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1 INTRODUCTION

This paper is concerned with the study of an integral inequality which
involves the second order Sturm-Liouville differential expression

M[f] := -f" + q(x)f (1.1)

over [a, b). Here f is some function in the set A (see below), and q is
locally integrable and periodic with period 27r, thus q satisfies minimal
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conditions for the equation M[f] ,f ( E C) to be regular at 0. The
inequality that we study is

(If’l / qlfl)dx _< K Ifl dx M[f] dx, (1.2)

where the inequality is required to hold, with finite constant K, for all

membersfof the set

A {f.. f,f’ ACloc[a,b); f,M[f] LV[a,b)}.

In the above ACloc[a, b) is the set offunctions which are locally absolutely
continuous on the interval (a, b) and L2(a, b) denotes those functionsf
which belong to the Lebesgue square integrable space over (a, b). The
inequality (1.2) is an instance of Everitt’s HELP inequality, this being a
development of a classical inequality, the case q 0, due to Hardy and
Littlewood. A feature ofEveritt’ s treatment of(1.2) in 12] and Evans and
Everitt’s analysis in [9] is that the existence ofthe inequality together with
the best constant is determined by the behaviour ofthe Titchmarsh-Weyl
m-function associated with the differential expression (1.1).
When q(x) x 7., a > 0 and 7. a real constant the inequality (1.2) has

been the subject of much study. In the special case q(x)=-7, the
inequality is valid ifand only if7. > 0 in which case K= 4. When a > 0 it is
known that a valid inequality can occur if and only if 7. is either a
Neumann or Dirichlet eigenvalue of (1.1) and analytic results on the
existence ofand value ofthe best constantK K(a)are known only in the
special cases a 1,2 (see [10] for a fuller discussion). An extensive
numerical investigation of the inequality for 0 < a < 10 has shown that
when 7. is a Neumann translate (that is we have translated the problem
(1.1) by an eigenvalue with Neumann boundary conditions imposed at
the regular end-point 0) the inequality is valid for all a with K= 4 (see
[14]). When 7. is a Dirichlet translate the inequality is again still valid for
all a with the best constant taking values depicted in Fig. 1.
An important difference between the situation when q(x) x 7 and

when q(x)=-x is that in the former case the spectrum of (1.1) is
discrete, consisting only of eigenvalues, while in the latter it consists of
pure continuous spectrum over (-, o) and thus the inequality may be
valid for all translates. In this paper we shall be concerned with an
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FIGURE Best constants K plotted against a for q(x)= x- rl(D), first eigenvalue
considered with Dirichlet boundary conditions.

investigation of the inequality (1.2) when q(x) is -t-sin x, -+-cos x and

-1, x on [0, 7r],q(x) +1, x on [Tr, ZTr]

and then extended by periodicity over the interval [0, ).
A feature ofthese examples is that the continuous spectrum of(1.1) lies

in bands with any eigenvalues confined to the spectral gaps. We shall
provide strong numerical evidence that the inequality is valid when zero
lies in one of the spectral bands and also when zero is a Neumann or
Dirichlet eigenvalue. That is, we translate the problem (1.1) by a value
equal to the eigenvalue. In later sections we compute the position ofthese
bands using the Rayleigh-Ritz method and examine various translates
to show how the values of the best constants vary.

2 PRELIMINARIES

The most general formulation of Everitt’s extension to the Hardy-
Littlewood inequality is given in Evans and Everitt [9]. To be specific we
shall need the following notions from the spectral theory of ordinary
differential equations.
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We say that (1.1) is limit-point (LP) at the singular point b if there is
precisely one solution of (1.1) in L2[a, b) (up to a constant multiple) and
this is equivalent to the condition that limx-.b_ p(f’ --f’ )(x) 0 for
allf, g E A. If the stronger condition limx-b_ p(f’)(x) 0 holds for all
f, g E A then we say that (1.1) is strong limit-point (SLP) at b. Clearly SLP
implies LP; it is known that the converse is not true.

