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ALEXANDROV-FENCHEL INEQUALITIES FOR
CONVEX HYPERSURFACES WITH FREE BOUNDARY

IN A BALL

Julian Scheuer, Guofang Wang & Chao Xia

Abstract

In this paper we first introduce quermassintegrals for free bound-
ary hypersurfaces in the (n+ 1)-dimensional Euclidean unit ball.
Then we solve some related isoperimetric type problems for con-
vex free boundary hypersurfaces, which lead to new Alexandrov-
Fenchel inequalities. In particular, for n = 2 we obtain a Minkowski-
type inequality and for n = 3 we obtain an optimal Willmore-type
inequality. To prove these estimates, we employ a specifically de-
signed locally constrained inverse harmonic mean curvature flow
with free boundary.

1. Introduction

The study of free boundary surfaces or hypersurfaces has a very long
history. It goes back at least to Courant [6]. Since then, there have been
a lot research activities on this topic, see for example [18, 17, 38, 42].
Due to recent developments inspired by the proof of the Willmore con-
jecture by Marques-Neves [33] and Fraser-Schoen’s work on the first
Steklov eigenvalue and minimal free boundary surfaces [10, 11], there
are many new interesting results on the existence of minimal free bound-
ary surfaces. We are interested in the study of hypersurfaces in the unit
ball with free boundary in the unit sphere. Such hypersurfaces share
many properties with closed ones in the Euclidean space or the sphere.
This naturally leads to questions, such as if a certain result is true for
hypersurfaces of the sphere, is it also true for hypersurfaces with free
boundary on the sphere. One good example is a result of Fraser-Schoen
[11]:

If Σ is a free boundary minimal annulus given by first Steklov
eigenfunctions, then Σ is a critical catenoid.
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This is a free boundary version of a result of Montiel-Ros [34] for closed
minimal surfaces in the unit sphere. However, the proof is much more
delicate. In fact, in many cases the free boundary version is more diffi-
cult or even left open. For example, a free boundary version of the Law-
son conjecture solved by Brendle [2] is still open [9, 35]: Is the critical
catenoid the unique embedded annulus? One can also ask if the critical
catenoid has the least area among minimal annuli. Its counterpart in
the unit sphere was solved by Marques-Neves [33] and plays a key role
in the resolution of the Willmore conjecture. We remark that the criti-
cal catenoid does not minimize the Willmore functional (a conformally
invariant functional with a correction term involving the geodesic cur-
vature of the boundary), but the piece of the Clifford torus intersecting
the unit sphere does. The difficulties arise from two different geometries.
Unlike the theory of closed hypersurfaces, a free boundary hypersurface
lies in two different geometries: the Euclidean geometry for its interior
and the spherical geometry for its boundary. One might have to deal
with these two geometries simultaneously. In our recent work, we have
used a vector field which is conformal Killing in the Euclidean space and
is also conformal Killing on the unit sphere after restriction. This vector
field helped us to solve the stability problem for CMC free boundary
hypersurfaces in [48]. It will also play an important role in this paper.
The objective of this paper is to find a counterpart of quermassintegrals
(cross-section integrals) for free boundary hypersurfaces and consider
related isoperimetric type problems. We will see in this paper that the
quermassintegrals we find involve not only geometric integrals in the
Euclidean space, but also geometric integrals in the spherical space. We
hope that our research provides a deeper understanding of free boundary
hypersurfaces and leads to more interesting questions, for example:

Is there an integral geometry for free boundary hypersurfaces in a
Euclidean ball?

This article is mainly about convex hypersurfaces with boundary
(Σ, ∂Σ) in the closed (n + 1)-dimensional Euclidean unit ball B̄n+1.
Hereby we mean that the second fundamental form is semi-definite. At
the boundary ∂Σ the hypersurface is supposed to meet the unit sphere
Sn ⊂ Rn+1 perpendicularly. We will label this property via the following
terminology.

1.1. Definition. Let n ≥ 2 and Σ ⊂ B̄n+1 be a smooth compact,
embedded topological closed n-ball, given by an immersion

x : B̄n → Σ ⊂ B̄n+1.
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We say that Σ has free boundary in the unit ball, if

x(Bn) ⊂ Bn+1

∂Σ ⊂ Sn〈
N̄ , ν

〉
|∂Bn = 0,

where ν is a smooth choice of a unit normal field on Σ and N̄ is the
position vector field in Rn+1, i.e. its restriction to Sn is the outward
normal on Sn. We also identify, without ambiguity, the outward pointing
conormal µ of ∂Σ ⊂ Σ with N̄ .

We are interested in geometric inequalities for free boundary hyper-
surfaces in the unit ball. The most prominent and best studied one is
the relative isoperimetric inequality, which holds in a broad sense, cf.
[5, Thm. 18.1.3]. Here we want to prove higher order generalisations of
this, which are classically called Alexandrov-Fenchel inequalities. In the
case of closed convex hypersurfaces of the Euclidean space Rn+1 these
are

ˆ
Σ
Hk ≥ ω

k−l
n−l
n

(ˆ
Σ
Hl

)n−k
n−l

, 0 ≤ l < k ≤ n,

with equality precisely at spheres. ωn denotes the surface area of Sn
and Hk the normalized k-th mean curvatures of Σ with the convention
H0 = 1 and Hn+1 = 0, see [37]. There are generalizations to other
space forms, such as the hyperbolic space [12, 13, 29, 47] and the
sphere [31, 49]. The aim of the present paper is to find the correct
extensions to hypersurfaces with free boundary in the unit ball.

In order to state the main theorem, we have to introduce some more
notation. If Σ is strictly convex, then ∂Σ ⊂ Sn is a strictly convex
hypersurface of the unit sphere and bounds a strictly convex body in

Sn, which we denote by ∂̂Σ, cf. [8]. Denote by Σ̂ the domain enclosed

by Σ in Bn+1, which contains ∂̂Σ. Let σk denote the k-th elementary
symmetric polynomial, evaluated at the principal curvatures of the hy-
persurface Σ,

σk =

(
n

k

)
Hk, 0 ≤ k ≤ n, σn+1 = Hn+1 = 0.

Then we define the following geometric functionals, which we expect to
be the correct counterparts to the quermassintegrals for closed convex
hypersurfaces.
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(1.1)

W0(Σ̂) = |Σ̂|

W1(Σ̂) =
1

n+ 1
|Σ|

Wk(Σ̂) =
1

n+ 1

ˆ
Σ
Hk−1 +

k − 1

(n+ 1)(n− k + 2)
W Sn
k−2(∂̂Σ), 2 ≤ k ≤ n+ 1,

where for a k-dimensional submanifold M ⊂ Rn+1 (with or without
boundary), |M | always denotes the k-dimensional Hausdorff measure of

M . W Sn
k−2(∂̂Σ) denotes the standard (k − 2)-th quermassintegral of the

closed convex hypersurface ∂Σ ⊂ Sn. We refer to section 2 for a descrip-
tion via curvature integrals and for more information. Furthermore we
define the spherical caps of radius R around e ∈ Sn by

CR(e) = {x ∈ B̄n+1 : |x− (R2 + 1)
1
2 e| = R}, R <∞,

where we will drop the argument e, in cases where it is not relevant.
Let H denote the mean curvature of a hypersurface, i.e. H = σ1.

