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ISOPERIMETRIC PROBLEMS FOR SPACELIKE DOMAINS IN
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ABSTRACT. We use a locally constrained mean curvature flow to prove the
isoperimetric inequality for spacelike domains in generalized Robertson-Walker
spaces satisfying the null convergence condition.

1. INTRODUCTION

For a bounded domain €2 of the two-dimensional Euclidean, hyperbolic or spher-
ical space the isoperimetric inequality is given by

L? > 47A, L?>>4nA+ A%, L?>4nA— A%,

respectively, where L is the boundary length of €2 and A the area of 2. Equality
holds precisely when € is a metric ball. For open sets 2 of (n + 1) dimensional
Euclidean space this becomes

(1.1) 09 > ¢, |07,

with an explicit dimensional constant c,, where again, equality holds precisely
on balls. Here |-| is the Hausdorff measure of a submanifold of the appropriate
dimension. In higher dimensional hyperbolic and spherical spaces no explicit form
like (1.1) is available. However, the isoperimetric problem is solved, [18, 19, 20]:
For any bounded domain €2 in hyperbolic or spherical space and any geodesic ball
B, with |Q2] = |B,| there holds

|09 > |0B]
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2 B. LAMBERT AND J. SCHEUER

with equality precisely when 2 = B,.. We can describe this result in an alternative
way: Define
fo(r) =1B:],  fi(r) =10B.|,
then
00| > 18B,| = fi(r) = f1o f5 1(|1B.]) = o(|2)),

which is an implicit form of the isoperimetric inequality. In more general Riemann-
ian warped product spaces such an implicit isoperimetric inequality was deduced in
[13], while also on other Riemannian spaces isoperimetric inequalities have received
lots of attention. We do not provide a full bibliography but mention [6, 7, 8, 14, 22].

Much less seems to be known about the comparison of the volume of a domain in
Lorentzian spaces which is bounded by spacelike hypersurfaces. Here the question
is, which hypersurfaces maximize area under volume constraint. Some results are
available in Minkowski space [4], on two-dimensional Lorentzian surfaces satisfying
a curvature bound [3] and in warped product spaces, such as in a certain class of
Friedman-Robertson-Walker spaces [1].

The goal of this paper is to solve the isoperimetric problem for spacelike domains
in a large class of Lorentzian warped product manifolds, which we describe in the
following.

A spacetime

N = (a,b) x Sy, g = —dr®+9*(r)g,
with @ < b real numbers, a compact n-dimensional Riemannian manifold (So, §)
and positive warping factor ¢ € C*([a, b)) is called generalized Robertson-Walker
space.

In this paper we use the locally constrained mean curvature flow, that is, a time
dependent family of spacelike parametrisations x : [0,7) x Sy — N such that

(1.2) i = (Ax,0)v,

to solve an isoperimetric problem in N. Here ©'(r) = 9(r), © is understood to be
defined on the ambient manifold and v is the future directed timelike (i.e. g(v,v) =
—1) normal vector to the flow hypersurfaces ;. The terminology used for this flow
stems from the fact that (1.2) may equivalently be defined by

(1.3) & = (uH —nd (p))v,

where H is the mean curvature of the flow hypersurfaces with respect to —v, p(t,-) =
s, and u is the support function

u = —g(90,,v).

The key observation is that, if N satisfies the null convergence condition below,
(1.3) deforms a hypersurface so as to keep the volume enclosed by a hypersurface
constant while increasing the area of the hypersurface, and the flow converges to
a totally umbilic hypersurface as t — oo. This idea and the suitable adaption of
(1.3) to the Riemannian setting was introduced in [12] and further studied in [13].

A Lorentzian manifold NV is said to satisfy the null convergence condition if for
all lightlike vectors X,

(1.4) Re(X, X) > 0.
We also say that the null convergence condition is satisfied strictly, if (1.4) holds

with strict inequality for all nonzero lightlike X. We observe that this condition is
implied by the more commonly used timelike convergence condition which is well



ISOPERIMETRIC PROBLEMS IN GENERALIZED ROBERTSON-WALKER SPACES 3

known to be important in prescribed mean curvature equations, see for example
the work of Bartnik [5], Ecker and Huisken [10] and Ecker [9]. However, it is also
valid on any Einstein manifold, while the timelike convergence condition is not.

We prove the following isoperimetric inequality for domains bounded by a time-
slice and a closed spacelike hypersurface. For its formulation we first require some
further terminology. A hypersurface ¥ C N is called spacelike, if the induced metric
is positive definite. 3 is the region enclosed by {a} x 8y and 3, see Section 2. Such
a spacelike hypersurface is called achronal if no timelike curve meets ¥ more than
once (see [17, p. 425] for more details). Also note that this is automatically satisfied
if N is simply connected, [17, p. 427].

