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1 Introduction

There is a wide literature concerning estimates of the eigenvalues of the Lapla-
cian (and more general divergence-type second order operators) on subman-
ifolds of spaceforms. The first upper bound for the first eigenvalue of the
Laplacian on compact hypersurfaces of Rn+1 was obtained by Bleecker and
Weiner [10] who showed

λ1 6
1

V (M)

∫

M

|B|2dvg, (1)

where B is the second fundamental form of the hypersurface M and V (M) its
volume. After that, Reilly [27] improved this upper bound by getting the norm
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of the mean curvature instead of the second fundamental form. Precisely, he
proved the following estimate:

λ1 6
n

V (M)

∫

M

|H|2dvg. (2)

For these two inequalities the limiting case is attained if and only if the hyper-
surface is a hypersphere. Later on, Heintze [21] extended Reilly’s upper bound
to hypersurfaces of compact ambient spaces and, after a partial result due to
Heintze, El Soufi and Ilias [14] proved an analogue in the hyperbolic space,
also cf. [2]. In fact, in [27] Reilly proved a sequence of upper bounds involving
higher order mean curvatures, for which (2) is just the particular case r = 0:

λ1

(∫

M

Hrdvg

)2

6 nV (M)

∫

M

H2
r+1dvg. (3)

As the previous ones the inequalities are sharp and the limiting cases are also
characterised by geodesic hyperspheres. Note that the inequalities in (3) are
not in general better than (2); they are not comparable to the other.

The Laplacian is not the only fundamental operator for which extrinsic
estimates have been proved. In particular comparable upper bounds have been
established for some divergence-type second order elliptic operators as the
operators Lr associated with the higher order mean curvatures Hr and even
for more general elliptic divergence-free operators, cf. [18]. Notations and basic
facts about higher order mean curvatures will be given in Section 2.

The aim of the present article is first to study the stability of the limiting
case for a sequence of optimal upper bounds for a larger class of second order
operators including the Laplacian and the operators Lr. In [32] the first author
proved the the following theorem.

Theorem 1 ([32]) Let (Mn, g) be a connected, oriented and closed Rieman-
nian manifold isometrically immersed into R

n+1. Assume that M is endowed
with two symmetric and divergence-free (1, 1)-tensors S and T . Assume in
addition that T is positive definite. Then the first positive eigenvalue of the
operator LT satisfies

λ1(LT )

(∫

M

tr(S)dvg

)2

6

(∫

M

tr(T )dvg

)(∫

M

|HS |2dvg
)

. (4)

Moreover, if HS does not vanish identically and equality occurs, then M is a
hypersphere and tr(S) is constant.

Here the operator LT is given by

LTu := −div(T∇u) (5)

for functions u ∈ C2(M) and HS is the generalised mean curvature vector

HS = SijXij , (6)
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where X is the immersion vector, cf. Section 2 for details. Since the equality
is achieved only for hyperspheres, it is natural to study the stability of the
limiting case. We give the following quantitative result about the proximity
to hyperspheres for hypersurfaces almost satisfying the equality case. Namely,
under the condition

λ1(LT )

(∫

M

tr(S)dvg

)2

> (1− ε)

(∫

M

tr(T )dvg

)

‖HS‖22pV (M), (7)

for p > 1, we prove the following result.

Theorem 2 Let n > 2 and (Mn, g) be a connected, oriented and closed Rie-
mannian manifold isometrically immersed into R

n+1 by X. Assume that M
is endowed with two symmetric and divergence-free (1, 1)-tensors S and T .
Assume in addition that T is positive definite, SijBij is not identically zero
and that for some q > n there holds V (M)‖B‖nq 6 A. Let p > 1. Then there
exists ε0 = ε0(n, p, q, A) > 0, such that if (7) holds with ε < ε0, then M is
εα-close, diffeomorphic and εα-almost isometric to a sphere S(X̄, r), i.e. there
exists r > 0, a constant C depending on n, p, q and A, and α = α(n, q), such
that

‖|X − X̄| − r‖∞ ≤ Crεα, (8)

where X̄ = V (M)−1
∫

M
X is the center of mass of X(M), and for a natural

diffeomorphism

F : (M,d1) → (S(r), d2) (9)

we have

|d2(F (x1), F (x2))− d1(x1, x2)| 6 Crεα ∀x1, x2 ∈M. (10)

Moreover, M is embedded and X(M) is a starshaped hypersurface.

Remark 1 (i) In order to prove (8), it is not necessary that V (M)‖B‖nq 6 A,
but only V (M)‖H‖nq 6 A.

(ii) The radius is given by

r =
1

V (M)

∣

∣

∫

M
tr(S)dvg

∣

∣

‖HS‖2p
. (11)

In the sections 5 and 6 we derive some applications of Theorem 2. The
first of those concerns the r-stability. Namely we prove that if a hypersurface
with constant r-th mean curvature is almost stable in a suitable sense, then
it is a geodesic sphere (see Theorem 4). Finally, the last section of the paper
will be devoted to almost-Einstein hypersurfaces, where we improve previous
closeness results of the first author [29] and Hu, Xu and Zhao [24].

