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Abstract

Diffusion MRI techniques are used widely to study the characteristics of the human

brain connectome in vivo. However, to resolve and characterise white matter

(WM) fibres in heterogeneous MRI voxels remains a challenging problem typically

approached with signal models that rely on prior information and constraints. We have

recently introduced a 5D relaxation–diffusion correlation framework wherein multi-

dimensional diffusion encoding strategies are used to acquire data at multiple echo-

times to increase the amount of information encoded into the signal and ease the con-

straints needed for signal inversion. Nonparametric Monte Carlo inversion of the

resulting datasets yields 5D relaxation–diffusion distributions where contributions from

different sub-voxel tissue environments are separated with minimal assumptions on

their microscopic properties. Here, we build on the 5D correlation approach to derive

fibre-specific metrics that can bemapped throughout the imaged brain volume. Distribu-

tion components ascribed to fibrous tissues are resolved, and subsequently mapped to a

dense mesh of overlapping orientation bins to define a smooth orientation distribution

function (ODF). Moreover, relaxation and diffusion measures are correlated to each

independent ODF coordinate, thereby allowing the estimation of orientation-specific

relaxation rates and diffusivities. The proposed method is tested on a healthy volunteer,

where the estimated ODFs were observed to capture major WM tracts, resolve fibre

crossings, and, more importantly, inform on the relaxation and diffusion features along

with distinct fibre bundles. If combined with fibre-tracking algorithms, the methodology

presented in this work has potential for increasing the depth of characterisation of

microstructural properties along individualWMpathways.
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1 | INTRODUCTION

The advent of diffusion MRI techniques, which can probe structures

at much smaller scales than the imaging resolution by virtue of sensing

the random motion of water molecules, has undoubtedly increased

the interest in studying white matter (WM) in the living brain. The

possibility of deriving quantitative features sensitive to tissue micro-

structure (Basser & Pierpaoli, 1996; Le Bihan, 1995), and to virtually

reconstruct brain connections with fibre-tracking algorithms (Basser,

Pajevic, Pierpaoli, Duda, & Aldroubi, 2000; Mori, Crain, Chacko, & Van

Zijl, 1999) led to the quick adoption of diffusion MRI in many clinical

research applications (Barnea-Goraly et al., 2004; Lebel, Walker,

Leemans, Phillips, & Beaulieu, 2008; Lim et al., 1999; Werring, Clark,

Barker, Thompson, & Miller, 1999). More recently, tractometry tech-

niques have been developed to tease out WM pathways and charac-

terise their individual tissue microstructure by mapping sets of

diffusion-derived parameters along with the extracted tracks (Bells

et al., 2011; Chamberland et al., 2019; De Santis, Drakesmith, Bells,

Assaf, & Jones, 2014; Rheault, Houde, & Descoteaux, 2017; Yeatman,

Dougherty, Myall, Wandell, & Feldman, 2012). Fibre-tracking tech-

niques typically rely on the estimation of a fibre Orientation Distribu-

tion Function (ODF) per voxel, which is a function on the unit sphere

aiming to represent the relative number of fibres along each direction

(Dell'Acqua & Tournier, 2019; Tournier, 2019). It should be noted that

the fibre ODF is distinct from the orientation distribution of the diffu-

sion signal, and its extraction relies on assessing how tissue micro-

structure influences the measured MRI signal.

Diffusion MRI studies of WM commonly assume that voxel-level

microstructural features can be adequately represented by a single

canonical signal response function (Dell'Acqua & Tournier, 2019;

Novikov, Fieremans, Jespersen, & Kiselev, 2019). Under this assumption,

themeasured signal is written as the convolution between the fibre ODF

and a kernel describing the signal response of a set of fibres with a com-

mon orientation. The simultaneous unconstrained estimation of the

ODF and the microstructural kernel, however, has proven to be notori-

ously challenging for the diffusion MRI protocols typically used for

in vivo research studies (Jelescu, Veraart, Fieremans, & Novikov, 2016).

The complexity of this problem is commonly reduced by imposing a set

of priors and constraints. Spherical deconvolution of the diffusion MRI

signal (Anderson, 2005; Dell'Acqua et al., 2007; Dell'Acqua &

Tournier, 2019; Jian & Vemuri, 2007; Tournier, Calamante, &

Connelly, 2007; Tournier, Calamante, Gadian, & Connelly, 2004), for

example, determines an empirical kernel for thewhole brain representing

the signal response of a single-fibre population and subsequently solves

for the ODF. For voxels containing not only WM but also unknown

amounts of grey matter (GM), cerebrospinal fluid (CSF), or pathological

tissue, this approach can yield biasedODF estimates.

Multi-tissue spherical deconvolution (Jeurissen, Tournier,

Dhollander, Connelly, & Sijbers, 2014) has been proposed to simulta-

neously resolve sub-voxel tissue fractions and the fibre ODF. While this

technique can be used to separate the sub-voxel signal contributions

fromWM, GM, and CSF, it still assumes a single kernel for all voxels of a

given tissue type, which needs to be calibrated a priori (Tax, Jeurissen,

Vos, Viergever, & Leemans, 2014). Inaccuracies of the calibrated kernels

can further bias the estimated fractions and fibre ODFs (Guo et al., 2019;

Parker et al., 2013). Alternatively, the voxel-wise kernel can be estimated

by first factoring out the ODF through the computation of rotational

invariants, and then fitting the data to signal models that set a pre-

defined number of microscopic environments with potentially con-

strained diffusion properties (Kaden, Kelm, Carson, Does, &

Alexander, 2016; Novikov et al., 2019; Novikov, Veraart, Jelescu, &

Fieremans, 2018). However, different fibre populations within a voxel

likely exhibit different microstructural properties (Aboitiz, Scheibel,

Fisher, & Zaidel, 1992; De Santis, Assaf, Jeurissen, Jones, &

Roebroeck, 2016; Howard et al., 2019; Scherrer et al., 2016), which can-

not be reflectedwith a single voxel-wise kernel. It should furthermore be

noted that differences in the transverse relaxation time T2 between dis-

tinct tissue types are often ignored,which can further bias the quantifica-

tion of tissue fractions with a single fibre response kernel (Tax, Kleban,

Barakovic, Chamberland, & Jones, 2020). The possible existence of a var-

iation of T2 in anisotropic structures with respect to the orientation of

the main magnetic field B0 (Lindblom, Wennerström, & Arvidson, 1977),

well known in studies of cartilage structure (Henkelman, Stanisz, Kim, &

Bronskill, 1994) and more recently reported in in vivo human WM stud-

ies (Gil et al., 2016; Knight, Wood, Couthard, & Kauppinen, 2015;

McKinnon & Jensen, 2019; Tax et al., 2020), would introduce an addi-

tional T2 dispersion and further complicate the quantification of sub-

voxel signal fractions. The possible existence of T2 differences between

distinct fibre bundles has motivated the recent development of methods

allowing for the measurement of fibre-specific estimates of the trans-

verse relaxation time (de Almeida Martins & Topgaard, 2018; Ning,

Gagoski, Szczepankiewicz,Westin, & Rathi, 2020; Schiavi et al., 2019).

Inspired by multidimensional solid-state NMR methodology

(Schmidt-Rohr & Spiess, 1994; Topgaard, 2017), we have introduced a

framework to quantify the composition of each voxel with joint distribu-

tions of effective transverse relaxation rates R2 = 1/T2 and apparent dif-

fusion tensorsD (de Almeida Martins et al., 2020; de Almeida Martins &

Topgaard, 2018). Specifically, the inclusion of diffusion MRI data mea-

sured with multidimensional diffusion encoding schemes

(Topgaard, 2017) and different echo times was observed to alleviate the

constraints needed to resolve sub-voxel tissue heterogeneity

(de Almeida Martins et al., 2020). Capitalising on these acquisitions, we

quantified sub-voxel compositions using 5D discrete R2-D distributions

retrieved from the data using a nonparametric Monte Carlo inversion

procedure. However, visualising the retrieved sub-voxel information is

challenging because of the high dimensionality of the distributions.

