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INVERSE CURVATURE FLOWS IN RIEMANNIAN WARPED
PRODUCTS

JULIAN SCHEUER

ABSTRACT. The long-time existence and umbilicity estimates for compact,
graphical solutions to expanding curvature flows are deduced in Riemann-
ian warped products of a real interval with a compact fibre. Notably we do
not assume the ambient manifold to be rotationally symmetric, nor the radial
curvature to converge, nor a lower bound on the ambient sectional curvature.
The inverse speeds are given by powers 0 < p < 1 of a curvature function
satisfying few common properties.

1. INTRODUCTION

This paper deals with expanding curvature flows of the form
. 1
(11) Tr = ﬁl/, 0<p§ 1,
where
z:[0,T*) x M™ — N"" n>2

is a family of embeddings of a smooth, orientable, compact manifold M™ and N =
N™t1ig a product

N = (R[), OO) X 80
with metric

g =dr* +9*(r)o.
Here ¥ € C*°((Ry, 00)) satisfies 9" > 0, 9" > 0 and (Sp, o) is a compact Riemannian
manifold. In (1.1), F' is a function evaluated at the Weingarten operator W of the
flow hypersurfaces M; = z(t, M) at the respective point = and v is the outward
pointing normal, i.e.

g(v,0,) > 0.

The detailed assumptions on the curvature function F' and on N are the following.

1.1. Assumption. Let I' C R™ be an open, symmetric and convex cone containing
the positive cone

'y ={(k;)) €ER": k; >0 V1<i<n}

and suppose f € C*(I') is a positive, symmetric, strictly monotone, 1-homogeneous
and concave function with

fa,...,1) =mn, f|3F=O

and associated curvature function F = F(W), cf. section 2.2.
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2 JULIAN SCHEUER

Particular examples of curvature functions satisfying these assumptions are roots
or quotients of elementary symmetric polynomials,
Hyiq

F=nHf, F=n y
k

and many more, cf. [4].
In order to obtain good asymptotics we will make the following assumption on the
warping function. This assumption will not be needed for the long-time existence.

1.2. Assumption. Assume the warping function ¢ € C°°((Rg, 00)) to satisfy

,'9//,19 19///19
limsup — < oo and limsup —— < oo.
BT R T
9 (r)>0

In the following theorem @ denotes the smallest eigenvalue of the Ricci tensor
of ¢ and Hj denotes the curvature function determined by the k-th normalized
elementary symmetric polynomial of the principal curvatures, compare section 2.2
for further information. In this paper we aim to prove the following theorem.

1.3. Theorem. Let (Sy,0) be a smooth, compact and orientable Riemannian man-
ifold of dimension n > 2, Ry > 0, N = (Rg,0) X Sy and define a warped product
metric on N,
g = dr* +9*(r)o,
with ¥ € C*®((Rp,0)), ¥ >0 and ¢ > 0. Let 0 < p <1 and F satisfy Assump-
tion 1.1. Let
xg: M — N

be the embedding of a hypersurface My, which is graphical over Sy, i.e. there exists
u € C(Sy, (Ry, 00)) such that

Mo = {(u(y),y): y € So},

and such that all its n-tuples of principal curvatures belong to T'.

(i) Assume either of the following properties to hold:
(a) o has non-negative sectional curvature.
H
(b) anfl—zl, 0<k<n-—1.
Then there exists a unique immortal solution

x:0,00) x M = N

of
o1
(1.2) TR
x(0, ) = o,

which is also graphical over Sy, i.e. (v,0,) > 0.
(i) Assume o has non-negative sectional curvature and that all of the following
three items hold:
(A) Assumption 1.2 holds.
(B) In case that sup,- V' (r) < co and p =1, we assume

—~ o
Rec>0and F=n I’;rl 0<k<n-1.

)

k

(C) In case that sup, 9 (r) = 0o and p =1, we assume

o 979
hTrgg.}fW > 0.
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Then the flow hypersurfaces become umbilical with the rate

9 1-p(p+1)
<ct

-Vl <
= 19 b)

J 9 I

where the t-factor may be dropped in case p < 1 or bounded 9" and may even
be replaced by e~ for some positive o if 9 is bounded and p = 1.

Let us make some remarks on the technical assumptions made in Theorem 1.3.

1.4. Remark. (i) The assumptions in statement (i) of Theorem 1.3 are optimal

(iii)

(vi)

in the sense, that for example in a spherical ambient space with ¥/ < 0 the
inverse mean curvature flow only exists for a finite time, cf. [26, 51] and for
p > 1 the maximal existence is finite if N = R"T! cf. [25].

The assumption on the sectional curvature of ¢ can be relaxed. The crucial
point, where we use this assumption is in the first gradient estimates, espe-
cially in estimate (3.4), where we throw away the term involving ﬁr;, if F
is general. However, under a further suitable technical assumption we could
also absorb it into the first line of this equation. For the special case of the in-
verse mean curvature flow in the Reissner-Nordstrom manifolds this has been
accomplished in the recent preprint [9]. However, in order to avoid too many
technical assumptions, we will not improve the main result in this direction
here, except that we prove the long-time existence in general, provided that F’
is a quotient of the Hy. For the IMCF this was also accomplished in [43, 71].
The rates of convergence in this theorem can be improved, if the ambient
sectional curvatures approach each other at infinity. Such results have been
accomplished for example in [10, 49, 60] in case p = 1 and in [58] in case p < 1
in the hyperbolic space. Since the main aim of this work is to deal with spaces
in which the limits of the quantities in Assumption 1.2 do not exist (if o is
the round metric this implies that N is not asymptotically a spaceform), we
will not pursue these optimal estimates here and stick to the best we could
accomplish in general ambient spaces. To the best of my knowledge, the
only result in such general spaces is the analogous result for the inverse mean
curvature flow proven in [60].

The question, whether (1.3) implies that the flow hypersurfaces do become
almost umbilical, depends on the ambient space N and on p. However, if
p = 1, the analysis in [60, Prop. 3.1] implies that ¢ grows exponentially.
Hence in this case we obtain exponential decay of W — % id.

In case p = 1, the gradient decay estimates obtained in Lemma 4.8 are op-
timal even if the ambient space is asymptotically a spaceform. Compare the
explanation in [60, Rem. 1.5].

In case p = 1 the estimate (1.3) turned out to be strong enough to obtain
geometric inequalities, for example in [5, 21, 50, 67]. We are optimistic that
Theorem 1.3 will be helpful with such applications as well.

The motivation to analyse the behaviour of inverse curvature flows has mostly
been driven by their power to deduce geometric inequalities for hypersurfaces. The
most prominent example is the proof of the Riemannian Penrose inequality due
to Huisken/Ilmanen [33], building on the observation made by Geroch [27] and
Jang/Wald [38] that the Hawking mass of a connected surface is non-decreasing
under the inverse mean curvature flow (IMCF) with F' = H and p = 1, if the
ambient scalar curvature is non-negative. Since for general initial data the IMCF
may develop singularities, Huisken and Ilmanen defined a notion of a weak solution
for this flow, maintaining the Geroch monotonicity. This enabled them to prove the
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Riemannian Penrose inequality. For a short outline of their procedure also compare
[32].

Also the classical solution to IMCF has lead to very interesting applications. A
crucial feature of this flow in R™*! is that one does not need to require convexity
of the initial hypersurface to avoid finite time singularities. Namely, Gerhardt [22]
and Urbas [65] proved the long-time existence even for more general flows in R"+1,
with F satisfying Assumption 1.1, p = 1 and a starshaped initial hypersurface
My with Fjp, > 0. Furthermore, after exponential rescaling, the flow converges
to a sphere smoothly. This result, with F = nHy,1/Hj, was later exploited by
Guan/Li [29] to generalise the Alexandrov-Fenchel quermassintegral inequalities
from the convex setting to the starshaped and Hyyi-convex setting. Since then a
cascade of similar results followed by the same method (monotone quantity plus
some convergence result) in various ambient spaces. The tough parts are to find
the monotone quantity and to prove a sufficient convergence result. Examples of
other results in this direction are a generalised Minkowski-type inequality in the
anti-de Sitter-Schwarzschild manifold due to Brendle/Hung/Wang [5], Alexandrov-
Fenchel-type inequalities in the hyperbolic space [16, 20, 31, 44, 69] and in the
sphere [28, 51, 69]. Further similar applications can be found in [21, 41, 50, 67].

In many of these papers, there was a need to investigate the asymptotical be-
haviour of the corresponding inverse curvature flow separately, since a unified treat-
ment had not been present. Hence, a branch of research solely dealing with inverse
curvature flows has developed within the community, where the main aims are to
generalise the convergence results in various directions (concerning flow speed and
ambient space). A step towards generalising the ambient space was made by the
author with the paper [60], where the IMCF was considered in rotationally sym-
metric warped products under assumptions similar to Assumption 1.2. Before (and
after) that, some more special ambient spaces were treated, which, to the best of
my knowledge, all assumed convergence of the quantities in Assumption 1.2. In-
stead of giving a description of the available results verbally, the following table
is supposed to give an overview as broad as I could accomplish over the previous
results on smooth, inverse curvature flows of closed hypersurfaces in Riemannian
warped products with 9" > 0. The topics they cover are for example long-time
existence, asymptotic behaviour, solitons and others. We point out that, in order
to keep things manageable, we leave aside treatments of contracting flows, weak
solutions, flows in Lorentzian manifolds, flows of entire graphs, flows with bound-
ary conditions, anisotropic flows and flows with constraints (e.g. volume preserving
flows).