If M[f] is SLP at b, then for allf A, it may be shown using the
Dirichlet formula for (1.1) that the left hand side of (1.2) exists, but the
integral may not be absolutely convergent. If (1.1) is LP at b and regular
at a then there exists a pair offunctions m+ and m_ defined on the upper
and lower half-planes C+, C_ ofthe complex plane C respectively, which
possess the following properties"

(i) m+/-’C+/- C+/-;
(ii) m+/- is analytic on C+/-;
(iii) +(A) m=(A) (A C+/-);
(iv) let 0, b be solutions of (1.1) that satisfy

O(a) O, O’(a) 1; b(a) -1, fS’(a) 0 (2.1)

and

b(x,A):= O(x,A) + m+(A)b(x,A); then b(.,A) L:Z[a,b) (A C+).

The Titchmarsh-Weyl m(A) function is defined by m(A)=m+/-(A)
(A E C+/-). The initial conditions given in (2.1) lead to the Neumann
m-function. If 9(., A) is a solution of (1.1) which belongs to L2[a, b) then

(a, A)m(A) P’(a, A) (2.2)

For further details of m(A) see Evans and Everitt [9], Everitt and
Bennewitz [3] and the references contained therein. We use the nota-
tion of Evans and Everitt [9] and write A r exp(i0), where r E (0, ),
0 E [0, 27r] and define the line segments

L+(O) (r exp(i0)" r (0, )),
L_(O) {r exp(i(0 + 7r)): r (0, cxz) for 0 E (0, 7r/2]};
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0+ inf{0 e (0, 7r/2]: for all e [0, 7r/2],
q: Im[Aam+(A)] > 0 (A e L+())},

00 max(0+, 0_).

In Evans and Everitt [9, Section 6], it was proved that if (1.1) is SLP at
b and regular at a then 00 0 and there is a valid inequality (1.2), (i.e. a
finite K) if and only if 001/27r, in which case the best constant
K= sec200. Furthermore, with r I)1, and

E+ {r (0, oc): A L+(Oo) and Im[A2m+(A)] 0},
Y+/-(x,r) Im[Ab= (x, A)], (A L+(Oo)),

then with 00 1/27r and K--sec200, the non-trivial functions f which
give equality in (1.2) fall into one of the following two distinct
categories:

(i) Mf=O,fE L2[a,b) and eitherf(0)=0 orf’(0)=0;
(ii) E+ t3 E_ andf(x) A Y+/-(x, r) (r E+/-), with A E C, A 0.

For further details see Evans and Everitt [9].
Examples of a valid inequality (1.2) have been obtained for q(x)

powers ofx; for a full account of all the known examples that have been
investigated analytically see Evans and Everitt [9,10], Kirby [14] and
Benammar et al. [2]. In all the examples that have been resolved an
explicit expression has been available for re(A). Even then the analytic
problems encountered when analysing Im[A2m(A)] can be formidable
and these difficulties are further compounded when m(A) is a

meromorphic function of A; see Evans et al. [11]. In this case it is shown
in Everitt [12, Section 16] that a valid inequality is obtained if, and only if,
q(x) is replaced by q(x) 7-, where 7- is an eigenvalue of (1.1) with either
Neumann or Dirichlet boundary conditions at the regular end-point a;
the Neumann eigenvalues are the poles of re(A) and the Dirichlet
eigenvalues its zeros. It is not surprising in view ofthe above remarks that
whenp(x) w(x) and q(x) x, the only case when the best constant
has been determined analytically is when a and a--2. In these
examples the Neumann and Dirichlet eigenvalues are known and can be
written explicitly and the corresponding m(A) function can also be
written explicitly. Since information on the HELP inequality is so
intractable analytically, recent efforts have been focused on developing
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numerical methods to obtain accurate estimates of the best constants K.
There numerical algorithms have also been used to extract general
properties of the HELP inequality. Success in this direction using these
techniques has been reported in Brown et al. [4,5] and in Kirby [14]. In
this paper we examine the case when q(x) is periodic. For certain values
of A the algorithm previously used to estimate the Titchmarsh-Weyl
m-function can be very inefficient (see Section 3). Hence we discuss a new
method for finding the m-coefficient which uses the property that when
q(x) is periodic we have special types of solutions called Floquet
solutions (see Eastham [8]). We display our results using a graphical
representation of the sets {A: 7:Im[A2m(A)]=0} in the first and third
quadrant of C and these results can be found in Section 5.