The challenge of visualising the intricate and comprehensive infor-

mation within diffusion MRI datasets is an active area of research

(Leemans, 2010; Schultz & Vilanova, 2019) and very well established

visualisation strategies exist to either convey the tensorial properties of

a single voxel-averaged D (Kindlmann, 2004; Pajevic & Pierpaoli, 2000;

Westin et al., 1999) or to visualise a continuous ODF (Peeters,

Prckovska, Almsick, Vilanova, & Romeny, 2009; Schultz &

Kindlmann, 2010; Tournier et al., 2004; Tuch et al., 2002). However, such

techniques are not immediately applicable to the discrete multi-

component distributions retrieved with our 5D correlation framework.
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Previously, we converted the retrieved distributions to sets of statistical

parameter maps derived from either the entirety or sub-divisions (bins)

of the distribution space (de Almeida Martins et al., 2020;

Topgaard, 2019). In de Almeida Martins et al. (2020), the R2 - D space

was divided into three bins capturing different ranges of D eigenvalues

in order to separate the signal contributions from microscopic tissue

environments with distinct diffusion properties. Even though bin-

resolved maps of signal fractions and means were observed to be useful

to map sub-voxel heterogeneity throughout the imaged brain volume,

they do not provide information on orientation-resolved properties. In

this contribution, we demonstrate how R2 - D distributions can be used

to derive and visualise fibre-specific relaxation and diffusionmetrics. This

is done by extending the binning procedure to the space of

D orientations, and mapping discrete P(R2, D) components to a spherical

mesh representing a dense set of orientation bins. The orientation-

resolved information is then conveyed as ODF glyphs that are colour-

coded according to the underlying relaxation and diffusion properties;

this greatly facilitates the inspection and interpretation of the orienta-

tional variation of the 5D P(R2, D). The ODFs computed from the dis-

crete ditributions are furthermore compatible with tractography

algorithms which hence allows the extension to visualisation of longer-

range properties in 3D (Tax et al., 2015).

2 | METHODS

2.1 | Estimation of 5D relaxation–diffusion
distributions

In diffusion MRI, heterogeneous tissues can be described as a collection

of microscopic tissue environments wherein water diffusion is modelled

by a local apparent diffusion tensorD. Within thismulti-tensor approach,

the diffusionMRI signal is approximated as a weighted sumof the signals

from the individual microscopic tissue environments (Jian, Vemuri,

Özarslan, Carney, & Mareci, 2007; Novikov et al., 2019; Westin

et al., 2016). A similar description has also been used in R2 studies of

intra-voxel brain tissue structure (Does, 2018; MacKay et al., 2006). The

transverse relaxation signal of water within tissues is typically expressed

as a multi-exponential decay, given by the Laplace transform of a proba-

bility distribution of R2 values (Kroeker & Mark Henkelman, 1986;

Whittall et al., 1997; Whittall & MacKay, 1989). Each coordinate of the

relaxation probability distribution characterises the signal fraction of the

microscopic environment with the corresponding R2 rate. Combining the

relaxation and diffusion descriptions, the detected signal S(τE, b) can be

written as

S τE,bð Þ= S0
ð+∞

0

ð
Sym+ 3ð Þ

P R2,Dð Þ K τE,b,R2,Dð Þ dD dR2, ð1Þ

where P(R2, D) is the continuous joint probability distribution of

R2 and D, τE denotes the echo-time, b is the diffusion-encoding

tensor, and S0 is the signal amplitude at vanishing relaxation- and

diffusion-weighting, that is, S0 = S(τE = 0, b = 0). The integration of

D spans over the space Sym+(3) of symmetric positive semi-definite

3 × 3 tensors. The kernel K(τE, b, R2, D) encapsulates the signal decays

mapping the distribution onto the detected signal. Here, we assume

that the diffusion processes within each microscopic environment can

be captured by an effective R2 and an apparent D that is related to a

Gaussian distribution of gradient-induced phase shifts, which in turns

yields an exponentially decaying kernel: K(τE, b, R2, D) = exp(−τER2)

exp(−b : D) (Dell'Acqua et al., 2007; Does, 2018; Jian et al., 2007;

Kaden et al., 2016; MacKay et al., 2006; Novikov et al., 2018; Scherrer

et al., 2016; Tuch et al., 2002; Veraart, Novikov, & Fieremans, 2018;

Westin et al., 2016).

Constraining the integral in Equation (1) to the space of axisym-

metric diffusion tensors, each D can be parameterized by its axial and

radial diffusivities, Dk and D⊥, and by the polar and azimuthal angles, θ

and ϕ, that define its orientation. The Dk and D⊥ eigenvalues can in

turn be combined to define measures of isotropic diffusivity

Diso = (Dk + 2D⊥)/3 and normalised diffusion anisotropy

DΔ = (Dk − D⊥)/(3Diso) (Eriksson, Lasič, Nilsson, Westin, &

Topgaard, 2015). Using the popular approach of approximating the

signal as a multi-exponential decay (Dell'Acqua et al., 2007;

Does, 2018; Jian et al., 2007; Kaden et al., 2016; MacKay et al., 2006;

Novikov et al., 2018; Scherrer et al., 2016; Tuch et al., 2002; Veraart

et al., 2018; Westin et al., 2016), considering only axisymmetric b, and

adopting the (Diso, DΔ, θ, ϕ) parametrization, Equation (1) can be

expanded as (de Almeida Martins & Topgaard, 2018).

S τE,bð Þ
S0

=
ð+∞

0

ð+∞

0

ð1

−1=2

ðπ

0

ð2π

0

P R2,Diso,DΔ,θ,ϕð ÞK :::ð Þdϕsin θ dθdDΔdDisodR2,

ð2Þ

with.

K :::ð Þ= exp −τER2ð Þexp −bDiso 1 + 2bΔDΔP2 cosβð Þ½ �ð Þ, ð3Þ

where b = Tr(b) is recognised as the traditional (scalar) b-value

and bΔ denotes the normalised anisotropy of the diffusion-encoding

tensor (Eriksson et al., 2015). P2(x) = (3x2 − 1)/2 is the second Legen-

dre polynomial, and β is the smallest angle between the symmetry

axes of D and b. Note that each diffusion orientation (θ, ϕ) is associ-

ated with its own set of microscopic properties (R2, Diso, DΔ) and that

no overarching microstructural kernel or universal orientation struc-

ture is assumed. This means that Equation (2) allows for fibre

populations with distinct R2-D properties.

For numerical implementation, Equation (2) is discretized as

s = Kw, where s is the column vector of signal amplitudes measured

with M combinations of (τE, b) values, K is the inversion kernel matrix,

and w is a vector containing the weights wn of N discrete (R2,n,Dk, n,D⊥,

n,θn,ϕn) configurations. The estimation of w can then be cast as a con-

strained linear least-squares problem.

de ALMEIDA MARTINS ET AL. 3



w = argmin
w ≥0

s−Kwk k22 ð4Þ

In practice, the argument-minimum operator in Equation (4) is

replaced by a softer condition that searches for a solution within the

noise variance. While seemingly straightforward, the problem of find-

ing a solution whose residuals are compatible with the experimental

noise is poorly conditioned. Indeed, multiple distinct solutions can be

found to fit a single noisy dataset. This has motivated the develop-

ment of several regularisation strategies in order to improve the sta-

bility of the inverse problem (Daducci et al., 2015; Mitchell,

Chandrasekera, & Gladden, 2012; Provencher, 1982; Whittall &

MacKay, 1989). A common strategy is to incorporate a regularisation

term that promotes either a smooth (Benjamini & Basser, 2017;

Provencher, 1982; Slator et al., 2019; Venkataramanan, Song, &

Hurlimann, 2002) or a sparse (Benjamini & Basser, 2016; Berman,

Levi, Parmet, Saunders, & Wiesman, 2013; Tax, Rudrapatna, Witzel, &

Jones, 2017; Urba�nczyk, Bernin, Koźmi�nski, & Kazimierczuk, 2013) w

solution at the expense of a higher residual error.

