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A GEOMETRIC INEQUALITY FOR CONVEX FREE

BOUNDARY HYPERSURFACES IN THE UNIT BALL

BEN LAMBERT AND JULIAN SCHEUER

Abstract. We use the inverse mean curvature flow with a free boundary per-

pendicular to the sphere to prove a geometric inequality involving the Will-
more energy for convex hypersurfaces of dimension n ≥ 3 with boundary on

the sphere.

1. Introduction

In [16] we considered the inverse mean curvature flow (IMCF) perpendicular to
the sphere, namely a family of embeddings

(1.1) X : D× [0, T ∗)→ Rn+1,

where D denotes the n-dimensional unit disk, which satisfy the Neumann boundary
value problem

Ẋ =
1

H
N,(1.2a)

X(∂D) = ∂X(D) ⊂ Sn,(1.2b)

0 =
〈
N|∂D, Ñ(X|∂D)

〉
,(1.2c) 〈

γ̇(0), Ñ
〉
≥ 0 ∀γ ∈ C1((−ε, 0],Mt) : γ(0) ∈ ∂X(D)(1.2d)

with initial embedding X0 of a strictly convex hypersurface M0, also satisfying the
conditions (1.2b), (1.2c) and (1.2d). Here Ñ denotes the outward unit normal of
Sn. In the following we will refer to these three conditions by saying that M0 is
perpendicular to the sphere from the inside.

In [16, Thm. 1] we proved that (1.2) with strictly convex initial data exists
smoothly up to a maximal time T ∗, preserves the strict convexity as well as the
perpendicularity condition up to T ∗ and that T ∗ is characterised by the C1,α-
convergence of the embeddings X(t, ·) to the embedding of a flat disk bisecting the
unit ball, where α < 1 is arbitrary; also compare [16, Rem. 1]. Note that the proof
of this convergence result heavily depends on the assumption of strict convexity for
the initial embedding X0. This is due to the fact that we obtained the final flat
limiting shape at time T ∗ by applying a rigidity result for weakly convex bodies in
the sphere Sn, which was deduced in [19]. In order to arrive at a situation where
this rigidity result holds, we needed the strict convexity of X0. We are not aware of
a proof which avoids this assumption and in fact it is an interesting open problem
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2 BEN LAMBERT AND JULIAN SCHEUER

to obtain convergence results for the IMCF perpendicular to the sphere under the
assumption of initial mean-convexity, rather than strict convexity.

However, the object of this paper is different, namely to apply this convergence
result to prove a Li-Yau type inequality (cf. [18]) for convex hypersurfaces with
boundary in any dimension n ≥ 3.

1.1. Theorem. Let n ≥ 3 and Mn ⊂ Rn+1 be a smoothly embedded n-disk, such
that Mn is a convex hypersurface perpendicular to Sn from the inside. Then there
holds

(1.3)
1

2
|M |

2−n
n

ˆ
M

H2 + ω
2−n
n

n |∂M | ≥ ω
2−n
n

n |Sn−1|

and equality holds if and only if M is a perpendicularly intersecting hyperplane.

Here | · | denotes the respective surface measures of M, ∂M and Sn−1 as inherited
from Rn+1 and ωn is the volume of the n-dimensional unit ball. We call a hyper-
surface M convex , if there exists a choice of a unit normal vector field, such that all
the principal curvatures at any point are non-negative and strictly convex, if they
are all positive throughout M . Note that convex or strictly convex hypersurfaces
with boundary may be way more complicated than in the boundaryless case. In
particular the well known supporting hyperplane property in the boundaryless case
is not valid without further assumptions if M has nonempty boundary, compare
for example the nice treatment of these issues in [11].

