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A method of calculating urban-scale solar potential by 1 

quantitating and evaluating the relationship between block 2 

typology and occlusion coefficient, a case study of a city in middle 3 

China 4 

Abstract:  5 

The existing macro-city-scale solar roof utilization potential assessment method is not 6 

capable of considering the factor of mutual occlusion between urban buildings, and only 7 

makes use to one empirical value for the entire urban rooftop potential calculation. Relevant 8 

research shows that under different occlusion conditions, the potential of solar energy 9 

utilization varies greatly. This paper selects urban blocks with different morphological 10 

characteristics as the research objects, and analyses and quantifies the influencing factors of 11 

solar potential of urban roofing. To measure the overall solar potential of the city, it is 12 

necessary to quantify the occlusion caused by the urban environmental building roof. The 13 

urban blocks in different types and functions of buildings have different occlusions on the 14 

building roof. To quantify these differences, this paper uses typical high-density blocks. 15 

Taking Wuhan as an example, a large number of urban block examples were selected as 16 

research samples, a large number of urban block form indicators were counted, and data sets 17 

covering six types of morphological indicators such as building density, building height, 18 

floor-area ratio and orientation were established. The difference between the morphological 19 

indicators of the block was used to classify the urban blocks, and then the solar radiation 20 

simulation of the above blocks was modelled and simulated. The solar radiation values of 21 

different blocks were obtained and combined with their morphological parameters. Linear 22 

regression was used to obtain different roof solar occlusion factors for different block types. 23 

They are 0.099, 0.054, and 0.025, and the overall roof occlusion coefficient of the city is 24 

0.079.  25 
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1. Introduction 29 

1.1 Expansion of solar energy utilization to urban scale 30 

The energy crisis and environmental pollution have always been major problems facing the 31 

world and are becoming increasingly serious. Urban energy consumption is an important part 32 

of global energy consumption evaluation. Related studies show that by 2030, 75% of energy 33 

consumption will come from cities (Cities and Climate Change, 2010). In order to meet 34 

people's growing demand for energy, renewable energy has become a hot topic for people to 35 

study. Compared with other renewable energy sources, such as wind energy and geothermal 36 

energy, solar energy is one of the few new energy sources that can be applied on a large scale 37 

in urban environments. The development and utilization of solar energy has received extensive 38 

attention and has been rapidly spread worldwide. Over the past decade, the global solar 39 

photovoltaic market has grown rapidly by 50%. The International Energy Agency (IEA) 40 

predicts that by 2050, the global share of electricity from photovoltaic (PV) systems will reach 41 

16%. At present, the application of solar energy in single buildings has been relatively mature 42 

(Aaditya & Mani, 2017; Technology Roadmap: Solar Photovoltaic Energy, 2010). Based on this, 43 

research on solar energy utilization in urban environments has also begun to develop in a 44 

continuous and large-scale manner. At the same time, research on the potential of urban solar 45 

photovoltaic utilization in the world is quite extensive and has gradually moved towards 46 

applications. Therefore, it is of great scientific significance and application value to carry out 47 

research on the impact of urban-scale photovoltaic power generation utilization potential. 48 

1.2 Existing problems in traditional methods of measuring solar photovoltaic utilisation 49 

potential 50 

For the calculation of traditional solar photovoltaic potential, more software has been 51 

developed. Among these kinds of software, there is the Ladybug tool based on the Rhino and 52 

Grasshopper platform, and the CitySim software (D. Li et al., 2015; Ouria & Sevinc, 2018). 53 



 

These kinds of software build the radiation model of the photovoltaic module (POA) by 54 

sunlight and accumulate the solar radiation over time to obtain the annual production capacity 55 

of the photovoltaic system. This type of method is called a method based on solar irradiance. 56 

However, for the calculation of solar energy potential at the city scale, the time-consuming 57 

accumulation method is too heavy and has little practical significance. For example, when 58 

determining the location of distributed solar energy in a city, methods at the city scale include 59 

the In My Backyard tool, the PVSITES project, and various GIS software-based methods 60 

