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Abstract

Combining finite elasticity and information theory, a stochastic method is devel-

oped in order to accurately predict and assess the behaviour of materials, and

also to model experimental data. An explicit strategy to calibrate homogeneous

isotropic hyperelastic models to mean values and the standard deviation of ei-

ther the stress-strain function or the nonlinear shear modulus is devised, and the

technique of using Bayes Theorem to select the optimal model to represent the ma-

terial or data in question is presented, specifically here in relation to manufactured

silicone specimens. An analysis of the behaviour of solid materials under various

deformations, including necking instability, the inflation of cylindrical tubes and

spheres, and the cavitation of spherical shells, when the material is stochastic, is

demonstrated, before an extension to the dynamic finite deformations of stochastic

hyperelastic solids, including the shear motion of a cuboid, the quasi-equilibrated

radial-axial motion of a cylindrical tube, and the quasi-equilibrated radial motion

of a spherical shell, is explored. Ultimately, it is determined that the amplitude

and period of oscillation of stochastic bodies are characterised by probability dis-

tributions. Overall, the aim is to highlight the need for mathematical modelling

to consider the variability obtained in experimental data, in the mechanical re-

sponses of materials, or in testing protocols, with a view to enhancing the accuracy

of the mathematical modelling techniques employed, and, as a result, to provide

an improved assessment or prediction of the behaviour of the materials in question.
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Chapter 1

Introduction

1.1 Motivation and background

The use of mathematical models in predicting the behaviour of materials in nu-

merous different applications has been fundamental to scientific research for many

years [146–148,222]. Within nonlinear elasticity field theory, which is based on av-

erage data values and covers the simplest case where internal forces only depend

on the current deformation of the material and not on its history, hyperelastic

materials are the class of material models described by a strain-energy function

with respect to the reference configuration [70, 151, 209]. In general, hyperelas-

tic models are used to capture the physical responses of many manufactured or

biological systems at a macroscopic (non-molecular) level. Ideally, these models

are calibrated and validated on multiaxial test data [126,127,135,192]. For these

materials, boundary value problems can be cast as variational problems, providing

powerful methods for obtaining approximate solutions, and can also be used to

generate finite element methods for computer simulations.

In terms of the mathematical modelling of biological materials, in [40], a com-

prehensive evaluation of the hyperelastic constitutive equations that are the basis

of the model used in the context of the behavioural analysis of soft biological tis-

sues is presented. Further developments within this paper led to a review of the
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1.1. MOTIVATION AND BACKGROUND

constitutive equations that are based on statistical modelling. A non-deterministic

approach to model the inhomogeneity of liver tissue when it is subject to com-

pression is developed in [61], and its feasibility is demonstrated. The method in

question allows the inherent stiffness variations arising in biological soft tissues to

be taken into account in a statistical model. The liver tissue was modelled us-

ing a Mooney-Rivlin hyperelastic constitutive equation, thus allowing its material

parameters to be represented by a statistical function with a normal distribution.

In [194–196], experimental data was analysed and stochastic hyperelastic models

were developed to represent both compressible and incompressible hyperelastic

materials in a probabilistic framework. The physics of growing biological tissues

was investigated in [26]. A stochastic approach is used in [196] to analyse the

calibration of an Ogden-type model for various different hyperelastic biological

tissues. These Ogden-type strain energy functions were first introduced in [194]

within a stochastic framework, developed further with the extension to compress-

ible materials in [195]. The use of Bayesian statistics, both in the context of model

selection and calibration, with regard to the hyperelastic modelling of soft tissue,

was investigated in [33,85,117,118]. The nature of the applications in which these

techniques are being applied demands the utmost precision of the calibration of the

models using the data that is available, and also the quantification of uncertainties

in the model parameters.