Earlier results on the eigenvalue pinching problem can be found in [12]
and [29] for the Euclidean case, [19] for other ambient spaces and [24] for an
improvement of parameters compared to [29].
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2 Preliminaries

2.1 Generalised Hsiung-Minkowski formula

Let (Mn, g) be a connected, oriented and closed Riemannian manifold isomet-
rically immersed into R

n+1. We denote by X its vector position, by ν its unit
normal vector and we consider a divergence-free symmetric (1, 1)-tensor T on
M . We associate to T the second order differential operator LT defined by

LTu := −div(T∇u),

for any C2-function u on M . We also associate to T the following generalised
mean curvature vectors:

HT = T ijXij , (12)

where Xij denotes the second covariant derivative of the immersion vector X.
Then we have

LTX = −HT (13)

and easily deduce the following identity:

1

2
LT |X|2 = −〈X,HT 〉 − tr(T ). (14)

After integrating this gives the so-called generalised Hsiung-Minkowski formula
∫

M

(

〈X,HT 〉+ tr(T )
)

dvg = 0. (15)

The classical Hsiung-Minkowski formula is in fact this formula for the partic-
ular case where T is the identity and more generally, where T is the tensor Tr
associated to the r-th mean curvature. In the next paragraph we will recall
the definition of Tr and the associated operator Lr, which play a crucial role
for the r-stability as we will see in Section 5.

2.2 Higher order mean curvatures

The higher order mean curvatures are extrinsic quantities defined from the
second fundamental form and generalising the notion of mean curvature. Up
to a normalisation constant the mean curvature H is the trace of the second
fundamental form B:

H =
1

n
tr(B), (16)

where we use the convention

Xij = −Bijν. (17)

In other words the mean curvature is

H =
1

n
S1(κ1, . . . , κn), (18)



Pinching of the first eigenvalue for second order operators on hypersurfaces 5

where S1 is the first elementary symmetric polynomial and κ1, . . . , κn are the
principal curvatures. Higher order mean curvatures are defined in a similar
way for r ∈ {1, . . . , n} by

Hr =
1
(

n
r

)Sr(κ1, · · · , κn), (19)

where Sr is the r-th elementary symmetric polynomial, that is for any n-tuple
(x1, · · · , xn),

Sr(x1, . . . , xn) =
∑

16i1<···<ir6n

xi1 · · ·xir . (20)

By convention we set H0 = 1 and Hn+1 = 0. Finally, for convenience we also
set H−1 = −〈X, ν〉.

To each Hr we associate a symmetric (2, 0)-tensor, which is in coordinates
given by

Tr = (T ij
r ) =

(

∂Sr+1

∂Bij

)

, (21)

where Sr+1 is now understood to depend on the second fundamental form and
the metric. The relation between these two notions can be found in [16, Sec. 2.1]
for example. These tensors Tr are divergence-free (see [17] for instance) and
satisfy the following relations:

tr(Tr) = c(r)Hr and HTr
= −c(r)Hr+1ν, (22)

where c(r) = (n− r)
(

n
r

)

and HTr
is given by the relation (12).

We finish this section by giving some classical inequalities between the Hr

which are well-known. First, for any r ∈ {0, · · · , n− 2},

HrHr+2 6 H2
r+1, (23)

with equality at umbilical points, cf. [20, p. 104]. Moreover, cf. [7], ifHr+1 > 0,
then Hs > 0 for any s ∈ {0, · · · , r} and

H
1

r+1

r+1 6 H
1
r
r 6 · · · 6 H

1
2
2 6 H. (24)

Combining (23) and (24), we get that if Hr+1 > 0, then

Hr+2 6 HHr+1, (25)

with equality at umbilical points.
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2.3 Extrinsic Sobolev inequality

We finish this section of preliminaries by recalling the extrinsic Sobolev in-
equality proved by Michael and Simon [25] for submanifolds of the Euclidean
space and by Hoffman and Spruck [23] for other ambient spaces. This inequal-
ity will play a crucial role in the iteration process to obtain L∞-estimates in
the proof of Theorem 2. For any non-negative C1-function f on a hypersurface
M of Rn+1 we have

(∫

M

f
n

n−1 dvg

)
n−1
n

6 Kn

∫

M

(|∇f |+ |H|f) dvg, (26)

where Kn is a positive constant depending only on the dimension n and where
H is the mean curvature of M . An immediate consequence of this inequality
is that we can bound the volume of M in terms of the mean curvature from
below. Indeed we have V (M)

n−1
n 6 Kn‖H‖∞V (M), obtained by taking f ≡ 1

in (26), which gives the following lower bound for the volume:

V (M) >
1

(Kn‖H‖∞)n
. (27)

Finally we fix our convention for the Lp-norms. For p ∈ [1,∞) and a function
f defined on M we set

‖f‖p =

(

1

V (M)

∫

M

|f |pdvg
)

1
p

. (28)

3 A general upper bound for λ1(LT )

We first recall the general upper bound for the first eigenvalue of the operator
LT in terms of a symmetric divergence-free (1, 1)-tensor S.