Monte Carlo algorithms have been used in the porous media field

as an alternative to conventional regularised approaches (de Almeida

Martins & Topgaard, 2016, 2018; de Kort, van Duynhoven, Hoeben,

Janssen, & Van As, 2014; Prange & Song, 2009). These algorithms

purposely explore the variability between solutions and estimate an

ensemble of distributions consistent with the experimental data. In

this work, we use an unconstrained Monte-Carlo algorithm specially

designed to handle high-dimensional correlation datasets (de Almeida

Martins & Topgaard, 2018; Topgaard, 2019). The algorithm can be

broadly divided in two iteration cycles. In the first cycle, the prolifera-

tion cycle, a user-defined Nin number of points is randomly selected

from the (log(R2), log(Dk), log(D⊥), cosθ, ϕ) space, and the

corresponding set of weights is found by solving Equation (4) via a

non-negative linear least-squares algorithm (Lawson & Hanson, 1974);

points with non-zero weights are stored and merged with a newly

generated random set. This procedure is repeated for a total of Np

times, and Np random sets of (R2,n,Dk,n,D⊥,n,θn,ϕn) components are

sampled in order to find a configuration yielding sufficiently low resid-

uals. The resulting {(R2,n,Dk,n,D⊥,n,θn,ϕn)} configuration is stored, dupli-

cated, and its duplicate is then subjected to a small random

perturbation. This initiates the second iteration cycle, named the

mutation cycle, wherein configurations compete with their perturbed

counterparts on the basis of lowest sum of squared residuals. The

mutation cycle comprises a number of Nm rounds, following which a

possible solution is estimated by selecting the points with the

N highest weights. In this work we sampled Nin = 200 points from the

(0 < log(R2/s
−1) < 1.5, −11.3 < log(Dk/m

2s−1) < −8.3, −11.3 < log

(D⊥/m
2s−1) < −8.3, 0 < cosθ < 1, 0 < ϕ < 2π) space, and used Np = 20,

Nm = 20, and N = 20. This inversion was performed voxel-wise and

bootstrap with replacement was used in order to estimate per-voxel

ensembles of Nb = 96 solutions, each of which consisting of 20 (R2,n,

Dk,n,D⊥,n,θn,ϕn) components, {(R2,n,Dk,n,D⊥,n,θn,ϕn)}1 ≤ n ≤ N = 20, and their

respective wn weights.

2.2 | Resolution of sub-voxel fibre components

Spatially resolved 5D R2-D distributions were estimated using the pro-

cedure described in the previous section. As the main brain

components—white matter (WM), grey matter (GM), and cerebrospi-

nal fluid (CSF)—are characterised by clearly distinct diffusion proper-

ties, we expect most (R2,n,Dk,n,D⊥,n,θn,ϕn) components to agglomerate

within three distant regions of the diffusion space (Pierpaoli, Jezzard,

Basser, Barnett, & Di Chiro, 1996).

The idea that most P(R2,D) components will fall within three

coarse regions has inspired the division of the R2-D space into three

smaller subsets (bins) based on the diffusion properties of WM, GM,

and CSF (de Almeida Martins et al., 2020). We then defined three bins

named ‘thin’ (0.6 < log(Dk/D⊥) < 3.5, −10 < log(Diso/m
2s−1) < −8.7,

−0.5 < log(R2/s
−1) < 2), ‘thick’ (−3.5 < log(Dk/D⊥) < 0.6, −10 < log

(Diso/m
2s−1) < −8.7, −0.5 < log(R2/s

−1) < 2), and ‘big’ (−3.5 < log(Dk/

D⊥) < 3.5, −8.7 < log(Diso/m
2s−1) < −8, −0.5 < log(R2/s

−1) < 2). The

names of the different bins highlight the geometry of the D captured

by each one of them. For each bootstrap realisation nb (1 ≤ nb ≤ Nb),

signal contributions from anisotropic tissues are resolved by selecting

the set of P(R2,D) components that fall within the ‘thin’ bin:

εthinnb
= R2,i,Dj,i,D⊥,i ,θi,ϕi,wi

� �� �
nb, i� thin binf g: ð5Þ

The R2,i,Dj,i ,D⊥,i,θi,ϕi

� �� �
nb, i � thin binf g configurations and wif gnb,i �

thin binf g weights of εthinnb
are interpreted as representing the R2-D prop-

erties and signal fractions, respectively, of a discrete set of sub-voxel

fibre populations. The binning and anisotropic selection processes are

illustrated in panels A and B of Figure 1.

2.3 | ODF estimation

The colour-coded 3D scatter plots of R2, Diso and Dk/D⊥ displayed in

Figure 1 allow the visualisation of the full set of properties of the

voxel-wise εthinnb
components. Despite its usefulness, the scatter plot

representation concentrates points corresponding to anisotropic com-

ponents within a small region of the (R2,Diso,Dk/D⊥) space, which in

turn makes it difficult to evaluate their orientation properties in detail.

For example, while Figure 1a clearly informs on the existence of two

fibre populations oriented along two different directions (red and

green points), it does not provide unambiguous information about the

relative signal contributions of the two populations. To better under-

stand the orientational information of the underlying P(R2,D), it is

helpful to convert the discrete set of fibre orientations to a continu-

ous object informing on the R2-D probability density in each direction,

which can then be visualised as a single glyph with an intuitive geo-

metrical interpretation. To this end, we used a Nverts-point triangle

mesh on the unit sphere, created via an electrostatic repulsion scheme

(Bak & Nielsen, 1997; Jones, Horsfield, & Simmons, 1999), to create

Nverts uniformly distributed orientation bins; the mesh vertices define
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the centres of (θ,ϕ) bins. In this work, we used either Nverts = 3994 or

Nverts = 1000 to define meshes where the median angular distance

between nearest-neighbouring points (or bin centres) is approximately

3.5� and 7�, respectively. Afterwards, a smoothing kernel was used to

map the weights of εthinnb
onto the dense set of (θ,ϕ) bins. The role of

the smoothing kernel is to weight the influence of each bin according

to the angular distance between its centre and a given εthinnb

component, and to distribute the contributions of each discrete

wif gnb,i� thin binf g throughout various bins in order to define a smooth

Orientation Distribution Function (ODF) Pnb θ,ϕð Þ that can be straight-

forwardly visualised as a polar plot (Leemans, 2010; Schultz &

Vilanova, 2019). Alternatively, the process of mapping the discrete

fibre components to a smooth ODF object can be cast as a kernel

density estimation (KDE) exercise, where a smoothing kernel function

F IGURE 1 Resolution of sub-voxel fibre-like components and subsequent estimation of the associated colour-coded Orientation
Distributions Functions (ODFs). (a) R2-D distribution obtained for a voxel containing both CSF and two crossing WM populations. The 5D P(R2,D)
is reported as a 3D logarithmic scatter plot of R2, isotropic diffusivities Diso, and axial–radial diffusivity ratios Dk/D⊥, with circle area proportional
to the weight of the corresponding R2-D component, w. Colour coding is defined as: [R,G,B] = [cosφ sinθ, sinϕ sinθ, cosθ] � jDk−D⊥/max(D,D⊥),
where (θ,ϕ) gives the orientation of each axisymmetric D. The R2-D space is divided into three coarse bins named ‘big’ (blue volume), ‘thin’ (red
volume), and ‘thick’ (green volume). Components falling in the ‘thin’ bin are singled-out and interpreted as fibres. (b) Spatial distribution of per-bin
signal contributions. The middle map shows the fractional populations in the ‘big’ (blue), ‘thin’ (red), and ‘thick’ (green) bins as a colour-coded
composite image. The rightmost map focuses on the signal contributions from components within the ‘thin’ subset, fthin, the complement of
which, (1 − fthin), gives the signal fraction from all components not used for ODF calculation. The crosses locate the voxel whose distribution is
shown in panel (a). (c) Scheme for calculating colour-coded ODFs. The R2-coloured circles denote the ‘thin’ components from a bootstrap solution

of the voxel signalled in panel (b). Circle area is proportional to w, while the [x,y,z] circle coordinates are defined as either [cosϕ sinθ, sinϕ sinθ,
cosθ] (left) or [cosϕ sinθ, sinϕ sinθ, cosϕ] � w (middle and right). In the left plot, the discrete R2-D components are displayed on a unit sphere
represented by a 1,000-point (θ,ϕ) mesh. The weights of the P(R2,D) components are first mapped to the mesh through Equation (6), creating an
ODF glyph whose radii inform on the R2-D probability density along a given (θ,ϕ) direction (middle). Following the ODF estimation, Equation (9) is
used to assign mean values of R2,Diso, or DΔ to each mesh point and define the colour the ODF glyph (right)
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with an appropriate bandwidth is used to estimate a continuous prob-

ability from a discrete dataset (Silverman, 1986).