Motivated by the ability of using a mathematical model to investigate the

behaviour of both engineered and biological structures, models of an internally

pressurised hollow cylinders and spheres were investigated in [70,212]. These con-

figurations are instructive as they apply to many structures, from living cells, to

blood vessels, to aircraft fuselages. For these structures to be serviceable, they

must be able to withstand and function at a certain level of internal pressure with-

out damage. The finite symmetric inflation and stretching of a cylindrical tube of

homogeneous isotropic incompressible hyperelastic material was first investigated
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1.1. MOTIVATION AND BACKGROUND

in the mid-twentieth century by Rivlin (1949) [169], while the finite radially sym-

metric inflation of an elastic spherical shell was studied in [72]. A general theory of

possible qualitative behaviours for both the elastic tubes and the spherical shells

was developed in [38], which then formed the basis for further studies where these

deformations were examined for different material constitutive laws [69,221], and

opened the way to the modelling of more complex phenomena [79]. Experiments

carried out in [64] on rubber cylinders first revealed that there was internal rupture

under relatively small tensile dead loads. Following this, in [19], it was determined

that a spherical cavity forms at the centre of a sphere of isotropic hyperelastic ma-

terial in radially symmetric tension under prescribed surface displacements or dead

loads, in both the static and dynamic cases. Experimental results on the onset,

healing and growth of cavities in elastomers were reported in [159, 160]. In en-

gineering applications, there is a need to understand and reduce uncertainties in

materials or data to achieve repeatability between experiments and to increase the

potential for a material to obtain optimal performance.

Oscillatory motions of cylindrical and spherical shells made of linear elastic ma-

terial [109,115,116,165] have generated a wide range of experimental, theoretical,

and computational studies [6–8,31,50]. In contrast, time-dependent finite oscilla-

tions of cylindrical tubes and spherical shells of nonlinear hyperelastic material,

relevant to the modelling of physical responses in many biological and synthetic

systems [3, 10, 47, 79, 81, 83, 110], have been less investigated, and much of the

work in finite nonlinear elasticity has focused on the static stability of pressurised

shells [2,28,34,35,38,62,68,69,72,119,139,169,181,221], or on wave-type solutions

in infinite media [92,154]. The governing equations for large amplitude oscillations

of cylindrical tubes and spherical shells of homogeneous isotropic incompressible

nonlinear hyperelastic material, formulated as special cases of quasi-equilibrated

motions [208], were reviewed in [209]. These are the class of motions for which the

deformation field is circulation preserving, and at every time instant, the current
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1.1. MOTIVATION AND BACKGROUND

configuration is a possible static configuration under the given forces. The free

and forced axially symmetric radial oscillations of infinitely long, isotropic incom-

pressible circular cylindrical tubes, with arbitrary wall thickness, were described

for the first time in [106, 107]. In [86, 108, 213], free and forced oscillations of

spherical shells were derived analogously. The dynamic deformation of cylindrical

tubes of Mooney-Rivlin material in finite amplitude radial oscillation was obtained

in [175,176,178], while the oscillatory motion caused by the dynamic cavitation of

a neo-Hookean sphere was considered in [41]. For a hyperelastic sphere of Mooney-

Rivlin material with a cavity, the solution to the nonlinear problem of large ampli-

tude oscillations was computed numerically in [18]. Theoretical and experimental

studies of cylindrical and spherical shells of rubberlike material under external

pressure were presented in [215]. In [37], the finite amplitude radial oscillations of

homogeneous isotropic incompressible hyperelastic spherical and cylindrical shells

under a constant pressure difference between the inner and the outer surface were

studied theoretically. The finite longitudinal, or telescopic, oscillations of infinitely

long cylindrical tubes were investigated in [144], whilst the oscillatory motions

of cylindrical and prismatic bodies of incompressible hyperelastic material under

dynamic finite shear deformation were analysed in [143]. Other dynamic shear

deformations were considered in [214], where it was emphasised that such shear

motions were not quasi-equilibrated. The dynamic problem of axially symmetric

oscillations of cylindrical tubes of transversely isotropic incompressible material,

with radial transverse isotropy, was treated in [91], whilst in [177], the dynamic de-

formation of a longitudinally anisotropic thin-walled cylindrical tube under radial