In the case of surfaces, n = 2, inequalities similar to (1.3) have attracted a
lot of attention. In this situation an even sharper version of (1.3) was shown in
broader generality than in the restricted class of convex surfaces, and was even
demonstrated in higher codimension. Namely, replacing the leading factor 1/2 in
(1.3) by 1/4, Volkmann proved the inequality without the convexity assumption in
[24]. In the case of higher dimensions less is known, let us only mention a result by
Brendle on minimal surfaces, [1]. We refer to the extensive bibliography in [23] for
a broader overview over the topic. To our knowledge, the inequality (1.3) has not
previously been treated in the higher dimensional hypersurface case.

Let us discuss the well established method of proof of geometric inequalities
as in (1.3) using curvature flows. (1.3) makes a statement about a certain class
of hypersurfaces M , here smooth and convex ones. To prove this inequality with
the help of a specific curvature flow, three things have to be satisfied: First of
all M must be an admissible initial hypersurface for the flow, i.e. one has short-
time existence with sufficient regularity up to M . Then one has to show that the
functional Q, here the left hand side of (1.3), is monotone during the evolution of
the flow. Finally we need a convergence result for the flow to a limiting shape in
a sufficiently smooth manner. Then we deduce the desired inequality due to the
monotonicity of the functional, which yields

(1.4) Q(M) = Q(0) ≥ Q(limiting shape).

Using this strategy, several geometric inequalities which might have or have not
previously been known for convex hypersurfaces could be generalised to a broader
class. For example the well known Minkowski inequality for closed convex surfaces
in R3,

(1.5)
1√
|M |

ˆ
M

H ≥ 4
√
π



FREE BOUNDARY CONVEX HYPERSURFACES IN A BALL 3

with equality if and only if M is a round sphere, was generalised to closed, star-
shaped and mean-convex surfaces in [12]. This was possible since the inverse mean
curvature flow in Rn+1 allows such more general hypersurfaces as initial data and
the left hand side of (1.5) is decreasing under this flow and constant if and only if
it is a flow of spheres. The relevant convergence result for the IMCF in Rn+1 was
established independently by Gerhardt in [7] and Urbas in [22]. They show that for
such initial hypersurfaces the flow expands to infinity and to a round sphere after
rescaling. Due to the scale-invariance of the left hand side of (1.5) the Minkowski
inequality follows. Note that once the convergence result is settled, the proof of
the inequality is incredibly easy. The same method, also using other flows than
the IMCF, was successfully used to prove various kinds of geometric inequalities
such as those of Alexandrov-Fenchel type and inequalities for quermassintegrals of
convex bodies. Compare [15] for a related inequality in Rn+1, [19] and [25] for
Alexandrov-Fenchel inequalities in the sphere, [3], [5], [17] and [25] for related re-
sults in the hyperbolic space, as well as [2] and [6] in other Riemannian manifolds.
The relevant convergence result for the flow in hyperbolic space was established by
Gerhardt in [9]. The IMCF in the sphere was treated by Gerhardt in [10] and with
different methods by Makowski and the second author in [19]. The probably most
famous result in this direction is the proof of the Riemannian Penrose inequality in
[14] by Huisken and Ilmanen, which additionally faced the difficulty of singularity
formation under the evolution. They overcame this by using the weak notion of
IMCF.

In the proof of our proposed inequality (1.3) we try to adapt this method. How-
ever, a thorough look at the statement of the theorem and the flow result reveals
that the flow result is not available for the whole class of hypersurfaces for which
we want to prove the inequality. Namely the flow result requires strict convexity
while the inequality is supposed to hold for convex hypersurfaces. This becomes
most obvious when looking at the limiting case: A flat disk is certainly a singularity
for IMCF and hence there is now way to start the IMCF from it. This introduces
an additional complication. The standard proof only works for strictly convex hy-
persurfaces, the case of which we will treat in section 2. We will resolve the general
issue using approximation by strictly convex hypersurfaces. Here the main techni-
cal difficulty is that we need an approximation which preserves the perpendicularity
to the sphere at boundary points. Fortunately the mean curvature flow serves as
a way out, as we will see in section 3. In section 4 we put everything together for
the final proof.