In this work, the orientation binning and consequent estimation

of Pnb θ,ϕð Þ was performed through a convolution with a Watson

(Mardia & Jupp, 2009; Watson, 1965), or ‘spherical Gaussian’

(Harbison, Vogt, & Spiess, 1987), distribution kernel:

Pnb θ,ϕð Þ=
X
i�εthinnb

wiexp κ μ θ,ϕð Þ �uið Þ2
h i

, ð6Þ

where ui is the unit vector describing the orientation of the ith dis-

crete component and μ(θ,ϕ) is the unit mean direction vector of bin cen-

tre (θ,ϕ). The variable κ denotes a concentration parameter that regulates

the amount of dispersion about μ(θ,ϕ). In the KDE parlance, κ is the band-

width of theWatson smoothing kernel. Further insight into the nature of

theWatson distribution kernel and the role of parameter κ is attained by

considering the small-angle approximation of the former.

exp κcos2β
� �

=
β!0

exp κ½ �exp −κβ2
� �

, ð7Þ

where β is the smallest angle between unit vectors u and μ.

Within this approximation, the Watson kernel is rewritten as a familiar

Gaussian smoothing kernel whose standard deviation, σ, defines an

angular spreading that is directly related to the concentration parame-

ter κ, σ = (2κ)−1/2. The relationship between κ and σ enables us to eas-

ily set a dispersion factor in relation to the angular distance of the

various mesh points. We set σ = 10.5� or, equivalently, κ = 14.9, that

is, a σ parameter that is 50% larger than the median angular distance

between nearest-neighbouring vertices in a 1,000-point triangle mesh.

The rationale behind our choice of κ is elaborated upon in Section 3.1.

Separate ODFs were calculated for each of the Nb = 96

bootstrapped P(R2 D) solutions; the final P(θ,ϕ) was then estimated as

the median of the Nb independent ODFs:

P θ,ϕð Þ=Med
nb

Pnb θ,ϕð Þ½ �: ð8Þ

As the orientation of each fibre solution is correlated to a given

set of {R2,n,Dk,n,D⊥,n} coordinates, we can assign any statistical descrip-

tor of the (R2,Diso,DΔ) space to the various coordinates of P(θ,ϕ). In line

with previous works (de Almeida Martins et al., 2020;

Topgaard, 2019) where R2-D were converted into maps of bin-

resolved mean R2, Diso, and D 2
Δ , we map mean values of R2, Diso, and

D 2
Δ into the ODF mesh. The mean value of X = T2, R2, Diso, or D

2
Δ per

mesh orientation for each bootstrap nb, Ênb X½ � θ,ϕð Þ, is calculated as

Ênb X½ � θ,ϕð Þ= 1
Pnb θ,ϕð Þ

X
i�εthinnb

wiXiexp κ μ θ,ϕð Þ �uið Þ2
h i

: ð9Þ

By mapping different descriptors of the R2-D distributions to spe-

cific ODF coordinates, we can visualise orientation-specific informa-

tion on tissue composition and structure. As before, the final voxel-

wise Ê X½ � θ,ϕð Þ is estimated as the median of the individual per-

bootstrap Ênb X½ � θ,ϕð Þ values:

Ê X½ � θ,ϕð Þ=Med
nb

Ênb X½ � θ,ϕð Þ
h i

� Ê X½ �: ð10Þ

For compactness, we omit the explicit (θ,ϕ) dependence from the

orientation-resolved means and simply denote them as Ê X½ � . The

Ê Diso½ � metric provides orientation-resolved information on the under-

lying mean-diffusivity. The Ê D2
Δ

h i
metric is the orientation-resolved

counterpart of the mean D2
Δ descriptor (Topgaard, 2019), which is in

turn similar to previously introduced anisotropy measures such as the

microscopic anisotropy index (MA; Lawrenz, Koch, &

Finsterbusch, 2010), the fractional eccentricity (FE; Jespersen, Lundell,

Sønderby, & Dyrby, 2013), and the microscopic fractional anisotropy

(μFA; Lasič, Szczepankiewicz, Eriksson, Nilsson, & Topgaard, 2014).

The local maxima of fibre ODFs, commonly referred to as ‘peaks’,

have been used to quantify the number of per-voxel fibres and their

respective orientations (Dell'Acqua, Simmons, Williams, &

Catani, 2013; Jeurissen et al., 2014; Jeurissen, Leemans, Tournier,

Jones, & Sijbers, 2013). Here, we follow this traditional procedure and

extend it to assign R2-D metrics to the (θ,ϕ) coordinates of each ODF

peak. Up to four peaks per voxel were determined by assessing the

mesh points (θ,ϕ) for which P(θ,ϕ) is a local maximum and P

(θ,ϕ)/max(θ,ϕ)[P(θ,ϕ)] ≥ 0.1. The R2-D properties of the ODF peaks were

estimated by calculating Ê X½ � (see Equation (9)) for each peak orienta-

tion. The performance of the peak-based metrics is dependent on the

size of the mesh used to construct the smooth ODF objects, with a

higher number of mesh points resulting in lower biases irrespective of

the set value of κ. With higher mesh sizes leading to significantly lon-

ger computational times, we have opted to use a 3,994-point mesh

for peak calculations as a good compromise between accuracy and

computational effort.

The mapping of P(R2,D) components to a dense mesh as

described by Equations (6)–(10) is a key result from this contribution,

and provides the basis for extracting and visualising orientation-

resolved information from nonparametric R2-D distributions.

Figure 1c illustrates how both Ê X½ � and the associated orientation dis-

tribution can be conveniently represented by colour-coded ODF

glyphs; the shape of the glyph reflects the P(θ,ϕ) distribution, while

the colour informs on the Ê X½ � values at the various (θ,ϕ) points. Func-

tions used to compute the colour-coded ODFs and their associated

peaks have been incorporated in the multidimensional diffusion MRI

toolbox (Nilsson et al., 2018): https://github.com/JoaoPdAMartins/

md-dmri. In this work, maps of ODF glyphs were computed using

those same functions on a 1,000-point mesh and rendered with POV-

Ray (http://www.povray.org/).

2.4 | Real-time multi-peak tractography

Streamlines were generated and visualised in real-time using

FiberNavigator (Chamberland, Whittingstall, Fortin, Mathieu, &

Descoteaux, 2014). Tracking was performed on the extracted ODF

peaks using 8 seeds per voxel and the following parameters: step

size = 1 mm, maximum angle = 50�, minimum length = 10 mm, and

maximum length = 200 mm.
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2.5 | In vivo data acquisition

Multidimensional relaxation–diffusion MRI data were acquired using a

prototype spin-echo diffusion weighted sequence with an echo-planar

imaging (EPI) readout, customised for diffusion encoding with user-

defined gradient waveforms (Lasič et al., 2014; Szczepankiewicz,

Sjölund, Stahlberg, Latt, & Nilsson, 2019). Images were recorded with

the following parameters: TR = 4 s, FOV = 234 × 234 × 60 mm3,

voxel - size = 3 × 3 × 3 mm3, partial - Fourier = 6/8, and a parallel-

imaging (GRAPPA) factor of 2. Diffusion encoding was performed

with a set of five gradient waveforms yielding b-tensors with four dis-

tinct ‘shapes’ (bΔ = − 0.5, 0.0, 0.5, and 1) (Eriksson et al., 2015). The

various waveforms were used to form b-tensors of varying magnitude

b, anisotropy bΔ, and orientation (θ,ϕ) at different echo-times τE; this

procedure yields 5D relaxation–diffusion correlated datasets whose

dimensions match those of the sought-for distributions. Readers inter-

ested in the sequence used in this work are directed to a public repos-

itory: https://github.com/filip-szczepankiewicz/fwf_seq_resources.

Table 1 summarises the (τE,b) acquisition protocol. Besides the

(τE,b) points detailed in Table 1, we additionally acquired b = 0 images

with reversed phase-encoding blips at τE = 60, 80, 110, and 150 ms in

order to correct for susceptibility-induced distortions (Andersson,

Skare, & Ashburner, 2003). The acquisition scheme comprised a total

of 686 (τE,b) acquired over an imaging session of �45 min. The

diffusion-encoding waveforms used in this work are displayed in

Figure S1 of the Supporting Information.Waveforms giving bΔ = − 0.5,

0.0, and 0.5 were calculated with a MATLAB package (https://github.

com/jsjol/NOW) that optimises for maximum b (Sjölund et al., 2015)

and minimises the effects of concomitant magnetic field gradients

(Szczepankiewicz, Westin, & Nilsson, 2019). Linearly encoded (bΔ = 1)

data were acquired with two different gradient waveforms: a non-

monopolar gradient waveform and a standard Stejskal–Tanner wave-

form (Stejskal & Tanner, 1965). The asymmetric gradient pulses from

the non-monopolar waveform were designed with the aim of

minimising the differences between the spectral profile of such bΔ = 1

waveform and the spectral profile of the bΔ ≠ 1 waveforms (Lundell

et al., 2019). The Stejskal–Tanner design was used to probe a shorter

τE and higher b-values (b = 4 × 109 m−2s) than those achievable with

the non-monopolar bΔ = 1 waveform. While the measured apparent

diffusivities are known to be related to the frequency spectra of the

gradient waveforms (Callaghan & Stepišnik, 1996; Lundell et al., 2019;

Stepišnik, 1993), such a relationship is likely to have a negligible effect

on healthy human brain data acquired with the limited range of fre-

quency contents probed in this work (Szczepankiewicz et al., 2019)

and no biases are expected to originate from the spectral differences

of the bΔ = 1 waveforms.