oscillations was obtained. Radial oscillations of non-homogeneous thick-walled

cylindrical and spherical shells of neo-Hookean material, with a material constant

varying continuously along the radial direction, were explored in [54]. In [4], for

pressurised homogeneous isotropic compressible hyperelastic tubes of arbitrary

wall thickness under uniform radial dead-load traction, the stability of the finitely
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deformed state and small radial vibrations about this state were treated, using the

theory of small deformations superposed on large elastic deformations. Here, the

governing equations were solved numerically. The dynamic inflation of hyperelas-

tic spherical membranes of Mooney-Rivlin material subjected to a uniform step

pressure was studied in [211], and the absence of damping in these models was

discussed. As the amplitude and period of oscillations are strongly influenced by

the rate of internal pressure, it was concluded that, if the pressure was suddenly

imposed and the inflation process was short, then sustained oscillations due to the

dominant elastic effects could be observed. In general, however, for many systems

under slowly increasing pressure, strong damping would delay, or even prevent,

oscillations [46]. More recently, the dynamic response of incompressible hypere-

lastic cylindrical and spherical shells subjected to periodic loading was discussed

in [166, 167]. Radial oscillations of cylindrical tubes and spherical shells of neo-

Hookean [205], Mooney-Rivlin [137,168], and Gent [66] hyperelastic materials were

analysed in [23,25], where it was deduced that, in general, both the amplitude and

period of oscillations decrease when the stiffness of the material increases. The

influence of the material constitutive law on the dynamic behaviour of cylindrical

and spherical shells was also examined in [9, 11, 173, 220], where the results for

Yeoh [219] and Mooney-Rivlin material models were compared. In [32], the static

and dynamic behaviour of circular cylindrical shells of homogeneous isotropic in-

compressible hyperelastic material modelling arterial walls were considered. The

nonlinear static and dynamic behaviour of a spherical membrane of neo-Hookean

or Mooney-Rivlin material, subjected to a uniformly distributed radial pressure on

its inner surface, was studied in [185], and a parametric analysis of the influence

of the material constants was presented.

The use of stochastic processes within the broad field of elasticity is a fairly

young, but ever-expanding, area of research. These processes can be used within

the mathematical modelling of solid materials to fully account for the uncertain-
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ties arising within the obtained experimental data, and the randomness in the

mathematical models that follows as a result [128, 129, 146, 147, 188, 196]. Pi-

oneering the use of stochastic processes for this purpose was Huet (1990) [90],

whose proposed strategies regarding the use of stochastic processes for the study

of mesoscopic material effects in random materials were based within the field

of linear elasticity. In [153], the use of stochastic modelling within the context

of heterogeneous solids was investigated. More recently, in [56], techniques that

are useful for making optimal decisions and constructing control policies relating

to the mathematical modelling of a variety of situations were analysed, but with

particular emphasis on the application to the oil industry. Improving the poten-

tial of mathematical models to make more meaningful, accurate predictions was

also explored in [56], leading to the conclusion that taking data dispersion into

consideration in the stochastic models yields a significant improvement in model

predictions [129]. Stochastic processes can also be applied to machine learning

and multiscale modelling, particularly within the fields of biological, biomedical

and behavioural sciences [5].

Depending on the type of material under investigation, uncertainties in the

experimental observations can arise from the inherent stiffness and inhomogene-

ity of the material in question, sample-to-sample intrinsic variability, or when the

data extracted from viscoelastic mechanical tests is elastic [40, 56, 61, 67, 89, 103,

105, 127, 149, 153, 202]. Typically, these uncertainties arise in both natural and

engineered materials [194]. Stochastic models take into account not only the in-

evitable uncertainties arising in experimental observations, but also the dispersion

of the obtained data [75, 76, 129, 164, 194–196]. In [105], statistical approaches

which can, in terms of rubberlike networks, be applied to the mechanical anal-

ysis of these materials were explored. Further developments in this area were

provided in [84], where a Monte-Carlo estimator was used to evaluate uncertain-

ties. Additionally, Monte-Carlo simulations were used in the context of modelling
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1.1. MOTIVATION AND BACKGROUND

visco-elastic structures with random material properties in [102]. A numerical

method using Monte-Carlo markov chains and Bayesian statistics was also fol-

lowed in [33,117,118]. Due to the quantification of uncertainties, many challenges

have to be dealt with regarding the use of the mathematical models in question,

such as the verification and validation of the models [15, 16], and also the ratio-

nal selection of these models, model calibration, and plausibility using Bayesian

inference [146–148].