 Hpps F more general p#1or
N/F F=nT and p=1 non-hom. speed
(2,3, 7,12, 13]
R+ 8, 11, 18] [15, 22, 45) [14, 25, 36, 37]
[34] [64, 65, 66] [40, 42, 46, 47]
CSC [59, 63, 68]
H»+! [17, 35] [24, 48, 70] [42, 57, 58, 68]
Asympt. R 1 [17, 43, 50]
CSC Hn+ [5, 49, 53] [10]
979
More Conggr o [9, 43, 52, 71]
general 8
1.2 [60]
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Note that a reference only appears in the most general slot it can be placed. Also
note that there are few works on the inverse mean curvature flow in ambient spaces
which are not warped products, [1, 39, 55, 56]. For completeness, we also mention
that there are some results for inverse flows in the sphere, cf. [6, 7, 26, 48, 51, 68].
This paper aims to fill some gaps in this table, especially in the two bottom rows,
and is organised as follows. Section 2 collects some notation, conventions, basic facts
about curvature functions and the relevant evolution equations. In section 3 we
treat the long-time existence and in section 4 we analyse the asymptotic behaviour
and finish the proof of Theorem 1.3.

2. PRELIMINARIES

2.1. Notation and conventions. In this paper we deal with embedded hypersur-
faces
z: M — N

of a smooth, closed and orientable manifold M™ into an ambient Riemannian man-
ifold (N™*1,g). All geometric quantities of N will be furnished with an overbar,
e.g. § = (Jap) for the metric, V for its Levi-Civita connection etc. In coordinate
expressions, greek indices run from 0 to n. For the quantities induced by the em-
bedding x, we use latin indices running from 1 to n, e.g. for the induced metric
g = (9ij) with Levi-Civita connection V. For a (k,l) tensor field 7" on M, its
covariant derivative VT is a (k,l + 1) tensor field given by

(VT)(YY,... .Y X1,..., X, X)

= (VxT)(Y,...,.YE X1,..., X))

= X(TYY ..., YE X, .., X)) -T(VxYL Y2 YR X, X)) — .
—TY . YR X, X1V X)),

the coordinate expression of which is denoted by

VT = (Thit,) -

1 JUJ141

The index appearing after the semicolon indicates the derivative index.

Our convention for the (1,3)-Riemannian curvature tensor Rm of a connection
V is

Rm(X,Y)Z =VxVyZ - VyVxZ - Vixy|Z,
where X, Y, Z are vector fields and where [X,Y] is the Lie-bracket
(X, Y]p = X(Y) =Y (Xp) VeeCF(M).

The purely covariant Riemannian curvature tensor is defined by lowering to the
fourth slot:

Rm(X,Y,Z, W) =gRm(X,Y)Z,W).
Finally the Ricci curvature is
Re(X,Y) = tr (Rm(, X)Y).
For metrics (g;;) we always denote its dual by (g%), i.e.
5;- = gikgkj-

The induced geometry of M is governed by the following relations. The second
fundamental form h = (h;;) is defined by the Gaussian formula

(2.1) VxY =VxY — h(X,Y)r,
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where v is a normal field. The Weingarten endomorphism W = (h?) is defined by
h; = g hy; and we have the Weingarten equation

(2.2) Vxv =W(X).
We also have the Codazzi equation
Vzh(X,Y) - Vyh(X,Z) = —Rm(v, X,Y, 7).
Let us record this equation is coordinates:
(2.3) hijike — hiksyj = _%(va;i»x;jvx;k)-
The Gauss equation states
(24) Rm(W,X,Y,Z)=Rm(W,X,Y,Z) +h(W,Z)h(X,Y) — h(W,Y)h(X, Z)
or in coordinates
Rijii = Rm(2i, x5, T, x0) + hithje — haghji.

Warped products. Throughout this paper we assume that the ambient manifold
is a warped product of the form

(N7g) = (I X 507g)7
where I = (Ry, 00), (Sp,0) is an n-dimensional compact Riemannian manifold and
(2.5) g=dr* +9*(r)o

with ¥ € C*°((Ryp, 00)). We will need to know how the curvature tensor of g arises
from the curvature tensors of dr? and o. The relevant formulae can be found in [54,
Ch. 7, Prop. 42]. We state them here for further use, but adapted to our curvature
convention, which differs from the one in op. cit. We denote by .Z(R) and Z(S)
the space of all vector field on R resp. Sy lifted to N

2.1. Lemma. ([54, Ch. 7, Prop. 42]) Let N be given as above. If X,Y,Z € Z(R)
and U, VW € .,?(So) then the Riemannian curvature tensor of N is given by

(i) Rm(X,Y)Z
(i) (V. X)Y = MV ’g(X, V)V,
(iii) Rm(X,Y)V = Rm(V W)X =
(iv) Rm(X, V)W = —%’g(v WX
(v) Rm(V, W)U = Rm(V, W)U — L2 (5(W,U)V — g(V,U)W),

where Rm s the lift of the Riemann tensor of the fibre (So,9%(r)o) under the
projection m: N — Sp.

It will turn out to be convenient to have a closed coordinate expression for Rm,
which follows easily from checking all of the five cases.

2.2. Lemma. In coordinates the Riemannian curvature tensor of the warped product
(N,g) = (I x So,dr* +9*(r)o)

is given by
_ 97 92\
(2.6) RSy, = ((19 —~ 19) Sergrrs + Rargry ,5/> Py PPy P~ jséﬂw
where )
S(Exﬁ'y = 96752 - gavég
and

. 0
—1d—a & dr.

Hence we obtain a formula for the derivative of Rm.



INVERSE CURVATURE FLOWS IN RIEMANNIAN WARPED PRODUCTS 7

2.3. Lemma. The coordinate functions of the covariant derivative of the (0,4)-
curvature tensor are given by

B 9 / B 9 972 / B , .
Raﬁ'y5;e - - (19) r;esaﬁ'y5 + <19 - 192> T;ESOZ’B”Y,‘VPS Pg P’J P(g

/

~ ’ ’ Y] ) — , ’ Y
+Ra/ﬁ/7/5/;spg‘ Pg P"YY P(? — 7T;aTa’ﬁ/’y’6’Pg PI[; P,;,y Pg

(2.7) 0
/ — a/ ’ ’ 6/ ’19/ — (1, B/ ’ 6/
- gr;ﬂTa’B’v’(S’Pa P! Pl Py — ngTa'B”Y'é/Pa Py P P
19/ —_ a/ ’ ’ 6/
— 575 wps P PPy P,
where o e
Torpryrsr = <?9 - 192) Sargrys + Rargryrs.
Proof. Denote by T') 5 the Christoffel symbols, i.e.
0 - 0
o2 — _
apf oxY o vaf‘l 8m5
and

_ 1 _s( 0 _ 0 _ 0 _
FZ(,@ = 597 ((wgaé + @gﬁé - MQ(){B) .

Using the definition of the metric we see

=0 7.9/ ’ ’ 7.9/ ’ — 7 / ’
Fue = _ggalﬁlpg Peﬁ = _5.@0/6])3 ) Fge = 5Pea
and hence there holds
Prie=—rira =1 raec = T80 +7.% I
,191 , A
= _5Pea Tia — 57';& g'y’epg

There holds

Torgrysr® PeaP PY Py =0
and hence differentiation of (2.6) gives

9 0 9?2

~ a/ ,3/ Fy/ 5/ 19/ — a/ ﬁ/ 'Y/ 5/
+ Ry gryrsre Py Pﬁ P,y Py — 57‘;(XT(X/BI’Y/§/P€ P@ P’Y Py
/ /
- —T. T/ vy /Pa/P’B/P’y/P(S/—Q’;
9 BLa/Bly'6" o Le ) 9

7_9/ — O(’ B/ 'Y, 6/

— 5T;5Ta/ﬁ/7/5/Pa Pﬂ }D,y }DE 5

which is the claimed formula. O

B AN B 9" 92 ! _ I ' g
Rapgyse = — <) Tedapys + < - > TeSarpry s Py P,(i’ P} Pj

Ty Tty PSP PY P

We will later have to deal with the Ra/gww;e—term in (2.7).

2.4. Lemma. For every ro > Ry there exists a constant ¢ such that
/

VR < el
Proof. We define a g-orthonormal frame (€, )o<a<n as follows:
eop = €p = Oy
and, given a o-orthonormal frame (e;)1<;<, on Sy we put

éi = ﬁ_lei.
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Then clearly
g(éa7éﬂ):6aﬁv 0SO{,,6§’I’L
To prove the lemma, it suffices to estimate the components of VRm accordingly

with respect to this frame. There holds

Ve, R (Ca, &5, 6., E5) = B (ﬁ?n(éa, &5, 6., 55)) — Rm(V,éa,é5, 65, E5)

(2.8) — Rm(éa, Ve, @5, 8y, 5) — R (Ea, €5, Ve, &y, 5)

— Rm(éa, ég, é,y, Véeéé).
There holds
ﬁl;l(éa,é/g,é,y,é(g) = 19721:/{-1?1(7'(*60‘,7T*65,7T*6777T*65),

where Rm is the Riemann tensor of . Hence

g
— 25 Rm(T.eq, Tiep, Tey, Taes), e=0
93, (Rm(w*ea,W*eg,w*ew,w*e(;)) , €#0.