Theorem 3 ([32]) Let (Mn, g) be a connected, oriented and closed Rieman-
nian manifold isometrically immersed into R

n+1. Assume that M is endowed
with two symmetric and divergence-free (1, 1)-tensors S and T . Assume in
addition that T is positive definite. Then the first positive eigenvalue of the
operator LT satisfies

λ1(LT )

(∫

M

tr(S)dvg

)2

6

(∫

M

tr(T )dvg

)(∫

M

|HS |2dvg
)

. (29)

Moreover, if HS does not vanish identically and equality occurs, then M is a
hypersphere and tr(S) is constant.

Proof: First we recall that LTX = −HT . Without loss of generality let
∫

M

X = 0. (30)
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Thus we may use the coordinates Xα as test functions in the Rayleigh quotient
to obtain

λ1(LT )

∫

M

|X|2dvg 6 −
∫

M

〈X,HT 〉dvg

=

∫

M

tr(T )dvg,

(31)

where we have used the generalised Hsiung-Minkowski formula (15) for the
tensor T . Hence, we deduce that

(∫

M

tr(T )dvg

)(∫

M

|HS |2dvg
)

> λ1(LT )

(∫

M

|X|2dvg
)(∫

M

|HS |2dvg
)

> λ1(LT )

(∫

M

|X‖HS |dvg
)2

> λ1(LT )

(∫

M

〈X,HS〉dvg
)2

= λ1(LT )

(∫

M

tr(S)dvg

)2

,

(32)
where we have used the Cauchy-Schwarz inequality and the generalised Hsiung-
Minkowski formula for the tensor S.
Let’s study the limiting case. If HS does not vanish identically, the integral of
tr(S) is not zero in the equality case. Hence we have equality in the Cauchy-
Schwarz inequality, that is, X and HS are colinear. In particular the position
vector is normal. We deduce easily that M is a sphere. Indeed we have

∂

∂ξi
〈X,X〉 = 2〈Xi, X〉 = 0. (33)

Thus the norm of X is constant and so M is contained in a sphere. Since M
has no boundary, M is the entire sphere. Moreover M is totally umbilic and
so by definition of HS we have HS = −ktr(S)ν. Finally tr(S) = k−1|HS | is
constant, since by equality in the Cauchy-Schwarz inequality HS and X are
proportional. �

Remark 2 1. Note that for the equality case there is no equivalence. Indeed,
if equality holds, then M is necessarily a geodesic sphere, but there is no
reason that equality occurs if M is a geodesic sphere.

2. If T is the identity, that is LT is the Laplacian, we have an alternative proof
of the limiting case. If equality holds, then the coordinates are eigenvectors
of the Laplacian and M is a geodesic sphere by Takahashi’s Theorem [34].

The classical inequalities are particular cases of this general one. First of
all, for T = Id we get the Reilly inequalities (2) and (3) cited above by taking
S = Id or S = Tr. For T = Tr, 0 6 r 6 n − 1, we recover the following
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inequalities for the first eigenvalue of the operator Lr obtained by Alias and
Malacarne [4]:

λ1(Lr)

(∫

M

Hsdvg

)2

6 c(r)

∫

M

Hrdvg

∫

M

H2
s+1dvg, (34)

with S = Ts. The special case r = s gives a well known inequality proved by
Alencar, do Carmo and Rosenberg [3]:

λ1(Lr)

∫

M

Hrdvg 6 c(r)

∫

M

H2
r+1dvg. (35)

Another particular case of our general inequality is the case S = T . We get
the following Corollary.

Corollary 1 Let (Mn, g) be a closed, connected and oriented Riemannian
manifold isometrically immersed into R

n+1. Assume that M is endowed with
a divergence-free and positive definite symmetric (1, 1)-tensor T . Then, the
first positive eigenvalue of the operator LT satisfies

λ1(LT )

(∫

M

tr(T )dvg

)

6

∫

M

|HT |2dvg. (36)

Moreover, if equality holds, then M is a geodesic sphere and tr(T ) is constant.

For T = Id we get the Reilly inequality (2) and for T = Tr we have inequality
(35).