1.1. Theorem. Let n > 2 and N™t! be a generalized Robertson-Walker space
which satisfies the null convergence condition. Let 3 C N be a spacelike, compact,
achronal and connected hypersurface. Then there holds

p(vol(X)) = |X],
where @: [0,vol(N)) — Ry is the function which gives equality on the coordinate
slices. Furthermore:

(i) If equality holds, then X is totally umbilic.
(i) If N satisfies the null convergence condition strictly, then equality is attained
precisely on the timeslices of N.

2. CONVENTIONS AND SOME HYPERSURFACE GEOMETRY

2.1. Basic notation. Throughout this paper we use the curvature conventions
from [17], in particular the Riemann tensor of a semi-Riemannian manifold with
metric g and Levi-Civita connection V is defined by

Rm(X,Y)Z =VyVxZ -VxVyZ -V xZ

for all vector fields X,Y, Z on N.
Given any orthonormal frame FEi,...,FE, 11 where F,; is timelike, define the
Ricci curvature by

§<Xa Y) = g(%(EzaX)Ela Y) - g<R7m(En+17X)En+17 Y)

Here the summation has been chosen so that the Ricci curvature of the Lorentz
product metric on S™ x R is non-negative.

Spacelike hypersurfaces. Let ¥ C N be a spacelike, compact, connected and
achronal hypersurface given by an embedding x. The manifold N is globally hy-
perbolic [11, Thm. 1.4.2] and Sy is a Cauchy hypersurface. Thus ¥ is a graph over
807

Y ={(p(z"),2): (') € So},
see [11, Prop. 1.6.3]. Latin indices range between 1 and n and greek indices range
from 0 to n. Sometime we will write

r =T.

We state the relations between the geometric quantities of ¥ and the graph
function p. Details can be found in [11, Sec. 1.6]. We use the coordinate based
notation, e.g. the induced metric g is

gij = 9(0;, 05)
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and we denote its Levi-Civita connection by V; = Vj,. We also write
T; = 0;x.
Let v be the future directed timelike normal, i.e.
9(0r,v) <0,
and define the shape operator S = (h;) of ¥ with respect to —v. Then we call
A=h = gikhf = —g(11(8:,9;) ,v) = §(Viv,x;).

the second fundamental form of X, which has eigenvalues with respect to g ordered
by
K1 S e S Kn.

For any spacelike hypersurface the Codazzi-Mainardi equations may be written [17,
Prop. 33, p. 115]

gRm(X,Y)Z,v) = Vxh(Y, Z) — Vyh(X, Z).

The second fundamental form of the slices {z° = r} is
V'(r)
ij = Wgzy
[11, (1.6.13)], while the induced metric is
9ij = —0ip0;p +9%(p)gij = ~0ipd;p + Gij-
With the definition

>

v? =1-972§"8;p0;p,
the second fundamental form satisfies
v hij = Vijp + hij,

[11, (1.6.11)]. Note that in this reference the past directed normal is used.
Suppose O solves ©’(r) = ¥(r), and by abuse of notation we identify © = O(r)
so that © : N — R. As a function on N we have

ﬁiﬂ@ == —ﬁlyaﬂ,
while on X,
9
Vij@(p) = ﬁlaipajp + ﬁvijp = —ﬁ'gij + ;hij.

In particular we observe that (1.2) and (1.3) are the same flows.
We define the support function

u = g = —g(’l?a,r’l/) = y(ﬁ@,y),

and observe that this is related to VO by the identity
VO] = ¢70,00,0 = u?® — 9>
We will use the following important inequality in several places.

2.1. Lemma. If N satisfies the null convergence condition and ¥ C N is a spacelike
graph as above, then

(2.1) Re(VO,v) > 0.
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Proof. In a GRW space VO is an eigenvector of Re, [17, Cor. 43, p. 211], and so
Re(v, VO) = Re(v, VO + uv)
= uRc(v,v) + Re(v, VO)

:um:(V—V@“ V—V®“>+RC<V—;)Z v9)

(2.2) VARV V
u’ — (Ve Ve\ —
— uRe(W, W),
where V is the projection of v onto (ﬁ@)l-
V@

2.3 = 1=

(2:3) W=V+ 792 5

Since [V|> = u20~2 — 1, W is a lightlike vector and the result follows. O

Area and volume calculations. Let ¥ be graphical as above. We define the
integral of a function f € C*°(X) by

