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EXPLICIT RIGIDITY OF ALMOST-UMBILICAL
HYPERSURFACES

Julien Roth and Julian Scheuer

Abstract

We give an explicit estimate of the distance of a closed, connected,
oriented and immersed hypersurface of a space form to a geodesic sphere
and show that the spherical closeness can be controlled by a power of
an integral norm of the traceless second fundamental form, whenever
the latter is sufficiently small. Furthermore we use the inverse mean
curvature flow in the hyperbolic space to deduce the best possible order
of decay in the class of C∞-bounded hypersurfaces of the Euclidean
space.

1. Introduction

In this paper we prove two stability theorems of almost-umbilicity type,
which give an answer to a question raised in [13] and thereby partially improve
[9, Thm. 1.3, Thm. 1.4]. Furthermore we use a recent counterexample for the
inverse mean curvature flow in the hyperbolic space, cf. [10], to provide a new
counterexample for spherical closeness estimates.

Let us shortly introduce the relevant notation. For an oriented hypersurface
of a Riemannian manifold, Mn ↪→ Nn+1, g denotes its induced metric, |M | its
surface area, A its second fundamental form, Å the traceless part of A,

(1) Å = A−Hg,
xM the center of mass of M and dH the Hausdorff distance of sets.

For a tensor field (T j1...jli1...ik
) on M, we define its Lp-norm to be

(2) ‖T‖p =

(ˆ
M

|T j1...jli1...ik
T i1...ikj1...jl

|
p
2

) 1
p

,

where indices are raised or lowered with the help of g. Let us formulate our
first main result.

Theorem 1.1. Let M ↪→ Rn+1 be a closed, connected, oriented and im-
mersed C2-hypersurface with |M | = 1. Let p > n ≥ 2. Then there exist con-
stants c, ε0 > 0 depending on n, p and ‖A‖p, as well as a constant α = α(n, p),
such that whenever there holds

(3) ‖Å‖p < ‖H‖pε0,
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2 JULIEN ROTH AND JULIAN SCHEUER

then

(4) dH(M,SR(xM )) ≤ cαR

‖H‖αp
‖Å‖αp ≡ Rεα

and M is εα-quasi-isometric to a sphere SR with a certain radius R.

Remark 1.2. (i) By εα-quasi-isometric we mean that a suitable diffeomor-
phism F from M into SR satisfies

(5) |d(F (x1), F (x2))− d(x1, x2)| 6 Rεα

for any x1, x2 ∈M.
(ii) The radius R can be expressed in terms of ‖H‖p, compare [15, Cor. 4.6].
(iii) The assumption |M | = 1 is only for simplification. By scaling it is easy

to obtain a scale-invariant version for arbitrary volume.

In Section 3 we generalize this theorem to conformally flat ambient spaces.
The history of the problem to control the closeness to a sphere by curvature

quantities is quite long, starting from the well known Nabelpunktsatz. We refer
to the bibliography in [13] for a quite detailed overview. Let us only mention
several results which have appeared recently. For surfaces, n = 2, a quite
straightforward calculation due to Andrews yields an explicit C0-estimate for
convex hypersurfaces, cf. [1, Prop. 4, Lemma 5],

(6)

∣∣∣∣〈x− q, ν〉 − 1

8π

ˆ
M

H

∣∣∣∣ ≤ C|M |‖Å‖∞,
where x is the embedding vector and q is the Steiner point. In Section 4 we
use the inverse mean curvature flow (IMCF) in the hyperbolic space to prove

that the power on the right-hand side of (6) can not be improved to ‖Å‖α∞,
α > 1, which is in turn then not possible either in Theorem 1.1. The latter
proof relies on a recent example due to Hung and Wang, [10, Thm. 1, Prop. 5],
that the convergence after rescaling in the IMCF can not be too fast in the
hyperbolic space.