Further, it is possible to invoke information theory to calibrate material mod-

els using the standard data available, such as the mean and standard deviation,

for isotropic elastic solids, thus allowing experiments to be reproduced precisely,

and the behaviour of the materials in question to be accurately represented [196].

Strategies of a similar nature were employed in [75, 76] to construct stochastic

models for fourth-order random elasticity tensors, and to investigate the statistical

dependence between the components of these random elasticity tensors exhibiting

some material symmetries. The characterisation of the statistical dependence here

relies on the Maximum Entropy Principle for a discrete probability distribution.

First described by Jaynes (1957) [94–96], the Maximum Entropy Principle is based

on the concept of entropy (or uncertainty) introduced by Shannon (1948) [179],

further investigated in [186], within the framework of information theory (for fur-

ther information, see Appendix B). These concepts allow for the propagation of

uncertainties from input data to output quantities of interest [190]. They are also

suitable for incorporation into Bayesian methodologies [22,122] for model selection

or updates [129,149,172].

To investigate the effect of probabilistic model parameters on predicted me-

chanical responses, for different bodies with simple geometries at finite strain

deformations, it has been explicitly demonstrated that, for the stochastic prob-

lem, a probabilistic interval exists where the stable and unstable states always

compete [130–134]. In other words, both the stable and unstable states have a
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quantifiable chance to be found. This is in contrast to the deterministic elastic

problem, in which the stable and unstable cases are strictly separated by a single

critical value. To date, specific case studies include the cavitation of a sphere under

uniform tensile dead load [131], the inflation of pressurised spherical and cylin-

drical shells [130], the oscillatory motions of stochastic hyperelastic solids [134],

the classical problems of the Rivlin cube [133], and the rotation and perversion of

anisotropic hyperelastic cylindrical tubes [132].

This now leads to the following conundrum; which approach, deterministic or

stochastic, provides the superior representation of the solid materials in question,

both in terms of the amount of detail potentially obtainable and how realistic the

representation is, in practical applications?

1.2 Deterministic versus stochastic approaches

Traditionally, hyperelastic materials, the class of material models described by a

strain-energy function, characterised by a set of deterministic (or definite) model

parameters, and based on ensemble averages, have been used to represent the me-

chanical responses of various types of natural or manufactured materials, and to

quantify constitutive parameters [127]. In practice, these parameters can meaning-

fully take on different values corresponding to possible outcomes of experiments.

Whilst a deterministic approach provides a good starting point in material mod-

elling [56,118,123], in general, it has no stochastic elements, the model parameters

are either known or assumed, and no account is taken of any uncertainties which

potentially arise during experiments, or while observing data [138,164], thus ren-

dering the accuracy of the material model questionable. In many disciplines, such

as materials science, engineering and biomechanics, understanding the variabil-

ity in the mechanical behaviour of the materials in question is of the utmost

importance, as any slight variation could have significant, or even catastrophic,

consequences if not fully accounted for. For these materials, the traditional, widely
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1.2. DETERMINISTIC VERSUS STOCHASTIC APPROACHES

accepted deterministic approaches, based on average data values, can greatly un-

derestimate or overestimate their properties. Further, for the assessment and pre-

diction of the mechanical responses of engineered and natural materials, additional

challenges arise from; the uncertainties in their elastic properties inferred from

sparse and approximate observational data, variation in testing protocols, indirect

measurements, data contaminated by noise, the inherent micro-structural inhomo-

geneity, and sample-to-sample intrinsic variability [22,56,67,89,103,149,153,202].