(Anderson et al., 2010; Espeche et al., 2017). The PVSITES project is a large-scale 61 

photovoltaic installation and promotion project based on urban-scale solar potential 62 

distribution. 63 

The estimation of urban-scale solar potential uses a top-down approach, which requires 64 

quantification of building roof area and urban environmental occlusion. Large-scale urban 65 

roof area information can be obtained using GIS data, neural network recognition methods 66 

for urban satellite images, and statistical methods for sampling estimation. A large number of 67 

studies have shown that neither the solar radiation distribution at the macro scale nor the 68 

quantification of roof area statistics is a problem (Araya-Muñoz et al., 2014; Bergamasco & 69 

Asinari, 2011; Kaynak et al., 2018; Y. Li et al., 2016; Wiginton et al., 2010). However, the 70 

quantification of urban environmental occlusion often lacks attention in the estimation of 71 

large-scale solar energy potential. 72 

The quantification of the impact of dynamic shadow occlusion on solar energy between 73 

buildings is often not considered or only a unified empirical value is taken into consideration. 74 

The concept of occlusion and available roof area is used to introduce the concept of 75 

installation factors. Salvador Izquierdo et al. analyzed the roof installation factors of 17 types 76 

of buildings in Spain and found that the installation factor of roofs in Spain is about 0.78, but 77 

their research did not distinguish the types of buildings (Izquierdo et al., 2008); Luca 78 



 

Bergamasco et al., in the photovoltaic utilization potential, classified the roof installation 79 

factors according to buildings, where the roof installation factors of residential and industrial 80 

plants were taken as 0.7 and 0.9, respectively (Bergamasco & Asinari, 2011). However, no 81 

systematic independent consideration of the impact of occlusion issues on solar potential has 82 

been accounted for. Considering that the city is a complex environment, the distribution of 83 

solar radiation affected by the occlusion problem is very uneven (Lobaccaro & Frontini, 84 

2014), and the determination of the occlusion factor in the traditional method lacks a certain 85 

science. The dynamic shadow occlusion of the building surface has a great impact on solar 86 

energy utilization, which makes it difficult for the traditional large-scale quantification 87 

method of solar radiation on the building surface to treat streets with different occlusion 88 

conditions fairly, so it is difficult to play a role in actual planning and utilization. 89 

1.3. Review of the research on the relationship between block morphology and block 90 

solar energy shielding  91 

Occlusion is ignored because of the many influencing factors affecting the potential of solar 92 

photovoltaic utilization in cities. The environmental occlusion of a block is affected by the 93 

difference in weather conditions and the shape of the block, which is one of the most difficult 94 

factors to quantify. Among them, Taehoon Hong et al. studied the photovoltaic utilization 95 

potential of Gangnam District, Seoul, and estimated the photovoltaic utilization potential of 96 

the entire neighborhood. It was found that under the condition of real neighborhoods, the 97 

impact of blockages on photovoltaic utilization potential varies greatly. However, it is only 98 

described as an example (Hong et al., 2017). Kanters used the simulation software, Ecotect, 99 

to study the impact of urban density, land area, floor area ratio, and orientation on the use of 100 

shaded solar energy generated by the setting according to the two indicators of photovoltaic 101 

potential and power satisfaction rate. It is found that if the design is not reasonable, the solar 102 



 

potential will decrease by 10% ~ 75% (Kanters, Wall, & Dubois, 2014; Kanters, Wall, & 103 

Kjellsson, 2014). These studies show that due to differences in climatic conditions, block 104 

shapes, density, and building spacing, the potential for solar energy caused by the mutual 105 

block between buildings in the blocks is significantly different. However, the occlusion of the 106 

block is not systematically analyzed according to the block type. Since the same types of city 107 

blocks have similar morphology, and the occlusion conditions caused by the morphology also 108 

have similarities, the typology classification of city blocks can be performed first, and the 109 

occlusion analysis for different types of blocks can be effective by simplifying calculations 110 

and making city data more accessible. 111 

The clustering method is used to classify the blocks through the classification and calculation 112 

of the morphological parameters of different blocks in the city, and then carrying out a 113 

systematic research on each type of block, which can quickly and truly reflect the occlusion 114 

of the block in the city. Cluster analysis is an exploratory data analysis tool whose purpose is 115 

to organize a set of items (usually represented as a vector of quantitative values in a 116 

multidimensional space) into clusters to make the items in a given cluster highly similar (de 117 

