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development may play a role in the aetiology of psychiatric illnesses 29 

• Positive experiences can promote resilience and rescue the effects of negative 30 
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Abstract 43 

The immune system is crucial for normal neuronal development and function (neuroimmune 44 

system). Both immune and neuronal systems undergo significant postnatal development and 45 

are sensitive to developmental programming by environmental experiences. Negative 46 

experiences from infection to psychological stress at a range of different time points (in utero 47 

to adolescence) can permanently alter the function of the neuroimmune system: given its 48 

prominent role in normal brain development and function this dysregulation may increase 49 

vulnerability to psychiatric illness. In contrast, positive experiences such as exercise and 50 

environmental enrichment are protective and can promote resilience, even restoring the 51 

detrimental effects of negative experiences on the neuroimmune system. This suggests the 52 

neuroimmune system is a viable therapeutic target for treatment and prevention of psychiatric 53 

illnesses, especially those related to stress. In this review we will summarise the main cells, 54 

molecules and functions of the immune system in general and with specific reference to central 55 

nervous system development and function. We will then discuss the effects of negative and 56 

positive environmental experiences, especially during development, in programming the long-57 

term functioning of the neuroimmune system. Finally, we will review the sparse but growing 58 

literature on sex differences in neuroimmune development and response to environmental 59 

experiences.  60 
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Introduction 67 

Developmental adversity & psychiatric illness 68 

The environment can have a profound impact on brain development, conferring risk or 69 

resilience to psychiatric illness. Several meta analyses demonstrate that adverse experiences 70 

during development significantly increase the risk of developing neuropsychiatric disorders in 71 

adulthood (Lupien et al., 2009; Teicher and Samson, 2016). It is important to note that not all 72 

exposed individuals develop illness – some people demonstrate resilience due to genetics and  73 

positive environmental influences, such as high family functioning, close parental monitoring 74 

and good social support (Assary et al., 2018; Fritz et al., 2018; Tiet et al., 1998; Wang et al., 75 

2018a; Xie et al., 2010). Research in human populations is confounded by difficulty in 76 

disentangling cause and effect, genetic factors and inaccessibility of brain tissue. Animal 77 

models circumnavigate these difficulties and support these findings, giving deeper insight into 78 

the molecular mechanisms governing susceptibility and resilience. Here we find that stress 79 

during development is typically detrimental for cognition, behaviour, neural plasticity and 80 

neurogenesis, whereas positive experiences such as exercise and environmental enrichment are 81 

beneficial (Lupien et al., 2009). The underlying mechanisms governing these relationships are 82 

not fully understood, but recent research reveals that the neuroimmune system plays a role and 83 

may be a viable therapeutic target (Nusslock and Miller, 2016). We will explore these topics, 84 

summarising recent advances in the impact of developmental experiences on vulnerability and 85 

resilience to psychiatric disorders via the neuroimmune system. We begin with an overview of 86 

the immune system, focussing on peripheral then central functions. Not all components of the 87 

immune system have been explored in the context of developmental experiences, but we 88 

provide this overview in the hope that it may inspire future areas of research. 89 

  90 
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The immune system 91 

Innate vs. adaptive 92 

Immune function in vertebrates is broadly classified into innate and adaptive. The innate 93 

immune system is a biologically ancient host defence strategy, which in modern vertebrates 94 

still provides a broad, rapid and essential line of defence against pathogens (Gasteiger et al., 95 

2017; Turvey and Broide, 2010). Activation is dependent upon the recognition of pathogen-96 

associated molecular patterns such as bacterial lipopolysaccharides (LPSs) and bacterial 97 

flagellin by toll-like receptors (TLRs) on various cells of the host immune system, and also by 98 

components of the complement system (part of the host immune system that enhances or 99 

complements other immune functions) (Boehme and Compton, 2004; Dunkelberger and Song, 100 

2010; Pandey et al., 2015). Activation of these pattern recognition receptors triggers an array 101 

of downstream events including the production of cytokines (key signalling molecules of the 102 

immune system) and phagocytosis of the pathogen (Amarante-Mendes et al., 2018; Takeuchi 103 

and Akira, 2010). The adaptive immune system also recognises molecular signatures of foreign 104 

pathogens, but unlike the innate system generates highly specific antibodies to detect these 105 

antigens, taking longer to mount a defensive response (Chaplin, 2010). Antibodies are 106 

generated by B lymphocytes following the presentation of an immunogen by antigen 107 

presentation cells and are highly specific to the presented antigen (Tarlinton, 2019). These 108 

antibodies activate the complement system and opsonise (the coating of a body to facilitate 109 

phagocytosis), agglutinate and neutralise infecting pathogens (Dunkelberger and Song, 2010; 110 

Forthal, 2014). Presented antigens are also recognised by T cell receptors on T lymphocytes: 111 

this induces T lymphocyte maturation and subsequent production of cytokines and recruitment 112 

of additional lymphocytes and macrophages (effector cells of the innate immune system) 113 

(Kumar et al., 2018; Reinherz and Schlossman, 1980). There is overwhelming evidence that 114 
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both innate and adaptive immune systems play a key role in normal brain development and 115 

function, an intrinsic role not triggered by pathogens (Lenz and Nelson, 2018; Miller et al., 116 

2017; Morimoto and Nakajima, 2019).  117 

In practise the innate and adaptive immune systems complement each other and 118 

significantly overlap in their molecular pathways, the cells involved, cytokines generated and 119 

their effector functions (Clark and Kupper, 2005). We will now summarise the main cells and 120 

components of the peripheral immune system, before moving onto those found centrally, with 121 

a specific focus on the role of the immune system in normal brain development and function. 122 

 123 

Cells of the immune system 124 

A diverse array of cells and signalling molecules are involved in innate and adaptive immune 125 

responses. Cells of the innate immune system include macrophages, dendritic cells, mast cells, 126 

neutrophils, natural killer cells (NKCs), basophils and eosinophils (Medina, 2016). These cells 127 

originate from multipotent hematopoietic stem cells in the bone marrow, and some are released 128 

into circulation in a terminally differentiated form whereas others complete their differentiation 129 

in a wide array of target tissues (Medina, 2016) (Figure 1). The adaptive immune system 130 

comprises B and T lymphocytes which also derive from hematopoietic stem cells in the bone 131 

marrow and are further subdivided based on their function (Figure 1).  132 

 133 

Immune system signalling  134 

Cytokines are a broad category of small molecules which include interferons (IFN), 135 

interleukins (IL), chemokines and tumour necrosis factors, and they provide the primary source 136 

of signalling for the immune system (Turner et al., 2014; Zhang and Jianxiong, 2007). 137 

Interferons are released by eukaryotic cells in response to viral infection, and disrupt viral 138 
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replication, promote antigen presentation and activate macrophages and NKCs (Fensterl and 139 

Sen, 2009; Le Page et al., 2000). Interleukins have a wide range of functions, are broadly 140 

classified as either pro- or anti-inflammatory and are secreted by virtually all cells of the 141 

immune system (Cuneo and Autieri, 2009). The more than 50 interleukins and associated 142 

proteins bind to either type 1 or 2 interleukin receptors with downstream effector functions 143 

including immune cell activation, maturation and proliferation (Akdis, 2011). Chemokines are 144 

divided into 4 sub-families based on number and spacing of cytosine residues: CXC, CC, 145 

CX3C and XC, all signal through G-protein coupled receptors and primarily coordinate the 146 

immune response, attracting immune cells to sites of inflammation (Hughes and Nibbs, 2018; 147 

Moser and Willimann, 2004; Poeta et al., 2019). Tumour necrosis factors (TNFs) are 148 

transmembrane proteins, when cleaved they function as signalling molecules and bind to 149 

members of the TNF receptor superfamily. Activation of TNF receptors promotes 150 

inflammation, T lymphocyte regulation, apoptosis and immune cell activation (Baud and 151 

Karin, 2001; Tracey and Cerami, 1994). 152 

In addition to cytokines there are several other classes of signalling molecules involved 153 

in the coordination of the immune response. Complement proteins are secreted by hepatocytes 154 

in the liver and nearly all cell types in the central nervous system (CNS) (Orsini et al., 2014; 155 

Zhou et al., 2016). The cleavage of complement cascade proteins generates fragments which 156 

act as signalling molecules (Janeway et al., 2001). Fragments Complement component C3a 157 

(C3a) and C5a bind to their receptors (C3aR and C5aR) on immune cells and tissue specific-158 

cells (e.g. neurons and renal cells), inducing the release of pro-inflammatory cytokines and the 159 

accumulation of macrophages (Peng et al., 2012; Schraufstatter et al., 2002; Strainic et al., 160 

2008). Complement activation also generates the opsonin complement component C3b (C3b), 161 

which tags cells for phagocytosis by macrophages (Lewis et al., 2008; Tausk and Gigli, 1990). 162 

Prostaglandins are a family of fatty acid signalling molecules produced in almost all nucleated 163 
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cells and are generated from the metabolism of arachidonic acid by cyclooxygenases. Along 164 

with many non-immunological functions prostaglandins promote and regulate immune 165 

activation (Aoki and Narumiya, 2012; Ricciotti and FitzGerald, 2011; Scher and Pillinger, 166 

2009). Granule proteins are cytotoxic proteins released by a subset of leukocytes (eosinophils) 167 

which disrupt lipid bilayers, degrade ribonucleic acid and generate reactive oxygen species 168 

(Acharya and Ackerman, 2014). Some granule proteins (major basic protein) induce the release 169 

of histamine from basophils and mast cells, and histamine is both a neurotransmitter and a 170 

potent activator and regulator of inflammation via histamine receptor 1 (Branco et al., 2018). 171 

Serotonin, another neurotransmitter, is produced by T lymphocytes and mast cells, and acts as 172 

a chemoattractant and a regulator of immune cell activation and proliferation (EugenOlsen et 173 

al., 1997; Herr et al., 2017; Roumier et al., 2019). 174 

We will now explore the role that the immune system plays in normal brain 175 

development and function, exploring the interplay between peripheral and central mechanisms, 176 

before discussing how developmental experiences can perturb this normal functioning.  177 

 178 

The neuroimmune environment 179 

Immunological communication between peripheral and central nervous systems 180 

Contrary to the traditional view of the brain being immune privileged, we now know there are 181 

considerable levels of immunological communication between the periphery and CNS 182 

(Lampron et al., 2013). Sickness behaviour is a classic example of this relationship, and is 183 

conserved across multiple species including humans and rodents. Here, activation of the 184 

immune system affects neuronal function in the brain, resulting in a specific collection of 185 

sickness behaviours. These include reduced activity, social interaction and sexual activity and 186 

increased responsiveness to pain, anorexia and depressed mood (Dantzer, 2009). This benefits 187 
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the infected individual by minimising energy expenditure, limiting exposure to predators and 188 

allowing successful recovery from infection. The generation of proinflammatory cytokines 189 

such as interleukin 1β (IL1-β), tumour necrosis factor ⍺ (TNF⍺) and interleukin 6 (IL-6) by 190 

macrophages, B and T lymphocytes in the periphery drives these behaviours via two pathways 191 

termed fast and slow transmission (Figure 2) (Dantzer, 2001; Heesen et al., 2006). Fast 192 

transmission occurs via primary afferent nerves surrounding the point of inflammation, where 193 

inflammation triggers action potentials which are relayed to the CNS (Breit et al., 2018; 194 

