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Abstract: This paper deals with locally constrained inverse curvature flows in a broad class of Riemannian
warped spaces. For a certain class of such flows, we prove long-time existence and smooth convergence to
a radial coordinate slice. In the case of two-dimensional surfaces and a suitable speed, these flows enjoy
two monotone quantities. In such cases, new Minkowski type inequalities are the consequence. In higher
dimensions, we use the inversemean curvature flow to obtain newMinkowski inequalities when the ambient
radial Ricci curvature is constantly negative.
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1 Introduction
The objectives of this paper are threefold. First we want to continue the investigation of the so-called locally
constrained inverse curvature flows. These are hypersurface variations of the form

∂tx = −F(u, s, κ)ν,

where x is a smooth family of embeddings of a smooth compact manifold into an ambient Riemannian man-
ifold

N = (a, b) × S0, ̄g = dr2 + ϑ2(r)σ.

(S0, σ) is a compact Riemannian manifold of dimension n ≥ 2, and ϑ ∈ C∞([a, b)). The slices Mt = x(t, S0)
are graphical over S0 with graph function u, support function s, principal curvatures κ and outward unit
normal ν. In this paper, we investigate flows of the form

∂tx = (
ϑ(u)
F(κ) − s)ν

and prove convergence to a radial slice {r = const} under various assumptions on F and N.
The second objective is to apply this result in case n = 2 with the particular choice F = H2

H1
in order to

prove new geometric inequalities. Here Hk is the k-th normalized elementary symmetric polynomial of the
principal curvatures.

Finally, we accompany these results by some new Minkowski inequalities in higher dimension and for
some ambient spaces of non-constant curvature. These are consequences of the inversemean curvature flow.

We state the main results after imposing some general assumptions and fixing some notation.

*Corresponding author: Julian Scheuer, School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG,
Wales, UK, e-mail: scheuerj@cardiff.ac.uk



2 | J. Scheuer, Locally constrained flows in warped spaces

Assumption 1.1. For n ≥ 2, let (S0, σ) be a compact, n-dimensional Riemannian manifold, a < b real num-
bers and ϑ ∈ C∞([a, b)). We assume that the warped product space N = (a, b) × S0, ̄g = dr2 + ϑ2(r)σ satisfies
the following assumptions:
(i) ϑ > 0;
(ii) either of the following conditions hold:

(a) ϑ ≥ 0,
(b) ϑ ≤ 0 and

∂r(
ϑ

ϑ ) ≤ 0. (1.1)

Furthermore,we denote by R̂c the Ricci curvature of themetric σ, and geometric quantities of the ambient
space N are furnished with an overbar, e.g. Rm, Rc and ∇̄ for the Riemann tensor, the Ricci tensor and
the Levi–Civita connection respectively.

Remark 1.2. Note that (1.1) says that the Ricci curvature of the ambient space is non-decreasing in radial
directions.

Definition 1.3. Let N be as in Assumption 1.1, and letM ⊂ N be a graph over S0, i.e.M = {(u(y), y) : y ∈ S0}.
We define the region enclosed by M to be the set M̂ = {(r, y) : a ≤ r ≤ u(y), y ∈ S0}. We denote by |M| the sur-
face area ofM and by |M̂| the volume of the region M̂. We callM strictly convex if all principal curvatures have
a strict sign everywhere.

Assumption 1.4. Let Γ+ = {κ ∈ ℝn : κi > 0 for all 1 ≤ i ≤ n}. We suppose that F ∈ C∞(Γ+) is symmetric, posi-
tive, strictly monotone, homogeneous of degree 1, concave and satisfies F|∂Γ+ = 0, F(1, . . . , 1) = 1.

Here is the main result concerning the curvature flow.

Theorem 1.5. Let N and F satisfy Assumptions 1.1 and 1.4 respectively. Let x0 : M0 → N be the embedding of
a strictly convex hypersurface, given as a graph over S0, M0 = {(u0(y), y) : y ∈ S0}. Then there exists a unique
immortal solution x : [0,∞) ×M0 → N that satisfies the parabolic Cauchy problem

∂tx = (
ϑ(u)
F − s)ν, x(0, ⋅ ) = x0. (1.2)

The embeddings x(t, ⋅ ) converge smoothly to an embedding of a slice {r = const}.

Flows of the kind (1.2) originated from an idea due to Guan and Li [18]. At first, they investigated the mean
curvature type flow

∂tx = (ϑ − sH1)ν (1.3)

in the simply connected spaceforms of constant curvature and noticed that (1.3) preserves the enclosed vol-
ume and decreases the surface area. This way, they reproved the isoperimetric inequality in spaceforms for
starshaped hypersurfaces. This flowwas later transferred tomore general warped product spaces by the same
authors and Wang [20]. The Lorentzian version is treated in [25].

It is easy to show that the general Minkowski identities ∫M ϑ
Hk = ∫M sHk+1 imply that the flow (1.2) with

F = Hk
Hk−1

(1.4)

preserves certain quermassintegrals for starshaped hypersurfaces in spaceforms and decreases/increases the
others. See the survey [19] for more details. Hence it has been tempting to prove that the flow (1.2) converges
to a totally umbilic hypersurface in order to get new results in integral geometry. Unfortunately, this flow has
refused to release the results it originally promised, at least so far. There are some partial results in space-
forms. Denote by𝔼n+1 the Euclidean space, by𝕊n+1+ the hemisphere, byℍn+1 the hyperbolic space andby𝕊n,1+
the upper branch of the Lorentzian de Sitter space of respective dimension n + 1. To summarize the known
results, let F be given by (1.4). Then (1.2) starting from a starshaped hypersurface with F > 0 converges to
a totally umbilic hypersurface provided either of the following conditions hold.
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(i) N = 𝔼n+1. This is a trivial case which already follows from the classical inverse curvature flows due to
Gerhardt [14] and Urbas [35].