The main results we will present are geometric inequalities relating
some particular quantities from (1.1) of convex free boundary hypersur-
faces in the unit ball:

1.2. Theorem. Let n ≥ 2 and Σ ⊂ B̄n+1 be a convex free boundary
hypersurface in the unit ball. Then

Wn+1(Σ̂) =
ωn

2(n+ 1)

and for 0 ≤ k ≤ n− 1 there holds

Wn(Σ̂) ≥ (fn ◦ f−1
k )(Wk(Σ̂)),

where fk = fk(r) is the strictly increasing real function

fk(r) = Wk(Ĉr).

Equality holds if and only if Σ is a spherical cap or a flat disk.

1.3. Remark. The monotonicity of the functions fk is proven in sec-
tion 4.

We obtain the two following important special cases immediately:

1.4. Corollary. Under the assumptions of Theorem 1.2, for n = 2
there holds the Minkowski type inequality

1

6

(ˆ
Σ
H + |∂̂Σ|

)
≥ f2 ◦ f−1

1

(
1

3
|Σ|
)

and for n = 3 we obtain a Willmore type inequality

(1.2)
1

12

(
1

3

ˆ
Σ
H2 + |∂Σ|

)
≥ f3 ◦ f−1

1

(
1

4
|Σ|
)
,
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where in each case equality holds precisely on spherical caps or flat disks.

Note that in [45] Volkmann obtained an inequality similar to (1.2)
(with equality on caps and disks) in case n = 2 for a much broader
class of hypersurfaces using methods from geometric measure theory. In
arbitrary higher dimensions, a Willmore type estimate for the convex
case was deduced in [28], however with equality only on flat disks. Hence
(1.2) is an extension of this result in dimension n = 3.

The method of proof follows the nowadays classical method for prov-
ing geometric inequalities by employing monotonicity properties along
and convergence of a suitable curvature flow. In the case of closed hyper-
surfaces, such methods were used in [19] to deduce Alexandrov-Fenchel
inequalities and in [26] to prove the Riemannian Penrose inequality. In
other ambient spaces there is a zoo of variants of such inequalities, e.g.
[1, 7, 12, 25, 47, 49] in the hyperbolic space, [16, 31, 49] in the sphere
and [4, 14] in more general ambient spaces.

The most suitable flows for this strategy are flows that decrease or
increase a certain quantity, while preserving another one. Together with
the knowledge that the flow converges to a well understood limit object,
this implies the inequality.

In the paper [20], Guan and Li constructed the mean curvature type
flow

(1.3) ẋ = (n− σ1 〈x, ν〉)ν

for closed and starshaped hypersurfaces in Rn+1. The Minkowski iden-
tity ˆ

M
n =

ˆ
M
σ1 〈x, ν〉

shows that the enclosed volume is preserved, while the second Minkowski
identity ˆ

M
nσ1 =

ˆ
M
σ2 〈x, ν〉

shows that the surface area is decreasing. Together with suitable a priori
estimates this gave a new flow approach to the isoperimetric inequality
for starshaped hypersurfaces. Also in [20], a similar flow was considered
in any space forms. Further generalizations of such flows were treated
in [21, 22, 36]. A suitably modified version of (1.3) for free boundary
hypersurfaces in the unit ball will be treated in [46]. Possible general-
izations also contain inverse type flows

ẋ =

(
cn,k
σk
σk−1

− 〈x, ν〉

)
ν,

which have similar monotonicity properties due to the higher order
Minkowski identities, cf. [3].
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In the recent preprint [48, Prop. 5.1], GW and CX have proven new
Minkowski identities for immersed hypersurfaces Σ with free boundary
in the unit ball:ˆ

Σ
σk−1 〈x, e〉 =

k

n+ 1− k

ˆ
Σ
σk 〈Xe, ν〉 , 1 ≤ k ≤ n.

Here e ∈ Sn is fixed and Xe is the conformal Killing field

Xe = 〈x, e〉x− 1

2
(|x|2 + 1)e.

The advantage of these Minkowski identities is that they do not contain
any boundary integrals.

Motivated by these identities as well as the original flow (1.3) due to
Guan and Li, it is natural to consider the following inverse type flow for
strictly convex hypersurfaces with free boundary in the unit ball:

ẋ =

(
〈x, e〉
n σn
σn−1

− 〈Xe, ν〉

)
ν

with a suitably chosen direction e ∈ Sn. We will prove that this cur-
vature flow (with e to be chosen in dependence of the initial data) will
drive the strictly convex initial data in an infinite amount of time to
a spherical cap. On the other hand we will show that the quantities
in (1.1) have certain monotonicity properties, which will allow us to
conclude the proof of Theorem 1.2. The restriction to σn is due to the
technical obstruction, that for the general curvature function σk/σk−1

we could not prove the preservation of convexity along this flow. How-
ever, we still conjecture that all the lower order Alexandrov-Fenchel
inequalities are true for convex free boundary hypersurfaces.

Finally we mention some previous results on curvature flows with
free boundary in the unit ball. The classical mean curvature flow was
considered in [40, 41]. The inverse mean curvature flow was treated in
[27], where it was shown that strictly convex initial data are driven to
a flat perpendicular disk. We will also use several estimates for strictly
convex hypersurfaces with free boundary in the unit ball, which were
proven in this paper.

Our exposition is organized as follows. In section 2 we collect our
conventions on geometric objects and we recall the definition of the
quermassintegrals. In section 3 we prove the relevant properties of our
flow and in section 4 we finish the proof of Theorem 1.2.

2. Quermassintegrals

Notation and basic definitions. In this section we state the basic
conventions used in this paper. Let M be a smooth manifold and g
be a Riemannian metric on M with Levi-Civita connection ∇. Our
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convention for the Riemannian curvature tensor Rm is

Rm(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

and the purely covariant version is

Rm(X,Y, Z,W ) = g(Rm(X,Y )Z,W ).

Let

x : M → Rn+1

be the smooth embedding of an n-dimensional closed and connected
manifold. The induced metric of x(M) is given by the pullback of the
ambient Euclidean metric ḡ by x. The second fundamental form h of
the embedding x is given by the Gaussian formula

∇̄XY = ∇XY − h(X,Y )ν.

