the contact line, i.e.

v(r) = �(r)vO(r) + (1��(r))vI(r): (5.24)

Knowing the growth velocity map at the initial instant, we �nd the displacement of

the surface after a small time interval �t simply by as

�h(r) = v(r)�t (5.25)

During this small time interval �t the droplets have exchanged Ga and As with

their surroundings. We therefore need to calculate the changes �NGa and �NAs in

the Ga and As atoms making up the droplet and, with those, �nd the As mole

fraction xAs and contact line position rD in order to continue tracking the evolution

of the surface.

Neglecting Ga desorption from the surface of the droplets, we note that Ga can

exit/enter the droplet via growth/decomposition at the liquid-solid interface or via

detachment/attachment at the droplet contact line. Therefore, the rate of change

of the number of Ga atoms NGa making up the droplet is

dNGa

dt
= �

Z
vI


GaAs
(1��(r)) dA� 2 � rD kD

�
C l
Ga � CGa

�
: (5.26)

where dA is the area element of the solid surface. For the case of As, we note that

it can likewise exit/enter the droplet via growth/decomposition at the liquid-solid

interface. Furthermore, As can enter the droplet due to the As 
ux FAs landing

on the surface of the droplet, but it can also exit the droplet by desorbing from its

surface. Therefore, the rate of change of the number of As atoms NAs making up

the droplet is

dNAs

dt
= �

Z
vI


GaAs
(1��(r)) dA+ 4 � r2D �(�c)

�
�FAs � F l

As

�
; (5.27)
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where 4 � r2D �(�c) is the area of a spherical cap of radius rD and contact angle �c,

and � is the sticking coe�cient of the incoming As on the droplet surface.

Knowing the new atoms numbers NGa + �NGa and NAs + �NAs after a time

interval �t using Eqs. (5.26) and (5.27) enables us to calculate the new As mole

fraction xAs+ �xAs as well as the new contact line position rD + �rD. The system is

tracked in time by iterating this process until the droplet is consumed.

5.3 Results

In this section we will present simulation results of local droplet etching containing

the theoretical scheme described above. In particular, we will consider the same

droplet etching experiment under three di�erent As 
ux intensities. We consider a

GaAs(001) surface at T = 600�C on which there sits a droplet array of identical Ga

droplets with droplet radii of rD = 0:1�m, distributed on the surface with density

n = 0:5�m�2. These can be considered to be distributed forming a hexagonal 2D

lattice with a side of length a =
q
2=(
p
3n) � 1:5�m. We also set the initial As

mole fraction in the droplet as that of equilibrium with the bulk solid at chemical

potential �GaAs = gGaAs, i.e., xAs = xeq;1As , which at these temperatures equals

� 0:18%. We will integrate the evolution of one droplet out of the array and compare

the results considering the di�erent 
ux intensities. It may seem intuitive that a

completely minimized 
ux is best for etching, as one seeks to have a Ga droplet as

undersaturated of As as possible for drilling. However we will see that a small but

�nite 
ux is optimal for drilling within experimentally accessible timescales. This

conclusion has already been reached in experiment [12], but with no physical model

to explain why. Here we will address this issue within the physics of our model

presented above.

5.3.1 Drilling under low (optimal) As 
ux

Firstly, we consider a relatively low 
ux in our simulations; we set a representative

value of FAs = 105�m�2s�1 and integrate the evolution of the system as described in

Section 5.2.4. We also set the rate constant associated to desorption from the droplet
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surface such that the net 
ux penetrating the droplet equals the evaporating 
ux

exiting the droplet, i.e., kAsx
eq;1
As = �FAs (we set a sticking coe�cient of � = 0:7). At

�rst sight, under these circumstances there would seem to be no reason for drilling

at the liquid-solid interface. However, it must be noted that although �GaAs = gGaAs

holds under the the bulk droplet, close to the contact line we must consider the

pulling of the droplet surface and so �GaAs = gGaAs + 
GaAsp (see Eq. (5.14)). This

is shown schematically in Fig. (5.2), which shows the initial 
at surface (blue) on

which there sits the initial droplet (red), together with the crystal chemical potential

pro�le �GaAs (green). As can be seen, �GaAs remains constant throughout out the 
at

surface except under the contact line where it dips in a pronounced manner due to

the pulling exerted by the droplet's surface tension. This dip produces a noticeable

disequilibrium between the droplet and the solid, i.e., xAs > xAseq (also between

the adatom population and the solid, i.e., CGaCAs > (CGaCAs)eq) and triggers GaAs

deposition at the contact line position.

Figure 5.2: Initial con�guration: a Ga droplet (red) sitting on a 
at GaAs surface
(blue). The green line represents the crystal chemical potential �GaAs. As can be
observed, it is constant everywhere except under the contact, where is dips due to
the droplet's surface tension pulling on the solid. We take a width w = 1nm as the
Gaussian width for the contact line.

Figure 5.3 shows the evolution of the surface. The blue solid line represents the

pro�le of the surface, the vertical dotted lines represent the position of the contact

line, and the green dotted horizontal line represents the initial 
at geometry of the
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surface. Panel (a) shows the initially 
at surface. Panel (b) shows the surface after

100 s and, as is well observed, the dip in �GaAs under the contact line gives rise to

a GaAs ridge at the contact line position.

Given that the small As content in the droplet, xAs falls when the reaction

Ga + As ! GaAs takes place, so that the droplet becomes undersaturated in As

(i.e., xAs < xeq;1As ) when deposition occurs. This, in turn, triggers drilling under

the bulk droplet (note the surface under the droplet goes below the dashed green

line). This encapsulates the mechanism of etching: the droplet surface tension

pulling on the solid induces GaAs deposition at the contact line. GaAs deposition

undersaturates the Ga droplet of As and gives rise to drilling under the bulk droplet.

Figure 5.3: Pro�les of the evolving surface (blue) under and in the vicinity of a
Ga nanodroplet beloning to a nano-droplet array, subjected to an arsenic 
ux of
FAs = 105�m�2s�1. The dashed horizontal green line is the initial surface, and the
two vertical red lines represent the instantaneous position of the droplet contact
line.

Let us now consider what is happening to the adatom population, and how this

a�ects the evolution of the droplet. In the absence of As 
ux, the Ga adatom con-
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centration would be close to its value of equilibrium with the droplets, C l
Ga, as the

temperature is close to the maximum temperature for congruent evaporation Tc. We

take C l
Ga to be 0.25 (in units of the number of sites per unit area for a Ga adatom

to sit). However, the incoming As 
ux reacts with surface Ga, thereby lowering

the Ga adatom concentration CGa. This enhances the net Ga 
ux per unit contact

line length from the droplet to the adatom population JGa = kD
�
C l
Ga � CGa

�
. The

droplets begin losing Ga to the adatom population and therefore shrinks as the ex-

periment proceeds. E�ectively, the Ga from the droplets is being crystallized across

the surface. Note how the surface outside of the droplet grows as the experiment

proceeds (see Fig. 5.3). The �nal height of the surface (� 0:75nm) approximately

corresponds to the Ga stored in the initial droplet array (the di�erence lying in the

small amount of Ga that has evaporated).