For strictly convex hypersurfaces of Rn+1 there is the following estimate of
circumradius R minus inradius r due to Leichtweiß, cf. [11, Thm. 1.4, eq. (38)]:

(7) R− r ≤ cn max
x∈M

(Rn(x)−R1(x)),

where R1 ≤ · · · ≤ Rn are the ordered radii of curvature. Theorem 1.1 deals
with estimates in dependence of integral pinching. For the case n = 2, an
estimate similar to (4) with a better constant was obtained by De Lellis and
Müller, cf. [4]

In [13, Cor. 1.2] Perez derived a qualitative solution and obtained under
certain assumptions, for given ε > 0, a δ > 0, such that

(8) ‖Å‖p < δ

implies

(9) dH(M,Sr0(x)) < ε.

In [13, p. xvi] the author posed the derivation of an explicit δ as a question of
interest.
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Note that in (4) we did not achieve a constant independent of the size of
the curvature itself. The constant is only uniform in the class of hypersurfaces
with a fixed bound on the curvature of the hypersurface.

The following theorem, due to Grosjean and the first author, [9, Thm. 1.4],
already provides this conclusion, however only with the additional assumption
of smallness of the oscillation of the mean curvature itself:

Theorem 1.3. [9, Thm. 1.4]
Let (Mn, g) be a compact, connected and oriented n-dimensional Riemannian
manifold without boundary isometrically immersed by φ in Rn+1. Let ε < 1,
r, q > n, s ≥ r and c > 0. Let us assume that |M | 1n ‖H‖q ≤ c. Then there exist
positive constants C = C(n, q, c), α = α(q, n), such that if εα ≤ 1

C ,

(10) ‖Å‖r ≤ ‖H‖rε

and

(11) ‖H2 − ‖H‖2s‖ r2 ≤ ‖H‖
2
rε,

then M is εα-Hausdorff close to S 1
‖H‖2

(xM ). Moreover if |M | 1n ‖A‖q ≤ c, then

M is diffeomorphic and εα-quasi-isometric to S 1
‖H‖2

(xM ).

Note that in this theorem, Lp-norms are defined slightly different, namely
such that the Lp-norms of scale-invariant functions are scale-invariant. Our
notation corresponds to the one in [13]. This ambiguity does not cause any
problems, since we prove Theorem 1.1 for |M | = 1. Also note the typo in [9,
Thm. 1.4], where the α is missing in the conclusion.

In [14, Thm. 3.1], which also covers other ambient spaces, (11) was replaced
by an assumption on the gradient of H. However, with the help of the following
theorem due to Perez it is possible to get rid of (11) completely.

Theorem 1.4. [13, Thm. 1.1]
Let p > n ≥ 2 and c0 > 0 be given. Then there is a constant C > 0, depending
only on n, p and c0, such that:
If Σ ⊂ Rn+1 is a smooth, closed and connected n-dimensional hypersurface
with

(12) |Σ| = 1

and

(13) ‖A‖p ≤ c0,

then

(14) min
λ∈R
‖A− λg‖p ≤ C‖Å‖p.

The proof of Theorem 1.1 is a combination of Theorem 1.3 and Theorem 1.4.

2. Proofs of Theorem 1.1

Proof no. 1: Without loss of generality we may suppose that M is of
class C∞, since both sides of the inequality are continuous with respect to the
C2-norm and hence the general result can then be achieved by approximation.
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Using Theorem 1.4, we obtain a λ0 ∈ R, such that

(15) ‖A− λ0g‖p ≤ C ′‖Å‖p,

where C ′ = C ′(n, p, ‖A‖p). Let us calculate

(16)

‖H2 − ‖H‖2p‖ p2 ≤ ‖H
2 − λ2

0‖ p2 + ‖λ2
0 − ‖H‖2p‖ p2

=

(ˆ
M

|H − λ0|
p
2 |H + λ0|

p
2

) 2
p

+ |λ2
0 − ‖H‖2p|

≤ 2(‖H‖p + |λ0|)‖H − λ0‖p
≤ cn(‖H‖p + |λ0|)‖A− λ0g‖p
≤ c′‖H‖p‖Å‖p,

where c′ = c′(n, p, ‖A‖p). The last inequality is due to the fact that

(17) |λ0 − ‖H‖p| ≤ c′′‖Å‖p.