Johnston and Webster, 2009). Slow transmission relies upon the volume diffusion of cytokines 195 

including IL1-β and TNF⍺ into the brain parenchyma through the circumventricular organs, 196 

the endothelial cells of the blood-brain-barrier (BBB) and choroid plexus (Abbott et al., 2006; 197 

Banks, 2005; Breit et al., 2018; Johnson et al., 2019).  198 

We now know there are several mechanisms through which peripheral immune 199 

molecules can influence the healthy brain (Figure 2). There is regulated transport of certain 200 

cytokines and chemokines across the BBB, and immune cells can interact with endothelial cells 201 

of the BBB, creating a cascade of effects in the brain (Banks, 2005; Daneman and Prat, 2015; 202 

Pan and Kastin, 2002). The lymphatic drainage systems of the brain (perivascular drainage, 203 

glymphatic system and meningeal lymphatic vessels) functions to clear waste from the CNS, 204 

transport lipids, maintain interstitial fluid water and ion homeostasis, regulate cerebrospinal 205 

(CSF) fluid and ISF interstitial fluid pressure and provides a link between the peripheral 206 

immune system and the CNS (Begley, 2012; Benveniste, 2018; Kipnis, 2016; Makinen, 2019; 207 

Sun et al., 2018; Thrane et al., 2013). Here, T lymphocytes can enter the brain via 208 

leptomeningeal vessels, choroid plexus and parenchymal postcapillary venule (efferent 209 

pathway) (Mastorakos and McGavern, 2019). Signalling works both ways - CNS derived 210 

antigens present in cerebrospinal fluid and interstitial fluid ISF draining into cervical lymph 211 

nodes activate the peripheral immune system, driving recruitment of immune cells to the CNS 212 



10 
 

(afferent pathway). The enteric nervous system (autonomic nerves of the gastrointestinal tract) 213 

and gut flora represent an additional link between the peripheral immune system and the CNS 214 

(Figure 2). Both enteric system neurons and intestinal bacteria produce neuroactive molecules 215 

including acetylcholine, histamine and serotonin, enabling communication between the 216 

intestines and the brain (gut-brain axis), and this can influence neural development, cognition 217 

and behaviour (Foster and Neufeld, 2014; Rogers et al., 2016). This communication is 218 

modulated by shifts in diet, composition of the microbiome and gut inflammation (Foster and 219 

Neufeld, 2014; Mayer et al., 2015). This crosstalk is required to sustain a variety of homeostatic 220 

functions such as the cephalic response (gastric secretion in response to the anticipation of 221 

food) in addition to the coordination of a body wide response to infection (Smeets et al., 2010; 222 

Zafra et al., 2006). In cases of severe infection, injury or degenerative diseases the BBB may 223 

be permeabilized allowing peripheral immune cells such as circulating macrophages, mast 224 

cells  and T lymphocytes into the CNS (Chou et al., 2018; Dong et al., 2014; Nautiyal et al., 225 

2008).   226 

 227 

Immune cells of the CNS 228 

The CNS has its own population of immune cells and signalling molecules which play crucial 229 

roles in shaping brain function and behaviour. These will now be summarised.  230 

Microglia 231 

Microglia are the resident macrophages of the CNS and comprise 10-15% of adult brain cells 232 

and 80% of brain immune cells (Li and Barres, 2018; Morimoto and Nakajima, 2019). 233 

Microglia colonise neural tissue early in brain development (5.5 weeks gestation in humans, 234 

E8 in rodents), originating from a pool of primitive macrophages in the yolk sac (Ginhoux and 235 
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Garel, 2018). Once the BBB is fully matured, microglia are confined to the brain under healthy 236 

conditions and self-renew throughout an individual’s life (Daneman and Prat, 2015; Lenz and 237 

Nelson, 2018). This permanent population of cells experiences very little turnover, therefore 238 

the events that affect microglial development can potentially have long-term consequences for 239 

their function. Microglia are not evenly distributed throughout the CNS and concentrated 240 

pockets are found in the hippocampus, basal ganglia and substantia nigra (Rivest, 2009). In 241 

addition, microglial transcriptomes are phenotypically sculpted by the brain region they occupy 242 

(Tan et al., 2020). The heterogeneity of microglia in the CNS highlights their functional 243 

pluralism and contributes to the varying sensitivities of different regions to the same physical 244 

and psychological signals (Kim et al., 2000).   245 

In the healthy adult brain microglia actively roam and  survey their local environment 246 

for invading pathogens and necrotic cells by protruding and retracting their processes 247 

(Nimmerjahn et al., 2005).  Often these surveying microglia are incorrectly described as 248 

‘resting’, whereas in reality they are actively taking part in CNS homeostasis, supporting 249 

neurotransmission, facilitating synaptic pruning, long-term potentiation and depression (LTP 250 

and LDP), neuronal maintenance and regulating neurogenesis during development and 251 

adulthood (Frost and Schafer, 2016; Paolicelli et al., 2011; Salter and Stevens, 2017; Weinhard 252 

et al., 2018). Bi-directional signalling between neurons and microglia utilises the same array 253 

of signalling molecules as immune cells in the periphery, however there are some notable 254 

exceptions such as the fractalkine C-X3-C motif ligand 1 (CX3CL1) signalling axis which is 255 

exclusive to the CNS (Jung et al., 2000). Under inflammatory conditions microglia are 256 

activated by pathogen associated molecular patterns and damage associated molecular patterns, 257 

unleashing a cascade of inflammatory events including the release of pro-inflammatory 258 

cytokines, clearance of cellular debris and the presentation of antigens to activate additional 259 

microglia (Dheen et al., 2007). Once the threat (pathogen or injured cells) is resolved, anti-260 
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inflammatory cytokines push microglia back into their surveying homeostatic state (Li and 261 

Barres, 2018; Madry et al., 2018). Throughout pre- and postnatal development microglia are 262 

highly active, shaping and fine-tuning neural circuits throughout the CNS via synaptic 263 

formation and pruning (through activation of the classical complement cascade), induction of 264 

apoptosis, myelination (by promoting differentiation, maturation and survival of 265 

oligodendrocytes) and regulating developmental neurogenesis (Bohlen et al., 2019; Pang et al., 266 

2013; Shigemoto-Mogami et al., 2014). Depleting microglia during development results in 267 

working memory deficits and altered anxiety, whereas loss in adulthood has little effect on 268 

behaviour (Lenz and Nelson, 2018; Nelson and Lenz, 2017; VanRyzin et al., 2016). 269 

 270 

Astrocytes 271 

Astrocytes, another glial subtype, also play a critical role as an immune effector in the CNS 272 

(Dong and Benveniste, 2001). Unlike microglia, astrocytes arise from neuroectodermal origins 273 

but cooperate with microglia in brain homeostasis, excitatory neurotransmission, 274 

homosynaptic plasticity, adenosine triphosphate homeostasis and regulation of immune 275 

response (De Pitta et al., 2016; Hansson and Ronnback, 1995; Lalo et al., 2014; Pascual et al., 276 

2012). In their neuroimmune role, astrocytes can act as antigen presenting cells using major 277 

histocompatibility complex (MHC) class II molecules which can be loaded with foreign or 278 

endogenous proteins to promote inflammation and recruitment of microglia (Dong and 279 

Benveniste, 2001; Wieczorek et al., 2017). Astrocytes also have a high expression of TLR3, 280 

and TLR3 signalling induces a highly robust pro-inflammatory response including the release 281 

of IL-2, TNFα and IL-6 (Jack et al., 2005). Through their production and release of complement 282 

system components, astrocytes contribute to the process of complement dependent pruning of 283 

synapses during development, synaptic plasticity and neurodegeneration (Hartmann et al., 284 
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2019; Lian et al., 2016; Pekny et al., 2007). They also play a unique role in maintenance of the 285 

BBB and are therefore able to control the bidirectional flow of immune cells and mediators 286 

between the CNS and the periphery (Abbott et al., 2006). This interface of astrocytes means 287 

their response to inflammation directly influences the permeability of the BBB and therefore 288 

controls the influx of peripheral cytokines and immune cells into the CNS (Cabezas et al., 2014; 289 

Liu et al., 2018).     290 

 291 

Mast cells 292 

Mast cells located in the brain’s perivasculature can also modulate the permeability of the BBB 293 

by secreting heparin, histamine, serotonin and nitric oxide to disrupt and degrade the basal 294 

lamina (Dong et al., 2014). Through their manipulation of the BBB mature mast cells can 295 

migrate between the periphery and the CNS and are found in healthy adult brain perivasculature 296 

(particularly concentrated in the thalamus) (Silverman et al., 2000). Mast cells in the brain 297 

differ from peripheral mast cells because they lack certain immunoglobulin receptors (high 298 

affinity immunoglobulin E receptor and the fragment crystallisable region Fc fragment of the 299 

immunoglobulin A receptor and stem cell factor), which may alter their development and 300 

survival (Khalil et al., 2008; Pang et al., 1996; Shanas et al., 1998; Silver and Curley, 2013). 301 

Following infection and injury mast cells become activated by antigens, complement, 302 

cytokines and neuropeptides: they can then increase vascular permeability and allow peripheral 303 

macrophages and T lymphocytes to enter the brain (Wernersson and Pejler, 2014). They then 304 

act as antigen presentation cells to these infiltrating immune cells, amplifying the immune 305 

response in the CNS (Caslin et al., 2018; Silver and Curley, 2013). Mast cells communicate 306 

with neurons and glia through secretion of cytokines and expression of neurotransmitter 307 

receptors (acetylcholine and substance P), and this relationship means they can influence 308 
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behaviour (Kulka et al., 2008; Masini et al., 1985; Tore and Tuncel, 2009). This is exemplified 309 

in mice lacking mast cells, which display abnormal neurogenesis, learning and memory and 310 

increased anxiety in adulthood (Nautiyal et al., 2008).            311 

 312 

Cytokines 313 

Cytokines and their cognate receptors are constitutively expressed by all cells in the healthy 314 

adult brain, can infiltrate from the periphery and are self-regulating, capable of inhibiting or 315 

increasing their own release (Banks, 2005; Pan and Kastin, 2002). In the brain, the 316 

hippocampus is vitally important for learning and memory, especially through synaptic 317 

plasticity (LTP and LTD) and neurogenesis, and low-level secretion of IL1-β, IL-6, IL-10, IL-318 