Figure. 5.4(centre) furthermore shows a plot of the Ga adatom concentration CGa

versus t. Initially, when the droplets are still large, the Ga supply to the surface is

relatively abundant. As can be seen in Fig. 5.4(centre), the initial CGa is close to

C l
Ga = 0:25 �Ga, indicating that the droplet array is replenishing the surface with Ga

at a high rate in spite of the presence of the As 
ux. The value of CGa continues more

or less constant (though decreasing gently) until the droplets reaches approximately

half of its initial size. From that point on CGa decreases rapidly. This is because the

droplets are substantially smaller, and therefore the total droplet contact line length

per unit surface area that supplies Ga is diminished. CGa eventually falls to its value

in the absence of droplets. Fig. 5.4(left) shows a plot of the contact line position

rD(t) versus t. As can be seen, rD(t) decreases at approximately a uniform rate

until it is about half its initial value. From that point on, the droplet shrinks faster

and faster as it continues to shed Ga to the surface while its contact-line-to-volume

ratio increases.

It is also useful to consider how the As mole fraction in the droplet changes

throughout the course of the experiment. Fig. 5.4(right) shows the plot of xAs(t)

versus t. Interestingly, the evolution of xAs is unlike the evolution of rD and CGa. It

stays very much constant and close to the value of equilibrium with the solid, xeq;1As
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Figure 5.4: Here we show the evolution in time the droplet contact line position
(left), the Ga adatom concentration CGa in units of �Ga (middle), and the As mole
fraction xAs in the droplet (right). The black dotted line represents the As mole
fraction of equilibrium with the bulk solid, xeq;1As .

until the very end of the etching experiment when the droplet is very small. This

re
ects another very important characteristic of the system: the high rate at which

the growth and decomposition reactions Ga + As$ GaAs occur at the liquid-solid

interface at the elevated temperatures of LDE (T � 600�C), i.e., the high value of

the reaction rate constant kl in Eq. (5.12). The large kl enables the rapid growth of

the GaAs ridges at the contact line. In turn, it enables the rapid restoration of the

diminished xAs (due to the growth at the contact line) by drilling into the solid at a

fast rate, and hence for the process to be repeated again. The large rate constant kl

for growth/decomposition at the liquid-solid interface is thus one of the fundamental

ingredients behind the formation of nanoholes during LDE experiments.

5.3.2 Drilling under a minimized As 
ux

Let us now consider the same droplet etching experiment, only now under a com-

pletely minimised As 
ux. This does not mean zero As 
ux, as there is always

a background pressure in MBE chambers associated to residual As from previous

experiments. In practice a minimal As 
ux can be achieved by cooling the As cell.

We set an As 
ux ten times less intense, i.e., FAs = 104�m�2s�1 and we track the

evolution of a droplet during 225 s. This is purposely the same amount of time that

was needed to crystallise the droplet completely in the previous experiment when

using FAs = 105�m�2s�1.

At �rst thought, it would seem that etching would be favoured under a minimised

As 
ux, since a lower 
ux would imply a droplet more undersaturated of As and
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therefore drilling faster into the solid. This, however, is not the case, as is shown

Fig. 5.5, which shows the simulated evolution of the surface pro�le under these

conditions. As in the previous case, the droplets have an initial radius of rD =

0:1�m and contain the equilibrium As mole fraction xAs = xeq;1As . However, the

dip in the crystal chemical potential �GaAs at the contact line position drives GaAs

growth to form the classic ridge under the contact line. As explained before, GaAs

deposition results in a decrease of the As mole fraction xAs in droplet, and thus

triggers drilling of the solid under the bulk droplet. This restores the xAs in the

droplet and enables the process to be repeated again. However, after 225 s of

annealing, we only have � 4nm deep holes as opposed to the � 15nm deep holes

that were obtained when annealing under the ten times larger As 
ux of FAs =

105�m�2s�1. It is also noticeable that the droplet has only shrunk minimally (see

Fig. 5.6(left) for a plot of contact line position rD versus annealing time t) and it is

therefore logical to ask whether this has any link to the shallow holes.

In order to �nd the link between the minimised As 
ux, the slow droplet shrink-

age, and the shallow drilling let us �rst analyze the behaviour of the adatom pop-

ulation. Under this low As 
ux, the rate of Ga reaction with surface As is low.

Therefore the Ga adatom concentration CGa is barely a�ected and remains close

to its value C l
Ga of equilibrium with the droplets, as can be seen in Fig. 5.6(mid-

dle). As a result of this, the net 
ux per unit contact line length of Ga from the

droplet to the adatom population JGa = kD
�
C l
Ga � CGa

�
remains low, and hence

the shrinking of the droplet remains slow. E�ectively, the incoming low As 
ux is

crystallizing the droplet array at a slow rate. The shallow drilling under the droplet

is in fact a consequence of the idleness of the contact line position rD. As GaAs is

deposited at the contact line, the curvature of the surface at that point builds and

hence the crystal chemical potential grows (see Eq. (5.14)). If the contact line does

not move, GaAs will continue to be deposited at the same point of the surface and

the surface curvature will continue to grow at the same point. This will continue

until 
� e�ectively cancels the droplet pulling (negative) pressure p in Eq. (5.14),

i.e. 
� + p � 0, and equilibrium is reached between the droplet and the solid. At
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(a) (b)

(c) (d)

Figure 5.5: Pro�les of the evolving surface (blue) under and in the vicinity of a
Ga nanodroplet beloning to a nano-droplet array, subjected to a minimised arsenic

ux of FAs = 104�m�2s�1 during 225 s (the amount of time that was needed for
the droplets to crystallise completely when using FAs = 105�m�2s�1). The dashed
horizontal green line is the initial surface, and the two vertical red lines represent
the instantaneous position of the droplet contact line.

this point GaAs deposition at the contact line stops and hence the drilling under

the bulk droplet stagnates. In the previous case with higher 
ux, as the contact line

moved it continued to encounter un-curved surface on which to deposit GaAs and

hence give continuity to the drilling of the solid. The necessity of a �nite As 
ux

for drilling has already been observed experimentally [12], but the reason for this

was not well understood. Our model, however, resolves this dilemma elegantly in

physical terms.
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Figure 5.6: Here we show the evolution in time of the droplet contact line position
(left), the Ga adatom concentration CGa in units of �Ga (middle), and the As mole
fraction xAs in the droplet (right) for the case of FAs = 1 � 104�m�2s�1. The
black dotted line in the (center) panel corresponds to the liquidus Ga concentration
C l
Ga and the black dotted line in panel (right) represents the As mole fraction of

equilibrium with the bulk solid, xeq;1As .