(ii) N = 𝕊n+1, N = ℍn+1, k = n (see [5, 19]).
(iii) N = ℍn+1, 1 ≤ k ≤ n and the initial hypersurface is h-convex, i.e. κi > 1 (see [21]).
(iv) N = ℍn+1, 1 ≤ k ≤ n and the initial hypersurface satisfies an a priori gradient bound (see [5, 19])

max
x∈𝕊n
|∇ log ϑ(0, x)|2 ≤ 12 + 3min

x∈𝕊n
ϑ(0, x)2.

(v) N = 𝕊n,1+ , k = 1 (see [32]).
In each of these cases, one obtains a corresponding quermassintegral inequality. Theorem 1.5 provides the
first convergence result for a flow of type (1.2) outside the constant curvature spaces for a class of F that
contains the case F = Hn

Hn−1 .
As anapplication,weobtain twonewMinkowski type inequalities for surfaces in a certain class ofwarped

spaces.
Note that, although we prove the following two results for n = 2, we keep notation general in order to

show that themonotonicity properties of the flowwith F = H2
H1

are also valid in higher dimension. The restric-
tion to n = 2 stems from the technical hurdle that F = H2

H1
only vanishes on the boundary of Γ+ if n = 2, and

hence, only in this case, we have a good convergence result.

Theorem 1.6. Suppose n = 2, and in addition to Assumption 1.1, suppose that N satisfies

R̂c ≥ (n − 1)(ϑ2(r) − ϑϑ(r))σ for all r. (1.5)

Let M ⊂ N be a strictly convex graph over S0. Then there holds

∫
M

H1 +
1
n ∫
M̂

Rc(∂r , ∂r) ≥ ϕ(|M|), (1.6)

where ϕ is the function that gives equality on the radial slices. If equality holds, then M is totally umbilic. If the
associated quadratic forms in (1.5) satisfy the strict inequality on nonzero vectors, then equality in (1.6) holds
precisely on radial slices.

Remark 1.7. (i) Note that, in case ϑ ≤ 0, there holds

∂r(ϑ2 − ϑϑ) = −ϑ2∂r(
ϑ

ϑ ) ≥ 0

by assumption (1.1).
(ii) Note that Theorem1.6 even holds in ambient spaceswhere the validity of the isoperimetric inequality

is unclear; compare [20, Section 6]. In particular, we do not assume that ϑ2 − ϑϑ ≥ 0.

Due to Remark 1.7, it is also of interest to obtain a lower bound in terms of the volume of M̂, as this can-
not be covered by an isoperimetric inequality. It is possible to deduce such an inequality under presence of
a Heintze–Karcher type inequality.

Theorem 1.8. Suppose n = 2, and in addition to Assumption 1.1, suppose that ϑ ≥ 0 and

R̂c ≥ (n − 1)(ϑ2(r) − ϑϑ(r))σ for all r. (1.7)

Let M ⊂ N be a strictly convex graph over S0, and suppose, for every such M, there holds

∫
M

ϑ

H1
≥ ∫
M

s (1.8)

and that equality implies total umbilicity.
Then

∫
M

H1 +
1
n ∫
M̂

Rc(∂r , ∂r) ≥ ψ(|M̂|), (1.9)
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where ψ is the function which gives equality on the radial slices. If equality holds, thenM is totally umbilic. If the
associated quadratic forms in (1.7) satisfy the strict inequality on nonzero vectors, then equality in (1.9) holds
precisely on radial slices.

Remark 1.9. In [4, Theorem 3.11], inequality (1.8) was proved under the assumptions that ϑ > 0 and that
the ambient space is substatic, i.e. ∆̄ϑ ̄g − ∇̄2ϑ + ϑ Rc ≥ 0. It is unclear, however, whether this condition is
necessary for the Heintze–Karcher inequality to hold.

When it comes to higher dimensions, the flow (1.2) with F = H2
H1

is not understood yet because it is unclear
whether convexity is preserved, while in case it is lost, it is unclear whether F remains bounded from below.
However, if we restrict the ambient space further, it is possible to obtain aMinkowski inequality, which holds
for n ≥ 2, provided we impose a special structure of the ambient space in radial direction. Its proof does
not rely on a locally constrained curvature flow but on the standard inverse mean curvature flow. The idea
on how to exploit its monotonicity properties comes from [5]; also see [19], in which the hyperbolic case is
treated. The convergence of the inverse curvature flows in general warped products was proven in [31]; also
see [40]. However, note that the latter work does not cover the required asymptotics in the ambient spaces
we are considering here.

Theorem 1.10. In addition to Assumption 1.1, suppose that (S0, σ) has non-negative sectional curvature. Sup-
pose ϑ(r) = α sinh(r) + β cosh(r), where α ≥ β ≥ 0 and one of those inequalities has to be strict and

R̂c ≥ (n − 1)(α2 − β2)σ. (1.10)

Let M ⊂ N be a strictly mean-convex graph over S0. Then there holds

∫
M

H1 − |M̂| ≥ ϕ(|M|), (1.11)

where ϕ is the function that gives equality on the radial slices. If equality holds, then M is totally umbilic. If
the associated quadratic forms in (1.10) satisfy the strict inequality on nonzero vectors, then equality in (1.11)
holds precisely on radial slices.

