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Abstract

Using inequality techniques and coincidence degree theory, new results are provided con-

cerning the existence and uniqueness of T -periodic solutions for a Liénard equations with

delay. An illustrative example is provided to demonstrate that the results in this paper hold

under weaker conditions than existing results, and are more effective.
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1 Introduction

There has been a great deal of work on Liénard equations, which have been used to describe fluid-
mechanical and nonlinear elastic mechanical phenomena. For example, in [2, 3, 4, 8] and [13], time
maps and phase plane analysis were used to examine the existence of periodic solutions to Liénard
equations, and several sufficient conditions for this existence were established. Recently, Liu and
Huang [9] discussed the existence and uniqueness of periodic solutions for a Liénard equation with
delay, of form

x′′(t) + f(x(t))x′(t) + g(t, x(t − τ(t))) = p(t) (1)

where f, τ, p : R → R and g : R × R → R are continuous functions, τ and p are T -periodic (i.e.
periodic with period T ), g is T -periodic in its first argument, and T > 0.

In recent years, periodic solutions to Eq.(1) have been extensively studied in the literature (see,
for example, [1] and [5, 7, 10, 11, 12, 14]). However, to the best of our knowledge, most authors
have only considered the existence of periodic solutions, and few results exist concerning both
existence and uniqueness of periodic solutions to Eq.(1). Liu and Huang [9] provide a sufficient
condition for such existence and uniqueness, but their result leaves space for improvement. In their
work, they required that the following constraint should be imposed on the Liénard equation:

C1D
T

2π
+ C2

T

2π
+

bT 2

2π
< 1.

Here, C1, C2 and b are nonnegative constants determined by

|f(x1) − f(x2)| ≤ C1|x1 − x2|, |f(x)| ≤ C2, C2
T

2π
+ b

T 2

4π
< 1,

|g(t, x1) − g(t, x2)| ≤ b|x1 − x2|, ∀t, x1, x2, x ∈ R;

and d is a positive constant such that one of the following conditions holds:

x(g(t, x) − p(t)) < 0, ∀t ∈ R, |x| ≥ d or x(g(t, x) − p(t)) > 0, ∀t ∈ R, |x| ≥ d.
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Furthermore,

D =
[bd + max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]T

1 − (C2
T
2π + bT 2

2π )
.

Upon examining their proof of Lemma 2.5 and Theorem 3.1 in [9], we have found certain errors.
The corrected version of this constraint should read

C1D

√
T 3

2π
+ C2

T

2π
+

bT 2

2π
< 1.

In this paper, we reconsider periodic solutions of a Liénard equation with delay as given in
Eq.(1). The main purpose of this paper is to establish a new sufficient condition for the existence
and uniqueness of T -periodic solutions of Eq.(1). Using inequality techniques, we obtain sharp
a priori estimates for a periodic solution to Eq.(1). Furthermore, by using improved estimates
for |x|∞, |x′|∞ and |x′|2 and coincidence degree theory, both the existence and uniqueness of T -
periodic solutions of Eq.(1) under this sufficient condition are proved. This sufficient condition
improves upon the main result obtained in [9], as we demonstrate using an illustrative example.

For simplicity, throughout this paper, we adopt the following notation:

|x|k = (

∫ T

0

|x(t)|kdt)1/k

and
|x|∞ = max

t∈[0,T ]
|x(t)|.

In order to use Mawhin’s continuation theorem to study the existence of periodic solution of
Eq.(1), we introduce the following spaces and operators. Let

X = {x|x ∈ C1(R, R), x(t + T ) = x(t), ∀t ∈ R}

and
Y = {x|x ∈ C(R, R), x(t + T ) = x(t), ∀t ∈ R}

be two Banach spaces with norms

‖x‖X = max{|x|∞, |x′|∞} and ‖x‖Y = |x|∞.

Let D(L) = {x|x ∈ X, x′′ ∈ C(R, R)}. Define a linear operator L : D(L) ⊂ X → Y by setting

Lx = x′′. (2)

We also define a nonlinear operator N : X → Y by setting

Nx = −f(x(t))x′(t) − g(t, x(t − τ(t))) + p(t). (3)