We remark that with an improved result on IMCF perpendicular to the sphere
which is valid for more general initial hypersurfaces, (1.3) should also be generalis-
able away from the convex setting.

2. The case of strictly convex hypersurfaces

In order to prove Theorem 1.1 in the strictly convex case we will use the strategy
described in the introduction to show that the left hand side of (1.3) is decreasing
under the flow and then use the convergence result for the flow to show that it
limits into the right hand side of (1.3). Let us first recollect some essential facts
proven in [16] which we need in this section.

2.1. Remark. (i) In [16] we proved that the IMCF perpendicular to the sphere
drives strictly convex initial hypersurfaces M0 in finite time T ∗ to a flat disk in
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C1,α. Hence the boundaries ∂Mt ⊂ Sn are driven uniformly to an equator S. Let
H(e0) be the closed hemisphere with center e0 ∈ Sn that contains all the ∂Mt.
Then for t close enough to T ∗ we have

(2.1) dist(e0, ∂Mt) ≥ c ≥ 0

and hence by the result in [16, Lemma 11] we have

(2.2) 〈N, e0〉 ≤ c0 < 0

for t sufficiently close to T ∗. Here −N denotes the unit normal field with respect
to which the flow hypersurfaces are strictly convex.

(ii) The next crucial fact, previously applied to give C1,α-convergence in [16],
is a bound on the principal curvatures (and hence a C2-estimate). Due to the
convexity this is equivalent to a bound on the mean curvature, which was obtained
by a standard maximum principle argument: The interior evolution of the negative
speed

(2.3) Φ = − 1

H

along IMCF is given by

(2.4) Φ̇− 1

H2
∆Φ =

‖A‖2

H2
Φ,

where ∆ is the Laplace-Beltrami operator of the induced metric and ‖A‖ is the norm
of the second fundamental form, cf. [8, Lemma 2.3.4]. Thus the mean curvature
satisfies

(2.5) Ḣ − 1

H2
∆H ≤ −‖A‖

2

H2
H.

The boundary derivative in our case is

(2.6)
〈
∇H, Ñ

〉
= −H,

compare [16, Lemma 1]. The parabolic maximum principle yields

(2.7) H ≤ max
M0

H

for all times t < T ∗.
(iii) We will also need that the height

(2.8) w = 〈X, e0〉

satisfies

(2.9) ∆w = −H 〈N, e0〉 ≥ −c0H,

where the equality is due to the Gaussian formula and the inequality holds due to
(2.2). At the boundary the height function satisfies

(2.10)
〈
∇w, Ñ

〉
= w,

cf. [16, Lemma 5] for a proof.
(iv) The embeddings X(t, ·) : D→ Rn+1 restrict to embeddings

(2.11) yt : ∂D→ Sn.

As the embeddings X(t, ·) give strictly convex hypersurfaces, the yt yield strictly
convex hypersurfaces of the sphere Sn, cf. [16, Lemma 4] for the simple proof. Since
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the flow of X(t, ·) is smooth up to the boundary by standard regularity theory, the
yt themselves satisfy a curvature flow equation in the sphere, namely

(2.12) ẏ =
1

H
ν,

where H is the full mean curvature of Mt restricted to ∂D and ν is the pullback of
the normal N along the embedding x : Sn ↪→ Rn+1, cf. [16, equ. (20)] for a detailed
derivation.

We can now prove the monotonicity of the curvature functional. For this purpose
we need control on the L2-norm of H.

2.2. Lemma. Let the family (Mt) of strictly convex hypersurfaces evolve by (1.2).
Then for all 1 ≤ p <∞ there holds

(2.13) lim
t→T∗

ˆ
Mt

Hp(·, t) = 0.