Let us put the results in Theorems 1.6, 1.8 and 1.10 into some historical context. The functional

W2(M) := ∫
M

H1 +
1
n ∫
M̂

Rc(∂r , ∂r)

plays a significant role in hypersurface theory and especially in the theory of convex bodies. In the Euclidean
space andup to a dimensional constant, it arises from the Taylor expansion of volumewith respect to outward
geodesic variations of a compact domain M̂with smooth boundaryM, which is compressed into the beautiful
Steiner formula for convex bodies in Euclidean space [34],

|M̂ϵ| =
n+1
∑
k=0

cn,kWk(M)ϵk ,

where M̂ϵ is the ϵ-parallel body of M̂. There are many related formulae for domains of the hyperbolic and
spherical spaces, [2, 30], and also see [10, 11] for good introductions. The additional Ricci term has reasons
stemming from a particular geometric interpretation of the Steiner coefficients, which requires the addi-
tional Ricci term when transferred to other ambient spaces. Regardless of the ambient space however, the
Minkowski inequality provides a convexity estimate for the function ϵ → |M̂ϵ| and estimates its secondderiva-
tive at ϵ = 0 from below by its value and its first derivative at ϵ = 0. As such, it makes a statement of volume
growth and hence is of interest in Riemannian geometry. There has been immense effort in the past to obtain
Minkowski inequalities, even for non-convex hypersurfaces. In the Euclidean space, this was accomplished
for convex bodies in [28] and for starshaped and mean-convex hypersurfaces in [17]. It is open until today
whether the starshapedness can be droppedhere. It can be shown, however, that the result is also true for out-
ward minimizing hypersurfaces, which follows from Huisken’s and Ilmanen’s weak inverse mean curvature
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flow [22] or also from [1]. See [27, 38] for extensions of this approach to some asymptotically flat manifolds.
In the other spaceforms, including de Sitter space, lower bounds forW2(M)were given in [10, 26, 29, 32, 36,
39]. There are also many results on Minkowski type inequalities with weights, where the mean curvature is
integrated against a weight which mostly comes from the ambient geometry; the main candidate is ϑ. Such
inequalities play a role for the Penrose inequality in general relativity. See [6–8, 12, 13, 24, 33, 37] for various
results in this direction. To the best of my knowledge, there are no Minkowski type inequalities in situations
where the ambient space is not asymptotically of constant curvature, and hence Theorems 1.6, 1.8 and 1.10
appear to provide the first such inequalities.

In the next section, we justify the use of the proposed curvature flow by proving its crucial monotonicity
properties. In Section 3, we prove a priori estimates for the flow which lead to its convergence in Section 4.
At last, in Section 5, the proof of the geometric inequalities is completed.

2 Monotonicity
Let N and M be as in Assumption 1.1 and Definition 1.3. For the geometric quantities of N and M, we use
exactly the same notation as in [31]. Hence we do not repeat that part in detail but introduce the most
important new objects on the fly.

Additionally, we need some Minkowski type formulae, which we deduce here quickly. Denote by Hk,
1 ≤ k ≤ n, the normalized k-th elementary symmetric polynomial of the principal curvatures κ = (κi) of M,

Hk =
1
(nk)
∑

1≤i1<⋅⋅⋅<ik≤n
κi1 ⋅ ⋅ ⋅ κik .

Furthermore, we denote by H the trace of the second fundamental form, i.e. H = nH1. Let Θ be a primitive
of ϑ. Then we use [31, equation (2.12)] and get

Θ;ij = ϑu;iu;j + ϑu;ij = ϑu;iu;j + ϑϑ2σij − shij = ϑgij − shij , (2.1)

where (gij) is the induced metric on M and where we use the outward pointing normal ν to define the gen-
eralized support function s = ̄g(ϑ∂r , ν) = ̄g(∇̄Θ, ν) > 0. A semi-colon denotes covariant differentiation with
respect the Levi–Civita connection ∇ of (gij). The tensor (hij) is the second fundamental form with respect
to −ν, and the principal curvatures (κi) are the eigenvalues of theWeingarten operator hij = gikhij. In general,
we use (gij) to raise and lower indices of tensors. Taking the trace of (2.1) yields

∫
M

sH1 = ∫
M

ϑ. (2.2)

We get a similar relation for H2, cf. [20, Lemma 2.5] with different notation,

∫
M

sH2 = ∫
M

ϑH1 −
1

n(n − 1) ∫
M

Rc(ν, ∇Θ). (2.3)

For functions F as in Assumption 1.4, we use the standard theory of curvature functions F with the conven-
tions as in [31]. In particular, F can be understood to depend on the Weingarten operator hij or on the two
bilinear forms gij and hij, F = F(hij) = F(gij , hij). Then we define

F ij = ∂F∂hij
, F ij,kl = ∂2F

∂hij∂hkl
.

See [3] and [15, Chapter 2] formore on the theory of curvature functions. In general, Latin indices will always
range between 1 and n, while we use the Einstein summation convention.

The following lemma is the key to themonotonicity properties required to deduce the geometric inequal-
ities in Theorems 1.6 and 1.8.
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Lemma 2.1. Under the assumptions of Theorem1.6, along (1.2)with F = H2
H1
, there holds ∂t|Mt| ≥ 0with equal-

ity for all t precisely if all Mt are umbilic, and

∂t(∫
Mt

H1 +
1
n ∫
M̂t

Rc(∂r , ∂r)) ≤ 0. (2.4)

Under the assumptions of Theorem 1.8, there holds ∂t|M̂t| ≥ 0, where equality for all t implies that all Mt are
umbilic.