Souza & de Carvalho, 2004), and belonging to different clusters has a high degree of 118 

similarity. In the study of urban air pollutants, Jing Zhang et al. used the K-means clustering 119 

algorithm to analyze the air pollutant types and proportion data, and obtained a cluster 120 

analysis of 74 cities in China (Zhang et al., 2016). Li Xinyi et al. combined the city's 2D 121 

satellite images and 3D building information and applied cluster analysis to the prototype 122 

classification of residential buildings to obtain the spatial distribution of different types of 123 

residential buildings in the city and the energy distribution characteristics of urban residential 124 

buildings (X. Li et al., 2018). The clustering method can classify a large amount of data with 125 

similarity and has high reliability. 126 



 

It is necessary to quantify the occlusion impact according to the block type, and then quickly 127 

obtain the amount of solar radiation available on the building surface through the building 128 

surface area, and evaluate the power generation potential of distributed photovoltaic energy 129 

on urban buildings, which has an important role in improving energy efficiency and 130 

optimizing the energy structure of cities. 131 

The purpose of this study is to solve the problem of mutual occlusion and neglect between the 132 

built environments in the calculation of urban-scale solar photovoltaic utilization potential. 133 

Based on the morphological characteristics of the city blocks, a clustering algorithm is used 134 

to classify them. The research can obtain the corresponding shielding coefficients and realize 135 

the problem of obtaining the spatial distribution characteristics of the solar photovoltaic 136 

utilization potential in the middle of the city through the shielding coefficients, and provide 137 

the basis for the overall solar building planning in the city. 138 

2. Dataset and Methods 139 

In this paper, the research on urban block occlusion is carried out in five steps [Fig.1]. 140 

The first step is to obtain real block sample data. At this stage, field surveys, satellite maps, 141 

and street view pictures are used to obtain multidimensional parameters of city blocks, and a 142 

database is established based on various block morphological index types.  143 

The second step is to classify the blocks. At this stage, the clustering algorithm is used to 144 

classify the blocks according to their morphological indicators, and the block types are 145 

analysed based on the classification results.  146 

The third step is to calculate the solar radiation value of the above block. This step obtains 147 

data by using software simulation on the block model. The fourth step is to calculate and 148 



 

analyse the average occlusion coefficient of different types of streets. This step uses a linear 149 

regression method.  150 

The fifth step is to divide the shielding area of the central urban area of Wuhan according to 151 

the calculation results of Part 4, and modify the solar radiation potential value. 152 

 153 

Fig.1 Schematic of the analysis workflow. 154 



 

2.1 Acquisition of real block sample data  155 

2.1.1 Urban block data 156 

In this paper, within 88 selected districts with different morphological characteristics in 157 

Wuhan's electoral districts, the actual measurement and 3D buildings are used to obtain the 158 

real urban block. The case is to provide a data set for studying the urban roofing occlusion 159 

coefficient through research on representative cases. Therefore, the selection of urban block 160 

examples in this study follows three principles:  161 

·Satisfy the diversity of block layout morphological characteristics: The diversity of block 162 

morphological characteristics includes the diversity of planar layout patterns and the diversity 163 

of height layout patterns. The selection on the diversity of the planar layout form includes 164 

determinants, courtyards, dislocations, etc. The diversity of the height layout form includes 165 

the bottom, multilayer, high-rise, and high-low staggered layout of urban blocks. 166 

·Satisfy the diversity of urban area distribution: The selected urban blocks cover the central 167 

area of the city to the periphery of the city. The difference in urban spatial form caused by 168 

this urban area distribution is often reflected in the building density, such as the high density 169 

of the city centre, and low density in the suburbs. 170 

·Satisfy the diversity of the architectural functions of the block: The function of a specific 171 

city block often determines the shape of the city block. This article covers the selection of 172 

city block cases, covering different types of functions such as industrial blocks, commercial 173 

blocks, residential blocks, schools, and institutions. 174 

 175 

  176 



 