Proof. Combine (2.2), (2.9) and (2.10) to deduce

(2.14)

ˆ
Mt

H ≤ −c−10

ˆ
Mt

∆w = −c−10

ˆ
∂Mt

w → 0, t→ T ∗,

where the latter convergence follows since the boundaries ∂Mt ⊂ Sn converge to
the equator in C1. The complete result follows due to the boundedness of H, (2.7),
and interpolation. �

Now we can prove Theorem 1.1 in the special case of a strictly convex hypersur-
face, which will also be needed in the proof of the limiting case.

2.3. Lemma. Let n ≥ 2 and M ⊂ Rn+1 be a smooth and strictly convex hypersur-
face perpendicular to Sn from the inside. Then there holds

(2.15)
1

2
|M |

2−n
n

ˆ
M

H2 + ω
2−n
n

n |∂M | > ω
2−n
n

n |Sn−1|.

Proof. Rewriting (2.4) gives

(2.16) Ḣ = ∆

(
− 1

H

)
− ‖A‖

2

H

and [8, Lemma 2.3.1] yields the evolution of the volume element

(2.17)
d

dt

√
det(gij) =

√
det(gij).

Thus

(2.18)

d

dt

(
1

2

ˆ
Mt

H2dµt

)
=

ˆ
Mt

H∆

(
− 1

H

)
dµt −

ˆ
Mt

‖A‖2dµt +
1

2

ˆ
Mt

H2dµt

= −
ˆ
Mt

‖∇H‖2

H2
dµt −

ˆ
Mt

‖A‖2dµt +
1

2

ˆ
Mt

H2dµt

− |∂Mt|,

where we used the divergence theorem and (2.6). Since

(2.19) ‖A‖2 = ‖Å‖2 +
1

n
H2,
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we have

(2.20)
1

2
H2 − ‖A‖2 =

n− 2

2n
H2 − ‖Å‖2

and thus

(2.21)

d

dt

(
1

2

ˆ
Mt

H2dµt

)
= −
ˆ
Mt

‖∇H‖2

H2
dµt −

ˆ
Mt

‖Å‖2dµt

+
n− 2

2n

ˆ
Mt

H2dµt − |∂Mt|.

Furthermore, due to (2.12) the volume elements of the induced hypersurfaces

(2.22) yt : ∂D→ Sn

satisfy

(2.23)
d

dt

√
det(γIJ) =

γIJηIJ
H

√
det(γIJ) <

√
det(γIJ),

where γIJ and ηIJ denotes the metric and the second fundamental form of these
hypersurfaces respectively. Define

(2.24) Q(t) =
1

2
|Mt|

2−n
n

ˆ
Mt

H2 + ω
2−n
n

n |∂Mt|.

By the previous calculations we have

(2.25)

Q̇(t) <
2− n

2n
|Mt|

2−n
n

ˆ
Mt

H2 +
n− 2

2n
|Mt|

2−n
n

ˆ
Mt

H2 − |Mt|
2−n
n |∂Mt|

+ ω
2−n
n

n |∂Mt|

=
(
ω

2−n
n

n − |Mt|
2−n
n

)
|∂Mt|

≤ 0,

since we already know by [16, Thm. 1] that |Mt| is increasingly converging to ωn.
Furthermore we know by Lemma 2.2 that

(2.26)

ˆ
Mt

H2 → 0

and thus we obtain

(2.27) Q(0) > Q(T ∗) = ω
2−n
n

n |Sn−1|.

�

We also need the following exact description of the maximal time of existence of
a smooth solution to (1.2).

2.4. Lemma (Exact existence time). Suppose the initial data M0 to (1.2) is strictly
convex. Then the maximal time of existence T ∗ is

(2.28) T ∗ = log

(
ωn
|M0|

)
.