Defining

(18) c = max(1, c′),

(19) ε =
c‖Å‖p
‖H‖p

,

and

(20)
ε0 :=

min
(

1, C−
1
α

)
2c

then by (3),

(21) ε ≤ cε0 =
1

2
min

(
1, C−

1
α

)
,

where α and C are the constants from Theorem 1.3. Furthermore we have

(22) ‖Å‖p ≤ ‖H‖pε

and

(23) ‖H2 − ‖H‖2p‖ p2 ≤ ‖H‖
2
pε.

Thus we may apply Theorem 1.3 to conclude that M is εα-close to a sphere.
The proof of the theorem we applied here, Theorem 1.3, relies on a pinching

result for the first eigenvalue which was proven in [9] for a much more general
class of ambient spaces. Thus it might not be easily accessible from our point
of view. For convenience we want to repeat their main steps of the proof of
this theorem in our Euclidean setting, see [9, p. 487] for the original one. For
this purpose we use a recent pinching result for the first eigenvalue of the
Laplace operator by both of the authors, cf. [15, Thm. 1.1]. This, and also
the original proof in [9], uses the fact that pinching of the Ricci tensor can
be controlled by pinching of the traceless second fundamental form. Then we
apply an eigenvalue pinching result due to Aubry, which was proved in [2,
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Prop. 1.5] and can also be found in [3, Thm. 1.6]. It says that for p > n/2, a
complete Riemannian manifold (Mn, g) with

(24)
1

|M |

ˆ
M

(Ric− (n− 1))p− <
1

C(p, n)

is compact and satisfies

(25) λ1 > n

(
1− C(n, p)

(
1

|M |

ˆ
M

(Ric− (n− 1))p−

) 1
p

)
,

where Ric denotes the smallest eigenvalue of the Ricci tensor and

(26) x− = max(0,−x).

Proof no. 2: Due to the Gauss equation and a simple calculation we obtain
a formula for the Ricci tensor in terms of the second fundamental form, namely
we obtain

(27) Rij − (n− 1)H2gij = (n− 2)H(hij −Hgij)− (hik −Hgik)(hkj −Hδkj ).

Thus

(28)
‖Ric− (n− 1)‖H‖2pg‖ p2 ≤ c‖H‖p‖Å‖p + c‖Å‖2p

2
+ ‖H2 − ‖H‖2p‖ p2

≤ c‖H‖p‖Å‖p,
where we used (16) and c = c(n, p, ‖A‖p). Using a scaled version of Aubry’s
eigenvalue estimate we obtain the existence of a constant ε0 = ε0(n, p, ‖A‖p),
such that

(29) ‖Å‖p ≤ ε0‖H‖p
implies

(30)

λ1 ≥ n
(
‖H‖2p − c‖Ric− (n− 1)‖H‖2pg‖ p2

)
≥ n‖H‖2p − c‖H‖2p

‖Å‖p
‖H‖p

≥

(
1− c ‖Å‖p

‖H‖p

)
n‖H‖2p.

Now we can apply the abstract eigenvalue pinching result [15, Thm. 1.1],
applied to the tensors S = T = id .

3. Generalization to conformally flat manifolds

Using that the property of a hypersurface to be totally umbilic is invariant
with respect to a conformal change of the ambient metric, we easily obtain
the following generalization to conformally flat manifolds, which in particular
include the half-sphere and the hyperbolic space and improves the εα-proximity
statement in [9, Thm. 1.3] in the sense that it removes an assumption similar
to (11).

Theorem 3.1. Let Ω ⊂ Rn+1 be open and let Nn+1 = (Ω, ḡ) be a confor-
mally flat Riemannian manifold, i.e.