2.1.2 Classification indicators of urban blocks  177 

In previous studies, the influencing factors that control the type characteristics of the block 178 

are: Site Area(SA), Gross Floor Area(GFA), Building Volume(BV), Building Footprint 179 

Area(BFA), Envelope Surface Area(ESA), Building Perimeter(BP), Number of Buildings, 180 

Building Orientation, Building Height(BH), Building Density(BD), BSA/BV, BP/BFA. 181 

Comprehensively considering the land use indicators considered in the relevant literature and 182 

whether they are easy to obtain (Dekay & Brown, 2001; Montavon, 2010; Wei et al., 2015), 183 

this study considers the impact of 5 morphological index factors on the statistics of 88 block 184 

samples: 185 

• Building height (BH): the vertical distance from the building roof to the ground. For the 186 

block, this study counts the average building height of the buildings in the block; 187 

• Building density (BD): the ratio of the projected area of the building to the total area of the 188 

block; 189 

• Building Surface area/Building Volume (BSA/BV): the ratio of the building's external 190 

surface area to the building's volume; 191 

• Building Perimeter/ Building Footprint Area (BP/BFA): the ratio of the total length of the 192 

building's outer contour to the building's floor area; 193 

• Floor area ratio (FAR): the ratio of the total area of all floors of a building to the total area 194 

of the block. 195 

In this paper, a large number of blocks with different morphological characteristics are selected 196 

as samples in typical cities for actual measurement and 3D modelling, and a data set is 197 

established. [A1] 198 



 

2.2 Calculation method of solar radiation based on simulation 199 

Traditionally, the radiation measurement method is to obtain the total radiation sensor. 200 

However, it is difficult to install sensors on a large scale on real urban street roofs. 201 

Simultaneously, the actual measurement methods are difficult to carry out on a large scale. 202 

Therefore, it is necessary to use simulation methods to measure the radiation in the real 203 

environment. For the calculation of solar radiation on roofs in urban blocks, the key to 204 

simulation is the setting of boundary parameters and whether the parameters are suitable for 205 

the urban and meteorological environment of the study area. Therefore, the accuracy of the 206 

simulation software needs to be verified. 207 

Urban block solar simulation has three parts: urban block 3D modelling tool, solar simulation 208 

tool and simulation results visualization tool. In this study, the 3D model of the urban block 209 

model used was on Rhinoceros 6.0, and the solar simulation tool selected was the Radiance 210 

radiation simulation software which is widely used. This software uses the Perez diffusion 211 

radiation model (Perez et al., 1987, 1990) and has had many successful applications (Jakubiec 212 

& Reinhart, 2013; Reinhart & Walkenhorst, 2001). Integrated into Rhinoceros 6.0, the 213 

Ladybug & Honeybee plug-in of the Grasshopper visual programming platform built in 214 

Rhinoceros 6.0 is used for the operation and visualization of measurement results. 215 

2.3 Clustering algorithm   216 

In this study, the K-means algorithm was used to perform a cluster analysis on five types of 217 

morphological data and radiation per unit area of building roofs in 88 blocks, and the block 218 

samples were divided into three block types. 219 

Cluster analysis refers to the classification of samples based on individual characteristics, so 220 

individuals in the same category will have a high degree of homogeneity, while individuals in 221 



 

different categories will have a high degree of heterogeneity. Through this method, multiple 222 

classification of indicators, and the classification characteristics of samples can be expressed 223 

intuitively. 224 

The Fig.2 shows the code implementation of the K-means algorithm used in this study. 225 

 226 

Fig.2 Clustering Algorithm Code 227 

2.4 Calculation method of solar occlusion coefficient 228 

The total solar roof radiation in urban blocks is positively related to the building roof area in 229 

urban blocks. Therefore, a linear regression algorithm can be used to obtain a linear 230 

regression model of solar roof radiation in urban blocks. Since different types of streets have 231 