In particular we obtain the volume estimate

(2.29) |M0| < ωn.
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Proof. Using (2.17), we see that d
dt |Mt| = |Mt| and so

(2.30) |Mt| = et|M0|.
Since we know that the maximal time is when the flow becomes a flat disk and the
flow converges in C1,β , we know ωn = eT

∗ |M0| and the equation follows. �

3. Approximation of weakly convex hypersurfaces

One of the main difficulties in proving Theorem 1.1 is the lack of information
about the IMCF for weakly convex hypersurfaces. The proof of the result in [16]
makes essential use of the strict convexity. Hence it is not straightforward to obtain
the limiting case in Theorem 1.1. We will use approximation by strictly convex
hypersurfaces to overcome this obstacle. To do this we use the mean curvature flow
with the same Neumann boundary condition. More specifically, we still assume M0

is parametrised by X0 : D → Rn+1. Contrary to our previous solution X of the
inverse mean curvature flow, we now consider the solution F : D × [0, T ) → Rn+1

of the mean curvature flow with Neumann boundary condition, i.e.

Ḟ = −HN,(3.1a)

X(∂D) = ∂X(D) ⊂ Sn,(3.1b)

0 =
〈
N|∂D, Ñ(X|∂D)

〉
,(3.1c) 〈

γ̇(0), Ñ
〉
≥ 0 ∀γ ∈ C1((−ε, 0],Mt) : γ(0) ∈ ∂X(D)(3.1d)

with initial embedding X0.
Properties of such mean curvature flows with boundary conditions were studied

by A. Stahl in [20] and [21]. Now we use Stahl’s short time existence result [20,
Thm. 2.1] in conjunction with the following strong maximum principle statement
to obtain strictly convex approximating hypersurfaces arbitrarily close to M0 in
C2,α. First we need a lemma to ensure that a nontrivial M has a strictly convex
point.

3.1. Lemma. Let M ⊂ Rn+1 be a smooth and weakly convex hypersurface per-
pendicular to Sn from the inside with embedding vector X. Then either ∂M is an
equator of the sphere or there exists x ∈ D such that the second fundamental form
of M at x is positive definite.

Proof. As mentioned in Remark 2.1, item (iv), ∂M ⊂ Sn is a convex hypersurface
of the sphere which is either an equator or strictly contained in an open hemisphere
by the classical results in [4]. In the first case we are done. In the second case we
pick a point e0 ∈ conv (∂M) ⊂ Sn, where the latter denotes the spherical convex
body bounded by ∂M, such that also

(3.2) ∂M ⊂ int (H(e0)) ,

where H(e0) denotes the closed hemisphere with center e0. By (2.10) the height

(3.3) w = 〈X, e0〉

over the hyperplane e⊥0 attains its global minimum in the interior of D. By attaching
a large supporting sphere to M from below we find the existence of a strictly convex
point. �
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Now we can prove the approximation result. A similar technique was used in
[13].

3.2. Theorem. Suppose F : D× [0, T )→ Rn+1 is a solution to (3.1) with initial hy-
persurface M0 being weakly convex and perpendicular to the sphere from the inside.
Then either ∂M0 is an equator of the sphere or (hij) > 0 for t > 0.

Proof. If ∂M0 is not an equator, then due to Lemma 3.1 there exists a strictly
convex point.

Let

(3.4) χ(x, t) = min
|V |=1

hijV
iV j .

Due to the smoothness of hij , χ(x, t) is Lipschitz continuous in space and therefore
by a simple cut-off function argument we find a smooth function φ0 : Mn → R so
that 0 ≤ φ0 ≤ χ(x, 0) and there exists y ∈ Mn so that φ0(y) > 0. We now extend
this function to φ : Dn × [0, δ)→ R by a heat flow,

(3.5)


(
∂
∂t −∆

)
φ = 0 on int(D)× [0, τ)

∇µφ = 0 on ∂D× [0, τ)

φ(·, 0) = φ0(·),

where ∆ is the time dependent Laplace-Beltrami operator of the metrics induced
by the solution F of (3.1). This is a linear parabolic PDE and so by standard
theory a solution exists for a short time τ > 0. By the strong maximum principle
(e.g. [20, Cor. 3.2]), for t > 0 we have φ(·, t) > 0 in D.