5.3.3 Drilling under high As 
ux

Lastly, let us now consider the case of high As 
ux, and set FAs = 5� 105�m�2s�1

(all the rest of parameters are held the same).

Figure 5.7 shows the simulated evolution of the surface pro�le when the surface

is irradiated with the high 
ux. As can be see, the droplet contact line moves a

lot faster (vertical dashed red line) than in the previous cases; the whole droplet

is crystallized in 69 s seconds (compared to the 225 s when the optimal FAs =

1� 105�m�2s�1 was used). This can be also noted in Fig. 5.8(left), that shows the

droplet contact line position rD versus time t.

The shorter timescale for crystallization of the droplet is a consequence of the

higher As 
ux, which crystallizes Ga at a higher rate. This is clearly manifested

in Fig. 5.8(centre), which shows the evolution of the adatom Ga concentration CGa

with time. The higher As 
ux FAs gives and increased As adatom population CAs

and hence increases the rate of reaction with Ga to form GaAs. This increased rate

of reaction notably diminishes the Ga concentration CGa on the surface. Meanwhile

the droplet replenishes the surface with Ga at a rate JD = kD
�
C l
Ga � CGa

�
per unit

contact line length. Given the low surface Ga concentration CGa, it does so at high

rate, making the droplets disappear in a much shorter time (note in Fig. 5.8(centre)

how low CGa is in relation to C l
Ga).

The other result that is very much noticeable in the simulation results of Fig.

5.7 is the shallow depth of the resulting nanoholes, which barely reach � 4nm below
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Figure 5.7: Pro�les of the evolving surface (blue) under and in the vicinity of a Ga
nanodroplet belonging of a nanodroplet array, subjected to a minimized arsenic 
ux
of FAs = 104�m�2s�1. The dashed horizontal green line is the initial surface, and
the two vertical red lines represent the instantaneous position of the droplet contact
line.
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Figure 5.8: Here we show the evolution in time of the droplet contact line position
(left), the Ga adatom concentration CGa in units of �Ga (middle), and the As mole
fraction xAs in the droplet (right) for the case of FAs = 5 � 105�m�2s�1. The
black dotted line in the (center) panel corresponds to the liquidus Ga concentration
C l
Ga and the black dotted line in panel (right) represents the As mole fraction of

equilibrium with the bulk solid, xeq;1As .

the surface. It is hence logical to ask how the higher As 
ux and hence the shorter

timescale of the experiment may have given rise to this. The key is actually in

the higher velocity with which the droplet contact line moves along the surface as

the droplet shrinks (see Fig.5.8(left)). As the contact line sweeps through a certain

point on the surface, it does not have time to deposit as much GaAs at that point as

it did for lower 
uxes. This milder deposition results in a less deteriorated As mole

fraction xAs in the droplet, and hence less drilling into the solid. For high 
uxes the

main mechanism is thus the crystallization of the droplets across the surface. The

fast rate at which this happens gives less time for the droplets to drill into the solid.

As a minor point, note again that the As mole fraction stays very close to its

value for equilibrium with the bulk solid, i.e., xAs = xeq;1As , throughout the whole

experiment (see Fig. 5.8(right)). This, again, is due to the high rate of the growth

and decomposition reaction at the liquid solid interface, so that a loss of As in the

droplet due to deposition is quickly replenished by drilling under the bulk droplet.

Only at the very end of the experiment, when the droplet is very small, does xAs

drop as a consequence of the increased contact-line-perimeter-length-to-volume in

small droplets.

5.3.4 Comparison with experiment

Lastly, we now compare the �nal morphology of the nanoholes under the di�erent


uxes of our simulations with results found across the literature. In Fig. 5.9 we show
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the �nal morphologies of the simulated nanohole drilling for the minimized As 
ux

(panel (a)), low 
ux (panel (b)), and high 
ux (panel (c)). In Fig. 5.10 we show

Atomic Force Microscopy (AFM) linescans of nanoholes produced under minimised


ux (panel (a)) [12], low 
ux (panel (b)) [9], and high 
ux (panel (c)) [9]. The

minimised 
ux is attained by closing the As shutter and cooling the As cell [12].

Under these conditions the droplets are not crystallised, so they were removed using

HCl before AFM scanning. The low and high 
ux cases (panels (b) and (c)) were

performed in the same MBE chamber [9] at a sample temperature of T = 520�C.

The only di�erence between the two cases was the As 
ux. In the low 
ux case

the chamber pressure was 10�7Torr, while in the high 
ux case the pressure was

3� 10�6Torr.

As can be observed, the overall agreement with experiment is good. Probably

the biggest discrepancy is found for minimised As 
ux case. In our simulations

(Fig. 5.9(a)) the liquid-solid interface acquires a rounded shape. The slow ad-

vancement of the contact line gives time for this interface to attain some sort of

equilibrium shape. This equilibrium con�guration, given the assumed isotropic in-

terface energy 
ls is a uniformly curved surface (i.e. a spherical cap) together with a

droplet slightly undersaturated with As, i.e. xAs < x1As (see Fig. 5.6). However, the

experimental pro�le for minimised 
ux (Fig. 5.10(a)) shows quite a 
at liquid-solid

interface aligned with the (001) direction. This is likely a manifestation of surface

energy anisotropy favouring the low energy (001) surface versus vicinal directions.

The salient features of the low (optimal) 
ux cases (Fig. 5.9(b) and 5.10(b))

compare very favourably. Our simulations reproduce the ridges at the contact line

position, as well as the V-tapered shape of the nanohole that is produced as the

droplet shrinks. The ridges in the experimental image do look somewhat 
atter

than those produced in our simulation. This could be a consequence of the high

temperature annealing at 620�C for 2 min that was performed after the etching 'in

order to remove liquid residues' [9], as it is known that surfaces 
atten out when

annealing at high temperatures [46].

The high 
ux case (Fig. 5.9(c) and 5.10(c)) compare very well. The major feature
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(a) (b) (c)

Figure 5.9: Final pro�les of the nanoholes as per our simulations. Panel (a) shows
the pro�le for minimised As 
ux FAs = 1� 104�m�2s�1. Panel (b) shows the pro�le
for low (optimal) 
ux FAs = 1 � 105�m�2s�1, and panel (c) shows the pro�le for
high 
ux FAs = 5� 105�m�2s�1.