The protocol described above was implemented on a 3 T Siemens

MAGNETOM Prisma scanner (Siemens Healthcare, Erlangen, Ger-

many) and used to scan a healthy adult volunteer. This study was

approved by the Cardiff University School of Psychology ethics com-

mittee, and informed written consent was obtained prior to scanning.

2.6 | Post processing

The entire dataset was divided in τE-specific data subsets, which were

denoised using random matrix theory (Veraart et al., 2016), and

corrected for Gibbs ringing artefacts using the method described in

(Kellner, Dhital, Kiselev, & Reisert, 2016). Signal drift correction was

subsequently performed as detailed in Vos et al. (2017). The acquired

data were further corrected for subject motion and eddy-current arte-

facts using ElastiX (Klein, Staring, Murphy, Viergever, & Pluim, 2009)

with extrapolated references (Nilsson, Szczepankiewicz, van Westen, &

Hansson, 2015) as implemented in the multidimensional diffusion MRI

toolbox (Nilsson et al., 2018); this procedure was performed with the

default settings of the toolbox to the entire (τE,b) dataset.

Susceptibility-induced geometrical distortions were corrected using the

TOPUP tool in the FMRIB software library (FSL; Smith et al., 2004),

with the same settings being applied to the entire (τE,b) dataset.

2.7 | In silico datasets

In silico data were used to investigate the angular resolution and the

performance of the suggested acquisition and analysis protocols. We

simulated a multi-component system designed to mimic up-to-three

crossing fibres with similar diffusion features (Diso = 0.75 � 10−9m2s−1,

DΔ = 0.9) but distinct orientations and relaxation properties:

TABLE 1 5D relaxation–diffusion
correlation protocol used in this work.

τE (10
−3 s) b-values (109 m−2s) #directions/b-value Number of points

bΔ = 1, ST 60 0.0, 0.1, 0.7, 1.4, 2.0 6, 6, 12, 30a 54

bΔ = 1, ST 80 0.0, 0.1, 0.8, 2.0, 4.0 6, 6, 16, 50a 78

bΔ = 1 80, 110, 150 0.0, 0.1, 0.7, 1.4, 2.0 6, 6, 12, 30a,b 162

bΔ = 0.5 80, 110, 150 0.0, 0.1, 0.7, 1.4, 2.0 6, 6, 10, 16a,b 114

bΔ = 0 80 0.0, 0.3, 1.0, 2.0 6, 6, 6c 108

bΔ = 0 80, 110, 150 0.0, 0.1, 0.7, 1.4 4, 4, 4b 36

bΔ = −0.5 80, 110, 150 0.0, 0.1, 0.7, 1.4, 2.0 6, 6, 10, 16a,b 114

aDirections generated using electrostatic repulsion on the half-sphere (Bak & Nielsen, 1997; Jones

et al., 1999).
bRepeated for all τE values.
cRepeated for six different permutations of the [Gx,Gy,Gz] components of the bΔ = 0 waveform.
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• Component 1: T2 = 60 ms, θ = 0�, ϕ = 0�, w = fthin/nfibre;

• Component 2: T2 = T2, cross, θ = θcross, ϕ = 0�, w = fthin/nfibre;

• Component 3: T2 = T2, cross, θ = θcross, ϕ = 90�,

w =
0, if nfibre = 2

fthin=nfibre, if nfibre = 3

�
.

To assess the angular resolution, we simulated a two-fibre system

with different fibre-specific relaxation times by setting fthin = 1,

nfibre = 2, and T2,cross = 100 ms. The polar angle of component 2 was

varied in order to define four distinct fibre crossing angles: θcross = 25�,

θcross = 30�, θcross = 35�, and θcross = 40�.

A more comprehensive set of systems was simulated to thoroughly

test the performance of the proposed framework. Two- and three-fibre

systems were designed by setting either nfibre = 2 or nfibre = 3, respec-

tively. Different fibre-crossings including inter-fibre T2 differences were

simulated by sampling unique combinations of (T2,cross,θcross) parameters,

where T2,cross � {60, 70, 80, 90, 100} ms and θcross � {0�, 15�, 30�, 60�,

90�}. A fourth component mimicking the coarse R2-D properties of GM

(T2 = 90 ms, Diso = 0.8 � 10−9 m2s−1, DΔ = 0.2) was subsequently added

at varying signal fractions, 1 − fthin � {0, 0.3, 0.5, 0.7, 0.9}.

The ground-truth signal data for the various fibre-crossing systems

were generated using the (τE,b) acquisition scheme indicated in Table 1

and computed from Equation (2). Gaussian distributed noise with an

amplitude of 1/SNR was added to the ground-truth signals in order to

simulate the effects of experimental noise. The experimental SNR, com-

puted as the mean-to-standard-deviation-ratio of the bΔ = 0 data

acquired at b = 0.3 � 109 m−2s and τE = 80 ms (Szczepankiewicz, Sjölund,

et al., 2019), was estimated to SNR = 72 ± 28 for WM regions. Conse-

quently, we defined SNR = 70 for the in silico calculations, a value that is

compatible with the SNR of the in vivo data. In line with a recent in silico

study of the performance of theMonte Carlo algorithm in invertingmulti-

dimensional diffusion data (Reymbaut, Mezzani, de Almeida Martins, &

Topgaard, 2020), we drew Nnoise independent noise configurations and

computed Nnoise different signal realisations for each of the in silico sys-

tems; we used Nnoise = 100 for evaluating the angular resolution of the

framework and Nnoise = 40 in simulations for performance testing. The

various signal realisationswere inverted using theMonte-Carlo algorithm

described in Section 2.1, and the resulting solution ensembles were sub-

sequently compared against the corresponding ground-truth systems.

3 | RESULTS AND DISCUSSION

3.1 | Defining the dispersion factor of the Watson
kernel

As mentioned in Section 2.3, the use of a Watson kernel introduces

an artificial angular dispersion to the inverted εthinnb
components. The

amount of angular dispersion is regulated by the user-defined parame-

ter κ, which should be large enough not to over-smooth the data and

sufficiently small to avoid spurious peaks within an individual sample.

To understand the smoothing effects of theWatson kernel over a dis-

crete mesh, it is instructive to consider the decay of the Watson function

over a given angular distance Δβ : ν = (exp[κcos2Δβ] − 1)/(exp[κ] − 1).

Considering a 1,000-point mesh and κ = 14.9, values used for the in vivo

data visualisation, the maximum distance between an arbitrary

θi ,ϕif gnb, i� thin binf g configuration and the nearest mesh point is �3.5�,

a value for which the Watson kernel retains ν = 0.95 of its maximal

influence. The minimal decay of the Watson kernel over Δβ = 3.5�

ensures that the set of εthinnb
discrete components is indeed mapped

into the mesh. From Equation (7) it is additionally obvious that the

choice of κ is a trade-off between a sufficiently smooth ODF repre-

sentation and the angular resolution of the ODF in disentangling dif-

ferent peaks. The question then arises whether setting κ = 14.9 may

over-smooth the orientational information within the R2-D distribu-

tions. For instance, with κ = 14.9 the Watson kernel will retain more

than 50% (ν = 0.64) of its maximum value over a distance of Δβ = 10�,

meaning that 20� crossings cannot be resolved with our settings. To

assess if the amount of κ-generated dispersion is sufficiently low not

to misrepresent the orientational information of the R2-D distribu-

tions, we investigated in silico the angular resolution of the Monte-

Carlo analysis.