4 and TNFα plays an essential role in these normal brain functions during development and 319 

adulthood (Druart and Le Magueresse, 2019; Erta et al., 2012; Levin and Godukhin, 2017; 320 

McAfoose and Baune, 2009; Pribiag and Stellwagen, 2014; Rostene et al., 2011; Whitney et 321 

al., 2009). IL1-β in particular plays a variety of roles, controlling neural transmission, 322 

promoting gamma aminobutyric acid (GABA)a receptor mediated inhibition of Purkinje cells 323 

in the cerebellum, inhibiting LTP and cell proliferation in the hippocampus and reducing 324 

calcium currents through N-type voltage gated calcium channels (Bellinger et al., 1993; Koo 325 

and Duman, 2008; Yirmiya et al., 2002; Zhou et al., 2006). Anti-inflammatory cytokines IL-4 326 

and IL-10 are able to control the inhibitory effects of IL-1β on LTP through modulating 327 

expression of IL-1β and dampening of IL-1β driven activation of c-Jun N-terminal kinases  328 

(Kelly et al., 2001; Nolan et al., 2005). A range of other pro-inflammatory cytokines including 329 

IL-2, IL-6, IL-8, IL-18 and IFNα also inhibit hippocampal LTP in vitro (Curran and O'Connor, 330 

2001; Mendoza-Fernandez et al., 2000; Tancredi et al., 2000; Tancredi et al., 1990; Xiong et 331 

al., 2003). Acute administration of IL-6 exhibits dose dependant inhibition of synaptic 332 
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plasticity in the hippocampus through the activation of intracellular tyrosine kinases and 333 

inactivation of mitogen-activate protein kinase/extracellular signal-regulated kinases 334 

(MAPK/ERK), and long-term memory is improved by administration of an anti-IL-6 antibody 335 

(Balschun et al., 2004; Tancredi et al., 2000). Interestingly,  IL-6 expression is significantly 336 

upregulated 1-8 hours post LTP induction, suggesting a complex role for this interleukin in 337 

learning and memory (Balschun et al., 2004). IL-6 also plays a significant role in adult 338 

neurogenesis: animals lacking IL-6 have fewer newly proliferating cells in the dentate gyrus 339 

and subventricular zone (Bowen et al., 2011). TNFα acts via TNFR1 to increase the calcium 340 

conductivity of glutamatergic neurons, and circulating TNFα can also regulate homeostatic 341 

plasticity in the CNS through regulation of glutamate and GABA receptor trafficking 342 

(Furukawa and Mattson, 1998; Konefal and Stellwagen, 2017).   343 

Chemokines are also crucial for development and neuronal plasticity (Williamson and 344 

Bilbo, 2013). Deletion of  the chemokine C-X-C motif  (CXC) chemokine 12 (CXCL12) or its 345 

receptor CXC chemokine receptor 4 (CXCR4) in mice is embryonically lethal in part due to a 346 

lack of neural migration during development (Levin and Godukhin, 2017; Rostene et al., 347 

2011). Synaptic depression is also modulated by CXCR4, and fractalkine (CX3CL1) interacts 348 

with its receptor C-X3-C motif chemokine receptor 1 (CX3CR1) to reduce α-amino-3-349 

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated currents and alter excitatory 350 

post-synaptic currents in vitro (Lauro et al., 2008; Ragozzino et al., 2006; Ragozzino et al., 351 

2002). CXC ligand 2 (CXCL2) (CXC receptor 2 ligand) increases AMPA-type glutamatergic 352 

excitatory activity on cultured neurons, and application of C-C motif chemokine ligand 2 353 

(CCL2) and C-C motif chemokine ligand 3 (CCL3) to hippocampal neurons increases 354 

excitatory post-synaptic currents, N-methly-D-aspartate (NMDA)-evoked Ca2+ signalling and 355 

NMDA receptors in vitro (Kuijpers et al., 2010; Lax et al., 2002; Nelson et al., 2011; Zhou et 356 
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al., 2011). Alongside cytokines, MHC1 plays a role in synaptic plasticity and the development 357 

of appropriate neuronal connections in the mammalian brain (Huh et al., 2000).  358 

We also see significant effects of cytokines on behaviour. For example, CXC3CL1 359 

(fractalkine) knockout results in altered learning and memory in mice (Rogers et al., 2011). IL-360 

2 modulates dopamine and dopamine-mediated depressive-type behaviours in developing and 361 

adult rodents and IL-6 promotes survival of catecholaminergic neurons which are responsible 362 

for increasing the release of dopamine in the hippocampus (Karrenbauer et al., 2011; Zalcman 363 

et al., 1994). Administration of IL-1β in vivo modulates hippocampal dependent memory in 364 

rodents, IFNγ regulates neuronal connectivity and social behaviour whereas IL-4 knockout 365 

results in a depressive phenotype (Baartman et al., 2017; Filiano et al., 2016; Goshen et al., 366 

2007; Wachholz et al., 2017). IL-33 released from astrocytes can drive synaptic pruning by 367 

microglia, and IL-33 knockout alters sensorimotor behaviour (Vainchtein et al., 2018). 368 

 369 

Complement system 370 

Modulation of the complement system impacts developmental and adult neurogenesis. Neural 371 

progenitor cells express complement receptor 2 (CR2) and its ligand complement fragment 372 

C3d inhibits their proliferation, conversely antagonism of another complement receptor, 373 

complement component C3a receptor 1 (C3aR1), promotes neuroblast proliferation (Ducruet 374 

et al., 2012; Moriyama et al., 2011). Complement’s regulation of neurogenesis continues past 375 

development and has been noted following traumatic brain injury and ischaemia (Hammad et 376 

al., 2018). Neurogenesis is also required for the neural plasticity that underlies homeostatic 377 

functions in the adult brain such as learning and memory, and thus represents another avenue 378 

for the complement system to drive the rearrangement of neural circuitry (Anderson et al., 379 

2011; Seo et al., 2015). Mice lacking complement component 1q (C1q), C3 or complement 380 
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receptor 3 do not exhibit segregation of synaptic inputs from each eye, this along with staining 381 

showing the location of complement proteins with synapses suggests that complement drives 382 

synaptic elimination by microglia during development (Schafer et al., 2012; Stevens, 2008). 383 

Complement also affects behaviour: C3a receptor knockout mice are more resilient to stress-384 

induced depressive behaviour, yet show increased levels of anxiety, whereas C3 knockout 385 

enhances fear responses (Crider et al., 2018; Westacott et al. 2020).  386 

There is now overwhelming evidence that the immune system plays a critical role in 387 

normal brain development and function, as well as affecting behaviours with a direct relevance 388 

to psychiatric illness (e.g. anxiety and depressive-type behaviours, hippocampal dependent 389 

behaviours and sensorimotor gating). This suggests that dysregulation could result in abnormal 390 

brain development and function in adulthood, potentially increasing risk for psychiatric 391 

illnesses. We will explore links between the neuroimmune system and psychiatric illness in the 392 

following section.  393 

 394 

Neuroimmune system and psychiatric illness 395 

Given the vital importance of various immune components for normal brain development, 396 

neuronal function and behaviour, it is easy to imagine how altering the neuroimmune system 397 

could affect cognitive function. There is already a wealth of information supporting a role for 398 

neuroinflammation in neurodegenerative disorders such as Alzheimer’s, Parkinson’s and 399 

Huntington’s disease, and it is possible changes in neuroimmune function may play a causal 400 

role in the pathology of psychiatric illness (Schain and Kreisl, 2017). 401 

Correlations between the immune system and psychiatric illness have been known for 402 

over a century. In 1927 Julius Wagner-Jauregg was awarded the Nobel Prize in Medicine for 403 

the development of malaria inoculation to treat syphilitic psychosis (Tsay, 2013). Here, malaria 404 
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was thought to induce a high fever that helped the patient’s immune system combat syphilis, 405 

resolving psychiatric symptoms. Since that time, further associations have been found between 406 

components of the immune system and psychiatric symptoms. For example, IFNα and IL-2 are 407 

pro-inflammatory cytokines taken as treatments for diseases including hepatitis and to boost 408 

the immune system during tumour treatment. Such treatment increases the incidence of 409 

depression, anxiety and cognitive impairment, and can induce transient confusional states, 410 

including psychotic and manic symptoms (Dantzer et al., 2008; Felger et al., 2016; Raison et 411 

al., 2005). Both intracerebroventricular and peripheral administration of IL-1β produce 412 

depressive-like symptoms (anorexia, disturbed sleep, anhedonia and endocrine disruptions), 413 

which are attenuated by IL-1β receptor antagonism and antidepressants (Borsini et al., 2017; 414 

Finck and Johnson, 1997; Koo and Duman, 2009). Conversely, anti-inflammatory agents such 415 

as non-steroidal anti-inflammatory drugs (NSAIDs) and certain antidepressants and 416 

antipsychotics have been associated with a decrease in inflammatory cytokines including IL-417 

6, IFNγ, TNFα and c-reactive protein (CRP), and an increase in anti-inflammatory cytokines 418 

including IL-10, alongside improvement in psychiatric symptoms (Baumeister et al., 2016; 419 

Hiles et al., 2012; Kohler et al., 2015). 420 

In the last few decades, alterations in immune function have been associated with a 421 

range of psychiatric illnesses. Mastocytosis (the excessive accumulation of mast cells in 422 

internal organs and skin) is often associated with anxiety, emotionality and memory alterations 423 

(Georgin-Lavialle et al., 2016). Several studies have found altered levels of peripheral 424 

cytokines and lymphocyte subtypes in schizophrenia, bipolar disorder (particularly in mania), 425 

post-traumatic stress disorder (PTSD) and major depression and levels of IL-1β, IL-2, IL-6, 426 

IL-8 and TNFα are associated with suicide (Black and Miller, 2015; Brietzke et al., 2009; 427 

Dowlati et al., 2010; Farooq et al., 2017; Gill et al., 2009; Jeon and Kim, 2016; Kim et al., 428 

2007; Kunz et al., 2011; Lin et al., 1998; Momtazmanesh et al., 2019; Passos et al., 2015; 429 
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Serafini et al., 2013). Furthermore, IL-1β levels in the periphery of depressed patients have 430 

been found to correlate with age of onset, duration of illness and severity of symptoms (Farooq 431 

et al., 2017). Given the intimate functional relationship between immune and neuronal systems, 432 

coupled with the crucial role of the immune system in normal brain development and function, 433 

this has led to the neuroimmune hypothesis of psychiatric illness. This hypothesis states that 434 

aberrant neuroimmune function directly contributes to the aetiology of psychiatric disorders. 435 

This neuroimmune hypothesis is especially appealing when we consider that immune 436 

molecules can influence levels of neurotransmitters with a known role in psychiatric illness. 437 

Serotonin modulates a diverse range of activities and behaviours in normal and psychiatric 438 

disorders, and a wealth of studies show serotonergic dysfunction in e.g. anxiety, depression, 439 

autism and schizophrenia (Marazziti, 2017). IL-1β and TNFα induce up-regulation of serotonin 440 

transporters, increasing uptake of serotonin and bringing on behavioural signs of depression 441 