Proof. We use the well-known evolution equations, see [15, Section 2.3],

∂tgij = 2(
ϑ

F − s)hij ,

∂t√det g = (
ϑ

F − s)H
√det g,

∂thij = (s −
ϑ

F );j

i
+ (s − ϑ



F )h
i
kh

k
j + (s −

ϑ

F )Rm(x;k , ν, ν, x;j)g
ki . (2.5)

First we calculate
∂t|Mt| = n ∫

Mt

(
ϑH2

1
H2
− sH1) ≥ n ∫

Mt

ϑ − n ∫
Mt

ϑ = 0,

where we have used the Newton–Maclaurin inequality H2 ≤ H2
1 and (2.2). By the equality characterization

of the Newton–Maclaurin inequality, in case of equality, all Mt must be umbilic. To prove the second claim,
we use the decomposition ∇̄Θ = ∇Θ + sν and a formula for the Ricci tensor [4, Proposition 2.1]

Rc(∂r , ∂r) = −n
ϑ

ϑ , Rc(∂r , ei) = 0,

where (ei) is an orthonormal frame for (S0, σ). We use (2.3) to calculate

∂t ∫
Mt

H1 =
1
n ∫
Mt

H2(
ϑ

F − s) −
1
n ∫
Mt

|A|2( ϑ


F − s) −
1
n ∫
Mt

Rc(ν, ν)( ϑ


F − s)

= (n − 1) ∫
Mt

H2(
ϑ

F − s) −
1
n ∫
Mt

Rc(ν, ν)( ϑ


F − s)

=
1
n ∫
Mt

Rc(ν, ∇Θ) − 1n ∫
Mt

Rc(ν, ν)( ϑ


F − s)

=
1
n ∫
Mt

Rc(ν, ∇̄Θ) − 1n ∫
Mt

Rc(ν, ν) ϑ


F

= − ∫
Mt

ϑ

ϑ s −
1
n ∫
Mt

Rc(ν, ν) ϑ


F . (2.6)

Now decompose ν = V + ̄g(ν, ∂r)∂r = V + sϑ ∂r, where V is the projection of ν onto ∂⊥r . In the following esti-
mate, we first use the representation of Rc in terms of R̂c (see [4, p. 253]) and then (1.5),

1
n Rc(ν, ν) =

1
n Rc(V, V) −

ϑ

ϑ
s2

ϑ2
=
1
n(R̂c(V, V) − (

ϑ

ϑ + (n − 1)
ϑ2

ϑ2
) ̄g(V, V)) − ϑ



ϑ
s2

ϑ2

≥ −
ϑ

ϑ
̄g(V, V) − ϑ



ϑ
s2

ϑ2
, (2.7)

with equality precisely if (1.5) evaluated atV holdswith equality orV = 0.WehaveV = 1
υ (0, ϑ

−2σiju;j), where

υ2 = 1 + ϑ−2σiju;iu;j =
ϑ2

s2
, (2.8)



J. Scheuer, Locally constrained flows in warped spaces | 7

and hence ̄g(V, V) = υ2−1υ2 . Inserting this into (2.7) gives
1
n Rc(ν, ν) ≥ −

ϑ

ϑ . (2.9)

We use
1
n ∂t ∫

M̂t

Rc(∂r , ∂r) = −∂t ∫
M̂t

ϑ

ϑ = ∫
Mt

ϑ

ϑ (s −
ϑ

F )

and finally combine this equality with (2.6) and (2.9), which gives (2.4). To estimate the volume, note that
the Heintze–Karcher inequality (1.8) implies

∂t|M̂t| = ∫
Mt

(
ϑ

H1
− s) ≥ 0.

3 A priori estimates
In this section, we provide all the a priori estimates that are needed to prove Theorem 1.5. The existence of
a solution to (1.2) on amaximal time interval [0, T∗) is standard, and a proof can be found in [15, Chapter 2].
There, it is also proven that it suffices to get higher regularity estimates for the radial function u = u(t, ξ)
which parametrizes the flow hypersurfaces and satisfies the parabolic equation (here we use ϑ > 0)

∂tu = (
ϑ(u)
F − s)υ

−1, (3.1)

where υ is given by (2.8). Once we have estimates for (3.1), we get estimates for the whole flow x as described
in [15, Section 2.5].

Note that, in the following estimates, the letter “c” denotes a generic constantwhich is allowed to depend
only on the data of the problem, i.e. on N, x0 and F and whichmay change from line to line. We start with the
estimates up to first order.

Lemma 3.1. Under the assumptions of Theorem 1.5, we have the following estimates for (1.2):
(i) minM0 u(0, ⋅ ) ≤ u(t, ξ) ≤ maxM0 u(0, ⋅ ) for all (t, ξ) ∈ [0, T∗) ×M0,
(ii) υ(t, ξ) ≤ c for all (t, ξ) ∈ [0, T∗) ×M0.

Proof. We use (2.1) to note that, at a maximal point of u, there holds sh ≥ ϑg as bilinear forms. Due to the
monotonicity and homogeneity of F, we obtain F(hij) ≥

ϑ
s , and thus the functionmax u(t, ⋅ ) is non-increasing

in t. A similar argument applies to min u(t, ⋅ ), and hence the first claim is true.
As F vanishes on the boundary of Γ+, the flows preserves the convexity of Mt up to T∗. This means we

have a convex graph in a Riemannian warped product space, and the claimed C1-estimate is immediate from
[15, Theorem 2.7.10].

Since (3.1) is a fully nonlinear parabolic equation, gradient estimates are not enough to bootstrap up the reg-
ularity, as for example in [18, 20]. The crucial part is the bound on the curvature. To get this bound, we have
to investigate the evolution of h, (2.5), in greater detail and combine it with other quantities. Let us define the
parabolic operator P = ∂t − ϑ



F2 F
kl∇2kl − ̄g(∇̄Θ, ∇), which may act on functions as well as on time-dependent

tensor fields.Herewehave tonote thatweonlyuse time-independent local frames, i.e. local coordinate frames
on the base manifold M0.

We first estimate the curvature function and therefore collect some evolution equations.