The Weingarten operator is defined via

g(W(X), Y ) = h(X,Y )

and the Weingarten equation says that

∇̄Xν =W(X).

Finally, we have Gauss equation,

Rm(W,X, Y, Z) = (h(W,Z)h(X,Y )− h(W,Y )h(X,Z)) .

2.1. Remark. We will simplify the notation by using the following
shortcuts occasionally:

(i) When dealing with complicated evolution equations of tensors, we
will use a local frame to express tensors with the help of their
components, i.e. for a tensor field T ∈ T k,l(M), the expression

T i1...ikj1...jl
denotes

T i1...ikj1...jl
= T (ej1 , . . . , ejl , ε

i1 , . . . εik),

where (ei) is a local frame and (εi) its dual coframe.
(ii) The coordinate expression for the m-th covariant derivative of a

(k, l)-tensor field T is

∇mT =
(
T i1...ikj1...jl;jl+1...jl+m

)
,

where indices appearing after the semi-colon denote the covariant
derivatives.

(iii) For convenience the components of the Weingarten map W are
denoted by (hij).
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Quermassintegrals in Rn+1. In order to compare our new geomet-
ric integrals for free boundary hypersurfaces with the quermassintegrals
for closed hypersurfaces in a space form, we start to introduce the quer-
massintegrals in Rn+1. Let Ω be a convex body (non-empty, compact,

convex set) in Rn+1. The quermassintegrals WRn+1

k are defined by

WRn+1

0 (Ω) = |Ω|, WRn+1

1 (Ω) =
1

n+ 1
|∂Ω|,

WRn+1

k (Ω) =
1

n+ 1

(
n

k − 1

)−1 ˆ
∂Ω
σk−1dA

=
1

n+ 1

ˆ
∂Ω
Hk−1dA, 2 ≤ k ≤ n+ 1.

In particular,

WRn+1

n+1 (Ω) =
ωn
n+ 1

.

The first variation formula of WRn+1

k is as follows. Consider a family of
bounded convex bodies {Ωt} in Rn+1 whose boundary ∂Ωt evolving by
a normal variation with speed function f , then

d

dt
WRn+1

k (Ωt) =
n+ 1− k
n+ 1

ˆ
∂Kt

HkfdAt, 0 ≤ k ≤ n+ 1.(2.1)

Quermassintegrals in Sn. For a convex body (non-empty, compact,
convex set) K ⊂ Sn with smooth boundary, the quermassintegrals W Sn

k
are inductively defined by

W Sn
0 (K) = |K|, W Sn

1 (K) =
1

n
|∂K|,

W Sn
k (K) =

1

n

(
n− 1

k − 1

)−1 ˆ
∂K

σS
n

k−1dA+
k − 1

n− k + 2
W Sn
k−2(K)

=
1

n

ˆ
∂K

HSn
k−1dA+

k − 1

n− k + 2
W Sn
k−2(K), 2 ≤ k ≤ n,

where by σS
n

k we denote the k-th elementary symmetric polynomial,
evaluated at the n−1 principal curvatures of the hypersurface ∂K ⊂ Sn
and

HSn
k =

1(
n−1
k

)σSnk , 0 ≤ k ≤ n− 1, HSn
n = σS

n

n = 0.

In particular,

W Sn
n (K) =

ωn−1

n
due to the spherical Gauss-Bonnet-Chern’s Theorem, cf. [39].

The first variation formula of W Sn
k is as follows. Consider a family of

bounded convex bodies {Kt} in Sn whose boundary ∂Kt evolves by a
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normal variation with speed function f , we have similarly
(2.2)
d

dt
W Sn
k (Kt) =

1(
n
k

) ˆ
∂Kt

σS
n

k fdAt =
n− k
n

ˆ
∂Kt

HSn
k fdAt, 0 ≤ k ≤ n.

This can be proved by a simple induction argument; see for example
[47, Prop. 3.1] for a similar deduction in the hyperbolic case.

Related quantities for free boundary hypersurfaces in B̄n+1.
Let Σ ⊂ B̄n+1 be a smooth convex, embedded hypersurface with free

boundary ∂Σ ⊂ Sn. Denote by ∂̂Σ the convex body in Sn enclosed by

∂Σ. Denote by Σ̂ the enclosed convex domain in B̄n+1 which contains

∂̂Σ.
We define Wk for Σ̂ ⊂ B̄n+1 as follows.

(2.3)

W0(Σ̂) = |Σ̂|, W1(Σ̂) =
1

n+ 1
|Σ|,

Wk(Σ̂) =
1

n+ 1

(
n

k − 1

)−1{ˆ
Σ
σk−1dA+

(
n

k − 2

)
W Sn
k−2(∂̂Σ)

}
=

1

n+ 1

ˆ
Σ
Hk−1dA+

1

n+ 1

k − 1

n− k + 2
W Sn
k−2(∂̂Σ), 2 ≤ k ≤ n+ 1.

It is the following variational formula which motivates our definition
of the Wk.

2.2. Proposition. Let {Σt} be a family of smooth, embedded hypersur-
faces with free boundary in B̄n+1, given by the embeddings x(·, t) : B̄n →
B̄n+1, which evolve by

∂tx(·, t) = f(·, t)ν(·, t).

Then there holds

(2.4) ∂tWk(Σ̂t) =
n+ 1− k
n+ 1

ˆ
Σt

Hkf dAt, ∀0 ≤ k ≤ n+ 1.

In particular,

(2.5) ∂tWn+1(Σ̂t) = 0.

Proof. The following general evolution equations are valid

ġij = 2fhij ,

ḣij = −f;
i
j − fh

i
mh

m
j .

The variational formulas for W0 and W1 are well-known. Consider the
case k ≥ 2. We prove the following equivalent formula of (2.4).

(2.6) ∂t

{ˆ
Σ
σk−1dA+

(
n

k − 2

)
W Sn
k−2(∂̂Σ)

}
=

ˆ
Σt

kσkf dAt.
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We calculate, using

∂σk−1

∂hji
himh

m
j = σ1σk−1 − kσk, 2 ≤ k ≤ n,

∂σn

∂hji
himh

m
j = σ1σn,

that

∂t

ˆ
Σt

σk−1 dAt =

ˆ
Σt

σk−1fσ1 dAt −
ˆ

Σt

∂σk−1

∂hji
f;
i
j dAt

−
ˆ

Σt

∂σk−1

∂hjj
himh

m
j f dAt

=


´

Σt
kσkf dAt −

´
∂Σt

∂σk−1

∂hji
f;jµ

i dAt, 2 ≤ k ≤ n

−
´
∂Σt

∂σk−1

∂hji
f;jµ

i dAt, k = n+ 1,

where we have used that the σk are divergence-free in Rn+1. Let {eI}2≤I≤n
be an orthonormal frame for ∂Σ, so that {e1 = µ, (eI)2≤I≤n} is an or-
thonormal frame for Σ along ∂Σ. Since µ is a principal direction due to
the free boundary condition, there holds

∂σk−1

∂hJµ
= 0, 2 ≤ J ≤ n.