(31) ḡ = e2ψ g̃,
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where g̃ is the Euclidean metric and ψ ∈ C∞(Ω). Let Mn ↪→ Nn+1 be a closed,
connected, oriented and immersed C2-hypersurface. Let p > n ≥ 2. Then there
exist constants c and ε0, depending on n, p, |M |, ‖Ã‖p and ‖ψ‖∞,M , as well
as a constant α = α(n, p), such that whenever there holds

(32) ‖Å‖p ≤ ‖H̃‖pε0,

there also holds

(33) dH(M,SR) ≤ cR

‖H̃‖αp
‖Å‖αp ,

where SR is the image of a Euclidean sphere considered as a hypersurface
in Nn+1, ‖Ã‖p and ‖H̃‖p are the corresponding Euclidean quantities and the
Hausdorff distance is measured with respect to the metric ḡ.

Remark 3.2. Since in conformally flat spaces the scaling behaviour of the
second fundamental form with respect to homotheties heavily depends on the
nature of the ambient space, in this case there seems to be no way to give a
general scale invariant estimate. This is the reason why this closeness estimate
is only uniformly valid in the class of C2-bounded hypersurfaces.

Furthermore note that for example in all simply connected space forms the
hypersurface SR is actually a geodesic sphere. This follows from the fact that
in those spaces totally umbilical hypersurfaces are spheres and total umbilicity
invariant with respect to conformal transformations of the ambient space, as
will be apparent from the following proof of Theorem 3.1.

Thus Theorem 3.1 gives an explicit spherical closeness estimate of almost-
umbilical hypersurfaces in the hyperbolic space as well as in the half-sphere of
constant positive sectional curvature.

Proof. Under a conformal relation of the metrics as in (31) the correspond-
ing induced geometric quantities of the the embedded hypersurface M are
related as follows.

(34) gij = e2ψ g̃ij

and

(35) hije
−ψ = h̃ij + ψβ ν̃

β g̃ij ,

where ν̃ is the normal to M. Those formulae can be found in [7, Prop. 1.1.11].
Hence

(36) hij −Hgij = eψ(h̃ij − H̃g̃ij)

and hence

(37) c‖ ˚̃A‖p ≤ ‖Å‖p ≤ C‖ ˚̃A‖p,

where the constants depend on ‖ψ‖∞,M . Since the Euclidean and the conformal
Hausdorff distances are equivalent whenever |ψ| is bounded, we obtain the
result after applying Theorem 1.1. q.e.d.

Due to a well known interpolation theorem for convex hypersurfaces of Rie-
mannian manifolds we obtain the following gradient stability estimate in space
forms.
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Corollary 3.3. Let Nn+1 be the Euclidean space, the hyperbolic space or
the sphere. Let M as in Theorem 3.1 be additionally strictly convex, where we
also assume that ḡ is given in geodesic polar coordinates

(38) ḡ = dr2 + ϑ2(r)σijdx
idxj ≡ dr2 + ḡijdx

idxj

with suitable ϑ depending on the space form. Let p > n. Then there exist
constants c and ε0 depending on n, p, |M |, ‖Ã‖p and ‖ψ‖∞, as well as a
constant α = α(p, n), such that

(39) ‖Å‖p ≤ ‖H̃‖pε0
implies

(40) v =
√

1 + ḡijuiuj ≤ e
cR
‖H̃‖αp

‖Å‖αp
,

where

(41) M = {(x0, xi) : x0 = u(xi), (xi) ∈ S0}

is a suitable graph representation over a geodesic sphere S0 ↪→ Nn+1 and (ḡij)
is the inverse of (ḡij).

Proof. It is well known that a strictly convex hypersurface of Sn+1 is con-
tained in an open hemisphere, cf. [5] for the smooth case and also [12, Cor. 1.2]
for the C2-case. Thus M is covered by a conformally flat coordinate system as
in Theorem 3.1, which is thus applicable. Let S0 be the corresponding sphere
with center xM , then we can write M as a graph over S0 due to the strict
convexity. Thus we may apply the well-known interpolation estimate

(42) v ≤ eκ̄ oscu,

cf. [7, Thm. 2.7.10], where

(43) oscu = maxu−minu

and where κ̄ is a lower bound for the principal curvatures of the coordinate
slices {r = const}. The latter, however, only depends on ‖ψ‖∞ as well. q.e.d.