4 A pinching result for λ1(LT )

In this section we consider the pinching problem associated with (29), which is
the stability of its equality case. In other words, if equality is almost achieved,
M is close to a sphere in a sense to be made precise. For technical reasons we
will consider a less sharp but nevertheless optimal inequality which admits the
same equality case:

λ1(LT )

(∫

M

tr(S)dvg

)2

6

(∫

M

tr(T )dvg

)

‖HS‖22pV (M), (37)

for p > 1, obtained from (29) by Hölder inequality. We introduce the following
pinching condition for 0 < ε < 1:

λ1(LT )

(∫

M

tr(S)dvg

)2

> (1− ε)

(∫

M

tr(T )dvg

)

‖HS‖22pV (M). (Λp,ε)
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4.1 L2-estimates

In this section we prove some lemmata giving proximity in an L2-sense between
the hypersurface M and a geodesic sphere of appropriate radius under the
assumptions of Theorem 2.

Lemma 1 If (Λp,ε) is satisfied and X̄ = 0, then
∫

M
tr(T )dvg

λ1(LT )V (M)
(1− ε)2 6 ‖X‖22 6

∫

M
tr(T )dvg

λ1(LT )V (M)
(38)

and
(

1
V (M)

∫

M
tr(S)dvg

)2

‖HS‖22p
(1− ε)2 6 ‖X‖22 6

1

1− ε

(

1
V (M)

∫

M
tr(S)dvg

)2

‖HS‖22p
. (39)

Proof: We start from (31) obtained by injecting the coordinate functions
into the Rayleigh quotient. This gives the upper bound for ‖X‖22 in (38). For
the lower bound we start from (31) again. We have

λ1(LT )

∫

M

|X|2dvg
(∫

M

tr(S)dvg

)4

6

∫

M

tr(T )dvg

(∫

M

tr(S)dvg

)4

=

∫

M

tr(T )dvg

(∫

M

〈HS , X〉dvg
)4

6

∫

M

tr(T )dvg

(∫

M

|HS |2dvg
)2(∫

M

|X|2dvg
)2

.

(40)

Hence we get

‖X‖22 >
λ1(LT )

(∫

M
tr(S)dvg

)4

(∫

M
tr(T )dvg

)

‖HS‖42pV (M)3
. (41)

Now we use (Λp,ε), which gives

λ1(LT )
2
>

(∫

M
tr(T )dvg

)2 ‖HS‖42pV (M)2

(∫

M
tr(S)dvg

)4 (1− ε)2 (42)

and, together with (41), yields the desired result,
∫

M
tr(T )dvg

λ1(LT )V (M)
(1− ε)2 6 ‖X‖22. (43)

The upper estimate of (39) follows from inserting (Λp,ε) into (38), the lower
one from inserting (37) into (38). �

Now we state a second lemma which gives an L2-estimate for the tangential
part of the position vector under the pinching condition.
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Lemma 2 If (Λp,ε) holds and X̄ = 0, then

‖XT ‖22 6 ε‖X‖22. (44)

Proof: As in the previous lemma we start from (31). We have

λ1(LT )

∫

M

|X|2dvg
(∫

M

tr(S)dvg

)2

6

∫

M

tr(T )dvg

(∫

M

tr(S)dvg

)2

=

∫

M

tr(T )dvg

(∫

M

〈HS , X〉dvg
)2

6

∫

M

tr(T )dvg

(∫

M

|HS |2dvg
)(∫

M

〈X, ν〉2dvg
)

6

∫

M

tr(T )dvg

(∫

M

〈X, ν〉2dvg
)

‖HS‖22pV (M).

(45)

From this we deduce that

‖XT ‖22 =
1

V (M)

∫

M

(|X|2 − 〈X, ν〉2)dvg

6 ‖X‖22 −
λ1(LT )‖X‖22

(∫

M
tr(S)dvg

)2

(∫

M
tr(T )dvg

)

‖HS‖22pV (M)

= ‖X‖22

(

1− λ1(LT )
(∫

M
tr(S)dvg

)2

(∫

M
tr(T )dvg

)

‖HS‖22pV (M)

)

6 ε‖X‖22,

(46)

by using (Λp,ε) for the last line. �

4.2 From L2 to L∞

Now we will give a sequence of lemmas, based on an iteration process, which
allow us to control the L∞-norm of some functions by their L2-norm. Note
that this iteration process does not depend on the pinching condition. We
have the following lemma for the norm of the position vector. The proof can
be found in [24, Lemma 5]. This lemma is an improvement of a similar lemma
given in [19] and [31].

Lemma 3 [24, Lemma 5] Let q > n be a real number. There exists a constant
Γ (n, q) > 0, so that for any isometrically immersed, compact submanifold Mn

of Rn+1 we have

‖|X − X̄| − ‖X − X̄‖2‖∞

6 Γ
(

V (M)‖H‖nq
)

γ
n ‖X − X̄‖2

(

1− ‖X − X̄‖1
‖X − X̄‖2

)
1

2(γ+1)

,
(47)
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where γ = nq
2(q−n) .

The following L∞ estimate of the tangential part is a straightforward adap-
tion of the proof of [24, Lemma 6]. Let us include it with the necessary modi-
fications for completeness.