(a) (b) (c)

Figure 5.10: Experimental AFM linescans of nanohole morphologies under di�erent
conditions. Panel (a) shows the resulting morphology of a nanohole produced by
annealing under at T = 500�C under a minimized As 
ux for 30 mins (reprinted
form Ref. [12]). The uncrystallized Ga was removed using HCl. Panel (b) shows
a nanohole resulting from annealing at T = 520�C and under a low As 
ux, corre-
sponding to a pressure of 1� 10�7Torr (reprinted from Ref. [9]). Panel (c) shows a
nanohole resulting from annealing at T = 520�C in the same MBE reactor as panel
(b) but under a higher As pressure of 3 � 10�6Torr (reprinted from Ref. [9]). The
ticks in the horizontal axes of panels (b) and (c) correspond to 50 nm.

is the shallower holes produced after etching, which is cleary noticeable in both our

theory and in experiment.

5.4 Conclusions

In conclusion, we have developed a model for LDE etching of Ga droplets on GaAs

surfaces. Using kinetic concepts of mass transport between the droplet, the crystal,

and the adatom population, it is able to explain the to-date poorly understood

mechanism of droplet etching. In essence we �nd that etching is triggered by GaAs

deposition at the contact line position, driven by the droplet's surface pulling on

the solid. This induces drilling at liquid-solid interface under the bulk droplet in

order to replenish the equilibrium As content in the droplet. All of this occurs while

the incoming As 
ux crystallizes the droplet across the whole GaAs surface and
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therefore while the droplets shrink in size. This shrinking is also shown to be a

key ingredient in the drilling; a stationary contact line and hence a minimised 
ux

results in limited drilling. Therefore a low 
ux is necessary for drilling, as a contact

line in motion is needed in order for etching to occur continously. The concepts

herein should apply to other III-As systems such Al etching of AlAs or In etching

of InAs.
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Chapter 6

Conclusions

In this thesis we have investigated essentially two aspects of the GaAs(001) surface;

surface phase stability and Ga droplet etching. Regarding phase stability of the

GaAs(001) surface we have combined advanced LEEM techniques and theoretical

modelling to make two contributions to the state-of-the-art of GaAs(001) surface

phases.

In our �rst study we observed a novel form of phase coexistence on GaAs(001).

When this surface is heated above T � 580�C under vacuum, it is well known that

the stable phase in this regime is the c(8� 2) reconstruction. However, we observe

metastable phase domains spontaneously appear and disappear as a consequence of

the enhanced e�ects of Langmuir evaporation at these elevated temperatures. By

means of our advanced dark-�eld techniques we identify these as corresponding to the

(6�6) phase. This phenomenon gives rise to a dynamic phase coexistence which has
previously gone unnoticed, possibly due to a lack of real-time imaging of this surface.

To better understand the novel mechanism, a Monte Carlo model was developed that

is governed by a simple set of rules consistent with our LEEM observations. At the

lower temperatures (close to T � 580�C), we �nd evaporation is dominated by

inverted wedding cake structures, i.e., evaporation occurs in multi-layer mode. This

creates a signi�cant time-averaged (6 � 6) coverage (around 9%). With increasing

T , such structures become less pronounced as evaporation tends towards a layer-by-

layer mode. This results in a decreased (6� 6) coverage, which persists appreciably

up to T � 620�C. Usually, for purposes of growth, just one surface phase is desired.
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This novel phenomenon might therefore have broad technological relevance for the

growth and processing of thin �lms under vacuum, since surface phase metastability

is likely to occur across a wide range of materials.

In our second study, we combined droplet epitaxy with advanced LEEM imaging

and �LEED techniques to map surface phases around liquid Ga droplets. To un-

derstand our observations we developed a simple model that considers the di�usion

of Ga atoms from the droplets and their reaction with the incoming As 
ux. The

computations produce Ga chemical potential gradients from the droplet edge that

explain the sequential order of phases with distance to the droplet, as well as how

these phases appear and disappear upon (respectively) opening and closing the As


ux. Our observations con�rm the stability of the controversial (6� 6) phase across
a narrow range of Ga chemical potential, and we also establish the existence of a

novel (3�6) phase. The respective order of such phases with distance to the droplet
allows us to incorporate them in an approximate manner to the GaAs(001) phase

diagram. The method re
ects phase stability at �nite temperature and so naturally

incorporates the in
uence of entropy. This technique is likely to be useful in map-

ping surface phases for a wide range of technologically important III-V materials,

including nitrides.

In our last piece of work we have developed a model for etching of Ga droplets on

GaAs surfaces. The model incorporates kinetic concepts of mass transport between

the droplet, the crystal, and the adatom population, to explain the mechanism of

droplet etching, which to date remains poorly understood. Importantly, we �nd that

etching is a process that originates with the GaAs deposition that occurs at the con-

tact line position, and is driven by the droplet's surface pulling on the solid. The

consequent loss in As in the droplet induces drilling at liquid-solid interface under

the bulk droplet in order to replenish the equilibrium As content. This deposition-

drilling mechanism occurs while the incoming As 
ux crystallizes the droplet across

the GaAs surface and therefore while the droplet shrinks in size. We �nd that this

shrinking is key in the drilling process, as a stationary contact line and hence a

minimised 
ux results in stagnated drilling once the ridge under the contact line
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has grown su�ciently. We �nd that a low 
ux is necessary for drilling given that

a contact line sweeping the GaAs surface is needed in order to achieve continuous

deposition and hence drilling. Our model explains this fact, which had been pre-

viously observed experimentally, within a simple physical framework. It should be

applicable to other III-As systems such Al etching of AlAs or In etching of InAs.
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Appendix A

Determining probabilities Jb and �

from LEEM movies

In this Appendix we will explain how we measure the c(8�2) nucleation probability
� per unit time and area of (6� 6), as well as the probability Jb per unit time and

area of Lochkeim formation on (6 � 6). These were measured at di�erent sample

temperatures T in the 580 � 640�C range. Arrhenius �ttings were then performed

on these measurements, and the former were fed into the Monte Carlo simulation

code as is explained in the main text.

Let � be the probability per unit area and time for nucleation of the stable phase

on the metastable phase. If we have N metastable domains all with surface area A,

after time dt, the number of domains will have dropped by dN , with

dN = ��ANdt: (A.1)

Changing variables from from t to domain radius R, we have dt = dR=v, where v is

the step velocity, and A = �R2, giving

dN = ���
v
NR2dR: (A.2)
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Integrating Eq. (A.2) yields

N (R) = N0 exp
�
���
3v

R3
�
; (A.3)

where N0 is the initial number of domains. Di�erentiating Eq. (A.3) yields

dN = �N0
��

v
R2 exp

�
���
3v

R3
�
dR: (A.4)

The probability distribution is hence

f(R) = 3
R2

a3
exp

�
�R

3

a3

�
; (A.5)

where a is

a =

�
3v

��

�1=3

; (A.6)

and is related to the average domain radius upon phase transformation, hRi =R
1

0
Rf (R) dR, via a = hRi =� (4=3), where � is the gamma function.

To calculate � at a certain temperature, we �rst perform measurements on our

LEEM videos and produce a histogram of (6 � 6) terrace radius at which c(8 � 2)

nucleates, as contained in Fig. A.1(a). The value of � is then calculated by �tting

the histogram to the distribution of Eq. (A.5), including an arbitrary proportionality

constant. This yields a value for a, which is used together with the corresponding

value of v to compute � from Eq. (A.6). Our histograms only include single (6� 6)

domains which undergo transformation to c(8� 2) via the fundamental mechanism

as in Fig. 1 of the main text.