Lemma 3.2. Along the flow (1.2), there hold the following evolution equations:

Ps = ϑ


F2
(F ijhikhkj − F

2)s − 1F
̄g(∇̄Θ, ∇ϑ) + ϑ



F2
̄g(∇̄Θ, x;k)F ij Rm(ν, x;i , x;m , x;j)gmk , (3.2)

Pϑ = ϑ


ϑ
2s
F ϑ
 − ϑϑ − ϑ



ϑ
ϑ

F2
F ijgijϑ − (ϑϑ −

ϑϑ2

ϑ )
1
F2
F iju;iu;j , (3.3)

P(
ϑ

F − s) =
ϑ

F2
(F ijhikhkj − F

2)(
ϑ

F − s) +
ϑ

F2
F ij Rm(x;i , ν, ν, x;j)(

ϑ

F − s) +
ϑ

ϑ
s
F(

ϑ

F − s). (3.4)
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Proof. According to [31, p. 1114] and the Codazzi equation, we have

s;ij = ϑhij − hikhkj s + ̄g(∇̄Θ, x;k)h
k
i;j

= ϑhij − hikhkj s + ̄g(∇̄Θ, x;k)hij;
k − ̄g(∇̄Θ, x;k)Rm(ν, x;i , x;m , x;j)gmk . (3.5)

Also there holds

∂ts = ϑ(
ϑ

F − s) −
̄g(∇̄Θ, ∇( ϑ



F − s)) =
ϑ2

F − sϑ
 −

1
F
̄g(∇̄Θ, ∇ϑ) + ϑ



F2
̄g(∇̄Θ, ∇F) + ̄g(∇̄Θ, ∇s).

Hence the first equation follows.
For the second equation, we note ∂tϑ = ϑ∂tu = ϑ



ϑ (
ϑ
F − s)s, use (2.1),

ϑ;ij = ϑ
u;ij + ϑu;iu;j = ϑ(

ϑ

ϑ gij −
s
ϑ hij −

ϑ

ϑ u;iu;j) + ϑ
u;iu;j

=
ϑϑ

ϑ gij −
ϑ

ϑ shij + (ϑ
 −

ϑϑ

ϑ )u;iu;j (3.6)

and finally note

−
ϑ

ϑ s
2 = −ϑϑυ−2 = −ϑϑ + υ

2 − 1
υ2

ϑϑ = −ϑϑ + ̄g(∇̄Θ, ∇ϑ).

For the third equation, we calculate, using (2.5),

∂t(
ϑ

F − s) =
∂tϑ

F + ϑ
∂tF−1 − ∂ts

=
s
F2
ϑϑ

ϑ −
ϑ

ϑ
s2

F +
ϑ

F2
F ij( ϑ


F − s);ij
+
ϑ

F2
(
ϑ

F − s)F
ijhikhkj

+
ϑ

F2
(
ϑ

F − s)F
ij Rm(x;i , ν, ν, x;j) − ϑ(

ϑ

F − s) +
̄g(∇̄Θ, ∇( ϑ



F − s)),

from which the equation follows.

Lemma 3.3. Along the flow (1.2), there holds ϑ
F − s ≤ c.

Proof. Due to Lemma 3.1, there exists α > 0 such that ϑ ≥ 2α. For β ∈ {0, 1} to be determined, the auxiliary
function

w = log( ϑ


F − s) − log s − β log(ϑ
 − α)

is well-defined on the open set in spacetime where ϑF−1 > s. We prove by maximum principle that w is
bounded from above. Whenever w is sufficiently large, it satisfies the following equation at spacial maximal
points:

Pw = 1
ϑ
F − s

P(
ϑ

F − s) +
ϑ

F2
Fkl log( ϑ



F − s);k
log( ϑ



F − s);l

−
1
s Ps −

ϑ

F2
Fkl(log s);k(log s);l −

β
ϑ − αPϑ



−
βϑ

F2
Fkl(log(ϑ − α));k(log(ϑ − α));l

=
1

ϑ
F − s

P(
ϑ

F − s) −
1
s Ps −

β
ϑ − αPϑ

 +
2βϑ

s(ϑ − α)F2
Fkls;kϑ;l .

Due to (3.2), (3.3) and (3.4), this is

Pw = ϑ


F2
F ij Rm(x;i , ν, ν, x;j) +

ϑ

ϑ
s
F +

1
sF
̄g(∇̄Θ, ∇ϑ)

−
ϑ

ϑF2
υ ̄g(∇̄Θ, x;k)F ij Rm(ν, x;i , x;m , x;j)gmk −

ϑ

ϑ
2s
F

βϑ

ϑ − α

+
β

ϑ − α ϑ
ϑ + ϑ



ϑ
ϑ

F2
F ijgij

βϑ

ϑ − α

+
β

ϑ − α(ϑ
ϑ − ϑ

ϑ2

ϑ )
1
F2
F iju;iu;j +

2βϑ
s(ϑ − α)F2

Fkls;kϑ;l . (3.7)
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We use ̄g(∇̄Θ, x;k)gmk = ϑu;m, [31, equation (4.2)] and [31, p. 1126]:

Rm(x;i , ν, ν, x;j) = −
ϑ

ϑ gij + (
ϑ

ϑ −
ϑ2

ϑ2
)(‖∇u‖2gij − u;iu;j) + R̃m(x;i , ν, ν, x;j)

= −
ϑ

ϑ gij + υ Rm(ν, x;i , x;m , x;j)u;
m ,

where R̃m is the lift of the Riemann tensor of (S0, ϑ2(r)σ) under the projection π : N → S0 and its arguments
have to be understood as their projections onto S0. We get

ϑ

F2
F ij Rm(x;i , ν, ν, x;j) −

ϑ

ϑF2
υ ̄g(∇̄Θ, x;k)F ij Rm(ν, x;i , x;m , x;j)gmk

=
ϑ

F2
F ij Rm(x;i , ν, ν, x;j) −

ϑ

F2
F ijυ Rm(ν, x;i , x;m , x;j)u;m = −

ϑ

ϑ
ϑ

F2
F ijgij .