(Baumeister et al., 2014; Zhu et al., 2006). INFγ and TNFα increase the expression of 442 

indoleamine 2,3 dioxygenase, which converts tryptophan to kynurenine, sequestering it away 443 

from serotonin synthesis and generating neuroactive metabolites that can regulate dopamine 444 

and glutamate (Campbell et al., 2014; Davis and Liu, 2015). Tetrahydrobiopterin (BH4) is a 445 

cofactor for tryptophan hydroxylase and tyrosine hydroxylase, rate limiting enzymes for 446 

serotonin and dopamine synthesis. Pro-inflammatory cytokines such as INFγ, IL-1 and TNFα 447 

can induce reactive oxygen species, which degrade BH4 (Miller et al., 2013; Neurauter et al., 448 

2008; Pan et al., 2017).  449 

Support for the neuroimmune hypothesis is also found in studies of genetic factors. 450 

Patients homozygous for the IL1-β 511T allele with major depression display a significantly 451 

faster and more pronounced response to the antidepressant paroxetine than IL1-β 511C carriers, 452 

and SNPs in this gene are associated with non-remission and decreased responsiveness to 453 
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emotional faces in depressed patients (Baune et al., 2010; Tadic et al., 2008). Variation in 454 

complement C4 alleles and the complement regulators CUB and sushi multiple domains 1 and 455 

2 (CSMD1/CSMD2) are associated with schizophrenia and response to antipsychotic treatment 456 

(Havik et al., 2011; Liu et al., 2016; Liu et al., 2017; Sekar et al., 2016). Meta-analyses show 457 

that allelic variation in CRP, IL-1β, TNFα and T lymphocyte function are associated with major 458 

depressive disorder and response to antidepressant treatment (Bauer and Teixeira, 2019; 459 

Bufalino et al., 2013), and biological pathway analyses have revealed that multiple immune 460 

pathways are associated with schizophrenia, major depression and bipolar disorder (Zhao and 461 

Psychiat Genomics, 2015). The evidence for microglial activation is mixed: a meta-analysis of 462 

22 studies using post-mortem tissue from schizophrenic and control brains found an increase 463 

in activated microglia in 11 studies, a decrease in 3 and no change in 8 studies (Mondelli et al., 464 

2017; Trepanier et al., 2016). Similarly, in vivo positron emission tomography studies have 465 

found variable changes in microglial density and in radioligand binding (using radioligands for 466 

the 18kDa translocator protein, a protein located mainly in the mitochondrial membrane of 467 

endothelial and glial cells, increased levels are associated with microglial activation) in the 468 

brains of schizophrenic, psychotic and depressed patients when compared to controls (Mondelli 469 

et al., 2017; van Kesteren et al., 2017). Discrepancies are likely due to differences in the brain 470 

region investigated (e.g. cortex vs hippocampus), markers used (e.g. positron emission 471 

tomography markers vs. human leukocyte antigen vs. CD68 vs. Iba1) stage of the disorder (e.g. 472 

early vs. advanced) and issues with radiotracers as proxy measures of microglial activation 473 

(Trepanier et al., 2016). Likewise, a GWAS study in 2014 found that schizophrenia, depression 474 

and bipolar are associated with B lymphocytes (Ripke et al., 2014), yet studies investigating B 475 

lymphocyte number in the periphery of schizophrenic patients find little difference from 476 

controls (although levels of B lymphocyte related cytokines and autoantibodies are increased) 477 

(van Mierlo et al., 2019). Alongside genetic variation, the environment can also have a 478 
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profound influence on neuroimmune function, and ultimately gene x environment interactions 479 

will determine final functional outcomes. We will now explore how environmental factors 480 

influence the neuroimmune system, potentially conferring vulnerability or resilience to 481 

neuropsychiatric disorders.   482 

  483 

Psychosocial stress and the immune system 484 

The immune system is highly responsive to immunological stimuli, defending the host 485 

organism from disease (Chaplin, 2010). However, it also responds to non-disease related 486 

stimuli, especially stress (Khansari et al., 1990; Marketon and Glaser, 2008; Tsyglakova et al., 487 

2019). In humans acute stressors, ranging from public speaking to laboratory stress tests and 488 

tandem skydiving, enhance immune function in the periphery, briefly increasing NKCs and 489 

pro-inflammatory mediators, especially IL-6, IL-1β, IL-10, TNFα and CRP (Breen et al., 2016; 490 

Marsland et al., 2017; Steptoe et al., 2007). This response is thought to give an evolutionary 491 

advantage by priming the immune system for action when stressful experiences, such as 492 

encounters with a predator, may have resulted in injury and infection (Segerstrom and Miller, 493 

2004). 494 

Stress is a normal part of everyday life, and results in a multitude of adaptive 495 

behavioural and molecular alterations as the organism attempts to maintain homeostasis. The 496 

sympathetic-adrenal-medullary axis (SAM axis) and hypothalamic-pituitary-adrenal axis 497 

(HPA axis) are major stress axes of the body. The sympathetic nervous system produces a rapid 498 

response, and involves the paraventricular nucleus, locus coeruleus and rostral ventrolateral 499 

medulla, as well as secretion of epinephrine and norepinephrine (NE) from the adrenal medulla, 500 

and norepinephrine from the sympathetic nerves (Carrasco and de Kar, 2003; Ulrich-Lai and 501 

Herman, 2009). The HPA axis produces a slower-acting response, secreting corticotropin 502 
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releasing hormone, arginine vasopressin and adrenocorticotropic hormone and glucocorticoids 503 

(GCs) from the hypothalamus, pituitary and adrenal glands (Ulrich-Lai and Herman, 2009). 504 

Limbic circuits including prefrontal cortex (PFC), amygdala, hippocampus, paraventricular 505 

nucleus, ventral tegmental area and nucleus accumbens play a role in regulating the stress 506 

response (Jankord and Herman, 2008; Maity et al., 2015; Ulrich-Lai and Herman, 2009). GCs 507 

bind to glucocorticoid receptors in selected brain regions (especially hippocampus and PFC), 508 

terminating the stress response (McKlveen et al., 2013; Sapolsky et al., 1984; Vyas et al., 509 

2016). The HPA and SAM axes are intimately linked with one another and the immune system, 510 

with all immune cells expressing receptors for hormones of the HPA and SAM axes (Glaser 511 

and Kiecolt-Glaser, 2005).  512 

 There are several pathways through which the immune and stress systems 513 

communicate. GCs bind to receptors on immune cells in the periphery and brain, producing 514 

either a pro- or anti-inflammatory effect, depending on dose, duration and region (Duque and 515 

Munhoz, 2016).  Cytokines in turn stimulate the HPA axis, perpetuating the stress response. In 516 

particular, IL-1, IL-6 and TNFα activate the HPA axis through direct and indirect mechanisms, 517 

increasing adrenocorticotropic hormone and corticosterone release (Dunn, 2006). Sympathetic 518 

pathways descend from the brain to bone marrow, thymus, spleen and lymphoid tissues, 519 

releasing hormones (especially NE) that bind to immune cells (Nance and Sanders, 2007; 520 

Steinman, 2004). NE activates the vagal nerve, increasing NE in the brain, and this regulates 521 

synaptic and structural plasticity (Hulsey et al., 2019). The vagal nerve is stimulated by 522 

peripheral cytokines as well as NE, providing another communication pathway between the 523 

brain and peripheral immune system (Johnston and Webster, 2009). There are therefore several 524 

direct and indirect routes through which the stress axes can affect both peripheral and central 525 

immune function, and many effects are considered to be normal, physiological mechanisms of 526 

activity (Dunn, 2000).  527 
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The intimate links between stress and immune systems mean that exposure to chronic 528 

or intense stress may negatively dysregulate both stress and immune functions. In support of 529 

this, severe acute or chronic stress has been linked to a range of physical (from diabetes to 530 

osteoporosis) and psychiatric disorders in humans (Hackett and Steptoe, 2017; Kelly et al., 531 

2019; McEwen et al., 2015; Riboni and Belzung, 2017; Tomiyama, 2019; Zorn et al., 2017). 532 

Some of the earliest examples of this phenomenon demonstrate that psychosocial stress in the 533 

form of predator or noise exposure can dramatically alter the course of autoimmune diseases 534 

such as arthritis in animals (Rogers et al., 1980, 1983). In humans, a 15-year study from 1985 535 

demonstrated that a period of psychosocial stress (death of a loved one, marital problems and 536 

serious illness) often preceded the development rheumatoid arthritis (Rimon and Laakso, 537 

1985), and the link between stress and autoimmune diseases now has greater empirical support 538 

(Porcelli et al., 2016). Adults experiencing stressful events such as caring for someone with 539 

dementia, extended work stress, unemployment or poverty mount a lower immune response to 540 

influenza and hepatitis B vaccines (Domnich et al., 2019; KiecoltGlaser et al., 1996; Pedersen 541 

et al., 2009; Segerstrom and Miller, 2004; Vedhara et al., 1999). This suggests that 542 

psychological pressures can fundamentally alter the functioning of the immune system, 543 

increasing vulnerability to a range of diseases. We will now explore some of the molecular 544 

mechanisms underlying this phenomenon.  545 

In animal models psychological stressors including social defeat, restraint and chronic 546 

variable stress alter peripheral immune responses, increasing monocytes, neutrophils, IL1-β, 547 

IL-6, IL-13, TNFα and IL-10 levels, decreasing dendritic cells and promoting T lymphocyte 548 

apoptosis (Ambree et al., 2018; Ashcraft et al., 2008; Finnell et al., 2017; Heidt et al., 2014; 549 

Pfau et al., 2019; Powell et al., 2009; Tsyglakova et al., 2019). Interestingly, some of these 550 

effects are specific only to stress susceptible animals, revealing individual differences in stress-551 

immune system regulation (Ambree et al., 2018). Similar effects are seen in the CNS of 552 
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animals, where a range of psychosocial stressors (e.g. restraint, footshock and swim stress) 553 

increase IL1-β expression in various brain regions, activate microglia and change number, 554 

distribution and activation status of mast cells throughout the brain (Bollinger et al., 2016; 555 

Cirulli et al., 1998; Hellwig et al., 2016; Kriegsfeld et al., 2003; Minami et al., 1991; Suzuki et 556 

al., 1997; Theoharides, 1996; Tynan et al., 2010; Wilhelm et al., 2000; Wohleb et al., 2012). 557 

Chronic stress can also disrupt the BBB, increasing the influx of peripherally-derived 558 

monocytes into the brain, as well as altering the stress responsiveness of immune cells, 559 

modulating their glucocorticoid receptor expression (Ataka et al., 2013; Blandino et al., 2006; 560 