The angular resolution of our framework was assessed by

inverting in silico data from two anisotropic components crossing at

various angles (see Section 2.6 for further details). The (R2,θ) projec-

tions of the attained R2-D distributions are displayed in Figure 2a and

inform that, at the SNR of the in vivo data, crossings of 30� or higher

can be directly resolved in the Monte Carlo P(R2,D). Setting equal R2

(T2 = 1/R2 = 60 ms) properties for both anisotropic did not affect the

angular resolution of the 30� crossing, but lead to an overestimation

of the signal fraction from the θ = 30� fibre population. The accurate

resolution of the 35� and 40� systems was unaffected by changes in

component R2. The in silico results then suggest that the maximum

achievable angular resolution of our experimental protocol is between

30� and 35�, and a conservative approach is to set κ so that 35� cross-

ings are not over-smoothed and obscured. Computing ODFs for the

in silico distributions confirms that setting κ = 14.9 is indeed sufficient

to unambiguously resolve a 35� crossing (Figure 2b). While there is

room to increase κ without risking εthinnb
disappearing though the holes

of the mesh, we observe that a significantly sharper Watson kernel

leads to narrow ODF lobes that do not accurately portray the angular

dispersion of the underlying R2-D distributions (compare panels A and

B of Figure 2). Moreover, significantly higher κ values were tested in

the in vivo dataset and observed to lead to non-smooth ‘spiky’ ODFs

in voxels containing orientationally dispersed fibres (see Figure 2c).

As depicted in Figure 2c, the choice of κ has a clear effect on the

computed ODF, which should in turn be interpreted in light of that

same choice. For instance, the width of the computed ODF lobes is a

product of both the angular dispersion of the underlying fibre system

and the choice of κ. Similarly, an upper limit to the achievable angular

resolution is also implicitly set by the choice of κ parameter and the

related angular standard deviation of the convolution kernel; by set-

ting κ = 14.9 (σ = 10.5�) we render it impossible to resolve crossings

of 20� or lower angles, independently of the angular resolution of the

basis R2-D distributions. In this work, the angular distance between

near-neighbouring mesh-points and the angular resolution of the P(R2,
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D) solutions were used to define the upper and lower limits, respec-

tively, of the κ parameter. An alternative promising approach would

be to build upon prior literature on bandwidth optimisation in KDE

algorithms (Cao, Cuevas, & González Manteiga, 1994; Park &

Marron, 1990) in order to devise methods for automatic κ selection.

3.2 | In silico ODF and peak metrics estimation

Figure 3a shows the ODF glyphs recovered from the in silico datasets

described in Section 2.6. For relatively high signal fractions of fibre

components (fthin = 1 or 0.7), the simulated orientational

configurations are accurately captured and the inter-fibre T2 differ-

ences detected, with the higher T2 fibres being correctly identified.

Worse performance is found at lower fibre signal fraction fthin and

lower crossing angles θcross = 30�. In particular, we notice that, at

fthin = 0.3 and θcross = 30�, the proposed framework cannot accurately

capture three-fibre crossings and that it misestimates the ODF lobe

amplitude of the (θ = 0�, ϕ = 0�) fibre for two-fibre systems. Less

noticeable biases in ODF lobe amplitudes can also be found in two-

and three-fibre crossings with θcross = 60�. While biases in relaxation

time can be detected throughout the fthin = 0.3 systems, we note that

the higher T2 fibres are correctly identified and inter-fibre T2 contrast

is somewhat preserved.

F IGURE 2 R2-D distributions and Orientation Distribution Functions (ODF) retrieved for in silico fibre-crossing datasets. (a) 5D P(R2,D)
distributions displayed as 2D scatter plots of log(R2) and θ, the polar angle defining D orientation. Circle area is proportional to the weight of the
corresponding component and colouring is defined as R,G,B] = [cosϕ sinθ, sinϕ sinθ, cosθ] � jDk − D⊥/max(Dk,D⊥), where Dk and D⊥ denote the
axial and radial diffusivities, respectively, and ϕ is the azimuth angle of D. The yellow crosses identify the ground-truth values. (b) ODF glyphs
estimated from the distributions in panel (a), using Watson kernel with different orientation dispersion factors (see Equation (6) for further
details). The ODF colouring follows a conventional directional scheme: [R,G,B] = [μxx,μyy,μzz], where μii are the elements of the unit vector μ(θ,ϕ)
defining the orientation of mesh-point (θ,ϕ). (c) ODF glyphs estimated for an in vivo voxel rendered as triangular surface plots for varying angular
standard deviation σ of the convolution kernel at constant number of triangle vertices and the same underlying 5D P(R2,D) distribution. The
depicted voxel comprises a two-way crossing between fibres from the corticospinal tract and the corpus callosum
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Peak-based metrics were derived from the in silico ODFs. To

evaluate the accuracy and precision of the estimated peaks and their

associated metrics, we computed the angular distance between each

estimated peak and the various ground-truth fibre components, and

assigned each peak to its closest ground-truth fibre. Following the

peak assignment, we estimated the differences (biases) between the

F IGURE 3 Legend on next page.
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orientations and R2-D properties of the estimated peaks and their

corresponding ground-truth components.

The peak metrics biases displayed in Figure 3b–d confirm some

of the observations made in previous paragraphs. For example, signifi-

cantly higher mean angular biases E[Δβ] are found for θcross = 30�

crossings (see E[Δβ] plots in Figure 3b,c), thus confirming the observa-

tions of Section 3.1 which pointed to a maximum angular resolution

of 30–35�. Consistently, we also observe a large uncertainty in the

number of peaks detected in 30� crossing systems. We also observe

that, with the current settings, only a single peak is detected for 15�

crossings; this is consistent with the fact that a κ of 14.9 does not

allow the angular separation of fibres crossing at less than 20�. For

crossings at 45� or higher angles, the number of peaks is accurately

and precisely recovered, and we register E[Δβ] of less than 2.5�. These

biases are comparable to those found in ref. (Jeurissen et al., 2014),

where similarly designed simulations were deployed to validate a

suggested multi-tissue spherical deconvolution approach. Moreover,

as evidenced by Figure 3c,d, the angular resolution of the θcross = 60�

system is unaffected by variations in T2,cross or partial voluming with

lower anisotropy components as long as the fibre components

account for more than 30% of the signal at (τE = 0, b = 0). Focusing on

the T2 and D2
Δ peak metrics, we notice a slight mean positive bias in T2

and a mean negative bias in D2
Δ . Both biases seem to be independent

of variations in T2,cross, but a progressive underestimation of the

anisotropy of the fibre components with decreasing fthin is observed

(see rightmost plot of Figure 3d). While not displayed, mean biases of

±0.1×10−9 m2s−1 were estimated for the Diso metric for systems with

fthin > 0.1, thus indicating a good performance of peak-based metrics

in assessing orientation-resolved mean diffusivities.

3.3 | In vivo fibre orientations

Previous work from our group (de Almeida Martins et al., 2020) has

shown that voxels containing just one tissue type (WM, GM, or CSF)

give rise to distinct R2-D distributions that accurately capture the

main microscopic features of the various tissues—CSF: high isotropic

diffusivity Diso, low normalised diffusion anisotropy DΔ, low R2; WM:

low Diso, high DΔ, high R2; GM: low Diso, low DΔ, high R2. Voxels com-

prising mixtures of WM, GM, and CSF are in turn characterised by

multimodal distributions that exhibit a linear combination of

properties of the distributions from the individual components.

Figure 1a displays the distribution obtained from a voxel containing

both CSF and contributions from two WM tracts: the corpus callosum

(CC) and the fornix. Three distinct tissue environments can be clearly

discerned: an isotropic fast diffusing component attributed to CSF

and two anisotropic slow diffusing components with different orienta-

tions corresponding to the WM tracts. By ascribing distribution points

to one of the three bins discussed in the Methods section, we were

able to separate and quantify the signal contributions from distinct

brain tissues. Indeed, as shown in Figure 1b, the signal fractions from

the various bins follow the expected spatial distributions of WM, GM,

and CSF.

Figure 4 displays the ODFs computed from the components that

fall within the ‘thin’ bin. The ODFs are displayed as directionally

coloured glyphs, superimposed on the sum of the signal fractions from

the ‘big’ and ‘thick’ populations. Overall, the reconstructed ODFs are

consistent with the expected WM arrangement of the healthy human

brain. Major WM tracts such as the corticospinal tract (CST), the CC,

and the superior longitudinal fasciculus (SLF) are easily located (see

arrows in Figure 4), and multiple crossings can also be discerned. The

zoomed panels show that the proposed method can capture the

crossings in the ventral SLF—anterior–posterior fibres with left–right

fibres—and the crossings between the CST and the CC—superior–

inferior fibres with left–right fibres. The dotted boxes show that

three-fibre crossings present in the centrum semiovale are well cap-

tured by this technique, meaning that more than two fibre populations

can be resolved.