A completely analogous argument applies to Jb, only that we consider Lochkeim

nucleation instead of phase nucleation. The added di�culty is that it is not possible

to observe the moment of Lochkeim nucleation, as (6 � 6)=(6 � 6) steps show no

contrast. Therefore we measure radii R1 and R2 of the upper and lower terraces,

respectively, as soon as the upper terrace transforms to c(8 � 2) and the lower

becomes visible (see Section II.A). In accordance with our assumption that step

velocity v is independent of the nature of the phases on either side of the step, the
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radius of the upper domain at the moment the lower domain nucleated is R1 �R2.

Therefore to calculate Jb at a certain temperature, we perform measurements on

our LEEM videos and produce a histogram of (6 � 6) terrace radius R = R1 � R2

at which a Lochkeim nucleates on it, as contained in Fig. A.1(b). We then �t the

histogram to Eq. (A.5) (including an arbitrary proportionality constant) to obtain

a value for a which is then used in Eq. (A.6) (with Jb in the place of �) to compute

Jb.

Figure A.1: Histograms of (6� 6) terrace radius upon (a) c(8� 2) nucleation (T =
628 �C), and (b) Lochkeim nucleation (T = 592 �C), together with their �t to the
distribution of Eq. (A.5).
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Appendix B

Methodology of the Monte Carlo

simulations

In this appendix we proceed to describe the methodology on which the surface phase

metastability Monte Carlo simulations are based.

As in most time-evolution simulations models, time is discretised, so that the

state of the system is re-evaluated after �nite-sized timesteps with magnitude �t.

It is convenient to set as small a �t as possible in order to emulate the continuous

nature of time as accurately as possible without overly compromising computation

time.

In an analogous manner space ought also to be discretised in the form of a mesh.

In the case of a 2-dimensional system like ours we represent the GaAs(001) surface

by a square surface matrix, S. Each element of S represents a small square portion

of the GaAs(001) surface with width �x. A given surface element will be either

set to 0 or to 1, corresponding to (6 � 6) and c(8 � 2), respectively. As with the

timestep, �x should be made as small as possible. For this reason surface meshes are

usually large matrices. In addition, we need to consider a large GaAs(001) surface in

order to obtain precise values for the time-averaged (6� 6) coverage. Therefore we

usually set S to be 1000�1000 while representing a 10�m�10�m surface, rendering

�x = 10 nm. When calculating the (6�6) coverage was not the focus, we considered
smaller portions of GaAs(001) surface and could a�ord to put �x down to � 1 nm

(as in Fig. 3.14).
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The passage of time is modeled by a for loop in which each iteration the state

of the surface is updated in correspondence with timestep �t. In our simulations,

we utilise matrices that contain all of the information of what is occurring on our

GaAs(001) surface. We use these to then produce surface matrix S. We will now

explain in more detail how this is done.

The simulations begin with a pristine c(8�2) surface. Therefore we start with an
N �N surface matrix S containing all 1's (let us suppose we set N = 1000). In our

�rst for-loop iteration, i.e., after a time-step �t, the probability p that a Lochkeim

nucleation has formed somewhere on the surface is p = JwA�t, where Jw is the

rate of Lochkeim formation per unit surface area and A is the area of our surface

(typically 100�m2). Note that �t has to be made su�ciently small so that p << 1.

In order to decide whether a Lochkeim has indeed formed on our surface we generate

a random number � with 0 < � < 1. If � > p then no Lochkeime will have formed.

However if it occurs that � < p then a Lochkeim will have indeed formed somewhere

across our surface. In order to decide the location of this Lochkeim, we produce new

random numbers m and n which correspond to the coordinates of the Lochkeim in

S. These will be real numbers within the (0; N) range. Next we would store this

information in a matrix M containing all the relevant information relating to the

(6� 6) patches on the surface. Concretely, each row of M relates to one patch, and

contains the loop iteration i on which the given patch was formed, its coordinates

m and n on S, as well as further information as we will see later. Note that we may

label each (6� 6) patch with the loop-iteration i on which it formed, as at most one

Lochkeim will form per loop iteration. With each passing iteration, the radius of

existing (6�6) patches will increase an amount v �t, thereby growing in surface area
and being subject to c(8� 2) nucleation within them. They can also coalesce with

each other, or coalesce with a terrace that has already converted to c(8 � 2). Let

us consider now how a generic loop iteration is handled within our MC simulation

model.

Figure B.1 shows a schematic 
ow diagram of the main computational tasks

carried out within a generic for-loop iteration. As can be seen, these can be divided
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into four main consecutive sections. We will now explain in detail what exactly is

done within each of these.

Figure B.1: Schematic 
ow diagram of the sequential computational tasks performed
in a given for-loop iteration.

1. Transformation of (6� 6) terraces to c(8� 2). First of all, we span all of

our black (6�6) patches and see whether c(8�2) will nucleate within them on

this iteration. As we observe fast phase boundary propagation experimentally

(see Fig. 3.4), in our model we assume c(8�2) propagates instantly across the
entire (6� 6) once it has nucleated. Therefore we do not consider the motion
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of the c(8�2) phase boundary, but rather we assume the whole (6�6) terrace
converts to c(8� 2) at once.

The probability p of c(8�2) nucleation on a (6�6) terrace on this iteration is

p = �A(6�6) �t, where � is the rate of c(8� 2) nucleation on (6� 6) (measured

experimentally as explained in Appendix A), and A(6�6) is the area of the

(6� 6) terrace. To decide whether the (6� 6) terrace will convert to c(8� 2)

we generate a random number � with 0 < � < 1. If � > p, c(8� 2) nucleation

will not occur. Conversely, if � < p then the (6� 6) patch ought to transform

to c(8� 2). We register this occurrence by eliminating the corresponding row

(or rows, if the given (6 � 6) terrace is the coalescence of various (6 � 6)

terraces. We will see how we treat this later) in M . We transfer this matrix

row to another information matrix W , analogous to M but containing the

information of the c(8� 2) terraces present of the surface.