Returning to (3.7) and using s;k = ϑhmk u;m, we obtain

Pw ≤ c|ϑ|(1 + 1F) −
ϑ

ϑ
ϑ

F2
F ijgij(1 −

βϑ

ϑ − α)

+
β

ϑ − α(ϑ
ϑ − ϑ

ϑ2

ϑ )
1
F2
F iju;iu;j +

2βϑϑϑ
s(ϑ − α)F2

Fklhmk u;mu;l .

Due to Assumption 1.1, ϑ can either be globally non-positive or non-negative. In case that ϑ ≥ 0, we pick
β = 0 and use the concavity of F which gives F ijgij ≥ 1 (see [15, Lemma 2.2.19]). At maximal points, where F
is very small, we get Pw ≤ 0. In case that ϑ ≤ 0, we pick β = 1. Then

1 − ϑ

ϑ − α = −
α

ϑ − α ,
2ϑϑϑ

s(ϑ − α)F2
Fklhmk u;mu;l ≤ 0

since Fklhmk is positive definite due to the convexity of the flow hypersurfaces, and by the assumption on the
third derivative of ϑ, we see that the dominating term has a good sign, which completes this case as well.

To complete the a priori estimates, we need to prove that the principal curvatures are uniformly bounded
from above. For this purpose, we deduce the evolution equation of the second fundamental form.

Lemma 3.4. Along the flow (1.2), the Weingarten operator satisfies the following equation:

Phij =
ϑ

F2
Fklhlrhrkh

i
j −

2ϑ
F hikh

k
j + ϑ
hij +

1
F
ϑ

ϑ sh
i
j + s Rm(x;m , ν, ν, x;j)g

mi

−
1
F
ϑϑ

ϑ δij +
ϑ

F2
Fkl Rm(ν, x;k , x;l , ν)hij + 2

ϑ

F Rm(ν, x;m , ν, x;j)gmi

− ̄g(∇̄Θ, x;k)Rm(ν, x;l , x;m , x;j)gmkgli −
1
F(ϑ
 −

ϑϑ

ϑ )u;
iu;j

+
ϑ;
i

F2
F;j +

ϑ;j
F2
F; i −

2ϑ
F3

F; iF;j +
ϑ

F2
Fkl,rshkl; ihrs;j

+
ϑ

F2
Fkl Rm(x;k , x;m , x;l , x;j)hmi +

ϑ

F2
Fkl Rm(x;k , x;m , x;l , x;r)hmj g

ri

+ 2 ϑ


F2
Fkl Rm(x;l , x;j , x;r , x;m)hmk g

ri

−
ϑ

F2
Fkl∇̄Rm(ν, x;m , x;k , x;j , x;l)gmi −

ϑ

F2
Fkl∇̄Rm(ν, x;k , x;l , x;m , x;j)gmi .

Proof. It is convenient to work with the second fundamental form, which satisfies

∂thij = ∂t(hki gkj) = (s −
ϑ

F );ij
− (s − ϑ



F )hikh
k
j + (s −

ϑ

F )Rm(x;i , ν, ν, x;j)

= s;ij −
ϑ;ij
F +

ϑ;i
F2
F;j +

ϑ;j
F2
F;i +

ϑ

F2
F;ij −

2ϑ
F3

F;iF;j

− (s − ϑ


F )hikh
k
j + (s −

ϑ

F )Rm(x;i , ν, ν, x;j). (3.8)
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The main exercise in such calculations is always to turn the term F;ij into a suitable operator on hij. This
makes repeated use of the Codazzi-, Gauss- and Weingarten equations, and its complexity depends on the
restrictions on the ambient space. The main step was already performed in [31, p. 1111]. From there, we
conclude that

F;ij = Fkl,rshkl;ihrs;j + Fklhkl;ij
= Fkl,rshkl;ihrs;j + Fklhij;kl + Fkl(hlahjk − hlkhja + Rm(x;l , x;j , x;k , x;a))hai
+ Fkl(hlahji − hlihja + Rm(x;l , x;j , x;i , x;a))hak
− Fkl∇̄Rm(ν, x;k , x;l , x;i , x;j) − Fkl Rm(x;m , x;k , x;l , x;i)hmj
+ Fkl Rm(ν, x;k , ν, x;i)hlj + Fkl Rm(ν, x;k , x;l , ν)hij
− Fkl∇̄Rm(ν, x;i , x;k , x;j , x;l) − Fkl Rm(x;m , x;i , x;k , x;j)hml
+ Fklhkl Rm(ν, x;i , ν, x;j) + Fkl Rm(ν, x;i , x;k , ν)hjl .

Now we can use the homogeneity of F, that (F ij) commutes with (hjk) and the symmetries of the curvature
tensor to reduce this equation a little bit,

F;ij = Fkl,rshkl;ihrs;j + Fklhij;kl − Fhai hja + F
klhlahakhij

+ Fkl Rm(x;k , x;m , x;l , x;j)hmi + F
kl Rm(x;k , x;m , x;l , x;i)hmj

+ 2Fkl Rm(x;l , x;j , x;i , x;m)hmk + F
kl Rm(ν, x;k , x;l , ν)hij + F Rm(ν, x;i , ν, x;j)

− Fkl∇̄Rm(ν, x;i , x;k , x;j , x;l) − Fkl∇̄Rm(ν, x;k , x;l , x;i , x;j).

We obtain the desired formula by inserting this equation, (3.5) and (3.6) into (3.8) and reverting to hij
with the help of ∂tgij = −2( ϑ



F − s)h
ij.

Lemma 3.5. Along the flow (1.2) the principal curvatures are uniformly bounded and range in a compact set
of Γ+.