3 THE ALGORITHM

In [4] and [5] there is a discussion on the computation of m(A) using
an algorithm based on a "nesting circle" approach discussed in [1].
However it is shown in [4] that this algorithm works well when q(x)
as x ; for example, when q(x) x, a > 0. For further details of the
algorithm and implementation see Brown et al. [4, Section 2] and Kirby
[14, Chapter 2]. However, the algorithm can be computationally
expensive if the underlying solution of (1.1) is oscillatory. For example,
when q(x)=-x, JWKB-type approximations reveal that the solutions
to (1.1) are highly oscillatory and special methods have been developed
for these problems which are discussed in [6]. Evenwhen q(x) is a periodic
function this problem still arises when we look at A values which have
small imaginary part and hence the method of[6] is not applicable. Thus
we are forced to find a new algorithm to compute m(A). In order to do
this we exploit the special type of solutions arising from such problems
called Floquet solutions.

3.1 Floquet Solutions

A special type ofproblem arises in connection with differential equations
of the form

-y" + q(x)y Ay, (3.1)
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where q(x) is a periodic function with q(x + c) q(x), and c is the period
of the function q(x). These are precisely the functions q(x) outlined in
Section that we wish to examine. As outlined previously, the algorithms
used to find m(,) in such cases are computationally expensive. We now
give a basic outline ofFloquet theory and describe how the m()0 function
can be computed.
The differential equation (3.1) need not necessarily have periodic

solutions, but it always possesses solutions of a special type. In fact, if

y(a) ky(O),

y’ (,) y’(O),

where k is a constant, then for all x,

y(x + ) y(x).

This is called a Floquet solution.
Let the solutions O(x) and (x) be linearly independent solutions of

(3.1) and satisfy the boundary conditions (2.1), then the Wronskian,
W(O, ) and there exists constants Aij, i,j-- 1, 2 such that

O(x + ) AO(x) + Al(x),

(x + ,) &O(x) + A.(x).

Every solution b has the form

(x) cO(x) + c_(x).

Now,

(x + ) p(x) AO(x) + A(x) + c&O(x) +
pcO(x) + p(x),

for some constant p and so we obtain the matrix equation

All
A12 c (x)A22 /9
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These equations are satisfied by cl and c2 both not zero if p is such that

p2 (AI + A22)p + det A 0.

In this paper we only consider the interval [0, z) and using the boundary
conditions in (2.1) it follows that

0(a) -A,

() -A,

0’(a) A,

’() A.

Thus, det A W(O, b)(a) and we have the following quadratic for p

p (o’() ())p + o.

The expression O(a) b(a) is called the discriminant D(A). That is,

D() 0’()- (). (3.2)

The discriminant function above differs from the one in Eastham
[8, Section 1, 2] as we have different boundary conditions. For a fuller
account of the discriminant we refer the reader to Eastham’s book.

3.2 The m-Function

We now consider the Neumann m-function introduced in Section 2
associated with the differential equation (3.1). The Dirichlet m-function
is discussed in Titchmarsh [15, Section 11, p. 291]. We only give brief
details below and refer the reader to the above reference.
Using the boundary conditions for 0 and b defined in the last

subsection, we now look at the dependence of the m-function on 0 and

b (evaluated at a) and viewed as a function of the complex spectral
function A in order to satisfy the boundary condition b=-kbI.
Substituting for b 0 + mq (see preliminaries, Section 2), we have

m(O’ + m’) -(0 + mb).
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Expressing the above as a quadratic in m, we obtain

/

from which we obtain

m--
p+O’ V/2b--S- 4- (0’- )2 4. (3.3)