 

different occlusions on the roof, the difference reflected in the linear regression model is the 232 

slope of the regression curve. Therefore, the slope of the regression curve can be used to 233 

calculate the solar occlusion coefficient of urban roofs. 234 

A commonly used method for calculating solar radiation uses the three factors that affect the 235 

solar radiation on the roof to multiply by linear correlation. The calculation formula is as 236 

follows: 237 

𝑅𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑟𝑜𝑜𝑓 × 𝑅𝑈𝑛𝑖𝑡 × (1 − 𝜂𝑂𝐹) 238 

In this formula, 𝑅𝑇𝑜𝑡𝑎𝑙 is the available solar radiation on the roof of the block; 𝑆𝑟𝑜𝑜𝑓  is the 239 

available solar roof area on the block; 𝑅𝑈𝑛𝑖𝑡 is the amount of solar radiation per unit area 240 

under unblocking conditions; 𝜂𝑂𝐹 is the block coefficient of the block, where the block 241 

coefficient  𝜂𝑂𝐹 is a measure of the coefficient of urban block environment on the occlusion 242 

of a building roof. The value ranges from 0 to 1, where the larger the value, the more severe 243 

the occlusion of the roof in this area. 244 

In this study, in order to determine the occlusion coefficient value 𝜂𝑂𝐹 under different street 245 

types, a linear regression method was used. By performing linear regression on the 𝑅𝑇𝑜𝑡𝑎𝑙 246 

and 𝑆𝑟𝑜𝑜𝑓 values of the block samples, the occlusion coefficient 𝜂𝑂𝐹 of the block is 247 

calculated. The specific calculation formula is as follows: 248 

𝜂𝑂𝐹 = 1 − 𝐵 𝐵𝑂𝑟𝑖𝑔𝑖𝑛⁄  249 

In the formula, 𝜂𝑂𝐹 is the occlusion coefficient of the street, 𝐵 is the slope of the curve after 250 

linear regression analysis, and 𝐵𝑂𝑟𝑖𝑔𝑖𝑛 is the slope value of the curve under the condition of 251 

no occlusion, which is equivalent to 𝑅𝑈𝑛𝑖𝑡 in value. 252 



 

By analysing different block types, the occlusion coefficient  𝜂𝑂𝐹 of different block types can 253 

be obtained, and the regression analysis of all samples is capable of obtaining the average 254 

occlusion coefficient of the entire city. 255 

  256 



 

3. Results 257 

3.1 City block classification based on clustering algorithm 258 

In this study, the Python scripting language was used to implement the clustering algorithm in 259 

the Jupyter Notebook development environment. After the 88 city block samples were 260 

classified according to the characteristics of the five indicators, three different differences in 261 

the urban form indicators were obtained. Clustering algorithm data results and visual 262 

classification results are shown in Fig.3 and Fig.4. 263 

264 

 265 

Fig.3 Cluster Results Visualization  

Fig.4 Cluster Algorithm Classification Result Indicator Distribution 

Characteristics 



 

According to the classification results of the clustering algorithm, 88 urban block samples are 266 

divided into 3 different types. By analysing the corresponding indicators of these three 267 

categories, the corresponding three types of urban blocks are summarized (Table 2). The 268 

characteristics are as follows:  269 

 270 

Cluster0: low-rise or middle-rise, high-density blocks, represented by industrial plants and middle-high 271 

rise residential areas(24M<BH<60M); 272 

Cluster 1: high-rise, low-density block, represented by commercial complexes and office buildings; 273 

Cluster 2: Low-rise, medium-density block, represented by multi-storey residential areas (BH<24M). 274 

3.2 Calculation of solar energy utilization potential occlusion coefficient in different 275 

types of blocks 276 

Since different types of urban blocks have different potentials for solar energy utilization, after 277 

classification of urban blocks, three different types have been obtained. This section separately 278 

measures the amount of solar radiation from the roof of these three types of urban blocks, using 279 

linear regression. The method obtains the roof solar radiation regression model of the 280 

corresponding type of urban block, and finally calculates the roof solar occlusion coefficient 281 

of the type of block. 282 

3.2.1 Linear regression analysis verification 283 

Through linear simulation of roof solar energy in 88 real urban blocks, and linear regression 284 

calculation of solar radiation amount and block building density of roof unit area, linear 285 

regression analysis was carried out for three different types of urban blocks, and the overall 286 