Obviously, KerL = R, and ImL = {x|x ∈ Y,
∫ T

0 x(s)ds = 0}. Thus the operator L is a Fredholm
operator with index zero. Define the continuous projector P : X → KerL and the averaging

projector Q : Y → Y by setting Px(t) = x(0) = x(T ) and Qx(t) = 1
T

∫ T

0 x(s)ds. Hence, ImP =

KerL and KerQ = ImL. Denoting by L−1
P : ImL → D(L) ∩ KerP the inverse of L|D(L)∩KerP , we

have

L−1
P y(t) = − t

T

∫ T

0

(t − s)y(s)ds +

∫ t

0

(t − s)y(s)ds. (4)

It is convenient to introduce the following assumption
(A0): there exist nonnegative constants C1 and C2 such that

|f(x1) − f(x2)| ≤ C1|x1 − x2|, |f(x)| ≤ C2

for all x1, x2, x ∈ R.
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2 Preliminaries

In view of Eqs.(2) and (3), the operator equation Lx = λNx is equivalent to the following:

x′′(t) + λ[f(x(t))x′(t) + g(t, x(t − τ(t)))] = λp(t) (5)

where λ ∈ (0, 1).
For convenience of use, we introduce the Continuation Theorem [5] as follows.

Lemma 1. Let X and Y be two Banach spaces. Suppose that L : D(L) ⊂ X → Y is a Fredholm
operator with index zero and N : X → Y is L-compact on the closure Ω̄ of Ω, where Ω is an open
bounded subset of X. Moreover, assume that each of the following conditions is satisfied:

1. Lx 6= λNx, ∀x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);

2. Nx /∈ ImL, ∀x ∈ ∂Ω ∩ KerL;

3. The Brouwer degree deg{QN, Ω ∩ KerL, 0} 6= 0.

Then equation Lx = Nx has at least one solution on Ω̄.

The following lemmas will be useful to prove our main results in Section 3.

Lemma 2. See [6, 14]. If x ∈ C2(R, R) with x(t + T ) = x(t), then

|x′(t)|22 ≤ (
T

2π
)2|x′′(t)|22. (6)

Lemma 3. Suppose that there exists a constant d > 0 such that one of the following conditions
holds:

(A1): x(g(t, x) − p(t)) < 0, ∀t ∈ R, |x| ≥ d;

(A2): x(g(t, x) − p(t)) > 0, ∀t ∈ R, |x| ≥ d.

If x(t) is a T -periodic solution of (5), then

|x|∞ ≤ d +

√
T

2
|x′|2. (7)

Proof. Let x(t) be a T -periodic solution of Eq.(5). Then, integrating Eq.(5) from 0 to T , we have

∫ T

0

[g(t, x(t − τ(t))) − p(t)]dt = 0. (8)

This implies that there exists ξ ∈ [0, T ] such that

g(ξ, x(ξ − τ(ξ))) − p(ξ) = 0. (9)

Taking this together with (A1) or (A2) as appropriate, we have

|x(ξ − τ(ξ))| < d. (10)

Let ξ − τ(ξ) = mT + t0, where t0 ∈ [0, T ] and m is an integer. Then,

|x(t)| = |x(t0) +

∫ t

t0

x′(s)ds|

= |x(mT + t0) +

∫ t

t0

x′(s)ds|

≤ |x(ξ − τ(ξ))| + |
∫ t

t0

x′(s)ds|

< d +

∫ t

t0

|x′(s)|ds (11)
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where t ∈ [t0, t0 + T ].
Since x(t) is the T -periodic solution, for t ∈ [t0, t0 + T ],

|x(t)| = |x(t0 + T ) +

∫ t

t0+T

x′(s)ds|

= |x(t0 + T ) −
∫ t0+T

t

x′(s)ds|

≤ |x(t0 + T )| + |
∫ t0+T

t

x′(s)ds|

≤ |x(t0 + T )| +
∫ t0+T

t

|x′(s)|ds

≤ d +

∫ t0+T

t

|x′(s)|ds. (12)

Combining Eqs.(11) and (12) gives

|x(t)| ≤ d +
1

2

∫ t0+T

t0

|x′(s)|ds

≤ d +
1

2

∫ T

0

|x′(s)|ds. (13)

Using the Schwartz inequality yields

|x(t)| ≤ d +
1

2

√
T (

∫ T

0

|x′(s)|2ds)1/2

= d +
1

2

√
T |x′|2. (14)

Therefore,

|x|∞ = max
t∈[0,T ]

|x(t)| ≤ d +
1

2

√
T |x′|2. (15)

This completes the proof of Lemma 3.

Lemma 4. Let (A0) and either (A1) or (A2) hold. Assume that the following condition is satisfied:

(A3): There exists a nonnegative constant b such that

C2
T

2π
+ b

T 2

4π
< 1, and |g(t, x1) − g(t, x2)| ≤ b|x1 − x2|, ∀t, x1, x2 ∈ R.