Lemma 4 Let q > n and X : M →֒ R
n+1 be the immersion of a closed hyper-

surface. Then there exists a constant C = C(n, q), such that

‖XT ‖∞ 6 C
(

V (M)‖B‖nq ‖X‖∞
)

γ
γ+1 ‖XT ‖

1
γ+1

2 . (48)

Proof: Set ψ = |XT |. Due to

ψ2 = |X|2 − 〈X, ν〉2 (49)

we obtain
|dψ| 6 1 + n|B|‖X‖∞. (50)

Applying (26) with f = ψ2α, α ≥ 1, we obtain

‖ψ‖2α2αn
n−1

6 KV (M)
1
n (2α(1 + n‖B‖q‖X‖∞) + ‖H‖q‖ψ‖∞) ‖ψ‖2α−1

(2α−1)q
q−1

. (51)

From here we follow the proof of [24, Lemma 5]. Setting

µ =
n(q − 1)

(n− 1)q
, a0 =

2q

q − 1
, ap+1 = µap +

n

n− 1
, (52)

then we obtain, using

α = ap
q − 1

2q
+

1

2
, (53)

that
(‖ψ‖ap+1

‖ψ‖∞

)

ap+1

µp+1

6

(

C(n)V (M)
1
n

(

ap+1
1 + n‖B‖q‖X‖∞

‖ψ‖∞
+ ‖H‖q

))
n

µp+1(n−1)
(‖ψ‖ap

‖ψ‖∞

)

ap
µp

6

(

C(n)V (M)
1
n ap+1

‖B‖q‖X‖∞
‖ψ‖∞

)
n

µp+1(n−1)
(‖ψ‖ap

‖ψ‖∞

)

ap
µp

,

(54)
where we also used

1 ≤ ‖X‖2‖H‖2 ≤ C(n)‖X‖∞‖B‖q, ‖ψ‖∞ ≤ ‖X‖∞. (55)

As in the proof of [24, Lemma 5] we obtain

‖ψ‖∞ 6 C(q, n)

(

V (M)
1
n
‖B‖q‖X‖∞

‖ψ‖∞

)γ

‖ψ‖2, (56)

where
γ =

nq

2(q − n)
. (57)

Rearranging terms gives the desired estimate. �
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4.3 Proof of Theorem 2

In order to prove Theorem 2, we examine the consequences from the L∞-
estimates under the pinching condition (Λp,ε). The proofs closely follow the
argumentation in [24, Sec. 3].

Lemma 5 Under the condition (Λp,ε) the immersion X satisfies

1− ‖X − X̄‖1
‖X − X̄‖2

≤ C(p)ε. (58)

Proof: Assume by translation that X̄ = 0 and use Lemma 1 and the
Hsiung-Minkowski formula to deduce

‖HS‖2p‖X‖2 6

∫

M
|〈X,HS〉|

V (M)
√
1− ε

6
1√
1− ε

‖HS‖2p‖X‖ 2p
2p−1

6
1√
1− ε

‖HS‖2p‖X‖1−
1
p

1 ‖X‖
1
p

2 .

(59)

We obtain

‖X‖2 6 (1− ε)−
p

2(p−1) ‖X‖1 (60)

and hence

1− ‖X‖1
‖X‖2

6 1− (1− ε)
p

2(p−1) 6 C(p)ε (61)

with a constant C = C(p). �

Let us combine these results to get final pinching estimates for |X| and
|XT |. First we prove (8).

Corollary 2 Let q > n and suppose V (M)‖H‖nq 6 A. Define

r =

1
V (M)

∣

∣

∫

M
tr(S)dvg

∣

∣

‖HS‖2p
(62)

and let S and T satisfy the conditions of Theorem 2. Then under the condition
(Λp,ε) with p > 1 and ε < 1

2 there exists a constant C = C(n, p, q, A), such
that

‖|X − X̄| − r‖∞ ≤ Crε
1

2(γ+1) . (63)

Proof: Again let X̄ = 0. Then we obtain

‖|X| − r‖∞ 6 ‖|X| − ‖X‖2‖∞ + |‖X‖2 − r|. (64)

The lemmata 1, 3 and 5 give the result. �
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Corollary 3 Let q > n, V (M)‖B‖nq 6 A and X̄ = 0. Let S and T satisfy
the conditions of Theorem 2. Then under the condition (Λp,ε) with p > 1 and
ε < 1

2 there exists a constant C = C(n, p, q, A), such that

‖XT ‖∞ 6 Crε
1

2(γ+1) . (65)

Proof: Due to Lemma 2 and Lemma 4 we have

‖XT ‖∞ 6 C‖X‖
γ

γ+1
∞ ‖XT ‖

1
γ+1

2 6 C‖X‖
γ

γ+1
∞ ‖X‖

1
γ+1

2 ε
1

2(γ+1) . (66)

Since
‖X‖∞ 6 ‖|X| − r‖∞ + r (67)

and
‖X‖2 6 Cr, (68)

we obtain the result from Corollary 2. �

Remark 3 Now the proof of the rest of Theorem 2 proceeds literally as the
corresponding proof of [24, Thm. 2]. The starting points are the equations
(63) and (65), which correspond to the equations (10) and (12) in [24]. Our

radius r corresponds to the quantity ‖Hk−1‖1

‖Hk‖p
in [24]. Note that this is where

we have to restrict to some small ε0 > 0 as claimed in Theorem 2.