2. Advancement of steps. After having decided what (6 � 6) terraces phase-

transform, we ought to consider the advancement of steps during the timestep

�t. The expansion of terraces due to step advancement has two main conse-

quences that have to be considered (see Fig. B.1).

� First is that a step may outgrow our �nite-sized GaAs(001) surface. The

way to make a �nite surface as in�nite as possible is to apply periodic

boundary conditions. This means assuming that our �nite GaAs(001)

surface is actually the 'unit cell' of an in�nitely large GaAs(001) surface,

and that what occurs on our �nite surface is occurring identically in the

rest of unit cells making up the in�nite GaAs(001) surface. This means

that if a step crosses our surface through one of its sides, it ought to

appear again through the opposite side. Likewise, if a step crosses a

corner of our square surface, it should appear again coming through the

opposite corner. The way we do this numerically is we span the rows of

our information matricesM andW and check if the terraces have crossed

each one of the 8 boundaries of our square surface. This is performed

by calculating the distance d between the center of the terrace, i. e.,

119



the Lochkeim coordinates stored in M (or W ) and the the boundary in

question. For example, the distance (in matrix elements) to the top-

right corner would be d =
p
m2 + (N � n)2, and the distance to the

bottom side would be d = N � m. Note that these distances do not

change in time. The size of the the terrace, however, grows with each

iteration, so that its radius R (in matrix elements) on iteration i will be

R = �(i�i0), where � is the step velocity in matrix elements per iteration,
i. e., � = v�t=�x, and i0 is the iteration on which the corresponding

Lochkeim formed (remember i0 uniquely identi�es each terrace and is

stored in the information matrix). If R < d then the step will not yet

have crossed the corresponding boundary. However, if R > d then the

step has indeed crossed the boundary and the corresponding noti�cation

should be done in our information matrices; e�ectively, a new terrace has

formed on our surface. This terrace will have the same size as the original

terrace, and its centre-coordinates will be the same as the original, except

displaced appropriately (note that either one or both of these coordinates

will now lie outside the (0; N) range). Therefore we add a new row to M

(or W if the terrace is already in c(8 � 2)) containing this information.

However, we face a small problem with regards to identi�cation of this

'new' terrace, given it actually formed simultaneously with the original

terrace. To solve this we note that we will only have to deal with this

a maximum of 8 times (corresponding to the crossing of each of the 8

boundaries of our square surface). Further boundary crossing will not

occur, as the terrace step will have been completely annihilated by then

due to terrace coalescence. Therefore we label these 'new' terraces by

adding decimals to i0, ranging from 0.1 to 0.8 (in 0.1 steps), depending

on what boundary crossing they correspond to. However, we take care

in ignoring this decimal when computations such as the instantaneous

terrace radius are needed.

� The second occurrence that ought to be considered when steps advance
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is the coalescence of terraces. This is a crucial phenomenon a�ecting the

(6�6) surface coverage, as when a (6�6) terrace coalesces with a terrace
that is already in c(8 � 2), the latter phase will propagate to cover the

whole combined terrace. Therefore we �rstly consider the coalescence

of c(8 � 2) terraces amongst themselves. We do this by spanning the

existing terraces, annotated in information matrix W , and check which

have coalesced on this loop iteration. This is done by comparing the

distance d between terrace center-points (stored in W ) with the instan-

taneous value of the sum of their radii, R1 and R2. That is, when the

terrace sizes becomes big enough so that R1 + R2 > d, then the terraces

have coalesced. The key thing is notifying within W that the two ter-

races have coalesced and now form one combined terrace. We do this by

writing the identi�er i0 of the smaller (younger) terrace within the row

of the larger larger (older) terrace. Note that in subsequent and hence

generic coalescence events, we will be checking for coalesce of c(8 � 2)

terrace 'clusters'. Therefore the row of the larger terrace will contain the

identi�ers of all of the smaller circular terraces making up the 'cluster'.

We pile these by making use of a third dimension in information matrix

W . Furthermore, when a terrace crosses a boundary, as explained above,

we note that the original and 'new' terrace form a 'cluster', and therefore

we write the identi�er of the 'new' terrace (containing the appropriate

decimal) within the row of the original terrace in W .

Next we check what (6� 6) terraces have coalesced and we notify this in

information matrix M . The methodology is the exact same as the one

performed for the c(8� 2) terraces, and will therefore not be elaborated

on.

Having checked what new (6�6) and c(8�2) 'cluster' terraces there are,
we ought to now check what (6 � 6) terraces have coalesced with what

c(8 � 2) terraces. Note that when this happens, the combined terrace

ought be c(8� 2). We notify this in our information matrices M and W
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by eliminating the corresponding rows in M and appending them in W .

Furthermore, the identi�ers i0 of the smaller terraces making up the new

'cluster' are added to the row of the largest terrace of the cluster, making

use of a third dimension in matrix W if necessary.

3. Producing the new surface matrix S. Now that matrices M and W

contain the updated information regarding the (6 � 6) and c(8 � 2) terraces

on the surface, respectively, we may proceed to update surface matrix S.

Recall that the simulation begins with a pristine c(8�2) surface, with no steps
or (6� 6) domains present. Our N �N surface matrix S will thus consist of

all 1's. When exporting S as an image, each of its elements becomes a pixel,

and a matrix element containing a 1 will translate into a light-coloured pixel.

However, in a generic loop iteration, the surface will contain steps and (6� 6)

terraces. We will therefore have to swap some of the 1's in S to 0's, which then

represent dark-coloured pixels on the exported image. We start by putting in

the steps corresponding to the c(8�2) terraces. We therefore span the c(8�2)
terraces in information matrix W . Note that now they will be organized

into terrace 'clusters' of individual circular terraces that have coalesced. The

terrace edges will now be located at radial distance R = � (i� i0), where i is

the current loop iteration and i0 is the iteration on which the terrace formed.

Therefore we set to 0 those elements that lie inside the given terrace within

a certain distance of the terrace boundary. In practice we choose the step

thickness to be 2 matrix elements (i. e. 20 nm). When dealing with a 'cluster'

of coalesced terraces we take care to not draw a step where the individual

circular terraces overlap. Therefore, if for a c(8 � 2) terrace cluster we do

not need to set a single matrix element to 0 it means that su�cient c(8 � 2)

circular surface terraces have coalesced to cover the entire surface. We can

hence forget about this c(8 � 2) terrace cluster and delete from W all of the

individual circular terraces (rows in W ) that make it up. In this manner our

information matrix W will not grow inde�nitely and our simulations can run

as long as we wish.
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Having drawn our c(8 � 2) terraces on S, we now proceed to draw our (6 �
6) terraces. This is done in the exact same manner as done when drawing

the steps, however we set to 0 all of the matrix elements within the terraces

boundaries, which lie at R = � (i� i0) from the respective terrace centres.