Voxels at the WM-CSF and WM-GM interfaces exhibit small-

amplitude ODFs, consistent with lower signal fractions of fibrous tis-

sue. The low amplitude of the ODF lobes found in those regions does

not seem to bias their orientation; for example, CC voxels near the

ventricles yield low amplitude lobes whose orientations follow the

expected trend (fibres running left–right). These observations indicate

that the estimated ODFs are robust to partial volume effects with

CSF and that the proposed method can indeed resolve fibre orienta-

tions in heterogeneous voxels. In silico simulations show that an accu-

rate ODF can be estimated as long as the contribution from CSF

accounts for less than 75% of the total voxel-signal at (τE = 0, b = 0).

Low-amplitude ODF lobes can also be found throughout cortical GM

regions. These ODFs might be explained by the presence of aniso-

tropic tissue components in cortical GM (Assaf, 2019), or interpreted

F IGURE 3 Orientation Distribution Functions (ODF) and peak metrics retrieved for in silico fibre-crossing datasets. (a) ODF glyphs computed
for the in silico systems described in Section 2.6. The displayed ODFs are coloured according to the orientation-resolved means of T2, Ê[T2] (see
Equation (9) for more details). The inset displays the fthin = 0.3 ODFs with their base amplitude rescaled by a factor of three. (b–d) Number of
peaks (# peaks) and mean biases (E[ΔX]) in peak angle (b), peak T2, and peak squared normalised diffusion anisotropy D2

Δ estimated for three

selected in silico systems. We refer the reader to Section 2.6 for a detailed description of the designed systems. Briefly, the displayed systems
were designed by combining upto three discrete fibre components (Diso = 0.75×10–9 m2 s–1, DΔ = 0.9) with different signal fractions (1 − fthin) of
a GM-like component (T2 = 90ms, Diso = 0.8 ×10–9 m2 s–1, DΔ = 0.2). Here, we inspect a set of nfibre discrete fibres at various crossing angles
θcross (b), two-fibre crossings for various T2 values of the crossing fibre, T2,cross (c), and two-fibre crossings with varying fthin (d). In (b) and (c), we
set 1 − fthin = 0.3, while in (b) and (d), we selected T2,cross = 80ms. The metrics were calculated across 40 different noise realisations; the points
represent the mean over the various signal realisations, while the error bars indicate the standard deviation across signal realisations. The dashed
grey line indicates the true number of peaks (left plots) or the zero-bias line
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as originating from low-amplitude WM partial volume effects caused

by the large voxel-size used in this study. A more in-depth study is

necessary in order to unambiguously discriminate between these two

factors.

Figure 5 shows multi-peak tractography based on the peak-

directions of the ODFs generated from the 5D R2-D distributions.

Multiple well-known fibre bundles can be recognised and are anno-

tated in the figure. The displayed tracks confirm that anatomically-

plausible WM pathways can indeed be extracted from the ODF maps

of Figure 4.

3.4 | In vivo orientation-resolved R2 - D metrics

The relaxation and diffusion features from different fibres can be

investigated by using Equation (9) to map R2-D metrics onto the ODF

mesh and define orientation resolved means, Ê X½ �. The estimated Ê X½ �
values are then visualised as colour-coded ODF glyphs such as the

ones displayed in Figure 6, which inform on the correlations between

D orientation and R2, Diso, or D
2
Δ . The displayed ODF maps capture

the expected diffusion properties of healthy WM, namely a constant

Ê D2
Δ

h i
�1×10−9 m2s−1 and a high anisotropy Ê D2

Δ

h i
�0:7 . The

anisotropy metric Ê D2
Δ

h i
is found to be unaffected by the presence of

fibre crossings (see lower right panel of Figure 6); this is in contrast to

the widely used Fractional Anisotropy (FA) metric, which is highly

dependent on the degree of orientational order (Basser &

Pierpaoli, 1996). Significantly lower Ê D2
Δ

h i
values are found at WM–

GM interfaces, an observation that can be explained by partial volume

effects with GM tissues, which have a lower diffusion anisotropy (see

discussion of Figure 3b–d in Section 3.2). Finally, we note that glyphs

close to ventricles do not reveal an increased Diso or decreased R2,

thus evidencing the successful resolution of signal contributions

from CSF.

Focusing on the Ê R2½ �−coloured ODFs shown in the left side

panels of Figure 6, we find a population of fibres with considerably

high Ê R2½ � values in the midbrain region (see dashed box in the top left

map of Figure 6). The fast-relaxing ODFs can be attributed to the

myelinated axons that traverse the globus pallidus, an iron-rich basal

ganglia structure that is characterised by particularly high R2 values

(Hasan, Walimuni, Kramer, & Narayana, 2012; Knight et al., 2015).

Not accounting for their significantly different R2 would then lead to

an underestimation of the signal fraction of those high-R2 anisotropic

components. Moreover, acquiring diffusion-weighted data measured

at a single relatively high τE could even obscure the presence of aniso-

tropic tissues in the globus pallidus.

Comparing R2 peak-specific Ê R2½ � values against their respective θ

coordinates did not reveal a clear relationship between Ê R2½ � and peak

orientation (Figure S2). As detailed in the Supporting Information, the

inability to detect a subtle variation of R2 with varying fibre orienta-

tion is attributed to the relatively high uncertainty of the 5D P(R2,D)

distributions. Despite the fact that no global R2(θ) behaviour could be

teased out, the proposed method allowed the detection of relaxation

differences between distinct WM tracts. As shown in Figure 7, these

differences are best visualised in a T2 scale spanning a more con-

strained interval of values than the R2 scale used in Figure 6. Inspec-

tion of Figure 7 reveals that both the CST and the forceps major tracts

F IGURE 4 Per-voxel Orientation Distribution Functions (ODF), P(θ,ϕ), estimated from R2-D distribution components ascribed to the ‘thin’ bin
defined in Figure 1. The voxel-wise P(θ,ϕ) were computed by using Equation (6) to map the weights of the bin-resolved discrete P(R2,D)
components into a 1,000-point spherical mesh. Here, each ODF is represented as a 3D polar plot with a local radius given by P(θ,ϕ) and colour-
coded according to [R,G,B] = [μxx,μyy,μzz], where μii are the elements of the unit vector μ(θ,ϕ) (see Equation (6) for further details). In the left and
top-right panels, the sets of ODF glyphs are superimposed on a grey-scaled map that shows the signal contributions from non-fibre-like
components (1 − fthin), that is, signal fractions from the ‘big’ and ‘thick’ populations. The zoom-ins in the lower-right panel offer a more detailed
look into selected fibre crossing regions (continuous line boxes) and three-fibre crossing voxels (dashed line boxes) found in the centrum
semiovale. The various arrows identify fibre tracts mentioned in the main text
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are characterised by considerably longer Ê T2½ � lower Ê R2½ �
	 


values.

These observations are in accordance with the results of Lampinen

et al. (2020), where longer T2 values were consistently found in the

CST. The longer T2 of the CST is also observed in voxels containing

fibre crossings, with Ê T2½ � differences being discerned between the

ODF lobes corresponding to the CST and the lobes that capture fibre

populations from other tracts (see bottom right panels of Figure 7).