(29) & (Rm(Ea,és,8,,65)) = {

From [54, Ch. 7, Prop. 35] we obtain

’ ~
%ﬂ*ea, e=0

(2.10) T Ve €a = Ve o, €#0,a#0
%ée, e#0,a=0,

where V is the Levi-Civita connection of . In case € # 0, a # 0 we have
Ve.bo =07 WV, (07 es) =072V, €0
and
Rm(Vz, €, €5,6E4,65) = ﬁ_SRm(@eeea, €8, 6€x,€5).

Using (2.9) and (2.10) in (2.8) in any of the cases, we obtain the desired estimate,
since ¢ > ¢,, > 0 on every interval [rg, 00), giving the estimate
!

Y
-3
% § C@.

2.5. Remark. For example, if ¢ is the round metric on Sy = S”, then

~ — 7 ﬁ/ 7 6/

Raﬁ,‘{é = @Sa’ﬁ”y’é/Pg Pﬁ P:YY P5 .
Graphs in warped products. The hypersurfaces
z: M — N

we deal with in this paper will all be graphs over Sy,
o(M) = {(u(y),y): y € So} = {(u(y(§)), y(§)): § € M},

where
u: So — (Rg, 00)

is smooth. Along M we will always use the outward pointing normal
v=v"1(1, -0 20"%u,),

where
2 _ -2 ij
v: =149 "0 u,uy,
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and use this normal in the Gaussian formula (2.1). The support function of M is
defined by

(2.11) s = G900y, v) = %.

There is a relation between the second fundamental form and the graph function
on the hypersurface. Let
h = 9"da,
then there holds
v hij = —uwg + hij,
cf. [23, equ. (1.5.10)]. The induced metric is given by
9ij = wiusg + 920y

and hence
! !

(2.12) ’U_lhij = —U;; + 591‘3‘ - gu;iuu“

In order to deduce the gradient estimates, it has proven to be useful to consider
the function
Q. 80 —R

u(y)
(2.13) o(y) :/f @ ds.

There holds

(2.14) pi— Vgi L % ks,
vt o '
where o
i g wle?
G =o' — .

and the covariant derivative and index raising is performed with respect to o, cf.
[24, equ. (3.26)]. We will use V to denote the covariant derivative on Sy throughout
this paper.

2.2. Curvature functions. Let I' C R" be an open and symmetric cone. In
Assumption 1.1 the symmetric function f € C°°(T") is supposed to be evaluated at
the principal curvatures of the flow hypersurfaces. This gives rise to an associated
curvature function F', acting on diagonalisable endomorphisms A of an arbitrary
real vector space V via
F(A) = f(EV(4)),

where EV(A) is the unordered n-tuple of eigenvalues of A.

However, when using this definition, F' is not defined on the whole space of endo-
morphisms, but only on the diagonalisable operators. Hence it appears reasonable
to view F' as defined on bilinear forms,

Fla.h) = F (5005 + )

for all positive definite g = (g;;) and all bilinear forms h = (hy;) € T> M. Then

OF
(9hij

Fii =
is a (2,0)-tensor and we also write

[ oF
Fz],k:l _ )
Bl O
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Furthermore, if F' = F(k;) is strictly monotone, then Fid is strictly elliptic. If F is
concave, then

F”’klmjmz <0
for all symmetric (7;;). We refer to [4], [23, Ch. 2] and [61] for more details on
curvature functions.

Furthermore we will abuse notation and also write F for F , since no confusion
will be possible. E.g., when writing F*, we can only mean Fii , since there are two
contravariant indices.

We will also use the special curvature functions Hy, associated to the k-th nor-
malised elementary symmetric polynomial o), defined on I'y, the connected compo-
nent of {0 > 0} which contains the point (1,...,1).

2.3. Evolution equations. The following evolution equations for (1.1) are well
known and can be found in several places, for example in [23, Sec. 2.3, Sec. 2.4].
Note that, compared to this reference, we use a different convention on the Riemann
tensor.

2.6. Lemma. Denote F = —F~P. Along (1.1) there hold:
(i) The induced metric g satisfies

g = —2Fh.
(i) The normal vector field satisfies

%I/ = grad F,
where % is the covariant time derivative along the curve (-, &) for fized & €
M.
(i1i) The second fundamental form satisfies
(2.15) hij = Faj — Fhahh + FRm(z, v, v, 2,5).
(iv) The flow speed F satisfies
(2.16) F — FiF;j = Fhyh F + FIRm(zy, v, v, z,5) F.

2.7. Lemma. Under the flow (1.1) with F = —F P the second fundamental form
evolves by

hs = FhE g = FM hyg sy + FM hehi s — (FM iy — F)Rib;
+ .Fklfia,g,yg (xol‘xngykxfmh’m + zﬁxﬁx?kxfmh?lg”)
+ kalRagvgmﬁxﬁnz?kxfjh?g” — fklhklRagq,(;xf:nuﬁyﬂ’xgg”
+ .FR(XB,Y(;J??;VBV’YI?Q”- + fklRagwx;ongBVszlh;
+ ]:klRagvg;Eua:cix}mixfjg” + fklRagms;eVo‘x;ﬁrw:;xkaflg”.
Proof. Basically this is [23, Lemma 2.4.1]. For convenience we deduce it again,

since the proof in that reference is a little rough and we use another convention for
the Riemann tensor. There hold

Fii = Fhy
and
Fiij = F* hgrihrsiy + F* hisis.
We differentiate the Codazzi equation (2.3) to replace the second term on the
right hand side. First we differentiate the Codazzi equation with respect to 9;, then
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use the Ricci identities and then differentiate the Codazzi equation with respect to
0;. We also use the Weingarten equation (2.2) and the Gauss equation (2.4).
hitsij = iy — (va%flw%xi)_j

)

- hkwl + lek hai + Rl]z Ria — ( aBysV xix lx(S) /

)

s
= Ryji"hai + Riji"hia — ( aBysV xkxﬂ;xz) ,

)

+ hijiwt — (Raﬂvﬁyaxﬁz e ) .

= hl] kel T+ (hlah]k — hlkhja + Rag,ygx la:ﬁx kx )ha

+ (hiahji — hiihja + Rapysi lxﬁx 20, ),

D B 5 B 5
— Rogrys;et® x;kmxxﬂ-x Rag,ygl' 0 kx . h + Ragwgl/o‘x;kﬂx;ihlj

D B ) B ) B )
+ Ramgu‘lx;kaﬁzu hij — Roprys:ev™a! w,wkx. T — Ram(;x%m;imjkx;jh?l

37

+ hkl}_{amw“x;iu"’xg + Ram(suaxﬁm kl/éhjl

Recall that h satisfies (2.15):

hij = Faj — Fhih? + FRopysafv v 2l
and hence
hij — F* i = FP" by — FR highl ey + FEU bt by

+ F¥ Ropys (m l:c’Bx kac h + lxﬁx kx hm>
+ FHk hklRa/gmgyax’Bﬂu'yx 5+ F lRagvgzxo‘xﬁcmzu‘shij
+ 2fklRaﬂ75x%m§mekx§-hm — fklRagn,g.euo‘xﬁkxfExix.e-
— FM Roprs.cv xﬁx'ykx T — ]-"hlkh + FRoprsxd Vﬁlﬂxg

The result follows after reverting to the mixed representation. O

Graphical hypersurfaces. Given the flow (1.1) of graphs
My = {(u(t, y(t,€)),y(t,£)): £ € M}

in a warped product with metric of the form (2.5), we first of all deduce from (2.12)
that

p+l o ¥ p v p

(217) = Fluggy = =t = G i+ Sy F .
Now we deduce the evolution of the quantity
w = |dul? = |dol3,

?92( )
where ¢ was defined in (2.13). The function ¢ is better suited to these estimates
than v itself, since the representation of the second fundamental form is simpler
and so the differentiation of the speed F is easier to perform. This trick was also
used in [22], [65] and in subsequent treatments of graphical expanding flows. Note
that ¢ satisfies

(2.18) Op = —Fs ",
where s is the support function defined in (2.11). In the next lemma we derive the

evolution equation for w. We simplify notation: Putting lower indices to a function
means covariant differentiation with respect to o.
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2.8. Lemma. Under the flow (2.18) in a warped product of the form (2.5) the
gradient function

|VSD‘0‘ pip

satisfies
d 1 e -
<dt ) ' vkr) IVo|?

i . 9" R
_ 2]—' Lot — 2F R 82 o+ 40 FFRLs ™Y V| — zgf,’ﬂwﬁ

1 ~
21925’“ oVl Veli = s FE Vel el

~lr i 2 ~Ir 1) i,.m
+U4192 T VolalVelZe' — ﬂzﬂkgl Pirpk = 5319 Rikem '
Proof. From (2.18) we get
‘V(PF = 2902 = -7:31@ 2./—"lk@ih§€g0i8_l.