5 Application to r-stability

In this section, we are interested in the stability of constant mean curvature
hypersurfaces and, more generally, in r-stability. For this we introduce the
r-area functionals

Ar =

(∫

M

Srdvg

)

, r ∈ {0, . . . , n− 1}. (69)

Now we consider a variation of the immersion X0. Precisely, let δ > 0 and

X : (−δ, δ)×M → R
n+1, (70)

such that for all t ∈ (−δ, δ), Xt := X(t, ·) is an immersion of M into R
n+1

and X(0, ·) = X0. The precise assumptions on M will be specified in Theorem
4 below. We denote by Sr(t) the corresponding curvature functions, by Ar(t)
the r-area of Xt and finally we set

ft =

〈

dX

dt
, νt

〉

, (71)

where νt is the unit normal to M induced by Xt and gt is the induced metric
on M .

Note that

d

dt

(∫

M

Sr(t)dvgt

)

= −(r + 1)

∫

M

fSr+1dvgt , (72)
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cf. [26, Thm. B]. We also consider the volume functional

V (t) =

∫

[0,t)×M

X∗dv. (73)

It is easy to see, cf. [9, Lemma 2.1], that V satisfies

V ′(t) =

∫

M

ftdvgt (74)

and so X preserves the volume if and only if
∫

M
ftdvgt = 0 for all t. More-

over, according to [9, Lemma 2.2], for any function f0 : M → R such that
∫

M
f0dvg = 0, there exists a variation of X0 preserving the volume and with

normal part given by f0. Hence, in order to study variations with constant
volume, we can equivalently consider normal parts with vanishing integral.
This has the advantage that they can be used as test functions in the Rayleigh
quotient for the first eigenvalue of the Laplacian or, more generally, for the
operator Lr. As we will see, these operators play a crucial role in the study of
r-stable hypersurfaces. Indeed, a standard argument as in [8, Prop. 2.7] shows
that X0 is a critical point for the functional Ar for variations with constant
volume if and only if Hr+1 is constant. For such a critical point, Reilly [26]
has computed the second variation of Ar, also compare [3, equ. (2.2)]:

A′′
r (0) = (r + 1)

∫

M

f0Lrf0 +

[

c(r + 1)Hr+2 − n
c(r)

r + 1
HHr+1

]

f20 dvg

=: Jrf0,

(75)

where f0 is the normal part of a variation with constant volume at t = 0 and

c(r) = (n− r)

(

n

r

)

. (76)

We say that a hypersurface M with constant Hr+1 is r-stable if Jrf is non-
negative for all functions f of vanishing integral. A classical result of Barbosa
and do Carmo [8] for r = 0, Alencar, do Carmo and Colares [1] for r = 1 and
Alencar, do Carmo and Rosenberg [3] for all r says that a compact hypersurface
of the Euclidean space with constant Hr+1 is r-stable if and only if it is a
geodesic sphere. This result has been generalised later by Barbosa and Colares
[7] for hypersurfaces of the hyperbolic space and the half-sphere.

Here, using the pinching result for the first eigenvalue of Lr proven above,
we will show that this characterisation of spheres of the Euclidean space re-
mains true if we only assume that Jrf is almost positive, which means

Jrf > −ε
∫

M

f2H
r+2
r+1

r+1 ∀f ∈ C∞(M) :

∫

M

f = 0, (77)

where ε is a sufficiently small positive constant. Note that the term H
r+2
r+1

r+1 is
present in order to have a condition which is invariant under any homothety
of Rn+1. Precisely, we prove the following result.
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Theorem 4 Let (Mn, g) be a connected, oriented and closed Riemannian
manifold isometrically immersed into R

n+1 with constant Hr+1 > 0. Let
A > 0, q > n and assume that V (M)‖B‖nq 6 A. Then there exists ε0 > 0
depending on n, q and A such that if M is almost r-stable in the sense of (77)

with ε < ε0, then M is a sphere of radius H
− 1

r+1

r+1 .