We can see from (3.3) and (3.2) that the discriminant and the m-function
are connected. The values of A where D(A)< 2 correspond to the
instability intervals and the values when D(A)> 2 correspond to the
stability intervals (see [8]). As Im(A)0 the imaginary parts of
the solutions 0 and 05 and their derivatives tend to zero. Thus, the value
of m(A) will tend to a real number if in the expression (3.3) the value of
(0’-4)2 > 4. If this is the case then from the definition of 0+ in Section 2
we have that the smallest argument of A for which Im[A2m(A)] _> 0 is 7r/2
and so 0+ 7r/2 and thus there can be no valid inequality. Thus, we
can only have valid inequalities if (0’-4)2 < 4 which corresponds to A
lying in the instability intervals.

3.3 Calculation of the Best Constant

We have outlined the algorithm for finding m(A) and we now turn to the
problem of estimating 00 and hence evaluating the best constant K.

Using the result in Evans and Everitt [9, Corollary 7] it is shown in
Brown et al. [4, Section 2.2] that the following is an equivalent definition
for Eq. (2.3)

0+ sup{0 E (0, 7r/2]: Im[A2m(A)] 0 for some A E L+(0)). (3.4)

Thus 00 can be determined by solving Im[A2m(A)] 0 for all ]A > 0 and
using 00 max(0+, 0_); whence Kcan be evaluated using K-- sec2(00). To
solve Im[A2m(A)]=0 we use an algorithm based on the Newton-
Raphson method which tries to estimate Om/OA, and in the cases when
this fails, we resort to the Bisection method.
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4 LOCATION OF THE SPECTRAL BANDS

4.1 Stability and Instability Intervals

We consider the periodic problem

-y" + qy Ay, y(a) y(O), y’(a) y’(O)

and label the eigenvalues A such that

A0_<AI_<A2_<’" and Ano asnc.

Then, we consider the semi-periodic problem, that is with the boundary
conditions

y(a) -y(O), y’(a) -y’(O)

and label the eigenvalues # by

#o < #1 < #2 < and #n O0 as n - .
Then the instability intervals, that is where D(A)< 2 (see [8, Theorem
2.3.1]) are given by

[)2m, #2m] and [#2m+l, ,2m+l],

where the numbers An and #n occur in the order

Thus numerical estimates for Aj and #j may then be used to estimate the
location ofthe instability intervals. We are now in a position to locate the
bands by numerically computing the eigenvalues of the periodic and
semi-periodic problem.

4.2 The Rayleigh-Ritzmethod

To estimate numerically the ends of the bands, that is, the eigenvalues
of both the periodic and semi-periodic problem, we have used the
Rayleigh-Ritz method.
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It can be shown that the appropriate variational equation is

(OtiO ’]- q(x)ij) dx OiOj dx,
.10

where q(x) is either +/-sin(x), +/-cos(x) or the constant periodic problem
(see Section 4.3). We write kij- ffo/:(c’iO + q(x)dpidpj) dx and mij

f;/2 i(fij dx. For the symmetric (periodic) problem we choose suitable
basis functions from which to construct our approximations to the
solution. In this case a suitable linearly independent basis is

{ 1, sin(ix), cos(ix),... ,: i= 1,... ,n}.

For the skew-symmetric (semi-periodic) problem we choose

{sin((1/2- i)x), cos((1/2- i)x),...,: i= 1,... ,n}

and we construct an approximate solution u,,(x) in the form

Un(X Cii(X)"
i--1

We obtain approximations (in fact we obtain upper bounds if the
arithmetic were done exactly) to the eigenvalues when we solve the
generalized matrix eigenvalue problem

KU AMU,

where U=(e,...,c,,) and K=ki, M=mi. This procedure is easily
implemented using the symbolic computer algebra system Maple, which
is able to handle the problem of integrating and differentiating these
functions as well as solving the eigenvalue problem.