If x(t) is a T -periodic solution of Eq.(1), then

|x′|2 ≤ D1 (16)

where

D1 =
[bd + max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]T

2(1 − C2
T
2π − bT 2

4π )
.

Proof. Let x(t) be a T -periodic solution of Eq.(1). From (A1) or (A2), we can easily show that
Inequality (7) also holds. Multiplying Eq.(1) by x′′(t) and then integrating from 0 to T , in view
of Inequalities (6) and (7), (A3) and the Schwartz inequality, we have

|x′′|22 = −
∫ T

0

f(x(t))x′(t)x′′(t)dt −
∫ T

0

g(t, x(t − τ(t)))x′′(t)dt +

∫ T

0

p(t)x′′(t)dt
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≤
∫ T

0

|f(x(t))||x′(t)||x′′(t)|dt +

∫ T

0

|p(t)||x′′(t)|dt

+

∫ T

0

[|g(t, x(t − τ(t))) − g(t, 0)| + |g(t, 0)|]|x′′(t)|dt

≤ C2

∫ T

0

|x′(t)||x′′(t)|dt + |p|∞
∫ T

0

|x′′(t)|dt

+b

∫ T

0

|x(t − τ(t))||x′′(t)|dt +

∫ T

0

|g(t, 0)||x′′(t)|dt

≤ C2|x′|2|x′′|2 + |p|∞
√

T |x′′|2

+b

∫ T

0

|x(t − τ(t))||x′′(t)|dt +

∫ T

0

|g(t, 0)||x′′(t)|dt

≤ C2
T

2π
|x′′|22 + |p|∞

√
T |x′′|2

+b|x|∞
√

T |x′′|2 + max{|g(t, 0)| : 0 ≤ t ≤ T }
√

T |x′′|2
≤ C2

T

2π
|x′′|22 + |p|∞

√
T |x′′|2

+b(d +

√
T

2
|x′|2)

√
T |x′′|2 + max{|g(t, 0)| : 0 ≤ t ≤ T }

√
T |x′′|2

≤ C2
T

2π
|x′′|22 + |p|∞

√
T |x′′|2

+b(d +

√
T

2

T

2π
|x′′|2)

√
T |x′′|2 + max{|g(t, 0)| : 0 ≤ t ≤ T }

√
T |x′′|2

≤ [C2
T

2π
+ b

T 2

4π
]|x′′|22

+[bd + max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]
√

T |x′′|2. (17)

Thus,

[1 − C2
T

2π
− b

T 2

4π
]|x′′|2 ≤ [bd + max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]

√
T , (18)

so

|x′′|2 ≤ [bd + max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]
√

T

1 − C2
T
2π − bT 2

4π

. (19)

Since x(0) = x(T ), there exists a constant ζ ∈ [0, T ] such that x′(ζ) = 0, and

|x′(t)| = |x′(ζ) +

∫ t

ζ

x′′(s)ds|

≤ |x′(ζ)| +
∫ t

ζ

|x′′(s)|ds

=

∫ t

ζ

|x′′(s)|ds (20)

where t ∈ [ζ, T + ζ]. Again,

|x′(t)| = |x′(ζ + T ) +

∫ t

ζ+T

x′′(s)ds|

= |x′(ζ + T ) −
∫ ζ+T

t

x′′(s)ds|

≤ |x′(ζ + T )| + |
∫ ζ+T

t

x′′(s)ds|
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≤ |x′(ζ + T )| +
∫ ζ+T

t

|x′′(s)|ds

= |x′(ζ)| +
∫ ζ+T

t

|x′′(s)|ds

=

∫ ζ+T

t

|x′′(s)|ds (21)

where t ∈ [0, T ]. Inequalities (20) and (21) imply that

2|x′(t)| ≤
∫ t

ζ

|x′′(s)|ds +

∫ ζ+T

t

|x′′(s)|ds

=

∫ ζ+T

ζ

|x′′(s)|ds

=

∫ T

0

|x′′(s)|ds

≤
√

T |x′′|2 (22)

where t ∈ [0, T ].
Obviously,

|x′(t)| ≤ 1

2

√
T |x′′|2 for all t ∈ [0, T ], (23)

so

|x′|∞ ≤ 1

2

√
T |x′′|2. (24)

From Inequalities (19) and (24), we have

|x′|∞ ≤ [bd + max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]T

2(1 − C2
T
2π − bT 2

4π )
. (25)

This completes the proof of Lemma 4.