Here dwg is the Riemannian volume form on . For
Si={(r,§) e N:a <r<p(€), e S}
we define the enclosed volume (see [17, p. 194]) by

R () /4 t
vol(%) / / Vdet(gii(s,2)) 4 dwa:/dvolg,
So Ja det gz_] )) =

where dw, is the volume form on the time slice {a} x Sy and locally

dvoly = \/|det(gas)|

== /1
b

Suppose S C Nis open with compact closure such that % may be written as a
union of smooth spacelike hypersurfaces with outward pointing normal v. If X is a
smooth vector field on ¥ then

/Edeolz—/A (v, X).
5 0%

This follows from Stoke’s theorem and [17, Lemma 21, p. 195].

We now suppose that & C N is a time dependent set which is bounded by
spacelike hypersurfaces Yy and 3, where ¥ varies with time and X is fixed. Let x
be a time dependent parametrization of ¥ then the above divergence theorem and
[17, Lemma 21, p. 195] imply that

(2.4) 9, vol($y) = — /Z oy

Throughout the subsequent computations of this paper, differential operators
V and A are always those induced on the flow hypersurfaces ;. We suppress the

The surface area of ¥ is
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subscript 3; for the sake of a shorter notation. Differential operators of the ambient
space are always furnished with an overbar.

2.2. Lemma. Let n > 2. Along the flow (1.2)

(i) the volume vol(¥) is preserved and
(ii) the surface area increases, provided (N, g) satisfies the timelike convergence
condition.

If 04|%¢] = 0, then X is umbilic.

Proof. By equations (2.4) and (1.2) we have that

dvol(Sy) = [ A®=0.
¢

We recall that
(H* - |AP),  of =Hg"7 —h¥,

g9 —

DN | =

S0
Vios = VIH — V;h = —g(Rm(z;,27)2*,v) = —Re(2?,v).

Therefore, by the divergence theorem

(2.5) /2 (209u — (n — 1)0'H) :/ odVi0 = [ Rec(r,VO).

P pa

Using Lemma 3.2 we get

0|24 :/ (H?*u —n9'H)
P

2n [ —
2. =/ (H*-
(2.6) /( n_102+u(n_1)Rc(V@,u))u
n o
> Altu.
—n-—1 Et‘ | Y
where we used (2.5) on the second line and (2.1) on the last line. O

3. EVOLUTION EQUATIONS
We now calculate several required evolution equations.
3.1. Lemma. On ¥, the function © satisfies
O — uAB® = 0.
Proof. We calculate that

0 =g(Ve,i) =g(Ve,v)Ae = uAe.

3.2. Lemma. On %, the induced metric g;; satisfies

gij = thjA@
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Proof.

0 0
Og(zi,x;) =g (83& (A@V),iEj) +g (W(A@V),l‘i> = 2h;; AO.

3.3. Lemma. On ¥; the future oriented normal v satisfies
1

Viv=VAO =uVH+ HVu — n%V@.
Proof. We have
g (ﬁg-cy, xz) =—g (V,ﬁizi) =—g (1/, ﬁxx) =—g (l/,ﬁxi (A@V)) = V,AO

and observe "

Vi(=nd') = —nd"g(Vr,z;) = —ngg(v@,xi)-

3.4. Lemma. On X, the function u satisfies

"

\/7119’> - nq%(u2 — 9%

Hu _
NG
—uRe(VO,v) + Hg(Vu, VO).

i — ulu = —|APu? — (

Proof. We calculate
u=g(Vsr,VO) + 7 (v, V:VO)
19// .
= ug(VH,VO) + Hg(Vu,VO) — n—-|VO[* + AGV 0.
We also see that )
Viu=hiVi0 +V,,0 =hVv,0

and
2
T

Vi =V;hi VO + hihgju+ hiV,, . © = V;hi V0 + hihgju — 9 hyj.
Taking a trace, and applying Codazzi Mainardi on the first term we see that
Au = g(VH,VO) + g(Rm(x;,VO)z! v) + |Al>u —9'H
g(VH,VO) + |A]*u+ Re(VO,v) — 9 H.

Overall we have
u — ulAu

"

= — |A]Pu® + H§g(Vu,VO) — nq%(u2 —9?%) +9'AO — uRc(VO, v) + VuH
1

— |A2u? — uRc(VO,v) + 20" uH — n1%u2 +n(0"9 — (9)?) + Hg(Vu, VO)

1 1 ¥
= —|APu? + —H*u? — —H?*u? + 20'Hu — nv'? — n?u2 + "'y
n n
— uRc(VO,v) + Hg(Vu, VO)
H

2 "
= —|APu? - <\/g - \/519’) - nl%u2 +nd"9 — uRc(VO,v) + Hg(Vu, VO).