Differentiation of 〈ν, µ〉 = 0 with respect to time gives

〈−∇f, µ〉+ fhS
n

νν = 0,

which implies

(2.7) ∇µf = f.

It follows that ˆ
∂Σt

∂σk−1

∂hji
f;jµ

i dAt =

ˆ
∂Σt

∂σk−1

∂hµµ
f dAt.

On the other hand, the flow of x(·, t) induces a normal flow in Sn
with speed f . It follows from (2.2) that

∂tW
Sn
k−2(∂̂Σt) =

1(
n
k−2

) ˆ
∂Σt

σS
n

k−2f dAt.

Combining these equalities, also having in mind that

∂σk−1

∂hµµ
= σS

n

k−2,

gives (2.6), and hence (2.4). q.e.d.
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2.3. Remark. The variation formulas of geometric integrals Wk, which
we define for free boundary hypersurfaces,

∂tWk(Σ̂t) =
n+ 1− k
n+ 1

ˆ
Σt

Hkf dAt ∀1 ≤ k ≤ n,

are similar to those for quermassintegrals for closed hypersurfaces in
a space form. Therefore we believe that these geometric integrals are
correct counterparts to the classical quermassintegrals. In fact, forWn+1

we also have a very similar form, see the next Proposition. It is an
interesting question whether one can establish an integral geometric
theory for free boundary hypersurfaces in a ball.

2.4. Proposition. Let n ≥ 2 and Σ ⊂ B̄n+1 be a convex free boundary
hypersurface in the unit ball. Then

Wn+1(Σ̂) =
1

2

ωn
n+ 1

.

The proof will be given in Appendix A. In fact, we will give a precise
formula for Wn+1 for any free boundary hypersurface in terms of the
Euler characteristic.

2.5. Remark. For n = 1 there holds

W2(Σ̂) =
1

2

(ˆ
Σ
κds+ |∂̂Σ|

)
=
π

2
.

For n = 2 we have

W2(Σ̂) =
1

6

(ˆ
Σ
HdA+ |∂̂Σ|

)
and

W3(Σ̂) =
1

3

(ˆ
Σ
σ2dA+ |∂Σ|

)
=

2π

3
,

3. The curvature flow

Throughout this section Σ is as in Theorem 1.2 and in addition
strictly convex. In order to prove the proposed geometric inequality,
we use the following curvature flow with free perpendicularity condition
on Sn,

(3.1)
ẋ = fν ≡

(
〈x, e〉
F
− 〈Xe, ν〉

)
ν

x(0, B̄n) = Σ0 := Σ,

where e ∈ ∂̂Σ is chosen such that ∂̂Σ lies in the open hemisphere

H = {x ∈ Sn : 〈x, e〉 > 0}
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and where Xe is the conformal Killing field

Xe = Xe(x) = 〈x, e〉x− 1

2
(|x|2 + 1)e.

In particular we will use the curvature function

(3.2) F = n
σn
σn−1

and denote the flow hypersurfaces by Σt = x(t, B̄n). The normalization
is chosen such that

F (1, . . . , 1) = 1.

Monotonicity. The main motivation to study the flow (3.1) comes
from its monotonicity properties. From Proposition 2.2 we obtain:

3.1. Proposition. Along the flow (3.1), the quantity Wn(Σ̂t) is pre-

served and Wk(Σ̂t) is increasing for all 0 ≤ k ≤ n − 1. In case

0 ≤ k ≤ n − 1, Wk(Σ̂t) is constant if and only if Σt is a spherical
cap.

Proof. Expressing (2.4) for 1 ≤ k ≤ n explicitly gives

(n+ 1)

(
n

k − 1

)
∂tWk(Σ̂t) =

k

n

ˆ
Σt

(
σkσn−1

σn
〈x, e〉 − nσk 〈Xe, ν〉

)
≥ k
ˆ

Σt

(
n− k + 1

k
σk−1 〈x, e〉 − σk 〈Xe, ν〉

)
= 0,

due to Newton’s inequality and [48, Prop. 5.1]. If k = n, we have
equality. For k = 0 we have

∂tW0(Σ̂t) =

ˆ
Σt

(
〈x, e〉
nσn
σn−1

− 〈Xe, ν〉

)
≥
ˆ

Σt

(
n 〈x, e〉
H

− 〈Xe, ν〉
)
≥ 0,

due to the Heintze-Karcher-type inequality in [48, Thm. 5.2]. This
proves the first claim, while the second claim is due to the equality case
of Newton’s inequality. q.e.d.

In the next part of this section we prove the smooth convergence
of the solution of (3.1) to a spherical cap. The previous monotonicity
properties will then finish the proof of Theorem 1.2.

Barriers. Contrary to a purely expanding inverse curvature flow, as
it was considered in [27] and applied in [28] to give an estimate for
a Willmore type quantity for convex free boundary hypersurfaces, our
flow (3.1) will stay away from the minimal disk and hence, at least in
principle, natural singularities are avoided. This nice feature is due to
the constraining terms 〈x, e〉 and 〈Xe, ν〉, which force the flow to remain
between two spherical barriers.
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First we have the short-time existence for the flow. The convexity
of Σ0 allows us to transform the flow equation to be a scalar parabolic
Neumann problem by using the Möbius coordinate transformation, see
[27] or (3.9) below. Thus the short-time existence is established by
standard parabolic PDE theory, since due to our choice of e there holds
〈x, e〉|Σ0

> 0 and hence the scalar parabolic equation is uniformly par-

abolic, compare [32] for instance.
Let T ∗ denote the maximal time of smooth existence of a solution to

(3.1). This implies that all flow hypersurfaces are strictly convex up to
T ∗ due to the positivity of F up to T ∗. The family of spherical caps
lying entirely in the closed half-ball B̄n+1

+ is given by

CR(e) = {x ∈ B̄n+1 : |x− (R2 + 1)
1
2 e| = R}, R <∞.

These form the natural barriers of (3.1):

3.2. Lemma. Suppose for two radii R1 < R2, Σ0 satisfies

Σ0 ⊂ ĈR2(e)\ĈR1(e),

then this is preserved along the flow. In particular the height function
〈x, e〉 satisfies a priori bounds

ε ≤ 〈x, e〉 ≤ 1− ε
and the normal vector points uniformly downwards,

〈ν(t, ξ), e〉 ≤ −ε̃ ∀(t, ξ) ∈ [0, T ∗)× B̄n,
for some suitable ε, ε̃ ∈ (0, 1), which only depend on the initial datum.