When doing this we simultaneously compute the surface area of our (6 � 6)

terraces by counting the number of matrix elements that we set to 0, and we

store these values in M . Note that we will need to know these areas in order

to decide whether a nucleation event will occur on them. We also need them

in order to calculate the instantaneous (6 � 6) coverage on the surface. Note

that here we use surface matrix S to update our information matrices. This

is because it is simpler to calculate the area of a cluster of coalesced circles

numerically in this manner than to try to do it analytically.

At this point our surface matrix S has had the steps and (6�6) terraces drawn
onto them and can be exported as an image. The matrix elements that are set

to 1 will print out as light-coloured pixels, while the those that have been set

0 will become dark-coloured pixels. We also store the instantaneous value of

the (6� 6) coverage, which is later used to compute the time-averaged (6� 6)

coverage as is shown in Fig. 3.13.

4. Lochkeim nucleation. The last thing we do in a loop iteration is to check if

we need to nucleate new Lochkeime on our surface. Recalling that there are

two types of Lochkeime (see Section 3.4); those that form systematically at

the centre of c(8� 2) terraces when these reach a critical radius Rc and those

that form randomly on c(8� 2) and (6� 6) at respective rates Jw and Jb, we

ought to take care of these separately.

� Firstly, we check if we are to nucleate a systematic Lochkeim on a c(8�2)
terrace. To do this we span our c(8� 2) terraces to see which of them (if

any) achieve a radius > Rc on this loop iteration. This critical c(8 � 2)

terrace radius was measured experimentally and is Rc � 0:17�m. On

these terraces we place a new Lochkeim around its center. We notify in

information matrix M about this new (6 � 6) terrace by appending a
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new row onto it with the information relating to this new terrace. Given

random Lochkeim might also form later on this iteration, we again use

decimals to identity it, i.e., its identi�er will be the present iteration

number i0 plus a some small decimal such as 0.001. If more than one

systematic Lochkeim forms on this iteration, the relevant decimal will

be � � 0:001, where � spans 1, 2, 3... We also make a note in W that

this Lochkeim has formed inside the relevant c(8� 2) terrace. This also

enables us to distinguish between atomic layers, so that if the c(8 � 2)

terrace is on layer 0, the new (6�6) terrace will be on layer -1. We make a

note in M of the layer on which each terrace is. This facilitates checking

for terrace coalescence (as described previously), as only terraces that

are on the same layer can coalesce. As a side note, we do not place a

Lochkeim within a c(8� 2) terrace that attains the critical radius Rc if it

already has another terrace within (coming from another of the circular

terraces making up its cluster).

� After having checked if new Lochkeime form on critically-sized c(8 � 2)

terraces, we now see if we need to nucleate a new random Lochkeim on

our surface. As described earlier, the probability that a Lochkeim forms

on the c(8� 2) surface during any given for-loop iteration is pw = JwA�t,

where Jw is the rate of Lochkeim formation per unit area and A is the

area of our GaAs(001) surface. Furthermore, as described in Section 3.4,

a Lochkeim can form on (6� 6) giving rise to the inverted wedding cake

structures. For simplicity, we only let one Lochkeim form per (6 � 6)

terrace. Therefore, the probability that a Lochkeim will form on (6� 6)

during a given iteration is pb = JbAb�t, where Jb is the rate of Lochkeim

formation on (6� 6) and Ab is the total area of (6� 6) terraces that do

not yet have another terrace within them. Now, in order to decide if a

Lochkeim will form on our surface during this loop iteration, we generate

a random number �. If 0 < � < pw then a Lochkeim will form on c(8�2).
If, alternatively, pw < � < pw + pb then a Lochkeim will form on some
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(6 � 6) terrace that does not yet have another terrace inside. Lastly,

if pw + pb < � < 1 then a Lochkeim will not form anywhere on this

iteration. Note that we ought to chose our timestep �t small enough to

that pw + pb << 1.

In the �rst case, i. e., that of having a Lochkeim form somewhere on

c(8� 2) surface, we generate again random numbers that will determine

where on the surface the Lochkeim will be located. Given we can't have

this Lochkeim form on (6� 6) neither within a c(8� 2) terrace that can

still produce a Lochkeim around its centre when it reaches critical radius

Rc, we generate the Lochkeim's coordinates repeatedly until valid ones

are produced. When these are found we append a new row in M with

the information regarding this new Lochkeim.

In the second case, i.e., that of having a Lochkeim form on (6 � 6), we

�rst ought to determine within which of the available (6� 6) terraces the
Lochkeim ought to form. This will be decided by a new random number

�. If we label the q available terraces from 1 to q, and therefore their

surface areas from A1 to Aq, then the Lochkeim will form on the terrace

s that satis�es
Ps�1

j=1Aj=Ab < � <
Ps

j=1Aj=Ab, where Ab =
Pq

j=1Aj and

A0 = 0. Once the terrace has been decided, then new random numbers are

generated in order to determine the coordinates of the Lochkeim within

the chosen (6 � 6) terrace. After this, information matrix M is noti�ed

of the formation of this new Lochkeim.

These tasks complete a full iteration of the for-loop. This sequence of tasks is

thus repeated over and over as the simulation proceeds.

125



Appendix C

Solving the Ga Reaction-Di�usion

Equation

In this appendix we will explain how the Ga reaction-di�usion equation is solved.

Firstly, we state the fundamental problem, and then go on to treating both the

steady-state and the time-dependent versions.

The Ga reaction-di�usion equation is a boundary value problem (BVP) given by

the following di�erential equation

@CGa

@t
= DGa

�
@2CGa

@r2
+
1

r

@CGa

@r

�
� kr

h
CGaCAs � (CGaCAs)eq

i
; (C.1)

for t > 0 and rD < r < L. In addition to this, two boundary conditions are supplied.

One at the droplet edge (at r = rD), and the other halfway to the next droplet (at

r = L).

At r = rD we set the boundary condition

�DGa
@CGa

@r

����
r=rD

= kD
�
C l
Ga � CGajr=rD

�
; (C.2)

where kD is a rate constant associated to Ga adatom attachment to the droplet. This

equation merely re
ects conservation of mass for Ga transport across the contact

line; the left-hand-side is the adatom 
ux immediately outside of the droplet, and the

right-hand-side equals the net Ga supply of the droplet to the surface. In the limit
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of fast attachment/detachment compared to adatom di�usion, Eq. (C.2) becomes

CGajr=rD = C l
Ga: (C.3)

This states that the Ga adatom concentration at the contact line is that of equilib-

rium with liquid Ga.

At r = L the boundary condition ought to re
ect zero net Ga transport. This

implies having a null CGa, that is

@CGa

@r

����
r=L

= 0: (C.4)

The BVP at hand is thus given by the partial di�erential equation given by

Eq. (C.1) and the boundary conditions of Eq. (C.3) and Eq. (C.4).