4. An optimality result

We prove the optimality of the estimate (6) in the sense that there is no
hope to derive a uniform estimate of the form

(44) dH(M,SR(x0)) ≤ c‖Å‖α∞, α > 1,

in the class of uniformly C∞-bounded hypersurfaces M. To be precise, for
α > 1 we get the following negation of (44) in the class of uniformly convex
hypersurfaces and for all n ≥ 2.

Theorem 4.1. Let n ≥ 2 and C = 2 max(|S2(0)|, ‖ĀS2
‖∞). For all α > 1

and for all k ∈ N there exists a uniformly convex smooth hypersurface Mk ↪→
Rn+1 with

(45) max(‖Ak‖∞, |Mk|) ≤ C,

such that

(46) ‖Åk‖∞ <
1

k
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and for all spheres S ⊂ Rn+1 there holds

(47) dH(Mk, S) > k‖Åk‖α∞.

Here ĀS2
denotes the second fundamental form of the sphere with radius 2.

In a recent paper, Drach gave a counterexample to an improved spherical
closeness estimate in the class of C1,1 hypersurfaces, namely a special spindle
shaped hypersurface, cf. the construction at the beginning of [6, Sec. 2] and
also compare cf. [6, Thm. 1]. However, since we consider (4) in the space of
at least C2-hypersurfaces, we need to find a different contradiction to (44).
This contradiction is deduced along the inverse mean curvature flow in the
hyperbolic space.

Before we prove Theorem 4.1, let us for convenience recall the relevant facts
about the inverse mean curvature flow in the hyperbolic space Hn+1. There
one considers a time parameter family of embeddings of closed, starshaped and
mean-convex hypersurfaces

(48) x : [0, T ∗)×M ↪→ Hn+1,

which solves

(49) ẋ =
1

H
ν,

where H = gijhij and ν is the outward unit normal to Mt = x(t,M). Note
that we have switched the notation of H in this context due to a better compa-
rability with the literature. It is known, cf. [8, Lemma 3.2], that for an initial
starshaped and mean-convex hypersurface M0 the flow exists for all times and
all the flow hypersurfaces can be written as a graph over a fixed geodesic sphere
S0,

(50) Mt = {(x0, xi) : x0(t, ξ) = u(t, xi(t, ξ))},

where u describes the radial distance to the center of S0. In [8, Thm. 1.2]
Gerhardt claimed to have shown convergence of the rescaled hypersurfaces

(51) M̂t = graph û ≡ graph

(
u− t

n

)
to a geodesic sphere. However, as was pointed out in [10, Thm. 1] with the help
of a concrete counterexample, the limit function of û is not constant in general.
In particular the authors proved that there is a starshaped and mean-convex
initial hypersurface M0, such that the limit hypersurface is not of constant
curvature, in particular not a geodesic sphere. However, there is a smooth
limit function to which the M̂t converge smoothly, compare the proof of [8,
Thm. 6.11] and also compare [16, Thm. 1.2].

In order to relate the convergence results of the IMCF in the hyperbolic
space with the rigidity estimate (4) in the Euclidean space, we have to look
at the hyperbolic flow in the conformally flat model. In [8] the Poincaré ball
model in the ball of radius 2 was considered. Let r denote the geodesic distance
to the center of S0 in Hn+1, then the by the coordinate change

(52) ρ = 2− 4

er + 1
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the representation of the hyperbolic metric transforms like

(53) ḡ = dr2 + sinh2(r)σijdx
idxj =

1(
1− 1

4ρ
2
)2 (dρ2 + ρ2σijdx

idxj) ≡ e2ψ g̃,

where σij is the standard round metric of the sphere S0. Then the convergence

(54) u− t

n
→ û∞

in the original coordinates is equivalent to the convergence of

(55) (2− w)e
t
n → ŵ∞,

where

(56) w = 2− 4

eu + 1

and where ŵ∞ is a strictly positive function due to [8, Lemma 3.1].
The proof of Theorem 4.1 is very similar to the proof of a corresponding

positive result in this direction by the second author. In [17] he proved that
due to a strong decay of the traceless second fundamental form along the IMCF
in Rn+1 we indeed obtain spherical roundness in this case without rescaling.
The idea how to obtain a negative result in the hyperbolic space is that if we
could improve the spherical closeness, then we could mimic the proof in [17]
to deduce a roundness result in Hn+1, which is not possible in view of Hung’s
and Wang’s paper.