We now consider

(3.6) Mij = hij − φgij
as long both the MCF and the heat flow exist, say for 0 ≤ t < τ . We know
that at time t = 0 we have Mij ≥ 0 by construction of φ. We now aim to apply
the weak maximum principle with Neumann boundary conditions, [20, Thm. 3.3,
Lemma 3.4].

Using the evolution equations in [21, p. 432], we have that on the flowing manifold(
∂

∂t
−∆

)
Mij = |A|2hij − 2Hhki hkj + 2φHhij =: Nij .(3.7)

We see that for a unit vector v such that

(3.8) Mijv
i = hijv

i − φgijvi = 0,

we obtain

(3.9) Nijv
ivj = |A|2φ− 2Hφ2 + 2Hφ2 = |A|2φ ≥ 0,

that is, the evolution of Mij satisfies a null eigenvector condition.
For a better comparability to the results in [20] and [21] we switch to Stahl’s

notation, so that for p ∈ Sn write µ ∈ TpM for the outward pointing normal
to Sn. Due to [21, Thm. 4.3 (i)], at a point p ∈ ∂M for basis tangent vectors
∂I ∈ TpM ∩ TpS, the basis

(3.10) B = (µ, ∂I)2≤I≤n

induces the coordinate representation MIµ = 0. That is µ is both an eigenvector
of Mij and a principal direction at the boundary. We now demonstrate that the
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conditions of [20, Lemma 3.4] hold. For ∂I , ∂J ∈ TpM ∩ TpSn, [21, Thm. 4.3 (ii),
(iii)] give

(3.11) ∇µMIJ = hµµδIJ − hIJ , ∇µMµµ = 2H − nhµµ.
We suppose first that V ∈ Tp (∂M) is a minimal eigenvector with eigenvalue

λ ∈ (−δ, 0], that is

(3.12) MijV
i = λgijV

i.

We see that V is also a minimal eigenvector of hij , and therefore

(3.13) hijV
iV j ≤ hµµ.

Equation (3.11) now implies ∇µMIJV
IV J ≥ 0.

Now suppose that µ is a minimal eigenvector with eigenvalue λ ∈ (−δ, 0]. Again
minimality of µ implies that for all W ∈ Tp (∂M) there holds

(3.14) hijW
iW j ≥ hµµ.

In particular this implies H ≥ nhµµ, and so ∇µMµµ ≥ H ≥ 0, where we used [21,
Thm. 3.1].

We may now apply [20, Thm. 3.3, Lemma 3.4], to give that Mij ≥ 0. Since φ > 0
for t > 0, hij > 0 for τ > t > 0. This then holds for all time that the flow exists by
applying [21, Prop. 4.5] to the mean curvature flow defined by F (x, t− τ

2 ). �

3.3. Corollary. Suppose M is a weakly convex hypersurface perpendicular to the
sphere from the inside, such that ∂M is not an equator. Then there exists an
ε > 0 such that for 0 ≤ t < ε there are smooth and strictly convex hypersurfaces
perpendicular to the sphere from the inside and satisfyˆ

Mt

H2 →
ˆ
M

H2, |Mt| → |M |, |∂Mt| → |∂M |

as t→ 0.

Proof. By [20, Thm. 2.1] there exists a solution to equation (3.1) for F ∈ C∞(D×
(0, ε)) ∩ C2+α;1+α

2 (D × [0, ε)). The convergence then follows due to the regularity
of the flow at t = 0. �

Now we can prove a crucial estimate for the volume.

3.4. Lemma (Volume estimate). Let M be a weakly convex hypersurface perpen-
dicular to the sphere from the inside such that ∂M is not an equator. Then there
holds

(3.15) |M | ≤ ωn − c∂M ,

where c∂M > 0 is a constant only depending on the outer radius of ∂M ⊂ Sn, in
the sense that it tends to zero only if the outer radius tends to π/2.