Lemma 5. Let (A1) or (A2) hold. Assume that the following condition is satisfied:

(A4) Suppose that (A0) holds, g(t, x) is a strictly monotone function in x, and there exists a
nonnegative constant b such that

C1D1

√
T 3

4π
+ C2

T

2π
+

bT 2

4π
< 1, and |g(t, x1) − g(t, x2)| ≤ b|x1 − x2|

where C1, C2, D1 are defined as before.

Then Eq.(1) has at most one T -periodic solution.

Proof. Suppose that x1(t) and x2(t) are two T -periodic solutions of Eq.(1). Then

(x1(t)−x2(t))
′′ +(f(x1(t))x

′

1(t)−f(x2(t))x
′

2(t))+(g(t, x1(t−τ(t)))−g(t, x2(t−τ(t)))) = 0. (26)

Set Z(t) = x1(t) − x2(t). Then, from Eq.(26), we obtain

Z ′′(t) + (f(x1(t))x
′

1(t) − f(x2(t))x
′

2(t)) + (g(t, x1(t − τ(t))) − g(t, x2(t − τ(t)))) = 0. (27)

Since x1(t) and x2(t) are T -periodic, integrating Eq.(27) from 0 to T , we obtain

∫ T

0

(g(t, x1(t − τ(t))) − g(t, x2(t − τ(t))))dt = 0. (28)
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Using the integral mean value theorem, it follows that there exists a constant γ ∈ [0, T ] such that

g(γ, x1(γ − τ(γ))) − g(γ, x2(γ − τ(γ))) = 0. (29)

Let γ − τ(γ) = nT + γ̄, where γ̄ ∈ [0, T ] and n is an integer. Then, Eq.(29), together with
(A4), implies that there exists a constant γ̄ ∈ [0, T ] such that

Z(γ̄) = x1(γ̄) − x2(γ̄) = x1(γ − τ(γ)) − x2(γ − τ(γ)) = 0. (30)

Thus,

|Z(t)| = |Z(γ̄) +

∫ t

γ̄

Z ′(s)ds|

= |
∫ t

γ̄

Z ′(s)ds|

≤
∫ t

γ̄

|Z ′(s)|ds. (31)

Again

|Z(t)| = |Z(γ̄ + T ) +

∫ t

γ̄+T

Z ′(s)ds|

= |Z(γ̄ + T ) −
∫ γ̄+T

t

Z ′(s)ds|

= | −
∫ γ̄+T

t

Z ′(s)ds|

≤
∫ γ̄+T

t

|Z ′(s)|ds. (32)

Hence

2|Z(t)| ≤
∫ t

γ̄

|Z ′(s)|ds +

∫ γ̄+T

t

|Z ′(s)|ds

≤
∫ γ̄+T

γ̄

|Z ′(s)|ds

=

∫ T

0

|Z ′(s)|ds

≤
√

T (

∫ T

0

|Z ′(s)|2ds)1/2

=
√

T |Z ′|2. (33)

Hence

|Z|∞ ≤ 1

2

√
T |Z ′|2. (34)

Multiplying Eq.(27) by Z ′′(t), then integrating from 0 to T , from Inequalities (6) and (34),
and the Schwartz inequality, we get

|Z ′′|22 = −
∫ T

0

(f(x1(t))x
′

1(t) − f(x2(t))x
′

2(t))Z
′′(t)dt

−
∫ T

0

(g(t, x1(t − τ(t))) − g(t, x2(t − τ(t))))Z ′′(t)dt
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≤
∫ T

0

|f(x1(t))||x′

1(t) − x′

2(t)||Z ′′(t)|dt

+

∫ T

0

|f(x1(t)) − f(x2(t))||x′

2(t)||Z ′′(t)|dt

+b

∫ T

0

|x1(t − τ(t)) − x2(t − τ(t))||Z ′′(t)|dt

≤
∫ T

0

C2|Z ′(t)||Z ′′(t)|dt

+

∫ T

0

C1|Z(t)||x′

2(t)||Z ′′(t)|dt

+b

∫ T

0

|Z(t − τ(t))||Z ′′(t)|dt

≤ C2(

∫ T

0

|Z ′(t)|2dt)1/2(

∫ T

0

|Z ′′(t)|2dt)1/2

+C1|Z|∞
∫ T

0

|x′

2(t)||Z ′′(t)|dt

+b|Z|∞
∫ T

0

|Z ′′(t)|dt

≤ C2|Z ′|2|Z ′′|2 + C1|Z|∞|x′

2|2|Z ′′|2 + b|Z|∞
√

T |Z ′′|2
≤ [C2 +

1

2
C1

√
TD1 +

1

2
bT ]|Z ′|2|Z ′′|2

≤ [
1

2
C1

√
TD1 + C2 +

1

2
bT ]