Brevet et al., 2010; Jung et al., 2015; Quan et al., 2003).  561 

Microglia, astrocytes and mast cells are highly sensitive to GC’s, and express both 562 

glucocorticoid and mineralocorticoid receptors (the two main corticosteroid receptors) (Sierra 563 

et al., 2008). GCs stimulate the proliferation of microglia, upregulating activation and 564 

inflammatory markers such as MHCII, CD14, CD86 and TLR4 on these cells, acting through 565 

NMDA, β-adrenergic and IL-1β receptors (de Pablos et al., 2006; Frank et al., 2012; Nair and 566 

Bonneau, 2006; Wohleb et al., 2012). In animals, GCs alter the number of astrocytes in the 567 

brain and their gene expression (Carter et al., 2012; MacDonald et al., 2019; Piechota et al., 568 

2017; Unemura et al., 2012), and psychological stress can induce mast cell degranulation in 569 

the periphery, an effect mediated by corticotrophin releasing hormone (Peters et al., 2005; 570 

Theoharides, 1996). Chronic or severe stressors are also associated with abnormal behaviour 571 

(e.g. increased anxiety and depression-type symptoms) and structural changes in the brain (e.g. 572 

atrophy in hippocampus, PFC and amygdala) in humans and animals (Cameron and 573 

Schoenfeld, 2018; McEwen, 2016). Given the role the immune system plays in normal 574 

behaviour and neuronal function, dysregulation of the immune system by severe acute or 575 

chronic stress may play a direct role in such pathological states. Most studies investigate 576 

immune changes shortly after stress exposure, but studies focussing on stress during 577 
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development demonstrate that these effects can be long-lasting and result in permanent re-578 

programming of the developing neuroimmune system. Conversely, positive experiences may 579 

program resilience, and even mitigate the negative effects of stress. Resilience or pathology are 580 

likely dependent on the nature, duration and timing of the early life experience as well as 581 

individual genetics. We will explore this further in the next section. 582 

  583 

Developmental stress and the neuroimmune system 584 

There are well documented links between the experience of physical, immunological and 585 

psychological stressors during development such as trauma, abuse, neglect, infection and 586 

malnutrition and the development of physical (rheumatoid arthritis, cardiovascular disease, 587 

lung disease, metabolic syndrome and cancer) and psychiatric illnesses (depression, anxiety, 588 

PTSD, schizophrenia and borderline personality disorder) in humans (Carroll et al., 2013; Dube 589 

et al., 2003; Heim and Nemeroff, 2001; Sonu et al., 2019; Teicher and Samson, 2013, 2016; 590 

Tiwari and Gonzalez, 2018). Developmental stress can be experienced in utero, in the early or 591 

late postnatal periods and also later on in development, during adolescence. The CNS and 592 

immune systems follow distinct developmental trajectories throughout these periods as they 593 

mature towards their adult form (Brenhouse and Schwarz, 2016; Gollwitzer and Marsland, 594 

2015). Intriguingly, it has even been suggested that BBB permeability to immune molecules 595 

may vary as a normal part of adolescent neuronal development (Brenhouse and Schwarz, 596 

2016). Therefore, the long-term consequences of developmental stress may vary depending on 597 

the brain region or neuroimmunological process maturing at the time of insult. As with other 598 

domains (e.g. stress responses and hippocampal form and function (Brunson et al., 2011)) 599 

stressful challenges may produce greater or at least differential effects on neuroimmunological 600 
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function in development vs. adulthood, but there is not currently enough information to state 601 

this conclusively.   602 

Developmental stressors can be broadly divided into four categories - i) prenatal and ii) 603 

early postnatal (generally pre-weaning), iii) post-weaning, pre-pubertal (childhood) and iv) 604 

adolescent, although there may be overlap between these categories. In the following 605 

discussion, we have grouped human prenatal with rodent prenatal and early postnatal stress, as 606 

the first two weeks of rodent life are often deemed equivalent to the third trimester in humans. 607 

Childhood and adolescent stress have been grouped as human studies generally fail to 608 

distinguish between these timepoints, although doing so would undoubtedly prove 609 

informative. See Figure 3 for a summary of the major types of positive and negative 610 

experiences and their neuroimmunological consequences throughout these periods in humans 611 

and animals.  612 

  613 

Perinatal stress (prenatal & early postnatal) 614 

Humans - prenatal 615 

Studies of maternal infection provide a particularly striking example of the link between 616 

developmental stress in the form of immune activation and later vulnerability to psychiatric 617 

illness. 1964 saw a rubella epidemic which was significantly associated with an increase in 618 

incidences of autism and schizophrenia (from 1% to 13-20%) in offspring (Brown et al., 2001; 619 

Estes and McAllister, 2016). Historical outbreaks of measles, mumps, polio, influenza and 620 

maternal exposure to parasites and bacterial infections have been similarly associated with 621 

increased rates of psychiatric illness later in life (Babulas et al., 2006; Blomstrom et al., 2016; 622 

Brown et al., 2004; Buka et al., 2001; Canetta and Brown, 2012; Guma et al., 2019; Tyebji et 623 
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al., 2019) although some studies have found no association (Selten et al., 2010). It will be 624 

interesting to see whether similar effects are observed after the 2020 world-wide pandemic of 625 

COVID-19, and gives greater gravity to the public health advice that pregnant women should 626 

be considered a vulnerable population during such outbreaks (Qiao, 2020). Similar risks are 627 

observed following maternal autoimmune disorders, suggesting that activation of the maternal 628 

immune system is sufficient to increase risk of psychiatric illness in the offspring (Chen et al., 629 

2016; Estes and McAllister, 2016). Maternal psychosocial stress and mental illness in the 630 

prenatal period is also associated with an increased risk of psychiatric illness and delayed 631 

cognitive development in the offspring, although some studies have found no association 632 

(Brannigan et al., 2019, 2020; Glover, 2011; Malaspina et al., 2008; Stein et al., 2014). Women 633 

experiencing psychosocial stress/mental illness during gestation have altered HPA axis 634 

function and increased circulating pro-inflammatory cytokines (Cheng and Pickler, 2014; 635 

Corwin et al., 2013; Coussons-Read et al., 2007; O'Connor et al., 2014; Szpunar and Parry, 636 

2018), although note that some studies have found no association between perceived maternal 637 

stress/mental illness and cortisol (Rouse and Goodman, 2014). It is therefore hypothesised that 638 

offspring in utero are exposed to abnormal levels of maternally derived stress hormones and 639 

pro-inflammatory cytokines, which may interact to alter the development of biological systems, 640 

including the brain (Elenkov et al., 2005). Maternal malnutrition and over-nutrition are also 641 

associated with schizophrenia, autism and metabolic disorders in offspring, and here exposure 642 

to inflammatory factors is hypothesised to play a role (Smith and Reyes 2017). Despite this, 643 

there are very few human studies examining the lasting effects of prenatal stress on immune 644 

function in offspring. One study demonstrated that monocytes from women whose mothers had 645 

experienced psychosocial stress during pregnancy produced elevated levels of IL-6 and IL-10, 646 

and a bias for T helper cytokine production resulting from an overproduction of IL-4 relative 647 

to IFNγ (Entringer et al., 2008). Another found that maternal diets deficient in key nutrients 648 
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such as zinc, vitamins A, D and C, folate, iodine and iron are associated with poor immune 649 

responses to vaccines in infancy (Obanewa and Newell., 2017). 650 

Studies in humans are confounded by uncontrolled environmental factors (for example, 651 

are offspring of prenatally stressed mothers at greater risk of depression due to parental prenatal 652 

stress or subsequent postnatal depression/parenting styles or shared genetic factors?), genetic 653 

variability and inaccessibility of neural tissue (with the exception of post-mortem studies). We 654 

therefore know very little about the effects of developmental stress on immune system-related 655 

function in the human brain.  It can also be difficult to disentangle cause and effect -  are 656 

changes in the immune system a cause or a consequence of psychiatric illness? For example, 657 

excessive alcohol consumption and tobacco smoking are often comorbid with psychiatric 658 

illness, and known to alter immune function independently of psychiatric state (Barr et al., 659 

2016; Dani and Harris, 2005). Therefore, studying the direct effects of psychological stressors 660 

on neuroimmune function of the brain is not straightforward. Animal models can give a greater 661 

insight into the underlying mechanisms linking developmental stress with alterations in 662 

neuroimmune function. 663 

 664 

Animals – prenatal & early postnatal 665 

Animal studies of perinatal stress range from maternal immune activation (MIA, using IL-1β, 666 

lipopolysaccharide (LPS), polyinosinic-polycytidilic acid (poly (I:C)), injection of stress 667 

hormones (e.g. dexamethasone), dietary manipulations and psychological stress (e.g. restraint, 668 

bright lighting) in utero to maternal separation, limited nesting and bedding and poor maternal 669 

care in the first few weeks of life, and similarly find negative outcomes for brain, behaviour 670 

and immunity. Behavioural changes often reflect those found in autism spectrum disorder, 671 

schizophrenia, depression and anxiety, and include abnormal social behaviour and 672 
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communication, repetitive behaviours, altered sensorimotor gating, increased anxiety, impaired 673 

working memory and cognitive flexibility (Bock et al., 2015; Nishi et al., 2014; Smith and 674 

Reyes, 2017; Tractenberg et al., 2016). These are accompanied by structural changes in 675 

hippocampus and PFC and altered dopamine and serotonin signalling (Estes and McAllister, 676 

2016; Smith and Reyes, 2017). Enhanced immune signalling from the mother appears to be 677 

one key mechanism underlying these changes - injection of IL-6 alone is capable of producing 678 

many prenatal-stress induced behavioural, structural and molecular changes in the offspring 679 

(Smith et al., 2007). Furthermore, co-injecting poly (I:C) with an antibody that blocks the 680 

function of IL-6 or IL-17 partially rescues the phenotype (Choi, 2016; Smith et al., 2007). This 681 

demonstrates that immune challenge in early life is causal in producing altered brain 682 

development in offspring.  683 

Alongside behavioural and neuronal changes, perinatal stress permanently alters 684 

immune function peripherally and centrally in the offspring. Psychological stressors including 685 

noise, light and restraint stress during gestation decrease the effectiveness of NKCs and B 686 

lymphocyte proliferation in the periphery, and maternal malnutrition/high fat diet impair T and 687 

B lymphocyte activity (Falcone et al., 2017; Kay et al., 1998; Liaudat et al., 2012; Verwaerde 688 

et al., 2006) Maternal psychological stressors, MIA, maternal separation/deprivation and 689 

dietary manipulations alter expression of numerous cytokines in plasma or brain, either at 690 

baseline or following a subsequent immune challenge, and there are many excellent reviews 691 

on these topics (Avitsur et al., 2006, 2013; Bekhbat and Neigh, 2018; Bergdolt and Dunaevsky, 692 

2019; Dimatelis et al., 2012; Diz-Chaves et al., 2013; Falcone et al., 2017; Saavedra et al., 693 