Proof. An elementary calculation shows that the spherical caps CR(e)
are static solutions of (3.1), i.e. f = 0 along CR(e). A simple com-
parison principle shows that the caps are barriers, since the avoidance
principle holds due to the free boundary condition. The height estimate
follows immediately. The final claim is the statement of [27, Lemma 11].

q.e.d.
Evolution equations. We collect the relevant evolution equations, which
will allow us to handle the curvature flow. In order to avoid confusion
with tensor indices, here we abbreviate

X = Xe,

keeping in mind that X depends on e. We need the following lemma.

3.3. Lemma. There hold

〈X, ν〉;i = 〈x;i, e〉 〈x, ν〉 − 〈x;i, x〉 〈e, ν〉+ hki 〈X,x;k〉
and

〈X, ν〉;ij = hki;j 〈X,x;k〉+ 〈x, e〉hij − hki hkj 〈X, ν〉 − gij 〈e, ν〉

+ hkj (〈x;i, e〉 〈x, x;k〉 − 〈x;i, x〉 〈e, x;k〉)

+ hki (〈x;j , e〉 〈x, x;k〉 − 〈x;j , x〉 〈e, x;k〉)
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Proof.

〈X, ν〉;i = 〈X;i, ν〉+ 〈X, ν;i〉

= 〈x;i, e〉 〈x, ν〉 − 〈x;i, x〉 〈e, ν〉+ hki 〈X,x;k〉 .

〈X, ν〉;ij = −hij 〈e, ν〉 〈x, ν〉+ 〈x;i, e〉hkj 〈x, x;k〉

+ hij 〈ν, x〉 〈e, ν〉 − gij 〈e, ν〉 − 〈x;i, x〉hkj 〈e, x;k〉

+ hki;j 〈X,x;k〉+ hki 〈〈x;j , e〉x+ 〈x, e〉x;j − 〈x;j , x〉 e, x;k〉 − hki hkj 〈X, ν〉

= hkj (〈x;i, e〉 〈x, x;k〉 − 〈x;i, x〉 〈e, x;k〉)− gij 〈e, ν〉+ hki;j 〈X,x;k〉

+ hki (〈x;j , e〉 〈x, x;k〉 − 〈x;j , x〉 〈e, x;k〉) + hij 〈x, e〉 − hki hkj 〈X, ν〉 .
q.e.d.

Let

L = ∂t −
〈x, e〉
F 2

F ij∇2
ij − 〈X,∇〉 ,

where F may either be understood to depend on the Weingarten op-
erator, F = F (hij) or on the second fundamental form and the metric,

F = F (hij , gij). There holds

F ij ≡
∂F

∂hji
= gkjF

ki ≡ gkj
∂F

∂hki
,

cf. [15, Ch. 2]. The following specific evolution equations are valid.

3.4. Proposition. For general 1-homogeneous F , along (3.1) there
hold

(i)

L 〈x, e〉 =
2

F
〈x, e〉 〈ν, e〉 − 〈X, e〉 .

(3.3) ∇µ 〈x, e〉 = 〈x, e〉 along ∂Σt.

(ii)

(3.4)

LF = −2 〈x, e〉
F 3

F ijF;iF;j +
2

F 2
F ij 〈x;i, e〉F;j

+
(
1− F ijgij

)
〈e, ν〉+ F 〈x, e〉

(
1−

F ijhki hkj
F 2

)
.

(3.5) ∇µF = 0 along ∂Σt.

(iii)
(3.6)

LH =
〈x, e〉
F 2

gijF kl,rshkl;ihrs;j +

(
F klhkmh

m
l

F 2
+ 1

)
〈x, e〉H − 2 〈x, e〉

F
‖W‖2

+

(
H

F
− n

)
〈ν, e〉+

2

F 2
gij 〈x;i, e〉F;j −

2 〈x, e〉
F 3

‖∇F‖2.
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(3.7) ∇µH ≤ 0 along ∂Σt,

provided F is concave.

Proof. (i) (a)

∂t 〈x, e〉 −
〈x, e〉
F 2

F ij 〈x, e〉;ij =
〈x, e〉 〈ν, e〉

F
− 〈X, ν〉 〈ν, e〉+

〈x, e〉 〈ν, e〉
F

=
2

F
〈x, e〉 〈ν, e〉 − 〈X, ν〉 〈ν, e〉

=
2

F
〈x, e〉 〈ν, e〉 − 〈X, e〉+ 〈x, e〉;

i 〈X,x;i〉 .

(b) was deduced in [27, Lemma 5].
(ii) (a)

Ḟ = F ji ḣ
i
j

= −F ji

(
〈x, e〉
F
− 〈X, ν〉

)
;

i

j

− F ji

(
〈x, e〉
F
− 〈X, ν〉

)
hikh

k
j

= −F ij
(
−hij 〈ν, e〉

F
− 〈x, e〉

F 2
F;ij +

2 〈x, e〉
F 3

F;iF;j −
2 〈x;i, e〉
F 2

F;j

)
+ F;

k 〈X,x;k〉+ 〈x, e〉F − F ijhki hkj 〈X, ν〉 − F ijgij 〈e, ν〉

− 〈x, e〉
F

F ijhki hkj + F ijhki hkj 〈X, ν〉

=
〈x, e〉
F 2

F ijF;ij −
2 〈x, e〉
F 3

F ijF;iF;j +
2

F 2
F ij 〈x;i, e〉F;j + F;

k 〈X,x;k〉

+
(
1− F ijgij

)
〈e, ν〉+ F 〈x, e〉

(
1−

F ijhki hkj
F 2

)
.

(b) There holds, using an orthonormal frame (eI)2≤I≤n for Tx(∂Σt),

∇µ 〈X, ν〉|∂Σt
= ∇µ

(
〈x, e〉 〈x, ν〉 − 1

2
(|x|2 + 1) 〈e, ν〉

)
|∂Σt

= 〈µ, e〉∇µ 〈x, ν〉 − 〈e, ν〉 − ∇µ 〈e, ν〉
= −〈e, ν〉+ 〈〈µ, e〉µ− e,W(µ)〉

= −〈e, ν〉+

〈
〈µ, e〉µ− e, 〈W(µ), µ〉µ+

n∑
I=2

〈W(µ), eI〉 eI

〉
= −〈e, ν〉
= 〈X, ν〉|∂Σt

.

From (3.3) and (2.7) we obtain

∇µF = 0.