T

2π
|Z ′′|22

= [C1D1

√
T 3

4π
+ C2

T

2π
+

bT 2

4π
]|Z ′′|22. (35)

Since Z(t), Z ′(t) and Z ′′(t) are T -periodic and continuous functions, in view of (A4) and
Inequalities (6), (30) and (35), we have

Z(t) = Z ′(t) = Z ′′(t) ≡ 0, ∀t ∈ R.

Thus,
x1(t) ≡ x2(t), ∀t ∈ R.

Therefore, Eq.(1) has at most one T -periodic solution.

3 Main result

Theorem 1. Let (A1) or (A2) hold. Assume that condition (A4) is satisfied. Then Eq. (1) has
a unique T -periodic solution.

Proof. Lemma 5 states that Eq. (1) has at most one T -periodic solution. Thus, to prove Theorem
1, it suffices to show that Eq.(1) has at least one T -periodic solution. To do this, we apply Lemma
1. Firstly, we claim that the set of all possible T -periodic solutions of Eq.(5) is bounded. Let x(t)
be a T -periodic solution of Eq.(5). Multiplying Eq.(5) by x′′(t), then integrating from 0 to T , and
using Lemmas 2 and 3, Assumption (A4) and the Schwartz inequality, we have

|x′′|22 = −λ

∫ T

0

f(x(t))x′(t)x′′(t)dt − λ

∫ T

0

g(t, x(t − τ(t)))x′′(t)dt + λ

∫ T

0

p(t)x′′(t)dt

≤
∫ T

0

|f(x(t))||x′(t)||x′′(t)|dt +

∫ T

0

|p(t)||x′′(t)|dt

8



+

∫ T

0

[|g(t, x(t − τ(t))) − g(t, 0)| + |g(t, 0)|]|x′′(t)|dt

≤ C2

∫ T

0

|x′(t)||x′′(t)|dt + |p|∞
∫ T

0

|x′′(t)|dt

+b

∫ T

0

|x(t − τ(t))||x′′(t)|dt +

∫ T

0

|g(t, 0)||x′′(t)|dt

≤ C2|x′|2|x′′|2 + |p|∞
√

T |x′′|2
+b|x|∞

√
T |x′′|2 + max{|g(t, 0)| : 0 ≤ t ≤ T }

√
T |x′′|2

≤ C2
T

2π
|x′′|22 + |p|∞

√
T |x′′|2

+b(d +

√
T

2
|x′|2)

√
T |x′′|2 + max{|g(t, 0)| : 0 ≤ t ≤ T }

√
T |x′′|2

≤ C2
T

2π
|x′′|22 + |p|∞

√
T |x′′|2

+b(d +

√
T

2

T

2π
|x′′|2)

√
T |x′′|2 + max{|g(t, 0)| : 0 ≤ t ≤ T }

√
T |x′′|2

≤ [C2
T

2π
+ b

T 2

4π
]|x′′|22

+[bd + max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]
√

T |x′′|2 (36)

which, together with (A4), implies that there exist positive constants D3 and D4 such that

|x′′|2 < D3, |x′|2 < D4, |x|∞ < D4. (37)

Since x(0) = x(T ), there exists a constant ξ ∈ [0, T ] such that

x′(ξ) = 0

and

|x′(t)| = |x′(ξ) +

∫ t

ξ

x′′(s)ds|

= |
∫ t

ξ

x′′(s)ds|

≤
∫ t

ξ

|x′′(s)|ds (38)

where t ∈ [ξ, T + ξ]. Similarly,

|x′(t)| = |x′(ξ + T ) +

∫ t

ξ+T

x′′(s)ds|

= |x′(ξ + T ) −
∫ ξ+T

t

x′′(s)ds|

= |
∫ ξ+T

t

x′′(s)ds|

≤
∫ ξ+T

t

|x′′(s)|ds

(39)

where t ∈ [ξ, T + ξ]. So

|x′(t)| ≤ 1

2
(

∫ t

ξ

|x′′(s)|ds +

∫ ξ+T

t

|x′′(s)|ds|)
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=
1

2

∫ ξ+T

ξ

|x′′(s)|ds

=
1

2

∫ T

0

|x′′(s)|ds

≤ 1

2

√
T |x′′|2

≤ 1

2

√
TD3. (40)

From Inequalities (37) and (40), there exists a positive constant M1 > 1
2

√
TD3 + D4 such that

‖x‖X ≤ |x|∞ + |x′|∞ < M1.