Due to (2.14) there holds

71)1-19 + v,

.
Vih;, = XD

~lr 1 = ~Ir ~lr
(961, — 3" o) + - (19”19%-52 —Vid" e — cpm)

vi 0" pio" + o] 2
_Jhgc - ﬂl@ihi‘ + 752%‘ + W@rk - mvi@l@TQOrk

~lr

- 7199 Prki

. 9" L7 + Lo
ihl — 20'pihj, + *52%‘ TR 2 A NP
1)319
2 1, r 1 ~lr
IVsO\ PP ork — — G orik + 799 RigrPm,
where we used the definition of the Riemann tensor of o. Using
IVool2k, = 20irk” + 20ir 0},

we combine these two equalities to get

d T
<dt ﬂzﬂkgl vkr) |V<)0|2

i g i g v 0" ki
= P St o St a0 Fh s Vgl — 2 FEV P

2 . 2 .
— 5Tl (e + wl%)@"%k + s P e Velie
2 ,
_@ lkg”(PerOk 192 ]:lkngle;T@l(pm
and hence the result. O

The support function satisfies the following evolution.

2.9. Lemma. Along (1.1) in a warped product with metric (2.5), the support func-
tion

s =9 (u)g(0r,v)

satisfies

. . -1 .
(219)  §— FYsy; = Fihyhls — ﬁ’I)F—p + g(00,, VF) — F(g(00,, xxhf;)).
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Proof. The vector field 90, is conformal,
V(09,) =9X VX eT"O(N).

Hence
§=g(Wa,v) + g(99,,Viv) = —9'F + §(90r, V.F),
(2.20) Xs = g(¥0,, W(X))
and
V3(X,Y) =Y (Xs) — (VyX)s
=9WX,Y) = (X, W(Y))s + g(¥0,, VyW(X)).
The result follows from combining these equalities. O

We will also make use of the evolution of ¢. This method was used in [5,
Prop. 3.4] and [60, Lemma 3.5].

2.10. Lemma. Under the flow (2.18) in a warped product of the form (2.5) the
speed  satisfies
o 0y 9 9" 9

Ld 2 b= oFihlg — Flo+ —uFp.

(2.21) Opp — @‘sz - 67%% 3 ] 3 3

Proof. Differentiating

p=—Fs
gives
0up— gy I = 0Py
i Y0 T Oy
R
= —F/3ts o+ s IFOp
¢
From (2.14) we get
Oht 9 ' ) 9
J _ 7 19/6?7’”1](} . Z_ 5t
e 1)19( J g(pkj)+v]
and inserting this gives the result. O

3. LONG-TIME EXISTENCE

3.1. Barriers.

3.1. Lemma. Letd € C%((Rg,00)) with®' >0 and 9"’ >0, 19 > Ry and 0 < p < 1.
Let r(t,rg) be the unique solution of the initial value problem
oP(r)
nPY'P(r)
r(0) = ro.

(3.1) P =

Then r is defined for all times and
r(t,ro) = 00, t— 0.
Consequently, for xg as in Theorem 1.3 with associated graph function ug, we have

infu(t,) = o0, t— o0,
M

provided the flow (1.2) exists for all times.
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Proof. Due to (3.1) we have

I(r)

TGy

where the right hand side grows at most linearly in 7 due to 9" > 0. Hence

r is defined for all times. Suppose r does not converge to infinity. Due to its
monotonicity it converges to some r; < co. From

P <14

]
@(7") >0 Vrelrg,m]

we obtain 7 > ¢ > 0 and reach a contradiction. The second claim follows from the
maximum principle which gives

r(t,inf ug) < wu(t,) < r(t,supug).
O

3.2. Gradient estimates. Let us first prove some rough gradient estimates which
will suffice to get the long-time existence. In the a priori estimates that appear in
the rest of the paper, generic constants will be allowed to depend on the data of
the problem, namely N, p, M, unless otherwise stated.

First we need a bound on F' from below:

3.2. Lemma. Under the assumptions of Theorem 1.5 (i), along (1.1) the spatial
mazima of the quantity

. 1w
P Fry

are non-increasing.

Proof. According to (2.21) we have

. 0y . 0p . (p—1)% . V'L
9,0 — i — ;= — F!o <0.
1 6@u99] 90" 9Fr T e Y=
The result follows from the maximum principle. O

Now we prove some very general gradient estimates for inverse curvature flows
in warped products. We use the notation from Lemma 2.8.

3.3. Lemma. Under the assumptions of Theorem 1.3 (i), along (1.1) the function
|V|? is bounded on every finite time interval. Furthermore, under the assumptions
of Theorem 1.3 (ii), there exists a positive constant v, such that the spatial maxima

of

£ = [Vp9
are non-increasing, provided p < 1, and such that the spatial mazima of
z = V|29

are non-increasing, regardless the value of 0 < p < 1.

Proof. We want to calculate the evolution equations of Z and Z. Hence we need one
for u, which makes use of the parabolic operator with respect to the metric o. Note
that in (2.17) we use covariant derivatives of the metric induced by wu, hence we
need to rewrite this. The covariant derivatives with respect to o and g are related
by

. /

Viu = v*V2u + % (2du ® du — 9*(v* — 1)0)

2y 2 v 9 —
=—vh+wv g9V ﬁdu®du+2ﬁdu®du YY(v* —1)o,



INVERSE CURVATURE FLOWS IN RIEMANNIAN WARPED PRODUCTS

f. [60, equ. (71)] and (2.12). We obtain

1 p k=l v pU p
<8t‘mpp+1Flg Vir ) U= 50 T T ey
p OV 5 2p ¥,
+ Tpr EF "0 — Trrl ﬁF " U U
PV ok
b S (g — ) (0 1)
_pt1 p Vv p v Y phr
Fr U7 pptl 5 T i g Wk
Now we use
=V Y v i T 5,2
to deduce from Lemma 2.8:
1 p k h 2
(at - @FPH ) |V‘P|
_ 2 24 2 2 4 P & 2
—ﬁg R | P ALY LR
4p 2 2p Ve o 1 k ylm S 12
+ﬁ§ v|Ve|? — il g Vel — 25292 Fp+1Fz IVl Vel?
1 p 1 A
7@ Fp+1 |v90|r90k + s 4192 Fp+1 Flk@ ‘v90|k|v<p|1‘250
2 p k~lr i lr
7@ Fptl Fl 9 PirPr — 192 Fp+1 lercp Pm
20— « o 2p V' e 5 2 p G f
= T*U\Vﬁﬂ ~ Fpil ng [Ve|® — ﬁpwl R0 om
p+11 i 2p 1 Iy i 1 m
+ Fp ’U'l9 |2 - Fp+1 @ﬂkgl 4/717()0]@ 2192 Fer] ﬂk ! ‘V§O|k|v§0|2
1 = = i p r
+’U4192 Fp+1 F‘lkw |V<p|i|Vgp\,2<p - 02792 Fp+1}7l P |V(P‘r§0k-
Now first generally put
2= f(u)|Vel*.

With the help of the previous calculations we get at a maximal point of z, where

N -
\V<P|z2 = —719\V<P|2<Pi»

15
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1 e
Lz= <8t - @%Flkgl vm) z

f/ " k<1

= JLVGP + 27 Lu = T e R wuy = — o e FFG el
2(p—-1) 2p 9" 2f p l'r i
=T 9T e g R et een
p+1f 1 o 1
Fp ‘V |2 Frtl 192}7} g 410179014;.]6
1 f’2 p - Lf? p -
—@ﬁpmﬂk@l@kww Pt Forr F ekl Vel'z
(32) 12 / /
Lf* p vt o2  Ptlf p 'Y
_WFFPHFZ Cop|l Vel z + v 71}2’— FpH?ﬁsz
p f/ / kr f/ p f// o
~Fp 7 19F s Z+Fp+1 szlg gpkgoTz—FpH fF UpUp2Z
2p -1V 2p 9" 2f p k~lr pm i
=T 9T Fer g T g e 10 e om
1 / 2 1 ) 12 @ 2
p+ f 14 Fk~lr i p k, 1 | <P| Py

Fp f v T o2t 9 PirPrl — FFPHFZ ¥ Pk o4

D f/ 19/ k o f/2 f// f/ 19/
_Fp+175sz+Fp+1F UpUrZ 2ﬁ—7—75

In order to prove the first claim under the assumptions of Theorem 1.3 (i), we first
put f =1 and obtain at critical points of z:

2p -1V 2p V" 2 klr pm i
P T TR A e A Foet U0 R
’ _2 Lok i

Fp+1 192 19 PirPg-

According to Theorem 1.3 (i), we have to distinguish two cases. In case (a), when
o has non-negative sectional curvature, each term on the right hand side of (3.3) is
non-positive and z is bounded. In case (b), when

Hi 1

F:
nHk,

we pick coordinates such that Flk and §'" are diagonal, use Lemma 3.2 and F, ,f <eg,
cf. [49, Lemma 2.7], to estimate

2 p
192 Fp+1

FaT R, O om| < c|Vy|? = ez

where ¢ depends on the initial data and a bound on the Riemann tensor Rm of
o. Hence in this case there holds £z < ¢z and on finite time intervals we obtain a
bound on z. This completes the proof of the first statement.
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Now we focus on the two further statements, for which we may use the assump-

tions in Theorem 1.3 (ii). Putting f(u) = 97 (u) in (3.2) with p < 1!, we obtain

. 2p—1)09 2p 9" p—|—1 91 py 972
Lo =% ot g B2 VG o Tt g bk

P , ) 19/2 19/2 9" 19/2

+ Fp+1Fk UpUr 2 <272192 == 1)@ AT Ty

<2(p71)19’A 2p V', p+1 91 py 972
=T Fr 97 Ferlg kR Vg u T e gr Lk

+

P i . 9 19/2 19//
Fp+1F Tukurz <’Y @ — 75 .
Since
FFrugu, < cF,fg”u;iu;j < cF,f,
we obtain £2 < 0 if v > 0 is small enough. This proves the claim about 2.