8 B. LAMBERT AND J. SCHEUER

O
4. GRADIENT ESTIMATE
4.1. Lemma. There exist uniform bounds
ierlof@ < O(p,t) < s;&t)@
Proof. This follows directly from Lemma 3.1 and the maximum principle. (I

4.2. Lemma (Gradient bound). The support function is uniformly bounded along
the flow.

Proof. Define

w=u+ 02
Then w satisfies
2,2
w—uAw < — + 2HuwY 4+ Hg(Vu,VO) — 2u|VO|? + c(u® + 1)
2,2
< - + 2HwY — 2HO(u? — 9?) — 2u?

+c(u® + 1) + Hg(Vw, VO)

< (e - 1> H?u? — 2u% + ¢ (v + 1) + Hg(Vw, VO),
n

where we estimated using Young’s inequality on the final line. At a large maximal
point of w, w must also be very large, as p is bounded. Setting € = %, the result
follows from the maximum principle.

|

4.3. Corollary. Along (1.3) we have uniform C™-estimates for every m and long-
time existence of the flow.

Proof. Under (1.3), the graph function p(-,t) satisfies a quasi-linear parabolic equa-
tion which, by Lemmas 4.1 and 4.2, is uniformly parabolic. Lemmas 4.1 and 4.2
and standard application of the Nash-Moser—De Giorgi theorem [16, Ch. XII] pro-
vides uniform C'*%*%* bounds on p, and then Schauder theory [15, Thm. IV.10.1,
p. 351-352] implies uniform estimates to all orders. Standard parabolic existence
theory completes the proof. ([

5. COMPLETION OF THE PROOF

Proof. We have to prove that the flow converges to a coordinate slice {r = const}
and finish the proof of Theorem 1.1. We will prove that the function © on the
flowing hypersurface converges to a constant as ¢ — oo using similar methods to
[2, Thm. 3.1] and [21, Sec. 6.2]. Recall that O satisfies

0 —uAB® =0,
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where uA is uniformly elliptic due to the support function estimates. Hence ©
enjoys the validity of the strong maximum principle for parabolic operators and
hence the oscillation of ©,

w(t) = 0scO(t, ) = max O(t,-) — min O(¢, -)

is strictly decreasing, unless © is constant at some (and hence all) ¢ > 0, in which
case we would be done.

Suppose that w does not converge to zero as t — oo. Then it converges to
another value wy, > 0. Define a sequence of flows by

and the corresponding functions ;. Due to Corollary 4.3, on a given time interval
[0,T] we can apply Arzéla-Ascoli and obtain smooth convergence of a subsequence
of z; to a limit flow

Zoo: [0,T]) x Sg — N,

which solves the same flow equation (1.2). By construction, the oscillation of the
associated limiting function O, is we > 0 constantly, which is a contradiction to
the strong maximum principle, which holds for ©,, as well. We conclude that

A e =0

and hence every subsequential limit of the original flow x must be a time-slice of
the spacetime N. By the barrier estimates in Lemma 4.1, this timeslice is unique
and we obtain that the whole flow = converges to a timeslice.

We conclude the proof by showing that the isoperimetric inequality holds. Hence
let ¥ satisfy the assumption of Theorem 1.1 and evolve ¥ by the flow (1.2). Define

Sg={r=R}, fo(R)=vol(Sr), fi(R)= Skl

Clearly fy is monotonically increasing in R, and ¢ = f1 o fi L. As vol(%,) is
fixed, this defines a unique slice Sg_ to which the flow must converge with area
o(vol(Sg..)). By the monotonicity properties of Lemma 2.2 the claimed isoperi-
metric inequality holds.

If equality holds and ¥ was not umbilic, then equation (2.6) implies that varia-
tions of ¥ along (1.2) would violate this inequality. Hence in the equality case ¥
must be umbilic.

It remains to prove item (ii) of Theorem 1.1. On a time slice equality holds
by construction. Hence assume equality holds on ¥ and evolve ¥ by (1.2). The
variation formula for the area (2.6) and (2.2) show that

n —_—
> W. W).
at |Et | n 1 t URC( ; )

Hence we must have

Re(W, W) =0,
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for otherwise we would reach a contradiction to what we have already proved. Due
to the strict null convergence condition we obtain W = 0 and from (2.3) we deduce

u? 1
02%2‘1:\/@2‘1’

hence v =1 and VO = 0. This shows that ¥ is a timeslice. O
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