Proof. ∂M is a convex hypersurface of the sphere. Since it is not an equator, it is
strictly contained in an open hemisphere int(H(e0)) with e0 ∈ convSn(∂M) by [4].
Pick a geodesic ball BR of radius R < π/2 around e0 such that

(3.16) ∂M ⊂ BR
and denote SR = ∂BR. Use Corollary 3.3 to obtain a strictly convex hypersurface
M̃ ⊂ Rn+1, such that ∂M̃ ⊂ BR. From [10] or also [19] we know that the IMCF
for strictly convex closed hypersurfaces of the unit sphere converges in finite time
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to an equator. By the avoidance principle the IMCF starting at ∂M̃ exists longer
that the one starting from SR. The existence time TR of the latter flow however
can be calculated explicitly in terms of π/2 − R. Since the volume element also
grows exponentially along the IMCF in the sphere and limits to the volume of the
equator, we must have

(3.17) |Sn−1| − |∂M̃ | ≥ cR > 0.

Now start the IMCF perpendicular to the sphere from M̃ . Due to (2.23) the

boundary measures |∂M̃ | grow less than exponentially, but they must still limit to
|Sn−1| in finite time. Hence the existence time of this flow is uniformly bounded
below in terms of R and in turn we must have

(3.18) |M̃ | ≤ ωn − c̃R
with a new positive constant c̃R due to the exponential growth of the area measure
and the convergence result. Taking M̃ arbitrarily close to M yields the result. �

4. Proof of Theorem 1.1

If ∂M is an equator, (1.3) is trivial. Due to Corollary 3.3 we see that (1.3)
now also holds for weakly convex hypersurfaces. So all we have to prove is the
characterisation of the limit. So suppose that (1.3) holds with equality. If ∂M
is an equator, then M must be a convex minimal surface, hence totally umbilic
and hence a hyperplane. So we may suppose that ∂M is not an equator, which in
particular implies that

(4.1) |M | ≤ ωn − c∂M ,

where we used Lemma 3.4.
Due to Corollary 3.3 for every ε > 0 there exists a strictly convex hypersurface

perpendicular to the sphere from the inside M ε such that

(4.2) Q(M ε) ≤ Q(M) + ε,

where Q(M) is the quantity in (2.24) evaluated at the hypersurface M. Starting
the flow (1.2) with initial hypersurface Mε, flow hypersurfaces M ε

t and maximal
existence time

(4.3) T ∗ε = log

(
ωn
|M ε|

)
,

in view of (2.25) the corresponding quantities Qε(t) satisfy

(4.4)
Q̇ε(t) ≤

(
ω

2−n
n

n − |M ε
t |

2−n
n

)
|∂M ε

t |

= ω
2−n
n

n

(
1− e

n−2
n (T∗

ε −t)
)
|∂M ε

t |.

Due to Lemma 3.4 and Corollary 3.3 there exists a positive time T which only
depends on |M | and is independent of ε, such that

(4.5) T ∗ε ≥ 2T > 0.

Hence for all ε and all 0 ≤ t ≤ T there holds

(4.6) Q̇ε(t) ≤ −c
(

1− e
n−2
n T

)
≡ −c,
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where c > 0 only depends on n, |M | and |∂M |. Using the the strict convexity of
Mε and Lemma 2.3, we obtain that

(4.7)

ω
2−n
n

n |Sn−1| < Qε(T ) = Q(Mε) +

ˆ T

0

Q̇ε(s) ds

≤ Q(M) + ε− cT

= ω
2−n
n

n |Sn−1|+ ε− cT,

giving a contradiction for small ε and completing the proof.

Acknowledgements. We would like to thank Florian Besau for a hint about the
orthographic projection of a spherically convex set.
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