If

p = 1, the same is true with v = 0, i.e. \@gp| is uniformly bounded in time under

the non-negative sectional curvature assumption.
To prove the statement about Z, we first note that due to (2.14) we have

9 1
F= -Fl hl — 719Fk _719 lkngSD'r‘k

and hence
p+1f/ 2p i k~lr if
Fp f U Fp+1 92 19 PirPr
p+1f 91 p p+1f 1 2p ke ~lr i
“Ff g2 kz_WTYWF 1G9 orkz — pH@Flg Cirepf
179 1 12 2 @ 2
_prt f———Fk p_(p+1)° [ Vel FFg oz
Fr+l f 9w FY"Jrl 8  f2 vt

P f p+1f 1 2 p+1f/15i 2
C Fptl 9 lg 2p f2 2% ““Jrg%r Wﬁpmﬁ@wk :

Hence at a maximal point of z we get for f = 97
2 911 1
rre 2P ( f (p+1)?

1 9

S e 3579 myfﬂ ~ Ty ) B
20— _ 2f p lr
+ Fpr 51}2 - ﬁijLl Rzk:r(p Pm
12 i /19/
+ FI{)H FR upu, 2 (2];2 — f7 — J;f19>
(3.4) " 1 12 1
= _ 2p 197_"_1197_(]34-1) 4 |§ |2 (p+1)19 Fkz
Frtl \ 9 " 29 16p 072 o 0 ) HF
2(]? — 1) v’ = 2f p ~lr i
+ Fp 51}2 T2 il F Rzkr(p Pm

+

D i ~ 19//2 19//2 19/// 19//
Fp+1F T UpUyr2 (’y oz —&—719,2 VW _Wﬁ .
The middle line is non-positive. Due to Assumption 1.2, we can estimate
19//2 19/// 19//

oz T Sy

1.

i.e. we are only allowed to use the non-negative sectional curvature and Assumption 1.2 from
the assumptions in Theorem 1.3 (ii). However, for this statement we only need the non-negative

sectional curvature.
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and hence all terms which are controlled by 9" can be absorbed into the good

term
2p 9"

S Frtly
in the first line. Hence £z <0, if 0 < « is small enough. O

—Ffz

3.3. Curvature estimates. We prove that along (1.1) all principal curvatures are
bounded as long as the flow remains in a compact subset of N. Due to all previous
a priori estimates this will imply uniform C? estimates on each finite time interval,
as well as a uniformly elliptic operator F~(®+1) [ Hence the regularity estimates
by Krylov and Safonov apply to get C>“ estimates. With the linear Schauder
estimates we obtain uniform C°°-bounds on each finite interval. We may extend
the solution beyond any finite T, completing the proof of item (i) of Theorem 1.3.

3.4. Proposition. Under the assumptions of Theorem 1.5 (i), on every finite in-
terval [0,T] there exists a compact set A C T' such that along the flow (1.1) the
principal curvatures k; satisfy

Proof. In this proof the generic constant c is allowed to depend on T. We proceed
similarly as in [24, 62]. First we simplify the evolution of the second fundamental
form, cf. Lemma 2.7. We have the following estimate in normal coordinates:

1
_fklhz;kl < fkl’rshkl.nhrs; Fp-i-l Fklh hThn p+ (hn)

+ Fp+1 F”Qw (hyy +1) + FP

According to (2.19) the support function, which is bounded from below due to the
gradient estimates Lemma 3.3, satisfies

: ki kl T (p— 1)
§—F sy = FP+1F hyih] s R
(3.5) o
+Fp+1Fkl S"Rm(v, 2o, T, T4).

Due to a well known trick, e.g. see the proof of [24, Lemma 4.4], it suffices to bound
the evolution equation of the function

w = loghl» + f(s) + au,
« to be determined, at a maximal point of w in which normal coordinates are given,
gij = 0ij,  hij = Kidy, K1 < < K.

For small 8 > 0 set
f(s) = —log(s = B).
Also using (2.17), we see that w satisfies
< P+l
Fr +1 Fp n

+ Fp+1Fk (L+ (M) + ﬁ(l + (A" +a)

p s ny— p i n n
Fp+1Fkl P, nhT’S (hn) 1 Fp+1F](10ghn);i(10ghn);j

—Frlw g < F*h, bl (14 f's) —

+

!

p ij
9 FrHl FY(gi

e o . _ —al g
FYs:s; — UsiUsj).

1
-/ Fp+1
We employ a trick already used in [19]. Due to the concavity of F' there holds
2

Rp — R1

n

F' <. <F and  FRYspumes < (F™™ — F*)n2),

k=1
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for all symmetric (n;;). It is possible to exploit this term in order to estimate (3.6).
Case 1: k1 < —€1kn, 0 < €1 < % There hold

F”hikh? > Fyi > *F”gijlﬁi > fF”gije?Fai,

p L] n n 7 7,
Fr+1 (log hyy).i(log hyy) 5 = f7 Fp+1FJ3 55+ f Fp+1FJS il
o?p
+ Fp+1 F”u7 Usj

due to Vw = 0. Using (2.20), if «,, is large, (3.6) with any o becomes

0< FPHF”g” (elff (1+fs)—|—c—|—ca\f|nn—|—ca)
p+1 p ij 7 2
+ % (c+ca—nn)—Fp+1F sqis;(f" = f")
<0

and hence w is bounded in this case, due to 1+ f’s < ¢ < 0 and f” = f'2.
Case 2: k1 > —€1kp. Then

Z an Fkk hnk;n)2(h2)71

IN
—_
+ |
[a))
M%

(F"" = F) (hin)? (hiy) 2

,_.
~
Il
-

n

(B — F¥%) () (5) 2 + (1) (M = P

IA
Tl
[
NE

—

k=1 k=1
4 o _
nn a,.B § ny—2
T1ve kzl " Vit Raagyot* 23y, ()
2 n
< o Z(an _ Fk )(hnn;k)2(h2)72 -l—C(El) Z(Fkk an) K ’
k=1 k=1

where we used the Codazzi equation (2.3) and Cauchy-Bunjakowski-Schwarz. We
deduce further:

Z an Fkk hnk;n)Q(hZ)_l
k:1

2 < 1—2¢
< F™(log hj)3 F* (log hy! Fig,
< 1+2€1; (log h2)3, — 1+2€1Z (log hp)3, + clen) 7 gijry,

F'i(log h").;(log h™)

n

= Z an(log hn) & T C(el)Fijgij'%;
k=1

= c(e))F gk, % + fPE™||Vs||? + 2af' F™ (Vs, Vu) + o F™"||Vul|?.

Hence we can estimate (3.6), using F7g;; > coF' g5,

0< Fp+1F (k2 (1+ f's) + ackn, + ca®) + s (c+a—knp)
p i C(El) v’ p 2 rnn 2 i
—|—Fp+1FJ i ( 2 —|—c—coa5 +F1’+1 (f2E™ (Vs[> — f"Fs;s,;) .

Due to the barrier estimates, on every finite interval [0, T] there holds ¥ < ¢(T).
Picking « large enough, we see that &, is bounded on [0, 7] and the proof is com-
plete. O
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4. ASYMPTOTICS

4.1. Global bounds. In order to study the long-time behaviour of (1.1), we need
to investigate the evolution of the second fundamental form in greater detail. There-
fore we need a more detailed version of its evolution equation.

4.1. Lemma. Along (1.1) the Weingarten operator evolves according to

) p klyi
hi — FMRi

J Fp+1
_ p(p+1) i p kl,rs i p kl rpi p+1 i
- - B R R+ FPHF hutihrs’ + s FE i — S bl

+

19/2 ) ki 19/2 _ ’ (19// ,19/2
e

3 i
92 Fprl TR T 92 T 19_192)U FP+1F’“h

19// 19/2 _2p+ 1 19// ,19/2 Kl .
< ) (19 92 >FP+1F (ukulh’ = 2h"u mu?kéé')

9" 19/2 i 9" ?9/2 P . . . . .
( ) <19 - 192> Forr Fe (™ usg + ')
19// ?9/2 P ; . . . .
+ <19 — 192> Tl (F lu;m(hl u; — hi'ug) + Flkhé-u; U — F;h U;lu;m)
+ I +1 Fkl (Rm(z @ Tijy Tk, T m)h —+ Rm(gj 1y Ty Tiloy T m)h;ngm’)
m T 1N %
+ Fp+1FklRm(l'r7xm7xk7 )h *WRID(I’T,I/ I/:Ej)g
+ FP‘H FklRm(x kyUs U, T, l)h
FP‘*‘1 (?Rim(y, ks Ty T3t T3) + VRV, Ty, 3, Tk, x;l)) 9"

Proof. In Lemma 2.7 we rewrite the terms involving the Riemann tensor employing
(2.6):