4.3 Location of the Bands for the Constant Case

In this paper we shall refer to the "constant-periodic" case as being the
following problem:

-1, x G [(2i- 2)7r, (2i- 1)or]q(x) +l, x [(2i- 1)Tr, 2ir]
i= 1,2,... (4.1)

The Rayleigh-Ritz method was used with n= 20 and the values of
,k obtained from the method for the periodic problem were as
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follows: -0.526958, 0.560950, 2.261250, 2.463253, 6.186753, 6.391791,
12.188365, 12.352148 and 20.195896. Whilst for the semi-periodic
problem the #n we obtained were: -0.546610, 0.766004, 1.466529,
3.948054, 4.170129, 8.974719, 9.080333, 15.985476 and 16.046021. The
values quoted above are correct to all places ofdecimals. Then the bands
can be determined by appropriately combining the results using the
information in Section 4.1. Thus the bands lie between each pair ofvalues
given below (truncated to 3 decimal places).

(-0.546, 0.526), (0.560,0.766), (1.466,2.261),
(2.463,3.948), (4.170,6.186), (6.391,8.974),
(9.080,12.188), (12.352,15.985), (16.046,20.195).

4.4 Location of the Eigenvalues, the Constant Case

Below we give the first few eigenvalues of (1.1) with Neumann or
Dirichlet boundary conditions imposed at the regular end-point. In
order to deduce the eigenvalues of Neumann and Dirichlet type we
needed to examine the analytic expression for the m-function and from
its real and imaginary parts, deduce its zeros and poles. We have shown
the imaginary part of the m-function in Fig. 2.

Im m()0

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0
-2 0 2 4 6 8

FIGURE 2 [A[ plotted against Imm(A).
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Our numerical evidence suggests that there are only 2 poles, that is,
eigenvalues with Neumann conditions imposed at the regular end-point
and that there may be infinitely many zeros located beween the spectral
bands.

4.5 Some Asymptotic Results for the m-Function
in the Constant- Periodic Case

In this case the solutions to (1.1) can be found explicitly and computed
numerically. In view of the theoretical results in Section 3.1 we need to

only evaluate the solutions to the second-order differential equation with
q(x) defined in (4.1) at the point 27r. Let a v/- A and/3 v/1
Then by considering the 0 and 05 solutions to (3.1) over the intervals [0,
and [Tr, 27r] (using the boundary conditions) we obtain the following
solutions at 27r

q5 (- 1/2 a/2/3) cosh(a +/3)7r + (- 1/2 + a/2) cosh(a -/3)7r
qS’ (-/3/2 a/Z)sinh(a +/3)7r (-/3/2 + a/Z)sinh(a -/3)7r
0 (1/2a + 1/2/3) sinh(a +/3)7r (1/2/3 + 1/2a) sinh(a -/3)7r
O’ (/3/2a + 1/2) cosh(a +/3)7r + (1/2 -/3/2a) cosh(a -/3)7r

(4.2)

From (3.3) we note that the expression for the m-function involves
either taking the positive square root or the negative square root, In order
to choose the correct m-function we have to ensure that the following
result holds

Imm(A)
ImA

>0. (4.3)

See [7]. In this section we analyse the HELP inequality for the constant-
periodic case using the form ofthe m-function as derived in the previous
section. We then display our numerical results in light of our analytic
results.
Using the results in (4.2), we can analyse the m-function in the limit as

A 0 and the translate - O. Then as A 0 we have a and/3 1.
Then it can be shown that in this limit b+ 0 0 and b-- sinh
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Then the term//(0’ b)2 4 2 sinh 7r. Thus the m-function tends to
either or as A 0.
For (4.3) to hold we need to examine the sign ofthe m-function. We do

this by taking a Taylor series expansion about A 0. We set a i(1 + A/2)
and similarly 1- A/2 and find that when Im A > 0 we must take
the +.sign and the -sign when Im A < 0 to obtain

lim m(A)= 1.