The idea of the proof of Theorem 4.1 goes as follows: The estimate in (55)
provides closeness of the flow hypersurfaces to the sphere of radius 2 in the ball
model. The order of the closeness is e−

t
n . The traceless second fundamental

form decays correspondingly, as we will point in more detail later in the proof.
But if we had this additional exponent α in the spherical closeness estimate,
we could even deduce better spherical closeness (to a sphere different from S2)
than we have in (55) and then we would be able to translate this to a spherical
closeness in the hyperbolic space. This would in turn yield a contradiction to
Hung’s and Wang’s result. Now let us prove Theorem 4.1 in detail. First we
need some helpful notation and an auxiliary result.

Definition 4.2. (i) Let N be either the Euclidean space, the hyperbolic
space or an open hemisphere. For a starshaped hypersurface M ↪→ N, let M∗

be the set of points in N, with respect to which M is starshaped.
(ii) For a starshaped hypersurface M ↪→ N let p ∈M∗. Then for the graph

representation

(57) M = {(r, xi) : r = u(xi), (xi) ∈ Sp},

by

(58) oscp u = max
x∈Sp

u(x)− min
x∈Sp

u(x)

we denote the oscillation of the geodesic distance of the point (u, xi) to the
point p. Here Sp denotes a geodesic sphere around p.

By a simple argument we obtain the following alternative for a general
expanding sequence of hypersurfaces with controlled oscillation.
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Lemma 4.3. Let N be as in Definition 4.2 and Mt ↪→ N, 0 ≤ t ∈ R, be a
family of starshaped hypersurfaces such that

(59) M∗t ⊂M∗s ∀s ≥ t

and such that for each τ0 ≥ 0 and p ∈M∗τ0 there exists a constant c, such that
for all t0 ≥ τ0,

(60) oscp ut ≤ c oscp ut0 ∀t ≥ t0.

Then for fixed p, oscp ut does not have zero as a limit value for t→∞ unless

(61) oscp ut → 0, t→∞.

Proof. For given ε > 0, if zero is a limit point, we may choose t0, such that

(62) oscp ut0 ≤
ε

c
,

then

(63) oscp ut ≤ c oscp ut0 ≤ ε ∀t ≥ t0.

q.e.d.

Now we can prove Theorem 4.1.

Proof. Assume the contrary, i.e. that there exists α > 1 and k ∈ N, such
that for all uniformly convex hypersurfaces M̃ ↪→ Rn+1 with

(64) max(|M̃ |, ‖Ã‖∞) ≤ C

we have that

(65) ‖ ˚̃A‖∞ <
1

k

implies

(66) d̃H(M̃, S̃) ≤ k‖ ˚̃A‖α∞

for some suitable sphere S̃ ⊂ Rn+1, where the Hausdorff distance is measured
with respect to the Euclidean metric. According to [10, Thm. 1] for n = 2 and
[10, Sec. 4] for n ≥ 3 there exists a starshaped and mean-convex hypersurface
M0 ↪→ Hn+1, such that for no graph representation

(67) Mt = graph u

the rescaled IMCF flow hypersurfaces

(68) M̂t = graph

(
u− t

n

)
≡ graph û

converge to a geodesic sphere. However, for each graph representation, we
obtain smooth convergence of

(69) û→ û∞.

In [16, Thm. 1.2 (2)] it is deduced that

(70) ‖Å‖∞ ≤ ce−
2t
n ,
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where c = c(n,M0). Now fix a graph representation around p ∈M∗0 . From (36)
we obtain that the corresponding Euclidean traceless part decays like

(71) ‖ ˚̃A‖∞ = ‖eψÅ‖∞ ≤ eψmaxe
− 2t
n ,

where

(72) eψmax =
1(

1− 1
4w

2
max

)
with w as in (56) and

(73) wmax = max
x∈Sp

w(x).