Proof: Taking f as an eigenfunction of Lr associated with the first positive
eigenvalue, we get from the almost-stability that

0 6

∫

M

(

(r + 1)λ1 + (r + 1)c(r + 1)Hr+2 − nc(r)H1Hr+1 + εH
r+2
r+1

r+1

)

f2

6

∫

M

(

(r + 1)λ1 + ((r + 1)c(r + 1)− nc(r))H1Hr+1 + εH
r+2
r+1

r+1

)

f2

6

∫

M

(

(r + 1)λ1 − ((r + 1)c(r)− ε)H
r+2
r+1

r+1

)

f2

= (r + 1)

∫

M

(

λ1 − c(r)

(

1− ε

(r + 1)c(r)

)

H
r+2
r+1

r+1

)

f2,

(78)
where we used (24), (25) and also

c(r + 1)− n
c(r)

r + 1
= −c(r). (79)

Hence we find

λ1 − c(r)

(

1− ε

(r + 1)c(r)

)

H
r+2
r+1

r+1 > 0. (80)

Up to a minor change this is the pinching condition of Theorem 2. Indeed,
for p > 1 we have

λ1(Lr) >

(

1− ε

(r + 1)c(r)

)

c(r)H
r+2
r+1

r+1

=

(

1− ε

(r + 1)c(r)

)

c(r)
H2

r+1

H
r

r+1

r+1

=

(

1− ε

(r + 1)c(r)

)

c(r)
‖Hr+1‖22pV (M)
∫

M
H

r
r+1

r+1

>

(

1− ε

(r + 1)c(r)

)

c(r)
‖Hr+1‖22pV (M)

∫

M
Hr

,

(81)

where we used the fact that Hr+1 is constant to make integrals appear and
(24) for the last line. Now we have exactly the pinching condition for λ1(Lr)
with S = T = Tr and we can apply Theorem 2 to conclude that in particular
M is embedded. In this argument also note that Tr is elliptic since Hr+1 is
positive. By the Alexandrov theorem for Hr+1 proved by Ros, cf. [28], we get
that M is a sphere. �
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6 An almost-Einstein type estimate

We finish this paper by applying the eigenvalue pinching result to deduce an
explicit spherical closeness estimate of almost-Einstein type for hypersurfaces,
namely an estimate of the form

dH(M,S(X̄, r)) 6
cr

R̄α

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

α

p

, (82)

whenever the right-hand side is small. We assume that the average of the scalar
curvature R over M is positive, R̄ > 0, and that R ≥ 0. We will prove this
estimate for p > max(2, n2 ) and c and α will be suitable constants depending
on n, p and an integral bound on H. In [24, Thm. 3] a similar application
of the eigenvalue pinching was given, however here the authors derived the
almost-isometry to the sphere with the help of the pinching

‖Ric− λg‖∞ < ε. (83)

Here we want to improve this application, which is by the way also possible
with the help of their eigenvalue pinching result: we want to relax the norm
of the pinching quantity to Lp instead of L∞. Besides the improvement of the
estimate itself this has the advantage that we also obtain an almost-Schur type
estimate right away, due to the well-known almost-Schur estimate by De Lellis
and Topping, cf. [13]. For manifolds of nonnegative Ricci curvature and n > 3
they provide the estimate

∫

M

∣

∣

∣

∣

Ric− R̄

n
g

∣

∣

∣

∣

2

6
n2

(n− 2)2

∫

M

∣

∣

∣

∣

Ric− R

n
g

∣

∣

∣

∣

2

. (84)

Similar estimates, relaxing the assumption on nonnegative Ricci curvature in
different directions, were obtained by Cheng, cf. [11, Thm. 1.2] and by Ge
and Wang in [15]. Instead of L2 we need an Lp-estimate, but as was pointed
out in [13], their proof easily adapts provided one has a Calderon-Zygmund
type inequality. For the sake of completeness, we will provide the proof of this
Lp-estimate. For a class of manifolds which allow for a Calderon-Zygmund
estimate see the paper [22].

To achieve the relaxation from the L∞- to an Lp-pinching condition, we
imitate the proof of a similar result by the second author concerning an almost-
umbilical type estimate, compare the proof of [33, Thm. 4.1]. A similar result
due to the first author under slightly different assumptions was achieved in
[30].

Let us first recall De Lellis’ and Topping’s argument from [13] how to obtain
the Lp-version of their almost-Schur lemma.

Lemma 6 Let n ≥ 3 and (Mn, g) be a closed Riemannian manifold, which
admits an estimate of the form

‖∇2u‖q 6 C‖∆u‖q, q > 1, (85)
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for all smooth functions u, where C is a constant only depending on n, q and
possibly some fixed geometric quantities of M . Then for p > 2 there holds

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

p

6 c

∥

∥

∥

∥

Ric− R

n
g

∥

∥

∥

∥

p

, (86)

where c = c(C, n, p).

Proof: Compare [13, Sec. 2]. Let f ∈ C2,p−2(M) be the solution of

{

∆f = |R− R̄|p−2(R− R̄)
∫

M
f = 0.