2017; Smith and Reyes, 2017; Wieck et al., 2013). These changes often occur in an age and 694 

region-specific pattern, and suggest that similar to MIA, psychosocial stress may alter brain 695 

development via regulation of the immune system. 696 
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A wide range of perinatal stressors (e.g. MIA, maternal psychosocial stress, brief daily 697 

separation, prenatal high fat diet and neonatal exposure to diesel particles) alter the 698 

developmental trajectory, density and morphology of microglia and astrocytes throughout the 699 

developing brain (Baldy et al., 2018; Banqueri et al., 2019; Bekhbat and Neigh, 2018; Bergdolt 700 

and Dunaevsky, 2019; Bilbo and Tsang, 2010; Bland et al., 2010; Bolton et al., 2017; Catale et 701 

al., 2020; Cohen et al., 2016; Delpech et al., 2016; Diz-Chaves et al., 2012, 2013; Edlow et al., 702 

2019; Gomez-Gonzalez and Escobar, 2010; Lopez-Gallardo et al., 2008; Makinson et al., 2017; 703 

Matcovitch-Natan et al., 2016; Reus et al., 2019; Roque et al., 2016; Saavedra et al., 2017; 704 

Smith and Reyes, 2017), although note that some studies find no change (Bergdolt and 705 

Dunaevsky, 2019; Giovanoli et al., 2016). Some of these changes are transitory in nature, others 706 

persist into adulthood, and effects are often exacerbated following a further immune challenge 707 

in adulthood. Temporarily depleting microglia in the early neonatal period causes anxiety, 708 

despair and working-memory deficits in adulthood, highlighting their importance for the 709 

development of normal behaviour (Nelson and Lenz, 2017; VanRyzin et al., 2016). MIA alters 710 

MHCII levels on microglia and MHC1 on neurons in the brains of offspring (Coiro et al., 2015; 711 

Hadar et al., 2017). MHCI is involved in the regulation of synaptic pruning and circuits, is 712 

regulated by cytokines and co-localises with C1q, which also plays a role in synaptic 713 

elimination during early postnatal refinement of the functional visual system (Miyamoto et al., 714 

2013). Altered synaptogenesis and pruning have been suggested as potential mechanisms 715 

contributing to neurodevelopmental disorders such as schizophrenia and autism spectrum 716 

disorder (Habela et al., 2016; McCutcheon et al., 2020). Together, this suggests that 717 

psychosocial stress during early life has profound effects on the immune system which 718 

correlates with altered postnatal brain developmental processes.  719 

 720 

Childhood/pre-pubertal/adolescent stress 721 
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Humans 722 

Abuse, neglect, parental illness, death, abandonment, crime, divorce, war, displacement and 723 

natural disaster in childhood are associated with psychiatric illnesses and suicide attempts 724 

(Abel et al., 2014; Bjorkenstam et al., 2016; Green et al., 2010; Kessler et al., 2010; van Os et 725 

al., 2010; Wang et al., 2020; Zatti et al., 2017). They are also associated with significant 726 

changes in the immune system in childhood and adulthood, especially altered CRP, IL-6, 727 

TNFα, fibrinogen, E-selectin (expressed on cells activated by cytokines) and nuclear factor 728 

kappa-light-chain enhancer of activated B cells (NFκβ, controls cytokine production) 729 

(Baumeister et al., 2014; Carpenter et al., 2010; Coelho et al., 2014; Copeland et al., 2014; 730 

Danese and Lewis, 2017; Danese et al., 2007; Fagundes et al., 2013; Kiecolt-Glaser et al., 2011; 731 

Kuhlman et al., 2019; Lacey et al., 2014; Levandowski et al., 2016; Miller and Chen, 2007, 732 

2010; Pace et al., 2012; Slopen et al., 2013; Takizawa et al., 2015). Sometimes these effects 733 

are only seen after exposure to a subsequent stressor. In humans, IL-6 increases in response to 734 

a variety of acute stressors, and this response is exaggerated in adults that were exposed to 735 

early life adversity (Carpenter et al., 2010; Pace et al., 2012). Effects of developmental stress 736 

on immune expression are also often exacerbated in individuals with a psychiatric disorder. 737 

For example, childhood adversity (CA) predicted increased levels of TNFα and IL-6 in patients 738 

with schizophrenia, and higher levels of IL-6 following CA are predictive of PTSD (Dennison 739 

et al., 2013; Pervanidou et al., 2007). In women at risk for depression, a transition to depression 740 

was accompanied by increases in pro-inflammatory markers CRP and IL-6 only in those 741 

exposed to CA (Miller and Cole, 2012). This suggests that in the future, inflammatory 742 

phenotype may be a useful diagnostic for stratifying psychiatric populations and considering 743 

treatment options.  744 
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Longitudinal studies demonstrate an association between CA and physical illnesses, 745 

diabetes and metabolic disorders and obesity (Li et al., 2019; Lown et al., 2019; Scott et al., 746 

2011). There is a high rate of medical problems in those with mental illness, suggesting there 747 

may be common inflammatory mechanisms at work (Agorastos et al., 2019; Ehlert, 2013). An 748 

alternative explanation is that this association arises due to lifestyle factors. A study providing 749 

support for the former notion followed 1037 people since birth and found that cumulative 750 

developmental stress was associated with elevated inflammatory markers CRP, fibrinogen and 751 

white cell counts 20 years later, and this was not explained by potential confounders  (Danese 752 

et al., 2007). Stronger evidence is again provided through animal studies.  753 

 754 

Animals  755 

A range of paradigms are used in animals to simulate stress in the childhood (or pre-pubertal) 756 

and adolescent phases of life, and include social isolation, social defeat, an unstable housing 757 

environment (e.g. constant light, wet bedding, unstable social groups) and short and long term 758 

physical stressors (e.g. forced swim, restraint, elevated platform and foot shocks). This is less 759 

well studied than perinatal stress, particularly in the context of neuroimmune alterations. 760 

Similarly to perinatal stress, pre-pubertal and adolescent stress results in characteristics 761 

reminiscent of human psychiatric illness, including HPA axis alterations and 762 

depressive/anxious phenotypes (although precise effects are often affected by exact time of 763 

exposure and sex) (Eiland et al., 2012; Green and McCormick, 2013; McCormick et al., 2010; 764 

Romeo, 2017; van Bodegom et al., 2017). Long-term changes in neuroimmune function are 765 

also observed. Social defeat and chronic unpredictable stress during adolescence alter the 766 

number and activation of microglia throughout the brain (Rodriguez-Arias et al., 2018; Wang 767 

et al., 2018b). Cytokines are also affected: isolation rearing and chronic unpredictable stress 768 
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throughout adolescence alter IL-4, IL-1β, TNFα, INFγ (plasma) and TNFα, IL1-β and IL-6 in 769 

the brain (Ko and Liu, 2015, 2016; Moller et al., 2013; Shortall et al., 2018; Wang et al., 2018b). 770 

The majority of studies use rodents, but a study using Japanese quail found that unpredictable 771 

food availability during adolescence altered IL1-β, IL-10 and the microglia-dependent gene 772 

colony simulating factor 1 receptor (CSF1R) in pituitary, amygdala and hypothalamus (Walker 773 

et al., 2019). This suggests the nature of the stress-immune axis relationship is conserved across 774 

species.  775 

Chronic adolescent stress (social defeat and restraint) sensitises the rat hippocampus 776 

immune profile to react more strongly to LPS challenge weeks later, exaggerating the 777 

expression of NFκβ, IL-1β, TNFα and CD11b in the hippocampus (Bekhbat et al., 2019; Pyter 778 

et al., 2013). Interestingly, these central changes are not reflected in the periphery, suggesting 779 

that peripheral changes are not always a suitable proxy measure for the CNS. As we have 780 

discussed, this does not mean that peripheral changes have no consequence for brain and 781 

behaviour, however, it does suggest that peripheral changes cannot reveal everything about 782 

how stress alters central neuroimmune function, information which is vital for developing 783 

novel therapeutics for psychiatric illnesses. Animal models provide a unique opportunity to 784 

address the largely unanswered question of whether stress affects central and peripheral 785 

immune function comparably: unfortunately most studies do not take advantage of this.  786 

Virtually nothing is known of the long-term neuroimmune consequences of stress in 787 

the post-weaning, pre-pubertal phase, a time point akin to human childhood (Brydges, 2016). 788 

In humans, childhood is a particularly vulnerable timepoint where stress exposure can 789 

significantly increase the risk of psychiatric illness. Exposing animals to short-term physical 790 

stressors in the juvenile or pre-pubertal phase enhances blood monocytes and blood chemokine 791 

ligand type 2 (CCL2) following peritoneal inflammation. There was a decreased level of 792 
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chemokine receptor type 2 (CCR2) on these monocytes, which indicated a reduced ability for 793 

these monocytes to be recruited to the inflammatory site. Reduced levels of macrophages were 794 

found in the peritoneal cavity, alongside a reduced activation ratio for the release of peritoneal 795 

IL-10 by LPS activation (Shtoots et al., 2018). Pre-pubertal stress also alters FK506-binding 796 

protein 5 (FKBP5) in the hippocampus (Brydges et al. 2020). FKBP5 is an immunophilin 797 

which also plays a crucial role in regulating the HPA axis, making this an ideal candidate 798 

molecule linking developmental stress with neuroimmune dysfunction and psychiatric illness. 799 

Polymorphisms in FKBP5 have been associated with depression, PTSD and response to 800 

antidepressant treatment, and interact with childhood adversity to confer risk or resilience to 801 

these disorders (Wang et al., 2018a; Xie et al., 2010). Other gene x childhood adversity 802 

interactions have been explored, including monoamine oxidase A, solute carrier family 6 803 

member 4, catechol-O-methyl transferase and brain-derived neurotrophic factor, and are 804 

reviewed elsewhere (Assary et al., 2018).  805 

These studies suggest that stress-related alteration of the neuroimmune system during 806 

development may contribute to abnormal brain development and behaviour, increasing 807 

vulnerability to psychiatric illness. This provides a potential therapeutic avenue for psychiatric 808 

illness.  809 

 810 

Positive environmental experience and the neuroimmune system 811 

Just as chronic or intense stress is capable of negatively modulating neuroimmune function, 812 

there is emerging evidence that positive experiences can enhance it, potentially providing 813 

resilience to psychiatric illness. For example in adult humans, regular bouts of moderate 814 

intensity exercise prevents cardiovascular disease, cancer, diabetes, obesity and osteoporosis, 815 

improves mood and enhances immune performance (although there is debate over whether 816 
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strenuous or unaccustomed exercise is actually detrimental to immune function) (Aoi and 817 