Proof. The proof is similar to the second case in the proof of [31, Proposition 3.4]. We repeat the main steps
for convenience. As usual, see [16, Lemma 4.4] for example, we may define w = log hnn − log(s − β) + αu, and
a bound on w will suffice. Here we work in normal coordinates around a maximum point,

gij = δij , hij = κiδij , κ1 ≤ ⋅ ⋅ ⋅ ≤ κn ,

β is small enough and α > 0 will be chosen later. All achieved a priori estimates and Lemma 3.4 imply

Phnn ≤
ϑ

F2
Fklhlrhrkκn −

2ϑ
F κ2n + ϑκn +

c
F κn + c +

c
F2
F ijgij(κn + 1)

+ 2
ϑ;n
F2
F;n −

2ϑ
F3

F2;n +
ϑ

F2
Fkl,rshkl;nhrs;n

≤
ϑ

F2
Fklhlrhrkκn −

2ϑ
F κ2n + ϑκn +

c
F κn + c +

c
F2
F ijgij(κn + 1) +

ϑ

F2
Fkl,rshkl;nhrs;n ,

where we used Cauchy–Schwarz. From (2.1), we see that

u;ij =
ϑ

ϑ gij − υ
−1hij −

ϑ

ϑ u;iu;j =
ϑ

ϑ
̄gij − υ−1hij

and hence

Pu = ( ϑ


F − s)υ
−1 −

ϑ

F2
F ij( ϑ


ϑ
̄gij − υ−1hij) − ϑ‖∇u‖2 = 2

ϑ

F υ
−1 − ϑ − ϑ



ϑ
ϑ

F2
F ij ̄gij . (3.9)

Also using (3.2), we see

Pw ≤ − β
s − β

ϑ

F2
Fklhlrhrk −

2ϑ
F κn + ϑ +

c
F (1 + α) + cκ

−1
n +

c
F2
F ijgij(1 + κ−1n )

+ κ−1n
ϑ

F2
Fkl,rshkl;nhrs;n +

ϑ

F2
F ij(log hnn);i(log hnn);j

−
ϑ

F2
F ij(log(s − β));i(log(s − β));j − α

ϑ

ϑ
ϑ

F2
F ij ̄gij .
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It is necessary to pick α large. In order to deal with the resulting derivative coming from the replacement of
(log hnn);i, we use a trick that was already used in [9]. The concavity of F and κ1 > 0 implies, for all symmetric
matrices (ηkl),

Fnn ≤ ⋅ ⋅ ⋅ ≤ F11 and Fkl,rsηklηrs ≤
2
κn

n
∑
k=1
(Fnn − Fkk)η2nk .

We apply this to ηkl = hkl;n and estimate

κ−1n Fkl,rshkl;nhrs;n ≤
2
κ2n

n
∑
k=1
(Fnn − Fkk)(hkn;n)2 ≤

2
κ2n

n
∑
k=1
(Fnn − Fkk)(hnn;k)2 +

c
κ2n

n
∑
k=1
(Fkk − Fnn)

due to the Codazzi equation. Thus, at a maximal point of w,

F ij(log hnn);i(log hnn);j + κ−1n Fkl,rshkl;nhrs;n ≤
1
κ2n
Fnn

n
∑
k=1
(hnn;k)2 +

c
κ2n

n
∑
k=1
(Fkk − Fnn)

= Fnn
n
∑
k=1
(log(s − β);k − αu;k)2 +

c
κ2n

n
∑
k=1
(Fkk − Fnn)

≤ cκ−2n F ijgij + Fnn‖∇(log(s − β))‖2 + α2Fnn‖∇u‖2

− 2αFnng(∇ log(s − β), ∇u).

The estimate on Pw at a spacetime maximum becomes

0 ≤ Pw ≤ − β
s − β

ϑ

F2
Fklhlrhrk −

2ϑ
F κn + ϑ +

c
F (1 + α) + cκ

−1
n

+
c
F2
F ijgij(1 + κ−1n ) + cκ−2n

ϑ

F2
F ijgij +

ϑ

F2
Fnn‖∇(log(s − β))‖2

+ α2 ϑ


F2
Fnn‖∇u‖2 − 2α ϑ



F2
Fnng(∇ log(s − β), ∇u)

−
ϑ

F2
F ij(log(s − β));i(log(s − β));j − α

ϑ

ϑ
ϑ

F2
F ij ̄gij

≤
ϑ

F2
Fnn(− β

s − β κ
2
n + α2‖∇u‖2 + αcκn) −

ϑ

F κn +
c
F (1 + α)

+
ϑ

F2
F ijgij(cκ−2n − ϵ0α

ϑ

ϑ + c + cκ
−1
n ),

where we also used F ≤ κn and F ij ̄gij ≥ ϵ0F ijgij for some constant ϵ0. Fixing a sufficiently large α, we see that
κn cannot be too large without reaching a contradiction. Hence κn is bounded. Due to the lower bound on F,
the principal curvatures range in a compact subset of its domain. The proof is complete.

Corollary 3.6. The flow (1.2) exists for all times with uniform C∞-estimates.

Proof. This is standard. The radial function u satisfies a fully nonlinear PDE

∂tu = (
ϑ

F − s)υ
−1 = G( ⋅ , u, ∇u, ∇2u),

which is uniformly parabolic due to Lemmata 3.3 and 3.5. As we assumed that F is a concave curvature
function, G is concave in ∇2u. Furthermore, we have C2-bounds due to all a priori estimates. We may apply
the regularity results by Krylov–Safonov [23] and linear Schauder theory to obtain uniform bounds on all
derivatives of u. A standard continuation argument [15, Section 2.5] proves the long-time existence.

4 Completion of the convergence proof
Proof of Theorem 1.5. The proof is similar to the one in [25, Section 5]. We sketch the idea. From (3.9), we
see that Θ satisfies

PΘ = 2 ϑ


F s − ϑ
2 −

ϑ2

F2
F ijgij ≤ 0.
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The strong maximum principle implies that oscΘ(t) = maxMt Θ −minMt Θ is strictly decreasing unless it is
constant, in which case Mt is already a radial slice. Suppose that oscΘ does not converge to zero but to
a positive value α > 0. From the smooth a priori estimates, we can define a smooth limit flow (possibly after
choosing a subsequence) x∞(t, ξ) = limi→∞ x(t + i, ξ). This limit flow has constant oscillation α > 0, a con-
tradiction to the strong maximum principle, as x∞ satisfies (1.2) as well. Hence every subsequential limit
of (Mt)must be a radial slice, and due to the barrier estimates, it can only be a unique slice.