C.1 Solving the Steady-State Reaction-Di�usion

Equation

The steady-state solution to our BVP is that which is time-independent, i.e., @CGa=@t =

0. Eq. C.1 transforms simply to

DGa

�
@2CGa

@r2
+
1

r

@CGa

@r

�
� kr

h
CGaCAs � (CGaCAs)eq

i
= 0: (C.5)

De�ning the natural radial coordinate � as

� � r

LGa
; (C.6)

which spans from �D � rD=LGa to �L � L=LGa (where we recall LGa =
p
DGa�Ga is

the Ga di�usion length before reaction with As), Eq. C.5 simpli�es to

d2CGa

d�2
+
1

�

dCGa

d�
� CGa +

(CGaCAs)eq
FAs�As

= 0; (C.7)
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where CAs = FAs�As has been introduced. Given that Eq. (C.7) is the modi�ed

Bessel equation of zeroth order with inhomogeneous term (CGaCAs)eq=FAs�As, we

note its general solution must be

CGa(�) = AI0(�) +BK0(�) +
(CGaCAs)eq
FAs�As

; (C.8)

where I0 and K0 are the modi�ed Bessel functions of zeroth order, and A and B are

arbitrary constants. Imposing the boundary conditions of Eq. (C.3) and Eq. (C.4)

yields A! 0 (for L� LGa; rD), while B is simply

B =
C l
Ga � CL

Ga

K0(�D)
; (C.9)

where CL
Ga � (CGaCAs)eq=(FAs�As). Therefore, the As-on steady-state Ga concen-

tration pro�le is

CGa(r) = BK0(r=LGa) +
(CGaCAs)eq
FAs�As

; (C.10)

with B given by Eq. (C.9).

C.2 Soving the Time-Dependent Reaction-Di�usion

Equation

Let us now consider solving the full time-dependent BVP. In order to facilitate this,

it is convenient to de�ne two new variables apart from the radial coordinate of

Eq. (C.6). We de�ne a new time coordinate u as

u =
t

�Ga
; (C.11)

where we recall �Ga � 1=(krCAs). We also de�ne a new Ga concentration variable

KGa as

KGa = CGa � Css
Ga; (C.12)
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where Css
Ga is the steady-state solution to the BVP, i.e., that of Eq. (C.10). Intro-

ducing these changes into Eq. (C.1) gives

@

@u
KGa = �KGa (C.13)

where � is the reaction-di�usion operator given by

� � @2

@�2
+
1

�

@

@�
� 1: (C.14)

Likewise, the boundary conditions are now

KGaj�=�D = 0; (C.15)

and

@KGa

@�
j�=�L = 0: (C.16)

According to Sturm Liouville theory (see, for example, Ref. [138]), one can write

the solution K(�; u) to our BVP (now consisting of Eq. (C.13) and the boundary

conditions of Eq. (C.15)) and Eq. (C.16) as a linear combination of orthonormal

non-degenerate eigenfunctions of �. Thus, we may write

KGa =
1X
n=1

cn(u)�n(�); (C.17)

where �n(�) are eigenfunctions of �, and cn(u) are time-dependent coe�cients. The

fact that the eigenfunctions are orthonormal means they obey

Z �L

�D

��n(�)�m(�)d� = �nm: (C.18)

Substituting Eq. C.19 into Eq. (C.13) yields

KGa =
1X
n=1

c0nexp(�anu)�n(�): (C.19)

Here �an are the eigenvalues of � associated to eigenfunctions �n(�), and c
0
n are the
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coe�cients of the initial K0
Ga(�) � KGa(�; u = 0) in the �n(�) basis, given by the

scalar product

c0n =

Z �L

�D

�K0
Ga(�)�n(�)d�: (C.20)

Let us now �nd the eigenvalues and eigenfunctions of operator �. The eigenvalue

problem is

��n + an�n = 0; (C.21)

or

d2�n
d�2

+
1

�

d�n
d�

+ (an � 1)�n = 0: (C.22)

De�ning modi�ed eigenvalues �n �
p
an � 1, and de�ning a new variable � � �n�,

Eq. (C.22) becomes

d2�n
d�2

+
1

�

d�n
d�

+ �n = 0: (C.23)

This is precisely Bessel's equation of zeroth order, whose general solution (undoing

the change of variables) is

�n(�) = AJ0(�n�) +BY0(�n�); (C.24)

. where A and B are arbitrary integration constants, and J0 and Y0 are, respectively,

the Bessel functions of �rst and second kind of order zero.

Applying now the boundary conditions of Eq. (C.15) and Eq. (C.16) gives two

equation linear in A and B. One can put these into matrix form to get

2
64J0(�n�D) Y0(�n�D)

J1(�n�L) Y1(�n�L)

3
75
2
64A
B

3
75 =

2
640
0

3
75 (C.25)

where J1 and Y1 are, respectively, the ordinary and modi�ed Bessel functions

of �rst order. As the eigenfunctions ought to form a one-dimansional space, the

determinant of the matrix in Eq. (C.25) ought to be zero, i.e.,

J0(�n�D)Y1(�n�L)� J1(�n�L)Y0(�n�D) = 0: (C.26)

This is the characteristic equation of our eigenvalue problem. The �n-solutions

130



are the modi�ed eigenvalues of �. The nominal eigenvalues are then�an = �(�2+1).
Substituting now any of the two equations in Eq. (C.25) into Eq. (C.24) we

obtain the following expression for the eigenfunctions

�n(�) = kn [Y0(�n�D)J0(�n�)� J0(�n�D)Y0(�n�)] ; (C.27)

where kn are normalization constants. These constants can be calculated imposing

the unit norm upon the eigenfunction �n(�), i.e.,
R �L
�D

��n(�)
2d� = 1. This yields

2

k2
n

= �2
L

�
(J0(�n�D)Y0(�n�L)� J0(�n�L)Y0(�n�D))

2 + (J0(�n�D)Y1(�n�L)� J1(�n�L)Y0(�n�D))
2
�

��2
D
(J0(�n�D)Y1(�n�D)� J1(�n�D)Y0(�n�D))

2(C.28)

Undoing the changes of variables of Eq. (C.6), (C.11), and (C.12), we can write the

solution to the original BVP de�ned by Eq. (C.1), (C.3), and (C.4) as

CGa(r; t) = Css
Ga(r) +

1X
n=1

c0nexp(�ant=�Ga)�n(r=LGa): (C.29)

To numerically evaluate the time-dependent Ga concentration pro�les of Eq. (C.29),

it is su�cient to assign values to concentrations C l
Ga and C

L
Ga = (CGaCAs)eq=(FAs�As),

and to the radial coordinates �D and �L.
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