16 J. SCHEUER, G. WANG & C. XIA

(iii) (a)
(3.8)

Ḣ = −gijf;ij − f‖W‖2

= gij
(
〈X, ν〉 − 〈x, e〉

F

)
;ij

− f‖W‖2

= H;
k 〈X,x;k〉+H 〈x, e〉 − ‖W‖2 〈X, ν〉 − n 〈e, ν〉+

H

F
〈ν, e〉

+
2

F 2
gij 〈x;i, e〉F;j +

〈x, e〉
F 2

gijF;ij −
2 〈x, e〉
F 3

‖∇F‖2 − f‖W‖2

= H;
k 〈X,x;k〉+H 〈x, e〉 − 〈x, e〉

F
‖W‖2 − n 〈e, ν〉+

H

F
〈ν, e〉

+
2

F 2
gij 〈x;i, e〉F;j +

〈x, e〉
F 2

gijF klhkl;ij +
〈x, e〉
F 2

gijF kl,rshkl;ihrs;j

− 2 〈x, e〉
F 3

‖∇F‖2.

Now we have to interchange the pairs (h, k) with (i, j) in hkl;ij . Due
to the Codazzi equations, the Ricci identities and the Gauss equation
there holds

hkl;ij = hki;lj

= hki;jl +Rljk
ahai +Rlji

ahka

= hij;kl +Rljk
ahai +Rlji

ahka

= hij;kl + (hlahjk − hlkhja)hai + (hlahji − hlihja)hak

and thus

gijF klhkl;ij = F klH;kl + F klhlah
a
kH − F‖W‖2.

Inserting into (3.8) gives the proposed evolution equation.
(b) For an orthonormal frame (eI)2≤I≤n of Tx(∂Σt), such that the

second fundamental form of Σ is diagonal with respect to (ν, eI)2≤I≤n,
along ∂Σt we calculated in [27, Lemma 2], that

hIJ ;µ = −hIJ + hµµ 〈eI , eJ〉 .

From (3.5) we obtain

0 = ∇µF =
∂F

∂h
(∇µh) =

n∑
I=2

F IIhII;µ + Fµµhµµ;µ
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and thus

∇µH = hµµ;µ +
n∑
I=2

hII;µ

= −
n∑
I=2

F II

Fµµ
hII;µ −

n∑
I=2

hII + (n− 1)hµµ

=
n∑
I=2

F II

Fµµ
hII −

n∑
I=2

F II

Fµµ
hµµ −

n∑
I=2

hII + (n− 1)hµµ

=

n∑
I=2

1

Fµµ
(
F II − Fµµ

)
(hII − hµµ) ,

which is non-positive due to the concavity of F . q.e.d.

Curvature estimates. We continue the a priori estimates for (3.1).

3.5. Proposition. Let F be given by (3.2). Then along (3.1) there
hold:

(i) The function
ϕ(t) = min

B̄n
F (t, ·)

is non-decreasing and hence

F (t, ξ) ≥ min
B̄n

F (0, ·) ∀(t, ξ) ∈ [0, T ∗)× B̄n.

(ii) There exists a constant c > 0, depending only on the initial data,
such that

F ≤ c.

Proof. (i) Considering F , and also σk, as a function of the principal
curvatures κi and denoting

F i =
∂F

∂κi
,

we compute

F i = n
σin
σn−1

− n
σnσ

i
n−1

σ2
n−1

.

Due to the relation

σk = σikκi + σik+1 ∀0 ≤ k ≤ n
we obtain

n∑
i=1

σik =
n∑
i=1

(
σk−1 − σik−1κi

)
= (n− k + 1)σk−1.

Hence
n∑
i=1

F i = n− 2n
σnσn−2

σ2
n−1

≥ 1
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due to the Newton-Maclaurin inequalities. Furthermore there holds for
1 ≤ k ≤ n:

σ1σk − (k + 1)σk+1 =

n∑
i=1

(
κiσk − κiσik+1

)
=

n∑
i=1

κ2
iσ

i
k

and thus we compute
n∑
i=1

F iκ2
i =

n

σn−1
σ1σn − n

σn
σ2
n−1

(σ1σn−1 − nσn) = n2 σ2
n

σ2
n−1

= F 2.

At the boundary there holds

∇µF = 0

and hence at minimizing points for F , the right hand side of its evolution
(3.4) is non-negative and thus ϕ is non-decreasing, taking Lemma 3.2
into account.

(ii) To estimate F from above we define

ϕ = logF − α 〈x, e〉

for some positive α which will be determined later. We calculate the
evolution equation

Lϕ =
1

F
LF +

〈x, e〉
F 2

F ij(logF );i(logF;j)− αL 〈x, e〉

= −〈x, e〉
F 2

F ij(logF );i(logF );j +
2

F 2
F ij 〈x, e〉;i (logF );j

+
1

F

(
1− F ijgij

)
〈e, ν〉 − α

(
2

F
〈x, e〉 〈ν, e〉 − 〈X, e〉

)
.

On the boundary there holds

∇µϕ = −α 〈x, e〉 < 0.

Hence maximal values of ϕ are attained in the interior and at such we
have

0 ≤ Lϕ ≤ 1

F 2

(
−α2 〈x, e〉+ 2α

)
F ij 〈x, e〉;i 〈x, e〉;j +

c+ 2α

F
+ α 〈X, e〉 .

The quantity

〈X, e〉 = 〈x, e〉2 − 1

2
(|x|2 + 1) = −1

2

(
|x|2 − 〈x, e〉2

)
− 1

2

(
1− 〈x, e〉2

)
≤ −cε,

due to Lemma 3.2. Hence, picking α large enough in dependence of the
previous a priori bounds, we obtain a contradiction if F is too large.
q.e.d.

To finish the curvature estimates, we use the evolution of the mean
curvature H = σ1 to prove that it is bounded. This is sufficient due to
the convexity.
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3.6. Proposition. If F is given by (3.2), then the mean curvature, and
hence all principal curvatures, are a priori bounded by the initial data.

Proof. In the evolution equation (3.6) we use the Cauchy-Schwarz
inequality to obtain

2

F 2
gij 〈x;i, e〉F;j −

2 〈x, e〉
F 3

‖∇F‖2 ≤ const .

Hence, due to the concavity of F , the bounds on F and the lower bound
on 〈x, e〉, the term involving ‖W‖2 is the leading order term with a
negative sign. Due to the boundary condition (3.7), we obtain the result.

q.e.d.

We obtain the long-time existence of the solution to (3.1).

3.7. Theorem. Let

x0 : B̄n ↪→ Σ ⊂ B̄n+1

be the embedding of a strictly convex free boundary hypersurface in the
unit ball. Then the maximal solution of (3.1) exists for all times with
uniform C∞-estimates.

Proof. In order to apply parabolic regularity theory, it is convenient
to transform the flow to a scalar parabolic Neumann problem. This was
already completely performed in [27]. Our previous a priori estimates
allow us to use the same conclusion in that paper. For convenience we
sketch the main ingredients again. We use a coordinate transforma-
tion, which we call Möbius coordinates for the upper half-ball. Namely,
consider the map

ϕ : Bn × [1,∞)→ B̄n+1
+

ϕ(x, λ) =
4λx+ (1 + |x|2)(λ2 − 1)e

(1 + λ)2 + (1− λ)2|x|2
.