5 Geometric inequalities
Proof of Theorems 1.6 and 1.8. With this convergence result at hand, the results in Theorems 1.6 and 1.8
follow immediately from themonotonicity properties in Lemma 2.1 and their equality characterizations.

Non-positive radial curvature

Weuse an idea of Simon Brendle, who used the inversemean curvature flow [16] to prove (1.11) in the hyper-
bolic space; see [19]. We adapt this proof to the ambient spaces given in Theorem 1.10 and use the result on
inverse mean curvature flow from [31].

Proof of Theorem 1.10. Denote by Sr the radial r-slice in N, and writeW2(M) = ∫M H1 − |M̂|. Then, along the
inverse mean curvature flow in N, ∂tx = 1

H ν, we have the following variational formulae:

∂t ∫
Mt

H = ∫
Mt

H − ∫
Mt

1
H (‖A‖

2 + Rc(ν, ν)) = 2 ∫
Mt

σ2
H − ∫

Mt

1
H Rc(ν, ν).

From (2.9), we obtain
∂t ∫
Mt

H ≤ (n − 1) ∫
Mt

H2
H1
+ ∫
Mt

n
H ,

where, in case that (1.10) holds strictly, this inequality is strict unless we have a flow of slices.
Also we obtain ∂t|M̂t| = ∫Mt

1
H . Let ϕ be defined by the relation W2(Sr) = ϕ(|Sr|), which is well-defined

due to the strict monotonicity ofW2(Sr) and |Sr|with respect to r. Hence, along inverse mean curvature flow,
we have

0 = ∂t(W2(Sr(t)) − ϕ(|Sr(t)|)) =
n − 1
n ∫

Sr(t)

H2
H1
− ϕ(|Sr(t)|)|Sr(t)| =

n − 1
n ∫

Sr(t)

H1 − ϕ(|Sr(t)|)|Sr(t)|

=
n − 1
n (W2(Sr(t)) + | ̂Sr(t)|) − ϕ(|Sr(t)|)|Sr(t)|

and hence ϕ(|Sr(t)|)|Sr(t)| = n−1n (W2(Sr(t)) + | ̂Sr(t)|).
Now, for a general mean-convex flow (Mt), pick a flow of spheres (Sr(t)) such that |Mt| = |Sr(t)|, and cal-

culate

∂t(W2(t) − ϕ(|Mt|)) ≤
n − 1
n ∫

Mt

H2
H1
− ϕ(|Mt|)|Mt| ≤

n − 1
n ∫

Mt

H1 − ϕ(|Mt|)|Mt|

=
n − 1
n (W2(t) + |M̂t|) −

n − 1
n W2(Sr(t)) −

n − 1
n |
̂Sr(t)|

=
n − 1
n (W2(t) − ϕ(|Mt|)) +

n − 1
n (|M̂t| − | ̂Sr(t)|)

≤
n − 1
n (W2(t) − ϕ(|Mt|))

due to the isoperimetric inequality [20, Theorem1.2].HenceW2(t) − ϕ(|Mt|) ≤ e
n−1
n t(W2(0) − ϕ(|M0|)),where

equality implies total umbilicity. Now we use that, for large t, the inverse mean curvature flow is almost
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umbilic in the sense that

hij −

ϑ

ϑ δ
i
j

≤
ct
ϑϑ ;

see [31, equation (1.3)]. Since
sinh(r)
cosh(r) ≤

ϑ

ϑ ≤
cosh(r)
sinh(r) ,

ϑ
ϑ is uniformly bounded above and below by positive constants. As geodesic spheres satisfy the ODE

d
dt ϑ(r) =

1
n ϑ(r)

and any solution of inverse mean curvature flow respects initial spherical barriers, we can estimate ϑ ≥ ce t
n

and similarly for ϑ. Hence H = n ϑϑ + O(te
− 2tn ), andwe estimate, with the help of the isoperimetric inequality,

W2(t) =
1
n ∫
Mt

H − |M̂t| = ∫
Mt

ϑ

ϑ + O(te
− 2tn )|Mt| − |M̂t|

= ∫
Mt

(
ϑ

ϑ −
ϑ(r(t))
ϑ(r(t)) ) +

ϑ(r(t))
ϑ(r(t)) |Sr(t)| + O(te

− 2tn )|Mt| − |M̂t|

≥ W2(Sr(t)) + ∫
Mt

(
ϑ

ϑ −
ϑ(r(t))
ϑ(r(t)) ) + O(te

− 2tn )|Mt|.

Now we have to estimate the integral term. There holds


ϑ(r(t))
ϑ(r(t)) − 1


=

1
ϑ(r(t))
|ϑ(r(t))2 − ϑ(r(t))2|
|ϑ(r(t)) + ϑ(r(t))| =

(α2 − β2)ϑ(r(t))−1

|ϑ(r(t)) + ϑ(r(t))| = O(e
− 2tn )

and similarly for ϑϑ . HenceW2(t) ≥ W2(Sr(t)) + O(te−
2t
n )|Mt|. Finally,

W2(t) − ϕ(|Mt|) ≥ W2(Sr(t)) − ϕ(|Sr(t)|) + O(te−
2t
n )|Mt| = O(te−

2t
n )|Mt|,

and hence
W2(0) − ϕ(|M0|) ≥ e−

n−1
n tO(te−

2t
n )et|M0| = O(te−

t
n )|M0|→ 0, t →∞.

This completes the proof.
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