Due to (55) we obtain

(74) ‖ ˚̃A‖∞ ≤ ce−
t
n

and due to the C∞-convergence of w → 2, we are in the situation to apply our
assumption and obtain (66), whenever t is large enough. We obtain a sequence

of spheres S̃R̃t ⊂ Rn+1, such that

(75) d̃H(M̃t, S̃R̃t) ≤ ce
−αn t.

Due to (55) we even have

(76) S̃R̃t ⊂ B2(0),

for large times t.
Now let us switch back to the hyperbolic space. The spheres S̃R̃t are geo-

desic spheres in Hn+1 as well since total umbilicity is preserved under a con-
formal transformation and in the Euclidean space as well as in the hyperbolic
space for closed and embedded hypersurfaces total umbilicity is tantamount
to being a geodesic sphere. We denote these spheres in Hn+1 by SRt . For the
corresponding hyperbolic Hausdorff distance we deduce

(77) dH(Mt, SRt) ≤ eψmaxd̃H(M̃t, S̃R̃t) ≤ ce
1−α
n t,

which converges to 0 as t→∞.
Since the inradius of the Mt converges to infinity and for large t the Mt are

strictly convex, for each δ > 0 we find t0 > 0, such that

(78) B̄δ(p) ⊂M∗t0 ⊂M
∗
t ∀t ≥ t0,

where the latter inclusion is due to the fact that starshapedness around a given
point is preserved. According to [16, Prop. 3.2, Lemma 3.5], there holds for
the oscillation of u that for all τ0, all q ∈M∗τ0 and all t0 ≥ τ0 we have

(79) oscq u(t, ·) ≤ c oscq u(t0, ·) ∀t ≥ t0,

where c depends on n and on a lower bound on the minimal distance of q to
Mτ0 . So in particular, if we choose

(80) δ = c oscp u(0, ·),

we find that the oscillation of each Mt is minimized within the set B̄δ(p) :

(81) argmin
q∈M∗t

oscq u(t, ·) ∈ B̄δ(p) ∀t ≥ t0,
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because outside B̄δ(p) the oscillation is already larger than it is with respect
to p.

Due to (77) we obtain

(82) oscqt u(t, ·) = min
q∈B̄δ(p)

oscq u(t, ·) ≤ ce
1−α
n t ∀t ≥ t0.

Let tk be a sequence of times with tk →∞. Due to the compactness of B̄δ(p)
a subsequence of center points converges,

(83) qtk ≡ qk → q ∈ B̄δ(p),
where we did not rename the index of the sequence. Since

(84) | oscqk u(tk, ·)− oscq u(tk, ·)| ≤ 2 dist(qk, q) ∀k ∈ N,

we obtain in view of (82),

(85) oscq u(tk, ·)→ 0, k →∞.
In view of (79) and the preservation of starshapedness along IMCF the as-
sumptions of Lemma 4.3 are fulfilled. Applying Lemma 4.3, we obtain that

(86) oscq u(t, ·)→ 0,

in contradiction to the choice of the initial hypersurface. q.e.d.

Remark 4.4. Note that in turn of the proof we even have shown that
for given α > 1 and k ∈ N as in Theorem 4.1, such a counterexample Mk

satisfying (46) and (47) must actually occur along the inverse mean curvature
flow in the conformally flat version of the IMCF in Hn+1. We only used our
contrary assumption within this class of flow hypersurfaces.

5. Concluding remark

We would like to point out that the techniques in Theorem 4 might be useful
in other situations. Whenever one would like to estimate the closeness to a
sphere in comparison with another geometric quantity, e.g. in comparison with
eigenvalue pinching of the Laplacian or also in almost-Schur/almost-CMC type
estimates, one could determine how this particular geometric quantity behaves
along the IMCF and then determine the best possible roundness estimate using
the IMCF in Hn+1. It should often be quite straightforward to derive the best
possible decay estimate.
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