Table 2 

Cluster Algorithm Classification Result Statistics 

 



 

linear regression analysis was carried out in 88 urban blocks. The overall regression curves and 287 

correlation coefficients of the three types of blocks and urban blocks were obtained as follows 288 

(Fig.5, Table 3). 289 

 290 

 291 

The study found that in the three types of urban blocks, because the degree of occlusion of 292 

different types of urban block roofs is different, the slope of the regression curve is different, 293 

and the correlation R2 of the regression curve is about 0.9, so It is proved that the general linear 294 

model is applicable to the regression analysis of solar radiation quantity and building density 295 

of the roof unit area. 296 

Fig.5 Linear Regression Curve 

Table 3  

Regression Curve and Correlation Coefficient Statistics 



 

3.2.2 Estimation of occlusion coefficient 297 

The solar occlusion coefficient is calculated by calculating the solar opacity coefficient of the 298 

radiation amount and the building density regression curve of the roof unit area of three 299 

different types of blocks and sample populations (Table 4). It is found that the difference of 300 

roof solar occlusion coefficient of different types of blocks is obvious, for cluster 1, 2, and 3, 301 

the roof solar occlusion coefficient averages are 0.099, 0.054, 0.025 for the city's overall 88 302 

urban block samples, the calculated roof solar occlusion coefficient average is 0.079, that is, 303 

the city's overall average. The roof will obstruct 8% of the solar energy, and the remaining 92% 304 

of the solar energy will be used by roofing solar installations. 305 

 306 

For the cluster 0 block, that is, the middle and low-rise high-density blocks represented by 307 

industrial plants and middle-high rise residential areas(24M<BH<60M), the average occlusion 308 

coefficient is 0.099; 309 

For the cluster 1 block, that is, the high-rise low density represented by commercial complexes 310 

and office buildings, the average occlusion coefficient is 0.054;  311 

For the cluster 2 block, that is, a low-density medium-density block represented by multi-storey 312 

residential areas (BH<24M), the average occlusion coefficient is 0.025; (Fig.6) 313 

Table 4 

 Occlusion Coefficient with Block Type 



 

 314 

In summary, the occlusion coefficient of the three types of blocks is less discrete, so when 315 

calculating the solar energy application potential of the corresponding block, the average value 316 

of the corresponding occlusion coefficient can be used for calculation. 317 

For the city as a whole, the overall occlusion coefficient is close to the average level of 0.079, 318 

but in the city scale measurement, when the roof occlusion coefficient needs to be simplified, 319 

the value can be used to simplify the calculation. 320 

 321 

3.3 Calculate solar energy utilization potential at macro city scale based on occlusion 322 

coefficient 323 

3.3.1 Using open source channels to obtain the roof area of Hongshan District in Wuhan 324 

City 325 

Taking Hongshan District in Wuhan as an example, this paper estimates the potential of 326 

photovoltaic utilization in Hongshan District. The study area and recognition result are shown 327 

in Fig.7 and Fig.8 328 

Fig.6 Block Type Models of Clustering Results 



 

329 

The red line is the range of Hongshan District in Wuhan, which is defined by the Wuhan City 330 

Master Plan (2006-2020)(Wuhan Natural Resources and Planning Bureau, 2011). The urban 331 

area of Hongshan District is 480 square kilometres. Using the open source Wuhan GIS map 332 

file to calculate the roof area of Hongshan District, the total available roof area of Hongshan 333 

District is 41380900 m2. 334 

3.3.2 Blocking the urban area of Hongshan District based on the obtained occlusion 335 

coefficient 336 

Then the measured corresponding type roof occlusion coefficient was used to simplify the 337 

calculation of the overall occlusion of the city. 338 

In the urban three-dimensional GIS file for different plots of the city, they were classified into 339 

different types of occlusion coefficients, and were assigned to different occlusion coefficients 340 

in calculating the overall solar photovoltaic utilization potential of the urban scale as shown in 341 

Fig.9. 342 

Fig.7 The Range of Hongshan District Fig.8 Recognition Result of Study Area 



 