Naito, 2019; Campbell and Turner, 2018; Gleeson et al., 2011; Pascoe et al., 2014; Simpson et 818 

al., 2020). Meta-analyses demonstrate that not only is mindfulness beneficial for subjective 819 

wellbeing (particularly in the context of depression and pain) but also reduces inflammation as 820 

measured by IL-6, TNFα, NF-kβ transcription activity and CRP levels and increases cell 821 

mediated immunity by increasing CD4+ cell count and activity, and also increases telomerase 822 

activity (Black and Slavich, 2016; Goldberg et al., 2018; Walsh et al., 2016). Another meta-823 

analysis of 75 studies showed that a variety of stress-reduction and relaxation techniques, 824 

including cognitive behavioural therapy, meditation, hypnosis, emotional disclosure and 825 

counselling had small but positive effects on immune performance as measured by physical 826 

immune challenges (e.g. skin tests and wound healing) and psychophysiological challenges 827 

(speech task, cold pressor test, exams and treadmill exercise) (Schakel et al., 2019). Brief 828 

interventions aimed at improving positive affect (e.g. comedy, massage, music, relaxation and 829 

physical exertion) are also effective in enhancing immune responses (as measured by secretory 830 

immunoglobulin A, NKCs and IL-6 (Ayling et al., 2020)). However, interventions are largely 831 

given in adulthood and it is possible that earlier interventions following developmental stress 832 

may provide greater benefits, before alterations in immune function have become more 833 

established later in life. Further studies are also needed to establish whether these effects are 834 

long-lasting or represent an immediate, transient response, and whether repeated/continuous 835 

intervention is needed to maintain positive benefits.  836 

Positive environmental experiences such as mindfulness are beneficial for improving 837 

depression, anxiety, coping and mood in individuals with a history of childhood adversity, but 838 

the implications of such interventions for immune function in this population are largely 839 

unknown (Ortiz and Sibinga, 2017). There is research demonstrating that sensitive caregiving 840 

promotes optimal brain development in children, and that factors such as secure environments 841 
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and caregiver attachments, high family functioning, close parental monitoring, good social 842 

support and cognitive behavioural therapy can mitigate and protect against the negative effects 843 

of developmental stress, but again, effects on neuroimmune function are unknown (Brown et 844 

al., 2017; Fritz et al., 2018; Kok et al., 2015; Masten et al., 2009; McGoron et al., 2012; Nelson 845 

et al., 2014; Sciaraffa et al., 2018; Tiet et al., 1998). One area which has received investigation 846 

across the life course is diet. We have seen that malnutrition and over-nutrition during 847 

development can negatively impact immune function, cognition and emotion, conversely, 848 

optimal diet can exert the opposite effects. Here, interactions between the gut-brain axis are 849 

thought to be particularly influential (Rogers et al. 2016). For example, breastfed infants 850 

display decreased inflammation, and the Mediterranean diet, which is high in vegetables, fish 851 

and ‘healthy’ dietary fats is also associated with reduced inflammation (Childs et al., 2019). 852 

Addition of anti-inflammatory dietary omega-3 polyunsaturated fatty acids (PUFA) via fish oil 853 

to the maternal diet reduced neonatal responses to allergens (decreased IL-5, 13 and 10 and 854 

INFγ) (Dunstan et al., 2003). PUFA in the form of docosahexaenoic acid (DHA) has also been 855 

found to normalise immune reactions to stress in  pregnant women with two or more adverse 856 

childhood experiences (Hantsoo et al., 2019). Finally, supplementation of maternal diet with 857 

nutrients including folate, iodine and vitamin D are associated with enhanced fetal immunity 858 

and paralleled by a decreased incidence of psychiatric illness in adulthood (Marques et al., 859 

2013).  This suggests that diet may be a promising, viable, modifiable target for prevention and 860 

treatment of psychiatric illnesses, although more research is needed. All measures in humans 861 

are necessarily peripheral, so we can again turn to animal models to investigate central 862 

changes.  863 

 Animal models of positive environmental experiences face some translational 864 

challenges. It is not possible to administer mindfulness or similar relaxation techniques to 865 

rodents, but we can still provide meaningful positive experiences with translational validity. 866 
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There are four main methods of inducing positive affect in rodents: postnatal stimulation (akin 867 

to sensitive caregiving in humans), environmental enrichment, exercise and diet, we will 868 

examine the effects of each in turn.   869 

 870 

Postnatal early stimulation 871 

Postnatal early stimulation (also called early neonatal handling, early postnatal handling, early 872 

handling, enhanced postnatal care or brief handling stress) involves removing rodent pups from 873 

their dam for a few minutes daily during the first few weeks of life. Unlike prolonged separation 874 

during this period (a method of invoking developmental stress through deprivation of maternal 875 

nutrition, warmth and littermates), postnatal early stimulation (PES) is thought to stimulate the 876 

mother to pay increased attention to the pups upon their return (e.g. increased licking and 877 

grooming), and provide an enriching experience which can mitigate many adverse effects of 878 

prenatal stress, particularly with regards to HPA axis function (Levine, 2000). A handful of 879 

studies demonstrate that PES can also improve immune function. In rodents, PES enhances 880 

peripheral T and B lymphocyte proliferation, and within the brain increases baseline expression 881 

of IL-10 in the nucleus accumbens, an effect which is maintained into adulthood via decreased 882 

methylation of IL-10, specifically in microglia (Lown and Dukta, 1987; Schwarz et al., 2011). 883 

Expression of pro-inflammatory cytokines and chemokines, including CXC3CR1, TLR2, IL1-884 

β and CLL2 are also decreased following PES in the nucleus accumbens (Lacagnina et al., 885 

2017). PES reduced anxiety in WT mice but not in those lacking expression of the 886 

inflammation suppressing factor interferon regulatory factor 2 binding protein 2 (IRF2BP2) on 887 

microglia, suggesting the anxiolytic effects of PES may work through suppressing microglial 888 

inflammation (Hari et al., 2017). PES increases mast cell number in and around the 889 

hippocampus: whether it can reverse the effects of perinatal stress on mast cells is unknown 890 
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(Joshi et al., 2019). Prenatal restraint stress increases leukocytes and lymphocytes and 891 

decreases neutrophils, T lymphocyte proliferation and IL-2 release in the periphery following 892 

adult restraint stress, and these effects were rescued by PES (Falcone et al., 2017; Liaudat et 893 

al., 2012). E-coli infection on postnatal day 4 increases microglia reactivity in the 894 

hippocampus, exaggerates IL-1β expression in response to LPS and impairs memory: again, 895 

these effects are reversed by PES (Bilbo et al., 2007). There is therefore good evidence that 896 

interventions at critical times in early life could be used to rescue otherwise damaging effects 897 

of developmental stress on neuroimmune function and associated behaviours.   898 

 899 

Environmental enrichment 900 

In rodent models, environmental enrichment (EE) involves exposing animals to enhanced 901 

social and physical stimuli in the home cage. This includes provision of toys, tunnels and larger 902 

social groups which promotes physical activity, exploration and social interaction. Sometimes 903 

running wheels are included as part of the treatment, but effects of exercise are often dissociable 904 

from other aspects of EE, so will be considered further in the section exercise below. EE is 905 

often administered in adulthood, and provides a robust method for improving a range of 906 

behavioural and molecular alterations, including those associated with psychiatric illness (e.g. 907 

anxiety and depression), and those resulting from stress (Fox et al., 2006; Lopes et al., 2017; 908 

Nithianantharajah and Hannan, 2006). A few studies have investigated the effects of EE on 909 

immune function. EE improves response to influenza A infection in mice, enhances 910 

macrophage, lymphocyte and NKC function and activity and microglial density, and decreases 911 

inflammatory cytokines in periphery and brain (Arranz et al., 2010; Buschert et al., 2016; 912 

Jurgens and Johnson, 2012; Marashi et al., 2003; McQuaid et al., 2013; Singhal et al., 2014). 913 

EE also reverses increases in pro-inflammatory cytokines (IL1-β, IL-6) resulting from stress 914 
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(including social stress and predator exposure) in adulthood (McQuaid et al., 2018; Scarola et 915 

al., 2019). When given during adolescence, EE can reverse the effects of developmental stress 916 

on the immune system. Animals subjected to prenatal restraint stress displayed decreased CD4 917 

T lymphocytes, increased IL-1β and IL-10 in spleen and brain, effects which were reversed by 918 

EE (Laviola et al., 2004). Maternally separated rats display increased TNFα and TNFα:IL-10: 919 

this was reversed by EE (do Prado et al., 2016). Those given short-term variable stress in the 920 

post-weaning, pre-pubertal phase had higher levels of blood monocytes with an increase in 921 

CCL2 and decrease in CCR2 following immunological challenge (peritoneal inflammation), 922 

and peritoneal cells expressed less IL-10 after LPS challenge in vitro. In this case, EE did not 923 

reverse monocyte number or CCL2/CCR2, but did normalise IL-10 expression (Shtoots et al., 924 

2018). Enrichment protocols last 3-5 weeks, but the minimal or optimal duration or time of 925 

intervention for effects to be observed is unknown. Similarly, it is unknown whether a single 926 

bout of enrichment is sufficient to rescue immunological changes, or whether continual 927 

enrichment is required, and whether effects last beyond early adulthood. 928 

 929 

Exercise 930 

Exercise and diet are conceptually the most translatable positive environmental experiences 931 

between species. Running wheels, treadmills and swimming are typically used to exercise 932 

animals, and protocols may be voluntary or forced. The advantage of forced exercise is 933 

administration of precise doses, but such regimes may cause stress. Indeed, all exercise types 934 

initially cause stress, but this effect is minimised through provision of adaptation periods 935 

(Contarteze et al., 2008; Liu et al., 2013). Animal models show that exercise has beneficial 936 

effects on cognition, neuroinflammation and behaviour (Ryan and Nolan, 2016; Svensson et 937 

al., 2015). There is a large literature on the beneficial effects of exercise for neuroinflammation 938 
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(cytokines and microglial activation) in models of Alzheimer’s and Parkinson’s disease, and 939 

this is reviewed elsewhere (Svensson et al., 2015; van Praag, 2009). In general, exercise 940 

reduces pro-inflammatory cytokines, increases anti-inflammatory cytokines and decreases the 941 

inflammatory phenotype of microglia (Delpech et al., 2016; Kohman et al., 2013; Madore et 942 

al., 2020; Svensson et al., 2015). In particular, exercise induces IL-6 in muscle, blood and 943 

cerebrospinal fluid, and IL-6 can suppress TNFα and IL1-β, promoting an anti-inflammatory 944 

phenotype (Kilic et al., 2014; Petersen and Pedersen, 2006). Exercise is also effective in 945 

alleviating depressive-type behaviour and decreasing INFγ in the prefrontal cortex (Liu et al., 946 

2013). The evidence for exhaustive exercise is less clear. Some studies show this is detrimental 947 

for immune function, leaving animals more susceptible to severe symptoms of infection, others 948 

demonstrate a protective effect (Simpson et al., 2020).  949 

There is some evidence that exercise can rescue the neuroimmune effects of 950 

developmental stress. Maternal separation decreases TLR-4 and its main signalling protein 951 

Myd88 in the hippocampus, an effect that is rescued by voluntary but not forced exercise 952 