This is a conformal map from the Euclidean cylinder B̄n×[1,∞) to B̄n+1
+

and in [27, Prop 1] it was shown that any convex hypersurface of B̄n+1

with perpendicular Neumann condition can be written as a graph over
B̄n in Moebius coordinates with uniform gradient estimates, as long as
λ stays away from infinity. Hence all flow hypersurfaces can be written
as graphs

Σt = {(x(t, z), u(t, x(t, z))) : (t, z) ∈ [0, T ∗)× Bn},

where u solves the Neumann problem

(3.9)

u̇ = − v

eψF
in (0, T ∗)× Bn

〈Du,N〉 = 0 on [0, T ∗)× ∂Bn

u(0, ·) = u0 on {0} × Bn,
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where v2 = 1 + |Du|2, N is the outward normal to Bn and e2ψ is the
conformal factor arising from the Möbius coordinates, compare [27,
Cor. 4]. As in [27, Lemma 15], we can conclude the uniform C∞-
estimates and the long-time existence from [30, Thm. 14.23] or [44,
Thm. 4, Thm. 5]. Note that we have also used that due to F ≥ c > 0
and H ≤ c the operator is uniformly parabolic. q.e.d.

We finish the convergence result by proving that any subsequential
limit is a spherical cap of a uniquely determined curvature.

3.8. Proposition. The flow (3.1) converges smoothly to a uniquely
determined spherical cap around e.

Proof.

∂tW0(Σ̂t) =

ˆ
Σt

f ≥
ˆ

Σt

(
n 〈x, e〉
H

− 〈X, ν〉
)
≥ 0.

Furthermore

W0(Σ̂t) = |Σ̂t|
is bounded and thus due to the C∞-estimates we must haveˆ

Σt

(
n 〈x, e〉
H

− 〈X, ν〉
)
→ 0

as t→∞. Hence any limit satisfies the Heintze-Karcher type inequality
with equality and thus must be a spherical cap due to [48, Thm. 5.2]. We
claim that this cap is uniquely determined, and hence the flow converges.
The uniqueness is proved as follows.

The above showed that x(t, ·) subconverges smoothly to a free bound-
ary spherical cap Cρ∞(e∞). It is important to note that the radius ρ∞
is independent of the choice of a subsequence of t (t→∞). This follows
from the constancy of Wn along the flow (3.1) and the fact that Wn is
strictly increasing with the radius. Now we show e∞ = e, and hence the
uniqueness.

Define ρ(t, ξ) to be the radius of the unique spherical cap around e
passing through the point x(t, ξ). By the barrier estimates, the function

ρmax(t) = max ρ(t, ·) = ρ(t, ξt)

is non-increasing. Hence

lim
t→∞

ρmax(t) = A

exists. Since we have all uniform estimates, we know

lim
t→∞

d

dt
ρmax = 0.(3.10)

It is clear that ρmax ≥ ρ∞. Next we prove that

lim
t→∞

ρmax = ρ∞.(3.11)
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Assume not, then there exists some ε > 0 such that

ρmax(t) > ρ∞ + ε,∀t.(3.12)

It is easy to see that √
ρ2 + 1 =

1
2(|x|2 + 1)

〈x, e〉
.

Thus ρ is a smooth function and one can check that ρ satisfies

ρ

ρ2 + 1
∂tρ = f

(
〈x, ν〉

1
2(|x|2 + 1)

− 〈ν, e〉
〈x, e〉

)

=

(
〈x, e〉
n σn
σn−1

− 〈Xe, ν〉

)
〈Xe, ν〉

1
2(|x|2 + 1) 〈x, e〉

.(3.13)

Recall that Cρmax(t)(e) is the spherical cap of radius ρmax(t) around
e. Then one sees that the flow hypersurface x(t, ·) is tangential to
Cρmax(t)(e) at x(t, ξt) by the definition of ρmax(t). Note that x(t, ·) and
Cρmax(t)(e) has the same position vector and normal vector at x(t, ξt).
On the other hand, for Cρmax(t)(e), the speed function

f =
〈x, e〉
n σn
σn−1

− 〈Xe, ν〉 ≡ 0,

which yields
〈Xe, ν〉
〈x, e〉

∣∣∣
Cρmax(t)(e)

= ρmax(t).

Therefore
〈Xe, ν〉
〈x, e〉

∣∣∣
x(t,ξt)

= ρmax(t).

We deduce from (3.13) that

ρmax
ρ2
max + 1

d

dt
ρmax =

(
1

n σn
σn−1

− ρmax(t)

)
〈Xe, ν〉

1
2(|x|2 + 1)

.(3.14)

Since x(t, ·) converges smoothly to Cρ∞(e∞) and ρ∞ is unique, the cur-
vature term

n
σn
σn−1

→ 1

ρ∞
uniformly.

Thus, there exists T > 0, depending on ε, such that for t > T ,

1

n σn
σn−1

− ρ∞ <
ε

2
.

Combining with (3.12), we see for t > T ,

1

n σn
σn−1

− ρmax(t) < − ε
2
.
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Since 〈Xe,ν〉
1
2

(|x|2+1)
is uniformly bounded below, it follows from (3.14) that

for t > T ,

d

dt
ρmax(t) ≤ −Cε.

This is a contradiction to (3.10). We get (3.11). Similarly, for ρmin(t) =
min ρ(t, ·), we can show

lim
t→∞

ρmin = ρ∞.(3.15)

From (3.11) and (3.15), We conclude that limt→∞ ρ(t, ·) is a constant.
That means the limit hypersurface is the spherical cap around e, the
claimed uniqueness. q.e.d.

4. Proof of the main results

Proof of Theorem 1.2. (i) First we prove that the functions

fk(r) = Wk(Ĉr(e))

are strictly increasing. This can be seen from the flow

ẏ = Xe

y(0, B̄n) = Cr(e).

The flow hypersurfaces of this flow are (Cs)s≥r, where s = r(t) is some
increasing function and there holds

(n+ 1)

(
n

k − 1

)
∂tWk(Ĉr(t)) =

ˆ
Cr(t)

kσk 〈Xe, ν〉 > 0

due to the strict convexity of the caps.
(ii) We prove Theorem 1.2 in the strictly convex case. Start the flow

(3.1) from Σ and denote the limit cap by CR0 . Due to Proposition 3.1
there hold

Wn(Σ̂) = Wn(ĈR0) = fn(R0) = fn ◦ f−1
k (fk(R0)) ≥ fn ◦ f−1

k (Wk(Σ̂)).

This inequality is strict, unless Σ is a spherical cap, due to the final
statement in Proposition 3.1.