Moreover, inter-track T2 differences can also be observed in the

tractograms displayed in Figure S3 of the Supporting Information,

where the spatial distribution of high-T2 streamlines correlates well

with the high-T2 ODFs of Figure 7. While the exact mechanisms driv-

ing the long T2 values found in the CST and the forceps major are still

F IGURE 5 Opacity rendering of streamline tractography data, where the opacity reflects streamline density (computed using a slice thickness
of 3 voxels). The various tracks are coloured according to their orientation: red (left-right), green (anteroposterior), and blue (superoinferior). The
right-side panels display one coronal slice (top) and two different sagittal slices (middle and bottom), while the left-side panel displays an axial
slice

F IGURE 6 Orientation Distribution Function (ODF) maps coloured according to orientation-resolved means, Ê[X], of R2, isotropic diffusivity
Diso, and squared normalised diffusion anisotropy D2

Δ. All Ê[X] were calculated using Equation (9) and are displayed on a linear scale. The lower
panel displays a zoom into a region containing fibre crossings between the corpus callosum and the corticospinal tract. The dashed-line box in the
top-left map identifies the high-R2 fibres found in the globus pallidus
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F IGURE 7 Orientation Distribution Function (ODF) maps coloured according to the orientation-resolved means of T2, Ê[T2]. The Ê[T2] values
are displayed on a linear colour scale. The left and top-right panels display the sets of ODF glyphs superimposed on a grey-scaled map showing
the signal fractions from the ‘big’ and ‘thick’ bin populations (1 − fthin) (non-fibre-like components). The zoom-ins in the lower-right panel offer a
more detailed look into selected regions (continuous line boxes) and voxels (dashed line boxes) containing crossing between fibre populations
with distinct Ê[T2]. The observed high-T2 components are assigned to the forceps major (yellow boxes) and the corticospinal tract (magenta boxes)

F IGURE 8 Orientation-resolved metrics estimated for a two-fibre-crossing voxel in the superior longitudinal fasciculus. (a) Orientation
Distribution Function (ODF) estimated for the selected voxel. The black points identify the two peaks of the displayed ODF, peaks A and B. (b,c)
Fibre-specific R2-D metrics. The (θ,ϕ) orientation space was divided into four quadrants centred on A, B, and their corresponding antipodes; ‘thin’
R2-D components, ξthinnb

, were then assigned to either fibre population A or fibre population B depending on their (θ,ϕ) coordinates (e.g., ξthinnb

components falling into the quadrant centred on peak A, are assigned to fibre population A). For each orientation bin and each bootstrap, we
estimate the mean signal fraction, R2, isotropic diffusivity Diso, squared normalised diffusion anisotropy D2

Δ, and orientation, thus obtaining a set
of 96×6 scalars: 96 different estimates of six distinct parameters. (b) Ensemble of fibre-resolved orientations displayed on the unit sphere. The
colouring of the sphere identifies the (θ,ϕ) space assigned to each fibre population. The coloured lines indicate the peak orientation of fibres A
(green) and B (red), while the black lines indicate the [x,y,z] coordinates. (c) Boxplots displaying the average and dispersion of the fibre-resolved
signal fractions, R2,Diso, and D2

Δ. The average was estimated as the median, while dispersion was assessed as the interquartile range. The whiskers
identify the maximum and minimum estimated values
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unclear, it is worth mentioning that these tracts are known to feature

higher-than-average fractions of large axons (Dell'Acqua et al., 2019),

meaning that differences in surface relaxation might play a part in

determining the inter-tract T2 differences.

While useful for visualisation purposes, the colour-coded glyphs

derived in this work are however impractical for quantifying the dis-

persion of R2-D descriptors within a given ODF lobe. For example, the

in silico distributions from Figure 2a demonstrate that a single fibre

population may comprise a dispersion in T2 values that cannot be

recovered from the summary Ê T2½ � value of the associated ODF peak.

Moreover, experimental noise is known to promote a broadening of

the recovered distributions (Mitchell et al., 2012), thus amplifying any

underlying dispersion and possibly introducing small variations in the

R2-D properties of components within a given lobe. As shown in

Figure S4 of the Supporting Information, noise-induced artefacts may

result in spurious low-amplitude lobes and can affect the mapping of

relaxation and diffusion metrics onto the ODF glyphs, creating a col-

our shading within a single lobe. While substantial degrees of smooth-

ing can be used to alleviate the artefactual shading, such an approach

can only offer a partial solution to an effect that originates from

uncertainties in the basis P(R2,D) solutions.

To address the limitations identified in the previous paragraph,

we suggest using the ODFs and corresponding peaks as a guide to

define additional bins in the (θ,ϕ) space and to subsequently assign

the voxel-wise εthinnb
components into the various orientation-resolved

bins. Once the orientation bins have been defined and the εthinnb
com-

ponents assigned, orientation-specific statistical metrics and uncer-

tainty measures can be estimated by exploring the variability of

components within a given (θ,ϕ)-bin. An illustration of this procedure

is presented in Figure 8 for a voxel comprising two crossing fibres.

There, the (θ,ϕ) - space was divided into four quadrants centred

around the extracted ODF peaks; average and dispersion measures

were then calculated as the median and interquartile range of the εthinnb

components falling within each quadrant. The average fibre-specific

metrics can additionally be used to define a unique colour for its

corresponding ODF lobe, thus providing ODF glyphs with a more

unambiguous interpretation.

The procedure depicted in Figure 8 showcases the potential of

using P(R2,D) distributions to extract the average and variance of

fibre-specific metrics. In a preliminary work (Reymbaut et al., 2020),

we combine the presented ODF framework with density-based clus-

tering algorithms (Rodriguez & Laio, 2014) in order to sort εthinnb
into

different fibre populations and then calculate fibre-specific statistical

metrics from the clustered P(R2,D) components.

4 | CONCLUSION

This work presents analysis protocols to estimate and visualise

orientation-resolved R2-D metrics in the living human brain. We build

on a recently developed 5D relaxation–diffusion correlation frame-

work where sub-voxel heterogeneity is resolved with nonparametric P

(R2,D) distributions (de Almeida Martins et al., 2020), and convert the

recovered distributions to ODF glyphs informing on the relaxation–

diffusion features along different orientations by mapping discrete P

(R2,D) components to a dense mesh of (θ,ϕ) bins. Orientationally

coloured ODFs estimated in such a way were observed to capture

fibre crossings in major WM tracts such as the CC, the CST, or the

SLF. Similarly, arrays of T2− ,R2− ,Diso− ,andD 2
Δ −coloured ODF

glyphs facilitated a clean and compact visualisation of the R2-D prop-

erties of anisotropic tissues. Maps of relaxation-coloured ODF also

enabled the identification of fast-relaxing anisotropic components in

the globus pallidus and the observation of long T2 times in the CST and

the forceps major.

The proposed framework relies on 5D R2-D distributions that

provide a clean 3D mapping of the signal contributions from different

sub-voxel tissue environments and allow the estimation of relaxation

or diffusion differences between distinct fibre populations. Moreover,

the P(R2,D) are retrieved from the data without the need to a priori fix

signal response functions or formulate assumptions about the number

of microscopic tissue components. This is in contrast with traditional

(Anderson, 2005; Dell'Acqua et al., 2007; Dell'Acqua &

Tournier, 2019; Jian & Vemuri, 2007; Tournier et al., 2004; Tournier

et al., 2007) or multi-tissue (Jeurissen et al., 2014) spherical

deconvolution approaches, which assume a single response function

for WM tissue and do not accommodate microstructural differences

across fibres. The caveat is that the proposed method hinges on signal

acquisition in a high dimensional space in order to better capture the

signal contrast between environments with different MR properties

(Topgaard, 2019); a comprehensive sampling of this space in turn

introduces acquisition times that are longer than those currently used

in spherical deconvolution protocols. However, there is potential to

reduce the scan time either by using multi-band acquisition schemes

(Barth, Breuer, Koopmans, Norris, & Poser, 2016) or designing more

abbreviated acquisition protocols. Recent advances in nonparametric

protocol optimization (Bates, Daducci, & Caruyer, 2019; Song &

Xiao, 2020) are expected to facilitate a reduction of the number of

required data points while keeping a good performance of the Monte

Carlo inversion procedure. Protocol optimization strategies can addi-

tionally be used to maximise the angular coverage of the acquisition

scheme and hopefully increase the angular resolution of the recovered

distributions (Caruyer et al., 2011).

As evidenced by Figure 5 and Figure S3 of the Supporting Infor-

mation, the information retrieved with the presented methodology

can serve as an input for fibre tracking algorithms and used to extract

individual WM pathways. If combined with tractometry frameworks

(Bells et al., 2011; Chamberland et al., 2019; De Santis et al., 2014;

Rheault et al., 2017; Yeatman et al., 2012), the correlations across the

R2-D space would allow a comprehensive inspection of the relaxation

and diffusion properties along a given WM tract. Since no universal

signal response kernels are assumed, microstructural differences

between tracts can be investigated and teased out. This feature is par-

ticularly promising for clinical research studies (Fornito, Zalesky, &

Breakspear, 2015) where the 5D R2-D correlation framework could

be used to investigate pathology induced changes along specific WM

bundles.
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