Ragfygxﬁa:gx?kxfm
19// 19// 19/2
= - g(glmgjk - glkgjm) + (19 - 19> (glmg]k - glkgjm) + Raﬁ'yéx lxﬁ xﬂfkiﬂﬁm
19/2 ~ 5

= - W(legjk = GikGjm) + Ramaxﬁwgw?ﬂ;m
19// 19/2
- (19 - 192> (u;lu;mgjk + U Uk Gim — U Uik Gjm — U;ju;mglk)o

Hence

fklRaﬁWs (az l:vﬁx 20 R 4 T lwfmh;"g”)

i im
9? p Kl ) k i ) il 0"
- @FpHF hlgjk + o5 92 il i 92 Frtl 1+ 5 2 Fp+1F h
+ LA v” P FR (ugugh’ + guh™ . — hivug — grih ™, )
9 02 ) Frtt kUL T gkl ;mUsj 1Us Wik — Gkj 1Usm

9 92 ) Fr+l

p
Fr+l

9" 19/2 D . . . ;
+ ( - ) (Fkl(u;ku;lh;- + grih ") — F”h}”u;lu;m - F,ﬁh}”u;’u;k)

+

FH (Ramgxl:vﬁx 20 h’m—l—Ramgwl 'BT A’k:v n ”)

J ;m



INVERSE CURVATURE FLOWS IN RIEMANNIAN WARPED PRODUCTS 21

and thus the following two equations hold:

FH Ropys (x lxﬁx B A Y ”)

0”? p i1l Kl i
= — QWFP'H (F‘llhj - F gklh;‘)
v 97 p i im m i
+ (19 - 192) ol (2FklU;kU;lhj + Fklgkl(h U W5 + hj U U, )
— Flhimu.lu.m — F“hmu.lu.m - Fklhfu;ju;k — Frlflh;vnu;iu;k)
p m m T
+ ot K (Ra,gvgxlx’gmkm h +Ra575mlxﬁ Tt g ),
Q.FklRagvgx;aTwﬁ mkx htg ri
19/2 p 0 7 2p m rz
= 2aEm - Fihg) + ol FM Roprsntal, o al;hi

9" 19/2 . )
+ 2 (19 — 192) Tor (Fl hlu ug + F”hl Uiy — Fu"uy — Fklhlmu;mu;kég).
Adding up, also using F{h% = hi F}, gives
FH Ropqs (x larﬁx Lo T aGal ) B ”)
+2Fk Rag.y(;x xﬁ x kl’ hg re

19/2 D
92 Frtl

19// 19/2
(4.1) +<19_19> Fp+1(2Fklukulhz+Fk(h M+ R )

(Ffhi — F6)

- thimu;lu;m - F”h}”u;lu;m + Flkhéu;iu;k
+ F”hmu. Ui — 2Fu.iu.j — 2Fklhmu;mu;k§§)

+ FMRopys (a: lxﬁx kx R xaxﬁx kx R ”)

Fp+1

+

kL7
Fp+1F Raprstsy, xﬁ DT S hmg.

Using v = v~ (1, —g%*u) and v=2g%uu.; = || Vul|?, we get

7 19// 19// 19/2
Rm(z,,v,v,z,;) = —g i + (19 ) (||Vu|| Gij — v “2u u,J)

+ RTn(x;i,V, v, Z.;)

(4'2) 19// 19// 19/2
_?gij'k . (”VU” Gij — UiU ;j)
—i—ﬁ?n(x;i,y,y,x;j).
Thus
(.F—fklhkl)RaﬁvgxaVﬁVﬂyl‘é ri +]:k aﬁvéx;o;gVBV’yxflh;’
p+1 19// ; 19// 19/2 i
(4.3)

P Kl 19// 19// 19/2 ;
- Fp+1F (199“ - <19 EF) (||VU|| Gkl — Uy Usk) h

pHlo— riy P
_ ?Rm(xr,u v, &) +FP+1

FMRm(x;k,u, v, xl)h;
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Adding up (4.1) and (4.3) and inserting the result into Lemma 2.7 gives the
claimed formula. O

4.2. Lemma. Along (1.1) the function v = 9s~! satisfies the evolution equation

0T Fort Fuy;
p ij k, _ 197/2 p Q’;/p + 1 ﬁ/p -1 2
~ gerr by = S e P e
19/2 19// D .
(4.4) + (192 - 19> Fp+1F Ju iUV

P ,19// 19/2
+ Fptl F* (19 T (ugu, — ||VU||29kl)U

/

V' P 2 p
kl i %
_ Fp+1F Rm(x e Uy U, T U+ 2§Fp+1F Tuv,; — ;F:UHF Jv iUy
Proof. Due to (2.17) and (3.5) we have
. p ij, .
v — Fp+1F Uy
4 P 9 p v
AP ij Gy — 2 (& — ij
-9 (u Foril U ’”) g Vet E it (8 Fp+1F )
20 p

y 1
_ 2z g o ij z
19/ P + 1 19/2 D i 12 19// P y
=9 Fe gz et 990 Tz Ty ) me I i

¥p—1

ij k 2 kil m, 2
Fp+1F highjv +T9 7V Fp+1F Rm(v, 2k, T, zy)u. v
2 D i 19/2 P i 19/ D ;

- EFP_HFJU-U]-vaWFp_HFjuﬂ-u +479Fp+1FJu iUsj
,19/ P ,19/2 D
ij idq,

19Fp+1F Uy, +2192FP+1F Ui U5V,

which is the claimed formula up to rewriting the term involving Rm. However, we
use (2.6) to deduce

- 19// 19/2 3
Rm(v, 25, m, ) 0™ = — (19 a 192> o™ ugug — [Vl *gi)

m

+ Rm(v, @k, Tm, )y
and hence

PR 19// 19/2
Rin(v, Tk, Tym, 20)u," 0% = — (19 B 192) (wpwp — [ Vulgri)v

+ Rm(z, v, v, 24)0,
where we have used
u™ = v 20 20y,
Inserting gives the result. O

We start the investigation of the long-time behavior of (1.2) under the assump-
tions in item (ii) of Theorem 1.3 by proving a lower bound on the curvature function.

4.3. Lemma. Under the assumptions of Theorem 1.3 (ii), along (1.1) there exists
a constant ¢, such that
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Proof. If p =1 and 9’ is bounded , the result follows from Lemma 3.2 immediately.
If p <1 or ¢ is unbounded, Lemma 3.3 says that v — 1. Due (2.16), (2.17), (4.2)
and (4.4) the function

1
w = log (F ) + f(v) + plog®¥’ — plog,

where f with f* > 0 is yet to be determined, satisfies
p ij

w — Fp+1F W;ij
_ P g Y P g P_pi
— F;D+1thzkh o Feri it Fp+1F]Rm(‘T Vv @)
9" 19/2 P i 2
+ (%~ %) PVl — wi)

p ij i i p j k _197/2 p ij .
+FP+1F <long)i<log >~j Fp+1F h; hfv 52 Fp+1F gij f'v

¥Vp+1 Yp—1, 5 92 9 P
o ey S T

7 Fiugugflv

9 FP

9" 19/2 D i
(5 - 5 ) rF s - [Vulg) '

/

Ff+1 FURm(x vv,xg) flo+ 2f — 5 FfHFU QU — 7f FfHFU U5
- f“FfHF”” vyt P+ 1) <1199/’/ - 1199/) Ff+1”71F
-Dp (139” - gj) FfHF”gzj +p (1; - gj) FfHF”u e
-7 <1199/’I B g) F:ﬂFij“;i“;j'
Sorting the terms appropriately and replacing (log1/F?).; we get

D ij
- Fp+1F W4

FYhh (1 — flv) +

<

F+1 F”Rm(azl,yya:j)(l—fv)

Fp +1
9" 19/2 P i
(5 - 5 ) Pl = w1 1)

plp+1) 9" ; Y g ij
+ N ~Fgi+ = 19/ T e(fv+ DFYuguy

+%/22Ff+1( Ygiif'v +:99,p+1 ' g,p f'Fv?
4.5
o - (p+ 1);Fv_1 —|—pFijgij) + %:Ffﬂ Fuu(f'v—1)
+ (p—1)? 11,;22 Fp+1F” U+ FPHF”w W, 2f’Fp+1F”w, v,
o (115;/’1 a 11991) Ffﬂ FYwgu; + 1* st Fr+l Fvv,
— 2f’ (19” 7?99/) FEHFUU u,]—i—?f 19,F5+1F” Uy,
_ Qf’ Ff“F”v’ v, f”FpHFwU 0,5
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Now choose

where in the sequel we only consider sufficiently large times where vE < é. Then

1 v 3 v v3 1 vz 3
/ 1" !/
=5 ) = + ) V=g > -
f 21)_%—% f 4'1)_%—% (U_%fﬁ)Q 21) % % 2
and
2 VT2 3 w3
f/2 7fl f//_ — - +Z — 5
v vy vTE g
1 v
B 41)_% — %
3
4v?
Hence, using Cauchy-Schwarz on FYu v,
(R ¥
2Fu, v, < %F“v;iv;j + %F”u;iu;j,
with the help of (1.2) we can estimate at maximal points of w:
. P ij.
W Fprn Wi
pp+1) 9" ij v i
= Fptl 9 —FYg;5 + ﬂ/FU —|—c€(f'v + 1) Fu
) ij Vo ij 2 41
+@Fp+l<PF i — F gzgfv—i—? fF (p +1)@FU + FY g || Vul||* flv

- 3 €c
/ g, i B e
+ c(flv+1)Fu,u, ) Fp-HF vlJ( 4v2+vf>'
The last bracket is negative for small ¢ due to the boundedness of v. To estimate
the first big bracket we calculate with the help of F¥/g;; > n:

3 9 g y 1 9
—F9gij+ o Fo~t + co(f'v+ 1) Fluu,; < FY (cu g — 292']) 3 T gt -

J
After some well-determined time 7' > 0 when the gradient of u is small enough due
to v — 1, this expression will be negative if w becomes too large?. A very similar

argument applies to the second big bracket, due to v > 3/2. Hence w is bounded.
O

We need a similar estimate of the rescaled principal curvatures.