(iii) We consider the convex case, where we may suppose that Σ is not
a flat disk, otherwise the statement is trivially true. By [28, Cor. 3.3] we
can approximate Σ by strictly convex hypersurfaces with free boundary
in the unit ball in the C2,α-norm. Hence the inequality holds for Σ.

To prove the limiting case, we employ an argument previously used
in [19]. Suppose Σ is convex and

Wn(Σ̂) = fn ◦ f−1
k (Wk(Σ̂)).

Due to [28, Lemma 3.1] the set

Σ+ = {ξ ∈ Bn : (hij(ξ)) > 0}
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is not empty, since Σ must have a strictly convex point in the interior.
Σ+ is obviously open. We prove that Σ+ is also closed, by showing that

hij|Σ+
≥ cgij|Σ+

for some constant c. So let ξ0 ∈ Σ+, U ⊂ Bn open with

ξ0 ∈ U ⊂ Ū ⊂ Bn,

η ∈ C∞c (U) and consider the normal variation

xs = x0 + sην,

where x0 is the embedding of Σ. Obviously, for small s the correspond-
ing hypersurfaces Σs are convex with free boundary in the unit ball and
hence

Wn(Σ̂s) ≥ fn ◦ f−1
k (Wk(Σ̂s)).

Thus

0 = n(n+ 1)
d

ds |s=0

(
Wn(Σ̂s)− fn ◦ f−1

k (Wk(Σ̂s))
)

=

ˆ
Σ

(nσn − c1σk) η

with a suitable positive c1. Since η was arbitrary, we have on all of Bn:

nσn = c1σk,

where Since

σn ≤ cn,kσ
n
k
k ,

we obtain

σn =
c1

n
σk ≥

c1

n

(
σn
cn,k

) k
n

.

Hence σn has a positive lower bound on Σ+, which implies that also
the second fundamental form has a positive lower bound on Σ+. Thus
Σ+ is closed. Hence Σ is strictly convex and by the first case it is a
spherical cap.

5. Appendix A. Quermassintegrals and the Euler
characteristic

In this Appendix, we show that Wn+1 is a topological constant for a
general free boundary hypersurface in the unit ball. First we can easily
extend the definition of Wn+1 as follows:

(i) If n is even and Σ immersed, the definition of quermassintegrals
given in (2.3) carries over, since it only depends on the area of Σ

and curvature integrals. We still denote it by Wn+1(Σ̂), though Σ̂
is not well-defined.

(ii) If n is odd, we consider an embedded hypersurface Σ ⊂ B̄n+1

with an embedded free boundary ∂Σ ⊂ Sn. Since ∂Σ ⊂ Sn is an
embedding, it divides the sphere into 2 pieces. Let us choose one

of these 2 pieces and denote it as before by ∂̂Σ. Then Σ̂ is the
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domain in B̄n+1 enclosed by ∂̂Σ and Σ and Wn+1(Σ̂) is defined as
in (2.3).1

Moreover, the first variation formula of Wn+1 is the same as the one
proved Proposition 2.2, namely

∂tWn+1(Σ̂) = 0

for any smooth deformation. This formula implies the following Gauss-
Bonnet-Chern theorem.

5.1. Theorem. Let Σ ⊂ B̄n+1 be immersed hypersurface with free
boundary ∂Σ ⊂ Sn. If n is even, then

ωn
2
χ(Σ) = (n+ 1)Wn+1(Σ̂)

=

ˆ
Σ
Hn +

ˆ
∂Σ
HSn
n−2 +

n− 2

3

ˆ
∂Σ
HSn
n−4 + · · ·

+
n− 2

3
· · · 4

n− 3

ˆ
∂Σ
HSn

2 +
n− 2

3
· · · 2

n− 1
|∂Σ|.

If n is odd and Σ ⊂ B̄n+1 is embedded with an embedded boundary ∂Σ,
then
ωn
2
χ(Σ̂) = (n+ 1)Wn+1(Σ̂)

=

ˆ
Σ
Hn +

ˆ
∂Σ
HSn
n−2 +

n− 2

3

ˆ
∂Σ
HSn
n−4 + · · ·+ n− 2

3

ˆ
∂Σ
HSn

1 + |∂̂Σ|.

Here Hk is the (normalized) k-th mean curvature of Σ in Rn+1 and HSn
j

is the (normalized) j-th mean curvature of ∂Σ in Sn.

Note that in the second case χ(Σ̂) = 1
2χ(Σ ∪ ∂̂Σ).

Proof. The second equality follows from the very definition. We need
to prove the first, which follows from the variation formula (2.5) of Wn+1

by a standard argument as follows. One deforms the hypersurface Σ to

a very small free boundary hypersurface Σ̃. (2.5) implies that both Σ

and Σ̃ have the same Wn+1. It is easy to see that except the leading

order term, all other terms of Wn+1 become small, when Σ̃ shrinks

to a point. In this case, Σ̃ looks more and more like a free boundary
hypersurface in the half-space Rn+1

+ with the boundary perpendicular on

∂Rn+1
+ . Hence the first equality follows from the Gauss-Bonnet theorem

for closed hypersurfaces in Rn+1. q.e.d.

We would like to compare the above Gauss-Bonnet-Chern theorem
to the Gauss-Bonnet theorem for closed hypersurfaces in Rn+1 by Hopf

1Note that if we choose the other piece, we have to flip the normal in the definition
of the principal curvatures.
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[23, 24] and in Sn by Teufel [43]. For the Gauss-Bonnet theorem for
closed hypersurfaces in the hyperbolic space, we refer to [39].

If n is even and Σ is an immersed closed hypersurface in Rn+1, then
by [23], we have

ωn
2
χ(Σ) = (n+ 1)WRn+1

n+1 =

ˆ
Σ
Hn.

If n is odd and Σ is an embedded closed hypersurface in Rn+1, then by
[24], we have

ωnχ(Ω) = (n+ 1)WRn+1

n+1 =

ˆ
Σ
Hn,

where Ω is the domain enclosed by Σ. Note that in this case χ(Ω) =
1
2χ(Σ).

For a closed hypersurfaces in Sn, Teufel [43] obtained: If n is odd
and Σ is immersed, then

ωn−1

2
χ(Σ) = nW Sn

n (Σ) = cn−1

ˆ
Σ
Hn−1+cn−3

ˆ
Σ
Hn−3+· · ·+c2

ˆ
Σ
H2+|∂Σ|.

If n is even and Σ is embedded with the enclosed domain K, then

ωn−1χ(K) = nW Sn
n (K) = cn−1

ˆ
Σ
Hn−1+cn−3

ˆ
Σ
Hn−3+· · ·+c1

ˆ
Σ
H1+|K|.

For the constants cj , we refer to [43].
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