If x ∈ Ω1 = {x|x ∈ KerL ∩ X, andNx ∈ ImL}, then there exists a constant M2 such that

x(t) ≡ M2,

and ∫ T

0

[g(t, M2) − p(t)]dt = 0. (41)

Thus ∫ T

0

M2[g(t, M2) − p(t)]dt = 0. (42)

Hence, ∀x(t) ∈ Ω1,
|x(t)| ≡ |M2| < d. (43)

Let M = M1 + d + 1. Set

Ω = {x|x ∈ X, |x|∞ < M, |x′|∞ < M}.
It is easy to see from Eqs.(3) and (4) that N is L-compact on Ω̄. It follows from Eqs.(41) and
(43), and the fact M > max{M1, d}, that conditions (1) and (2) in Lemma 1 hold.

Furthermore, suppose we define continuous functions H1(x, µ) and H2(x, µ) as

H1(x, µ) = (1 − µ)x − µ
1

T

∫ T

0

[g(t, x) − p(t)]dt; µ ∈ [0, 1],

H2(x, µ) = −(1 − µ)x − µ
1

T

∫ T

0

[g(t, x) − p(t)]dt; µ ∈ [0, 1]. (44)

If (A1) holds , then
xH1(x, µ) 6= 0 (45)

where x ∈ ∂Ω ∩ KerL. Hence, using the homotopy invariance theorem, we have

deg{QN, Ω ∩ KerL, 0} = deg{− 1

T

∫ T

0

[g(t, x) − p(t)]dt, Ω ∩ KerL, 0}

= deg{x, Ω ∩ KerL, 0}
6= 0. (46)

If (A2) holds , then
xH2(x, µ) 6= 0 (47)

where x ∈ ∂Ω ∩ KerL. Hence, using the homotopy invariance theorem, we have

deg{QN, Ω ∩ KerL, 0} = deg{− 1

T

∫ T

0

[g(t, x) − p(t)]dt, Ω ∩ KerL, 0}

= deg{−x, Ω ∩ KerL, 0}
6= 0. (48)

From Lemma 1, we conclude that Theorem 1 is proved.
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4 Example

In this section, we provide an example to illustrate that the sufficient condition given in Theorem 1
in this paper is superior to the recently reported result in [9].

Example 1. Let g(t, x) = x/(6π) ∀t, x ∈ R. Consider the existence and uniqueness of a 2π-
periodic solution to the following Liénard equation:

x′′(t) +
3

8
(sin x(t))x′(t) + g(t, x(t − sin2 t)) =

1

6π
ecos(t)−1. (49)

In this example, d = 1, b = 1/(6π), C1 = C2 = 3/8, τ(t) = sin2 t, T = 2π and p(t) = 1
6π ecos(t)−1. It

is obvious that assumptions (A2) and (A4) both hold. Using the method in Theorem 1 in [9], we
find that

D =
[bd + max{|g(t, 0) : 0 ≤ t ≤ T |} + |p|∞]T

1 − (C2
T
2π + bT 2

2π )

=
[ 1
6π + 1

6π ] · 2π

1 − 3
8 − 1

3

= 2.2857,

C1D

√
T 3

2π
+ C2

T

2π
+ b

T 2

2π
= 2.8569 > 1.

Since 2.8569 > 1, the condition in Theorem 1 in [9] is not satisfied and hence it cannot provide any
result. Therefore, Theorem 1 in [9] fails, while, our criterion in Theorem 1 in this paper remains
applicable, as we now show.

In fact,

D1 =
[bd + max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]T

2(1 − C2
T
2π − bT 2

4π )

=
[ 1
6π + 1

6π ]2π

2 − 3
4 − 1

3

= 0.7273

and

C1D1

√
T 3

4π
+ C2

T

2π
+ b

T 2

4π
= 0.8835 < 1.

Thus, Theorem 1 here shows that Eq.(49) has a unique 2π-periodic solution.

This example demonstrates that the condition in our Theorem 1 is weaker than that in [9],
and is able to demonstrate existence of unique solutions to certain Liénard equations which the
latter cannot decide about. Therefore our results substantially improve the works in [9].
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