4.4. Lemma. Under the assumptions of Theorem 1.3 (ii), along (1.1) there exists

a constant ¢, such that
/

Kn §c§.

Proof. Define
Z—logh"+log -+ f(v).

2equivalently, % Fv~1 is small
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We estimate the evolution of z directly from (2.17), Lemma 4.1 and (4.4) and, as
in the proof of Proposition 3.4, from the start calculate in a maximal point of z in
coordinates such that

gij = 0ijs  hij = Kibij, K1 < < K.
First of all there holds

Fkll/{\r/n(:nl, Tij, ik, ) SUC Fkllf{?l(w;l, Topy Tiks x;m)h;ﬁg”
+ ZFMRm(:v s Tym, Lok, Li5) R G ri

= 2FkkRm(x;nv‘r;kv‘T;ka‘T;n)(‘%k - Hn)

<0,
since the sectional curvatures of ¢ are non-negative.
Due to Lemma 2.4 we have

!

e 9
R[] < o, IVRm[ < c3

92’

and we get

FleRm(y Loy Topy Tyly T )g”—l—FleRm(V Tip, Tijy Tiley T31) G g

< C*HVUH Fy +C HquFka

where we have used that the terms in (2.7) involving r., are cancelled, since T
carries the symmetries of a curvature tensor.

Hence
Z— FZ:HF”zij
< Fp+1 F(log h").;(log hy). + Fp+1 F”hzkhk(l — o) - p;—plhz
2 2p )
+ (129” - ?9/22) szpHn +e(l+|f I)i;2 FpHFk [V ulf?
+ c%fﬁllvuﬂ%;l chﬂ 53 ku? “1pk 4 chﬂ 193”%”,6—1&
+f %p}—«;l /%p}«:p +2f 1:; Ff+1F” iV — 1{/ F§+1F”v U
~ " e P + (1199/ ?;) p;plvfl - (?gj - 13;) e

Hence
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D
Fp+1

F'(log h!").;(log h?").;

z— v Zij

< & +1 lF”hmhk(l — f'v)

0" p k ’ p+1 /
T ﬁszle(l_f v) -~ Fp (K”_ﬁf)

9 9 p+1 . . _119/ 19/ L o 9 .
(4.6) +<19’_z9) 7oV ( g ) g (-

,19/2 ,19/ B c 1+ f/) ,19/2 B
+ 5 (Gt 1) L mgwup + 2 S ivulper

92 \ 0 Fon Fr+l
c v 1 D 2f p
- gy s — iy
+ Fp+1193|\VuH/<; Ff+2f Q9Fp+1F VT FP+1F
a f//Fp+1F”” iUig-
Furthermore we insert
n 19/ ,0//
(log hy )i = ;i — (79 19,> — v
and hence
“- Fp+1 FY 25
19/2 D p+ 1 19/
ij k _ _ _ _ !
< e Pl = )+ S b = o) - 25 (- D)

19// 19/ p+1 . 1 _119/ p—l 19/ , o 19/2 1
+<19f‘19> Frl ( oy T T (gl T

19/2 ,0/ B C(1+ f/) 19/2 _
+( 1+1) | ‘Fkuv 12+ 2 et

92 \ 9 Fin Frt+1 92 Fp
c 19 —1 p 7
+ FP‘H ﬁSHVUHH Fk +2f 9 Fp+1F-7 i ,,]

2f/ ,’9/ 19//
7 12 1 i
Fp+1FJ”l J(f Y >+2<19w>pr+1FJ“ iV

Pick
fw) = —log(v™* = B),
where
0<p<—, 1—§<a<1
Then
— v — v
1—f’v—(1 ai_ﬂ B_Bvi_ﬂ)_—§<0
and
2 —f f”—a“ (a+2)(0¢—1)<3a_1 0.
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Hence at a maximal point of z there holds

p
Fp+1

1 . 19/ 19/2 N
< P ((p+1)hn+c19 +cﬁ(h N )

0" B v 2, W IVull
* 1972Fp+1Fk <2+Ce <1+19’<':n >||VU|| Ty Tgr fin >

3a—1 pi
i <4 e f) Frt1 Flvv;,

where we used

z— FY Zij

!

20 VA
—Fv,0, —&—EF”u;iu;j

9| Fidu,

with sufficiently small e. In case sup,, 9 (r) = oo or p < 1, we have ||Vul|? = 0
and hence the result follows from the maximum principle. If ¢/ < c and p = 1 we
supposed that
Hiy 41
Hy,
which implies F}¥ < ¢, cf. [49, Lemma 2.7], and hence
v p o WL
92 Frrl™k ="y Fr
due to Lemma 4.3. Hence the term —(p + 1)h!’ dominates the whole evolution and
we also obtain the bound on z in this case. (]

F=n

4.5. Remark. Lemma 4.4 is the only place where we need that F' has this special
form in case of bounded . Of course the Euclidean case is excluded from this
restriction, since the error terms involving ||Vu||? will not appear here. However,
the Euclidean case has already been settled in [22].

4.2. Decay. The global bounds from Lemma 4.3 and Lemma 4.4 as well as
Fior =0
imply that the rescaled principal curvatures

0

o

range in a compact subset of I' and hence the elliptic operator dpF' is uniformly
bounded,

R; =

cllgl® < dnF (&, €) < CEll*.

The aim of this final section is to show that all &; actually behave according
to the convergence rates described in Theorem 1.3. The following two lemmata
prepare this result. Throughout this whole section, the procedure is similar to the
one in [60].

4.6. Lemma. Under the assumptions of Theorem 1.3 (ii), along (1.1) there exist
constants | and c, such that

Y11 c

D

dF n T gk
Proof. We only have to consider the case that ¥ is unbounded. Come back to the
proof of Lemma 4.3 and consider (4.5) with

fw) =logw.



28 JULIAN SCHEUER

Hence from (4.5) we deduce that
1
z = log (FP> +logv + plog? —plogd + plogn

satisfies
p
Fp+1

p(p+ 1) i 0
S%F Fjw—i—ﬁ, v+ || Vul)?

19/2

Z— F” Z;ij

2
p ij o 1—p* 9 -1 U p— 2
+ 1972FP+1 <(p_ 1)F gm + @F + 19/ D F’U +CHVUH )
2 p - 9" 9 p
ij _z 0y z__ ij
+ Fp+1F »l ,_] ’UFerlF Zﬂ”;] 2p (19/ 19 FerlF ﬂu’J
np(p +1) 9" _=z np(1 —p) 9"
< = (e +c||Vu||2) oy (L eF 4 el Vul?)
P 2 p TN ey
+ Fp+1F J ,zz;j Fp+1F JZ’ ’U 2p (19/ - 5 FP+1F ]Z;iu;j.
For 1 > 0 define
p=(e* = 1),
Then
P o Yy
= (2— Lz) L ——Fz,z 6219/“4—“?9// (u_ p Fiiugu, )p
Fp+174 Fp+1 9! Fp+1 i3
19”2 ,19/// P :
- (“W‘%ﬂw) ot Fwitsp
1) 9" - 2 9 —p
~ np‘lgi:; *) 5671,2((1 — 65)19/'“‘ =+ nﬂpF@’Uileszp
H ©j lop,
- ijgije P PJFC/L”VU”%WL)
np(l—p)liz pT_lz % 1+ ¢V 2 19/# 2 p Fij Ty 219/#
T g2 —er + c||Vul| e L zivge
,19// ,19/ p ; R
—2p (19, —19) Fp+1FJZ u e
Now we estimate at maximal points of p and thus may assume z > 0. Then, also
using
0=09""p; =z, + H( —Duy
- - /'[/19/ u;l;
we obtain
. p ij
p— Fp+1F]p§ij
np(p+1) 9" p=1, v lp,
e L Gl A
o B g5 ol vl
— n(p+ 1) gije p T C|Vu
1— 19/2
np( )7679: (_p + c||Vu||219'“) 7

Fr+l 92
which is negative for sufficiently small p and large times, due to Lemma 3.3 and
the remarks at the beginning of this section. The proof is complete. U
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4.7. Lemma. Under the assumptions of Theorem 1.3 (ii), along (1.1) the i-th
rescaled principal curvature converges uniformly to 1,

VK;

0,
19,—1’—>0,

provided 9" is unbounded.