(87)

Then, with exactly the same computation as in [13, equ. (2.3)], we obtain

1

V (M)

∫

M

|R− R̄|p =
1

V (M)

∫

M

(R− R̄)∆f

6
2n

n− 2
‖R̊ic‖p‖∇2f‖ p

p−1
,

(88)

and hence, due to the Calderon-Zygmund estimate,

1

V (M)

∫

M

|R− R̄|p 6 c‖R̊ic‖p‖|R− R̄|p−1‖ p
p−1

. (89)

This yields the desired estimate, also using

∣

∣

∣

∣

Ric− R̄

n
g

∣

∣

∣

∣

2

= |R̊ic|2 + 1

n
(R− R̄)2. (90)

�

Let us come to the proof of (82). Here we will need to estimate the first
Laplace eigenvalue in terms of an Lp-Ricci bound. We have the following esti-
mate due to Aubry, originally proved in [5, Prop. 1.5], maybe more accessible
in the version of [6, Thm. 1.6]. It says that for p > n/2, a complete Riemannian
manifold (Mn, g) with

1

V (M)

∫

M

(Ric− (n− 1))p− <
1

C(p, n)
(91)

is compact and satisfies

λ1 > n

(

1− C(n, p)

(

1

V (M)

∫

M

(Ric− (n− 1))p−

)
1
p

)

, (92)

where Ric denotes the smallest eigenvalue of the Ricci tensor and x− =
max(0,−x).
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Theorem 5 Let n ≥ 2, q > n, p > max(2, n2 ) and (Mn, g) be a closed, con-
nected and oriented Riemannian manifold with R̄ > 0 and R > 0, isometrically
immersed into R

n+1. Suppose V (M)‖H‖nq 6 A. Then there exists a constant
ε0(n, p, q, A) > 0, such that whenever there holds

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

p

6 ε0R̄, (93)

then we also have

dH(M,S(X̄, r)) ≤ cr

R̄α

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

α

p

, (94)

where α = α(n, q) and c = c(n, p, q, A). If furthermore V (M)‖B‖nq 6 A,
then M is embedded as a starshaped hypersurface and εα-almost-isometric to
a sphere in the sense of Theorem 2.

Proof: We want to apply Theorem 2. We apply this theorem with the
tensors T = Id and S = T1. Hence we have to provide the estimate

λ1‖H‖21 > (1− ε)n‖H2‖22s, (95)

where λ1 now is the first eigenvalue of LT = −∆ and s = p
2 . Using a simple

rescaling argument we obtain a scaled version of Aubry’s result [6, Thm. 1.6],
namely that

(

1

V (M)

∫

M

(

Ric− R̄

n

)2s

−

)
1
2s

<
R̄

C(n, s)
(96)

implies

λ1 >
R̄

n− 1



1− C(s, n)

R̄

(

1

V (M)

∫

M

(

Ric− R̄

n

)2s

−

)
1
2s





>
R̄

n− 1
− C(s, n)

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

2s

.

(97)
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Let us estimate ‖H‖21.

‖H‖21 >

(

1

V (M)

∫

M

H
1
2
2

)2

=
1

n(n− 1)

(

1

V (M)

∫

M

R
1
2

)2

=
R̄

n(n− 1)
+

1

n(n− 1)

(

‖R 1
2 ‖21 − ‖R̄ 1

2 ‖21
)

>
R̄

n(n− 1)
− 1

n(n− 1)
(‖R 1

2 ‖1 + R̄
1
2 )‖R 1

2 − R̄
1
2 ‖1

>
R̄

n(n− 1)
− 1

n(n− 1)
√
R̄
‖R− R̄‖1(‖R

1
2 ‖1 + R̄

1
2 )

>
R̄

n(n− 1)
− cn

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

1

.

(98)

We also have to estimate ‖H2‖22s.

‖H2‖22s =
1

n2(n− 1)2

(

1

V (M)

∫

M

R2s

)
1
s

6
R̄2

n2(n− 1)2
+

1

n2(n− 1)2
∣

∣‖R‖22s − ‖R̄‖22s
∣

∣

6
R̄2

n2(n− 1)2
+

‖R‖2s + R̄

n2(n− 1)2
‖R− R̄‖2s

6
R̄2

n2(n− 1)2
+ cn(‖R‖2s + R̄)

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

2s

.

(99)

Bringing together (97), (98) and (99), we obtain, also noting that the right-
hand side of (97) is still positive when ε0 > 0 is small,

λ1‖H‖21 >
R̄2

n(n− 1)2
− cnR̄

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

1

− c(n, s)R̄

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

2s

> n‖H2‖22s − c(‖R‖2s + R̄)

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

2s

=

(

1− c
‖R‖2s + R̄

‖R‖22s

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

2s

)

n‖H2‖22s

>

(

1− c

R̄

∥

∥

∥

∥

Ric− R̄

n
g

∥

∥

∥

∥

2s

)

n‖H2‖22s.

(100)

Thus when ε0 is chosen small enough, we may apply Theorem 2 to conclude
the result. �

Remark 4 Let us note again, as already mentioned in the introduction to this
section, that Theorem 5 enables us to obtain an almost-Schur type estimate,
whenever we obtain an estimate in the sense of De Lellis and Topping [13].
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