Thus using the definitions of 0+ and hence 00 in Section 2 we have that
0_ 0 and 0+ 7r/2. That is, there is no valid inequality when - 0. This
is confirmed by our numerical calculations shown in Section 5.
As A c we have that a ix/ and/3 ix/. Thus, we obtain the

approximations

cos(2  ),
sin(2x/ Tr),

0’ cos(2V  ).

Substituting these terms in the expression for the m-function we obtain

lim m(A)-

(see [13] on asymptotic behaviour of the m-function.) Once again the
sign outside the root needs to be chosen correctly so that the m-function
satisfies (4.3). Thus we see from Section 2, that with this result we have
for A in the third quadrant, limlA 0 0 and for A in the first quadrant

liml o0 7r/3.

5 RESULTS

Where possible we have compared our results with analytic results
obtained from the solutions in closed form, the original algorithm and
the new method which is based on using the properties of the Floquet
solutions.
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5.1 Translates for the Bands for the Constant Case

We first consider the constant case andwe have chosen to take a translate
from approximately the centre of each band. In Figs. 3 and 4 we display
the results from solving Im[A2m(A)]=0 for A in the first and third
quadrants. In all the cases for 0+ the curves are always less than 7r/3 and
this is attained at infinity.

w -0.53- 0.60- 2.00

,......:....." - 3.00

...l.
5 lO 15

0.75
0 20

FIGURE 3 Graph of Im[A2m(A)] 0 when A E L+ for the case q is periodic constant on
[0, o]. . " -0.53- 0.60

2.00
3.00

0 2 3 4 5
I1

FIGURE 4 Graph of Im[A2m(A)] 0 when A E L_ for the case q is periodic constant
on [0, ].



336 B.M. BROWN AND V.G. KIRBY

However, for the 0_ case, we have that for the -0.53 translate the value
of 0_ is approximately 1.556 and is attained at zero, and hence the value
of the best constant is extremely large (approximately 4568). Similarly
for the next translate the value of0_ is also large, 1.444, but not as large as
the first translate.
Here the best constant is approximately 62.5. But for the remaining

translates we find that the value of0_ is less that 0+ and the best constant
for these translates is 4. We have also noted that the value of the best
constant varies only slightly throughout the band and is largest at the
ends of the bands.

5.2 Neumann Eigenvalues

We now consider the effect oftranslating the problem so that the pole of
the m-function now lies at the origin. That is, we translate by -p,1, the first
pole and 7-p,2, the second pole. These values can be found in Table I in the
Neumann column.
The results are that the value of 0+ is always less than 7r/3 (attained at

infinity) and the value of O_ for the first translate is zero, which can be
seen in Figs. 5 and 6. For the second translate 0_ < 0+.

5.3 Dirichlet Eigenvalues

We now examine what happens when we shift the problem so that there
are zeros at the origin. We consider only the first seven translates. A
curious feature of this example is that for the odd numbered translates
(certainly 1, 3, 5 and 7) the value of 0+ is greater than 7r/3. That is for all
examples considered, the graph starts at 7r/3 (see Figs. 7-10), reaches a
maximum and then decreases to 7r/3 as A---, o. However for the even

TABLE Eigenvalues for constant case

Neumann Dirichlet

-0.834322457
0.398428672

-0.348878870
1.250000000
2.272990582
4.139909207
6.229218608
9.073354466
12.234794510
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1.6

1.2

/3

0.8

0.4

0 2 4 6 8 10

FIGURE 5 Graph of Im[A2m(A)] =0 when A E L+ for the case when we translate by
the two poles.

1.6

0.8

0.4

0 4 6 8 10

FIGURE 6 Graph of Im[A2m(A)]=0 when A E L_ for the constant case when we
translate by the two poles.

numbered translates there is no peak and the value of 0+ for these cases
is always 7r/3. For the 0_ case, the odd numbered translates give a value
of less than 7r/3, this being attained at zero and infinity.
However for the even numbered translates, the roles are reversed and

this time the value of 0_ is greater than 7r/3. In summary, for the odd
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r/3

0 0.8

0.4

0 2 4 6 8 10

FIGURE 7 Graph of Im [A2m(A)]--0 when A E L+ for the case when we translate by
the first four zeros.