Proof. Using (4.6) with f(v) = logv we obtain that

U
z = log h;, + log — T + logv
satisfies
= Frtl FYz
i n n ¥? 1 p+19 _, .
S Ferle(lOgh ) (loghn);j+cﬁFp+1 || H2_ Fp g'[} 1(6 _1)
9 Y\Np+1 ., _, ¥ p _, c
+ (19/_19) Fr v (6 —1)+5 Fp (1—6 )+Fp+l 192||VU||
19// D + 1 19/2
FPHF”(logh”) i(log ) — — Fp v i1 —e” )+C192 Fp+1HV“H2
ﬁ/p—’_l -1 _—z/ =z 19/ —z C
R (e* —1)? +5 FP v(l—e )+W@||Vu||
Define

p=(e* = 10",
with p > 0. p satisfies

. p ..
P et Fpii;

._ P / P cgm 9 (P
= (z—mz;ij)ezﬁ“ Fp+1FUZ iz e 0 +MW (u—FpHF]u uJ)p

19//2 19/// D ”
- (M(u B I)W + Mﬁ’) Fp+1F Tusiusp

19”p+1 . 19/p+

¥Y1-p 92 ¢

-1/ z
ScT m U Py oy Fup Pt gz et IVl
c 1 1, n n z
+ 7Fp+lﬁ||Vu||19'“+ 7o +1FJ(logh ).i(log hyy), e
p i R 19// 1 19// i
FP+1F]Z iz €0 + g FP v P—MFFPHFJQU‘P-

At spatial maxima of p we have

"

Y
0=19""p; =z, + uw(ez — Duy
n 19 n 19 n 19 19/’ z
:hnlv@—f—h (19/> v—i—hnﬂ/v +;L19/ (e — Duy

and hence

F'(log hyy)si(log hyy) 5 <07||Vu||2
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We obtain at a maximal point where p > 0

p

P FzH—lFij;U
Yo+l 4, W1
S -y e 1)p_ﬁFpUp
n ¥ _ v -1 9% e 2 o
+ ﬁﬁv P( ,upfg—i-(p—i—l) " )+192Fp+1vu|| g
(4.8) /
+ FP“ 192\|Vu||19“
Yp+1 1—p
<z —1
< S (ke - o e Ivul
n 9 _ v w—1
T gt P< Mpfg‘F(P‘f‘l) " )
Set

p(t) = max p(t, ).

Note that p is Lipschitz continuous, hence differentiable almost everywhere in (0, 0o)
and at points of differentiability there holds

* 8

plt) = S (k).
where

p(taxt) = ﬁ(t)a

cf. [23, Lemma 6.3.2]. The original idea of this useful fact goes back to Hamilton
[30, Lemma 3.5]. Choosing p > 0 small enough, ||Vul[?9* converges to zero due to
Lemma 3.3 and we obtain that for sufficiently large t,

pt) <0

on the set {p > 1}, provided p < 1. Hence in this case p is bounded. In case p =1
we set © = 0 and obtain that for all € > 0 there exist . > 0 and T¢, such that for
all ¢ > T, where p is differentiable, there holds

plt)y>e = p(t) < —d..

[58, Lemma 4.2] implies limsup,_, . p < 0. Hence

li U <1
imsup vk
t_mop g S

in both cases. Now

z":(l—vﬁi%)_n—vH%<n—vF%<i’ l< -
P nvF% N nvF% - nvF% T FY n”
and hence
1 v <cyH 1
(4.9) Uk S —I—Z 11/%19, —-1).
The proof is complete. O

Now we are in the position to optimise the decay estimates. We start with the
gradient.
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4.8. Lemma. Under the assumption of Theorem 1.3 (ii) the function
z=[Vpl?9P

is uniformly bounded. If p = 1, then additionally there exist constants ¢ and o such
that

IVip|? < ce™ .

Proof. If ¥ is unbounded, using Lemma 4.7 we can rewrite the evolution of
2= f(u)| Vel

from (3.2) with
flu) =9"(u)

at maximal points as

a %Ffﬂ FFgm Ry 0 om + T+l FEr upu,z (2?22 - J::/ — J;i’;)
< % <0(1)199/22 +n(p— 1)1:;%22 — np%/ + 7;“2;)
B %Ff—&-l FFg" Ry om.

Since we want to bound z, it suffices to consider spatial maxima at which z is
positive. At such there holds

2z 97? v\ ¥

4.10 N N
) (S Te))
92\ IVel [Vl
In case p < 1 with v = 2p, the right hand side is eventually negative for large ¢, since
only the case of unbounded ¥’ has to be considered to prove the first statement. In

case p = 1 we put v = 0 and regardless whether 9’ is bounded or unbounded, we
use (4.10) to get

Lz < -z

for some ¢ and large times. The exponential decay follows. To prove the remaining
claim, we evaluate (3.4) with

f=v% p=1

and see
2 9" u cv? _,
Lz < Ry (1+1—ce t—Z)F,fz—i—ﬁﬁe s

Hence the function

Z(t) = max z(t, )

So
satisfies
z < ce %z

and is thus bounded. O

We optimise the convergence rate of the rescaled principal curvatures.
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4.9. Lemma. Under the assumptions of Theorem 1.3 (ii), along (1.1) there exists a
constant ¢, such that for all 1 < i < n, the i-th rescaled principal curvature satisfies

‘ ct
VR — —

19/
where we may drop the t-factor if p < 1 or if ¥ is bounded.

1S e

Proof. Only the case that ¢ is unbounded has to be considered.

(i) First we optimise the decay in Lemma 4.6. Using the optimal gradient esti-
mates Lemma 4.8, we see from (4.7) that Lemma 4.6 holds with any u < p(p + 1),
if ¢ is allowed to depend on a lower bound of p(p + 1) — pu.

Now consider the function p defined in the proof of Lemma 4.7 and obtain from
(4.8) with u < p(p + 1) at points where p > 1 that
P Ffﬂ FYpyij

¥ p+1 1-p '
< = <—p + || V|9 + W||Vu||)

— U vF?P p+1
n V" _ (—pu p—1
t gV p(n+o(1)+(p+1)n
Y p+1 1-p o g, CU*
- Zet] <_p+1p+c||Vu| i+ S IVl
1 19// 1
Tyl p(u—(p+1)+o0(1))
<0

in case p < 1 for large times. In case p = 1 the right hand side of this inequality
eventually decays exponentially and thus

p=c
in both cases. Hence for any p < p(p 4+ 1) we have

U Cu
Uf‘in@ -1 S ’197
Now putting 1 = p(p+1) in (4.7) we see that the function p defined in the proof
of Lemma 4.6 satisfies at positive maximal points with p > 1
D
P Frr E s
<P+ DV e,

Fo | i
( —p+p+ )= v e Fp—pp+ CIIVUIIZWO’“))

-  Frtl 9 n ¥
1 — 19/2 p—1
npl(:‘p+1p) WeTz (_p + C||VU||2’!9IP(p+1))
1) 9" =
%ge%z (cq?'_pp + c||VuH219'p(p+1)>
1—p)d? o
+ ‘nplgvp+1p*) ﬁele <—P + CIIVUII2?9’1’(”+1)) :
In case p < 1 we use
19// 19/2
R
to absorb every decaying term into —p in the second line. In case p = 1 we use
W Pp<e
to conclude
p ij o

Fp.; <ec.

p - Ferl
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Hence we obtain
91 1 ct
TE n S e
and the same without the t-factor in case p < 1.

(ii) In the second step we optimise the convergence rate in Lemma 4.7. Therefore
we consider the function p defined in that proof and obtain from (4.8) with p =
p(p + 1) at points where p > 1 that

p= gt P

Vp+1 1—p cy'P(P+1)
< S (- lvulPore) 4
n 9 (=pPpt1) plp+1) —1
g (n+0(1)+(p+1)n
¥ p+1 1—p c'P(p+1)
= S (5 lvulporr e + S
79[/

1
—+ ﬁﬁvilp (p2 -1 + 0(1))

<0

in case p < 1 for large times. In case p = 1 the right hand side of this inequality is
bounded and thus
p<ct

in this case. Estimating (4.9) with the optimised bounds completes the proof. O

We finish the proof of Theorem 1.3 by proving the final statement about the
exponential decay in item (ii). The function

4
z =log¥(u) — —
n

defined on [0,00) x Sy satisfies

v’ 1 v 1 A
Z= - - = ; . — — — =G(y,2 Vz,V?2).
IEW)  n F (36 4 puiuy — 55Fur)  n ( )

Hence

oG —2

Ozj  F*(FW)
which is uniformly elliptic, since ¥’ is globally bounded. z is uniformly bounded,
as can be seen similarly as in [60, Prop. 3.1, Lemma 3.2]. Furthermore

Fg",

IVz| < ¢| V| < ce™
and
V2| < .

Applying the regularity results of Krylov and Safonov as well as Schauder theory,
we obtain uniform C™-bounds for z. Due to interpolation we get

V2| < ce™,
which implies (1.3) with ¢ replaced by et

4.10. Remark. The previous argument is precisely the way to deduce a uniform
bound on the rescaled principal curvatures for the inverse mean curvature flow,
when ¥ is bounded, as it was performed in [52, 71]. The crucial point is here, that
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one does not need curvature estimates to have F* uniformly elliptic. One only
needs a bound on the rescaled speed

~ 0
Then the above argumentation applies.
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