 343 

Blue represents low occlusion (0.025), i.e. the cluster 2 block, whilst black represents medium 344 

occlusion (0.054), i.e. the cluster 1 block, and orange represents severe occlusion (0.099), i.e. 345 

the cluster 0 block, where the overall occlusion coefficient is 0.079. but in the city scale 346 

measurement, when the roof occlusion coefficient needs to be simplified, the value can be used 347 

to simplify the calculation.  348 

3.3.3 Correcting the urban solar radiation according to the occlusion coefficient 349 

In this section, in the setting of the calculation parameters, the annual radiation per unit area of 350 

Hongshan District is 1150 kWh/m2/year. After correcting, the total roof solar radiation in 351 

Hongshan District is 45208.30 GWh/year. 352 

  353 

Low Occlusion High Occlusion Middle Occlusion 

Fig.9 Occlusion Coefficient Visualization 



 

4. Applicable analysis and Theory 354 

4.1. Occlusion coefficient applicability verification 355 

This study is based on the study of solar occlusion coefficient in real city blocks in Wuhan. It 356 

measures the solar occlusion coefficient of urban roofs for different types of blocks and cities. 357 

However, whether the roof occlusion coefficient measured in the urban environment of Wuhan 358 

is applicable to the whole world needs to be verified and analysed.  359 

In terms of differences in urban meteorological conditions, the factors affecting the urban roof 360 

occlusion coefficient are mainly the solar elevation angle, that is, the solar elevation angle 361 

decreases with increasing latitude, and the roof solar occlusion coefficient decreases under the 362 

same urban form, in order to verify the urban roof due to differences in urban meteorological 363 

conditions. The influence of the solar occlusion coefficient is verified by the solar radiation 364 

simulation method in 11 major cities in the world. The verification model is selected from a 365 

typical urban block belongs to cluster 2 in Wuhan and is carried out under different 366 

meteorological conditions. The roof solar radiation simulation simulates and measures the roof 367 

solar occlusion coefficient. (Table 5) 368 

 369 

Table 5 

Occlusion Coefficient Verifying Result Of 11 Main City in The World 

 



 

In this study, the occlusion coefficient is calculated for 11 major cities in different latitudes in 370 

the world (Fig.10). The calculated R-squared value is 0.8673, which indicates that in different 371 

latitude urban environments, it can be considered that the roof solar occlusion coefficient is 372 

linearly positively correlated by meteorological conditions. According to the calculation, in the 373 

same city form, the roof solar occlusion in the northern area will be higher than that in the south. 374 

The relationship between the meteorological and occlusion coefficients makes it possible to 375 

calculate other urban occlusions according to the Wuhan occlusion coefficient 376 

.  377 

 378 

4.2 Conclusion 379 

This paper proposes a method to quantify the problem of block occlusion in the use of solar energy. 380 

Then take Wuhan City as an example to use the obtained occlusion coefficient type to classify the 381 

relevant urban roofs and calculate the total solar energy potential of the city. Compared with occlusion, 382 

the city will produce 7% error, especially in the low-rise high-density block or the high-rise office block 383 

occlusion coefficient will cause 10% error. 384 

In typical high-density cities, urban block types have commonalities, so the occlusion coefficients of 385 

different types of blocks proposed in this paper have certain applicability. There are differences in the 386 

 

Fig.10 Linear Regression Curve 



 

solar occlusion coefficients of different types of blocks. They are weak occlusion (0.01 occlusion 387 

coefficient) represented by industrial type blocks, middle occlusion (blocking coefficient 0.04) 388 

represented by middle and high-rise residential areas, and high occlusion represented by commercial 389 

type blocks (the occlusion factor is 0.13). 390 

As far as the city as a whole is concerned, the urban block environment has different influences on the 391 

roofing of the city depending on the block. In different cities around the world, the roof solar occlusion 392 

coefficient is linearly positively correlated with the climatic conditions. The roof occlusion coefficient 393 

in Wuhan can be that it provides reference for the calculation of roof solar energy utilization in other 394 

cities around the world. This paper calculates in Wuhan area and provides reference for occlusion 395 

coefficient for solar energy measurement in other high-density cities. 396 

397 
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88 Block Morphology Parameters  
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