(Sadeghi et al., 2016). Exercise has also been shown to rescue deficient microglial activity 953 

resulting from MIA (Andoh et al., 2019). 954 

 955 

Diet 956 

Positive dietary manipulations in animals involve addition of beneficial compounds to the diet, 957 

and a few studies demonstrate this can reverse the effects of developmental stress. Addition of 958 

polyphenols (naturally occurring compounds with several health benefits) and probiotics to the 959 

diet postnatally reverses the effects of maternal separation on depressive, anxiety and fear 960 

behaviours and gut microbiota, suggesting alterations to the gut-brain axis can influence 961 

behaviour (e,g. Cowan et al., 2019; Donoso et al., 2020).  Furthermore, addition of PUFA’s to 962 
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the post-weaning diet and high maternal vitamin D reverse the effects of MIA on pre-pulse 963 

inhibition, anxiety, dopaminergic development and brain chemistry, and dietary 964 

supplementation with methyl donors (choline, betaine, folate and vitamin B12) in adulthood 965 

rescues the effects of maternal separation on depression-like behaviour (Li et al., 2015; Luan 966 

et al., 2018; Paternain et al., 2016; Rincel et al., 2020). The role of the immune system in this 967 

rescuing effect is currently unknown. However, this is a plausible mechanism, as dietary 968 

manipulations can improve immune function. For example, addition of DHA (a 969 

polyunsaturated fatty acid crucial for brain development) to the diet attenuates 970 

neuroinflammation, and high maternal zinc prevents astrogliosis and TNFα increases resulting 971 

from prenatal MIA (Chua et al., 2012; Orr et al., 2013). One study linking diet to immune 972 

function and behaviour found that offspring from mothers given poly I:C (MIA) develop 973 

autism-like behaviours (such as impaired social function) and greater immune system reactivity 974 

(IL-6 response to adult immune challenge): this was normalised by supplementing the maternal 975 

and postnatal diet with DHA (Weiser et al., 2016). Dietary manipulations, especially those 976 

aimed at reducing inflammation, appear to be a promising avenue for protecting against or 977 

rescuing the effects of developmental stress on neuroimmune function and psychiatric 978 

behaviours, but research in this area is in its infancy and more studies are needed.  979 

 980 

Sex differences 981 

There are striking sex differences in the prevalence of neuroimmune and psychiatric disorders 982 

and in treatment response (Tiwari and Gonzalez, 2018). Despite this, the majority of clinical 983 

and preclinical studies focus on males, an imbalance that urgently needs addressing in order to 984 

provide effective therapeutic avenues for both sexes (Coiro et al., 2015). Women are more 985 

susceptible to neuroinflammatory diseases such as multiple sclerosis, chronic pain, rheumatoid 986 
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arthritis, psoriasis and Alzheimer's disease, accounting for 78% of patients, and display 2-3 987 

times higher rates of anxiety, affective disorders, post-traumatic stress disorder and major 988 

depressive disorder (Desai and Brinton, 2019; Kessler et al., 1993, 2005; Remes et al., 2016). 989 

There is evidence that men show a better therapeutic response to tricyclic antidepressants, 990 

women to selective serotonin reuptake inhibitors (although interestingly this effect is abolished 991 

post-menopause), and there is also evidence of sex differences in response to psychological 992 

interventions (LeGates et al., 2019; Wade et al., 2016). As we have discussed, stress results in 993 

increased inflammation associated with disease, and it has been hypothesised that this effect is 994 

greater in women, leaving them more vulnerable to stress related psychopathologies such as 995 

anxiety and depression (Bekhbat and Neigh, 2018). This is supported by studies showing that 996 

INFα and antiviral treatment results in greater depressive symptoms in women (Koskinas et 997 

al., 2002; Udina et al., 2012). However, the links between low grade inflammation and 998 

psychiatric illness have been questioned: when sex is accounted for this relationship appears to 999 

be specific to men (Liukkonen et al., 2011; Ramsey et al., 2016). Although not well studied, 1000 

sex differences in basal neuroimmune function and subsequent response to drugs and 1001 

environmental experiences may help to explain these differences (Brodin and Davis, 2017). In 1002 

humans, sex differences in the relationship between stress and neuroimmune function are hard 1003 

to disentangle, as women and men may perceive and cope with stress in divergent manners, so 1004 

again animal models can provide more closely controlled insights into underlying mechanisms. 1005 

We will now briefly summarise sex differences in the neuroimmune system, and their 1006 

subsequent responses to environmental experiences.  1007 

 A handful of studies have compared sex differences in stress-related immune changes 1008 

in humans, relying on peripheral measures. One study found that laboratory induced stress 1009 

(using the Stroop colour-word interference and cold pressor test) affects T lymphocytes in a 1010 

similar manner in males and females, yet increases NKCs in women whilst decreasing them in 1011 
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men (Pehlivanoglu et al., 2012). Sex hormones are likely to play a role in these divergent 1012 

responses. Estrogen and progesterone in particular suppress immune function at physiological 1013 

levels, and women taking oral contraceptives demonstrate higher immune responses to 1014 

laboratory stress tests than unmedicated females and males (leukocytes, neutrophils and 1015 

CD19+ B lymphocytes (Maes et al., 1999)). Laboratory stress also induces greater expression 1016 

of IL-6 in post-menopausal women and chronic stress appears to result in greater immune 1017 

suppression in women (Endrighi et al., 2016; Flynn et al., 2009). In animals, male and female 1018 

lymphocytes display different levels of progesterone receptors (De Leon-Nava et al., 2009). 1019 

Ex-vivo, microglia and astrocytes from neonatal rodent males release more IL-1β when given 1020 

LPS: co-stimulation with estradiol suppresses this release in male yet enhances release in 1021 

female cells (Loram et al., 2012). Sex based immune differences at baseline and in response to 1022 

social, sound and restraint stress are observed in leukocytes, NKCs, neutrophils and microglia 1023 

in adult animals (Aghajani et al., 2018; Baldwin et al., 1997; Bollinger et al., 2016; Stefanski 1024 

and Gruner, 2006). 1025 

In the brain, microglia and mast cells show sex differences in number, morphology and 1026 

activity during development, and are influential in masculinizing neural circuits in the rodent 1027 

preoptic area (Hanamsagar et al., 2018; Lenz and Nelson, 2018; Lenz et al., 2013; Osborne et 1028 

al., 2018; Schwarz et al., 2012). Rodent males have more microglia in early postnatal 1029 

development, whereas females have more microglia with an activated morphology from 1030 

puberty through adulthood (Schwarz et al., 2012), and female microglia reach an adult 1031 

phenotype earlier and have higher levels of phagocytosis and phagocytic gene expression 1032 

(Bordeleau et al., 2019; Nelson et al., 2017). Such differences could result in divergent 1033 

consequences of developmental stress, which could be altered in a sex-specific manner 1034 

depending on the time of insult. A few animal studies provide support for this hypothesis. 1035 

Prenatal administration of dexamethasone alters morphology of microglia, reducing and 1036 
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shortening their processes in females, lengthening and increasing them in males (Caetano et 1037 

al., 2017). In the hippocampus, prenatal restraint stress increases the proportion of active 1038 

microglial in the CA1 in males, the dentate gyrus in females, and maternal separation decreases 1039 

glial cells in the substantia nigra and ventral tegmental area in males but not females (Chocyk 1040 

et al., 2011; Diz-Chaves et al., 2012, 2013). Time of assessment is also likely to prove crucial 1041 

in determining long-term consequences of developmental stress: MIA increases glia cell 1042 

markers in PFC and hippocampus in both sexes at 30 days, whereas at 60 days this increase is 1043 

only evident in male PFC (de Souza et al., 2015). 1044 

In animals, developmental stress also alters expression of inflammation-related genes 1045 

in a sex-dependent manner, and generally, effects appear more pronounced in males. Two 1046 

studies in mice found that prenatal light/restraint stress increases TNFα and IL1-β in the 1047 

hippocampus of males, but only IL1-β is increased in females (Diz-Chaves et al., 2012, 2013). 1048 

Another study using rats found that a similar prenatal protocol reduced expression of IL-1β in 1049 

the male rat hippocampus with no change in females (Mandyam et al., 2008). Discrepancies 1050 

likely arise due to exact protocols and species used, and age of adult assessment. Maternal 1051 

separation/deprivation increases circulating TNFα and TNFα:IL-10 and increases IL-1 receptor 1052 

type 1 expression in hippocampal synapses in males only (do Prado et al., 2016; Viviani et al., 1053 

2014), and MIA potentiates the expression of IL1-β, CXC ligand 10, TNFα and suppressor of 1054 

cytokine signalling 3 in the adult male hypothalamus, amygdala and PFC in response to LPS 1055 

stimulation (Makinson et al., 2017). A similar effect is seen in adolescence. Here, mixed 1056 

modality stress (restraint and social defeat) enhances hippocampal expression of IL1-β, TNFα 1057 

and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα, 1058 

inhibits NFκβ transcription) in males following an LPS challenge, this is not observed in 1059 

females (Pyter et al., 2013).  1060 
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Although our knowledge on even basal sex differences in immune function are 1061 

incomplete, there is mounting evidence that the neuroimmunological consequences of stress 1062 

can diverge significantly between males and females. This is an area ripe for further 1063 

exploration, and increased knowledge will assist in tailoring sex-specific treatments for a range 1064 

of stress related disorders.  1065 

 1066 

Conclusions & future directions 1067 

It is now well established that the immune system plays a key role in the normal development 1068 

and function of the CNS. This neuroimmune system responds to a wide range of environmental 1069 

stimuli in adulthood and during development. Positive and negative environmental experiences 1070 

throughout development can permanently alter the developing neuroimmune system, with 1071 

accompanying behavioural alterations. Chronic or intense acute stress results in an abnormal 1072 

neuroimmunological phenotype, which may result in abnormal brain structure and function, 1073 

predisposing individuals to psychiatric illness. Although less well studied, positive experiences 1074 

may promote resilience and can reverse the effects of developmental stress on the 1075 

neuroimmune system. This proposes the neuroimmune system as a therapeutic target for 1076 

psychiatric illnesses, especially those related to stress, and suggest that restoration of the 1077 

neuroimmune system may be necessary for restoring proper brain function. Going forward, 1078 

greater emphasis should be placed on the protective and restorative role that exposure to 1079 

positive environmental experiences may provide for neuroimmune function. In particular, 1080 

unlike negative experiences, the persistence of neuroimmune effects resulting from positive 1081 

environmental experiences are virtually unknown, as are the potential existence of critical 1082 

periods for maximum benefits, particularly in reversing the effects of developmental stress. 1083 

The majority of studies focus on male subjects, yet those including females often find striking 1084 
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sex differences not only in basal neuroimmune function but also in response to developmental 1085 

experiences. Future studies should strive to include females in order to tailor treatments based 1086 

on sex where necessary. 1087 
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