1.6

1
0.8

0.4

7"Z,
Tz,6
Tz,7

0 2 3 4 5

FIGURE 8 Graph of Im[A2m(A)] 0 when A E L+ for the case when we translate by the
next three zeros.

numbered translates the value of00 can be found by examining the values
of 0+ and for the even numbered translates we look at the values of 0_.

In Fig. 11 we show the portion ofthe graph when [A[ is small. In Table II
we give the values of the best constants for the first seven Dirichlet
translates.
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FIGURE 9 Graph of Im [A2m(A)]--0 when A E L_ for the case when we translate by
the first four zeros.
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FIGURE 10 Graph of Im[A2m(A)]=0 when A EL_ with x-range restricted to show
behaviour at origin.

5.4 The Case q(x) cos(x)

We now turn our attention to the case when q(x)=cos(x). For this
example we do not know the exact form of the solutions and we need
to estimate the solutions numerically. For similar reasons as for the
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FIGURE 11 Graph of Im[A2m(A)]=0 when AEL+ for the case q(x)=cos(x)
on [0, c].

TABLE II Values of the best constants for various Dirichlet translates

rz.n Dirichlet E+/- Oo K
translate n (estimatedpeak) (best constant)

0.236 1.083188 4.55569
2 0.079 1.053413 4.08769
3 0.053 1.131975 5.53965
4 0.056 1.090910 4.69160
5 0.049 1.074122 4.40419
6 0.025 1.118885 5.24399
7 0.032 1.061043 4.19979

constant case the original algorithm discussed in [4] and [5] is slow and
inefficient.
We will need to find the eigenvalues (if any) which lie in the gaps. The

spectral bands once again will be computed using the Rayleigh-Ritz
method. The results for q--sinx and q=cosx are the same, since
both problems have the same essential spectrum. The bands are
(-0.37848922, -0.3476691), (0.59479997, 0.91805813), (1.29316628,
2.28515693), (2.34258062, 4.03192190)and (4.03530094, 6.27083725).
We used the code SLEIGN2 to obtain the eigenvalues for the cos(x)

and sin(x) problems over [0, c). In using SLEIGN2 we approximated
the singular problem over [0, ) by a regular one over a finite interval,
taking the right-hand end-point as a multiple of 7r. We found no
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eigenvalues within the gaps for the case when q(x)=cos(x). But for
q(x) sin(x), we found an eigenvalue in each gap. In Fig. 11 we show the
graphs when we take a translate in each of the first three bands. The best
constant varies only a little as we traverse the band and we only give the
results for q cos x.

Dirichlet boundary conditions were then imposed at both end-points.
Output from the code revealed eigenvalues which clustered inside the
known location of the bands. Those lying outside were then taken to be
eigenvalues. Increasing the right-hand end-point then forced more
eigenvalues into the known region ofthe bands and hopefully the values
for the eigenvalues were converging to some more accurate value for the
eigenvalues of the singular problem. For the problem q(x)= sin(x) the
first three eigenvalues are approximately -0.183389680, 1.20426619,
2.33440089. We suspect that only the first seven digits are correct. The
values of b=407r and a tolerance of 10-8 was used. Similarly, the
Neumann eigenvalues are -0.533708096, 0.992769778 and 2.29900837
approximately. It is unclear whether these are eigenvalues since we
are surprised that these examples do not produce a best constant. In all
the examples we have analysed to date, this has always been the case
and so we are suspicious.
For the case q(x) cos(x) we have also looked at the value ofthe best

constant along the first two bands. The results are that the best constant
varies very little across the band. For example in the first band for the
following translates: -0.35,-0.36,-0.37,-0.377 the values of the best
constants are 152.81, 152.30, 152.65 and 153.39 respectively. Similar
results are available for the second band, where we considered the
following translates: 0.6,0.7,0.8,0.9 where the best constants are
8.58, 7.76, 7.53, 9.00. It can be seen that the values of the best constant
increases as we approach the ends of the bands.
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