For these materials, mathematical representations that account for data dispersion

are needed to significantly improve assessment and predictions of the behaviour of

the material, to achieve repeatability between experiments, and to provide a more

accurate representation of experimental data [129]. For this reason, stochastic

elasticity is a field that is very quickly evolving and developing.

Stochastic elasticity combines nonlinear elasticity and stochastic theories to

significantly improve model predictions by accounting for uncertainties in the

mechanical responses of materials, a crucial part of assessing the elasticity of

materials. As a result of these uncertainties, stochastic homogeneous hyperelas-

tic materials, which can be described using advanced phenomenological models

within the stated framework, and characterised by strain-energy densities where

the parameters are random variables defined by probability density functions,

can be used to represent the behaviour of a material, or the experimental data

obtained [129, 194–196, 198, 199]. Stochastic models rely on finite elasticity the-

ory [70, 151, 209] and on the notion of uncertainty (or entropy) [94–96, 179, 186],

and have the ability to incorporate at least one probabilistic element into the

model, leading to an enhanced insight into the mechanics of the problem in

question, thus generating significant improvements in model predictions. This

technique also allows for the propagation of uncertainties from input data to

output quantities of interest [190]. Additionally, stochastic techniques have the

potential to be incorporated into Bayesian approaches for model selection and
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updates [22, 122, 129, 149, 172]. Although this approach incorporates stochastic

elements, very little of the mechanical aspect of the problem is addressed.

There is a growing interest in the use of stochastic modelling techniques in en-

gineering and biomedical applications, where a central challenge is the quantifica-

tion of uncertainties in the model parameters calibrated to observational data, and

in the material responses predicted by them. In particular, from an engineering

perspective, a central challenge in material modelling is to identify uncertainties

within data, and to reduce them to achieve repeatability between experiments.

As a result, stochastic representations are essential to fully account for this data

dispersion [53,67,89,103,149,153,191,202]. For rubber-like materials, the first ex-

perimental data exhibiting variability in the load-deformation responses between

the tested samples were reported on by Rivlin and Saunders [170]. Exploiting the

variability in those data, the first probability distributions for the random shear

modulus of the material under relatively small strains were obtained in [131]. For

rubber and soft tissues under large strain, explicit stochastic hyperelastic mod-

els based on data sets consisting of mean values and standard deviations were

developed in [129], while statistical models derived from numerically generated

data were presented in [39, 142]. In [102], from a manufactured materials point

of view, the modelling of visco-elastic structures with random material properties

was investigated using time-separated stochastic mechanics. From a biomedical

perspective, in [44], the modelling of tracer distributions in the brain was explored,

and uncertainties were accounted for to obtain an accurate representation of the

problem at hand.

Generally, for non-deterministic material models, two important questions

arise, namely; “what influence do material constitutive laws have on possible

equilibrium states and their stability?” and “what effect do the probabilistic

parameters have on the predicted elastic responses?”. Recently, theoretical ap-

proaches have been able to successfully contend with cases of simple geometry,
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such as cubes, spheres, shells and tubes [130–134]. These problems offer impor-

tant insight into how stochastic-elastic models can be integrated into the nonlinear

field theory. To investigate the effect of probabilistic parameters in the case of

more realistic geometries and loading conditions, computational approaches were

proposed in [198, 199]. Similar stochastic approaches can be developed for other

mechanical systems, and may lead to more accurate assessment and prediction in

many application areas. However, for real materials, most available data consist

of mean values, from which deterministic models are usually derived [206], and

there is a lack of experimental data reported in the literature that are directly

suitable for stochastic modelling.

By revisiting well-known problems from the stochastic perspective, an oppor-

tunity arises to potentially gain new insights into the fundamental elastic solu-

tions, and to address some inconsistencies found in previous works. Due to this, a

stochastic approach similar to that in [75,76] will be developed during this study,

with the aim of providing the most accurate and realistic representation of the

problems in question [15,138,146,147]. Here, stochastic hyperelastic models, char-

acterised by strain-energy functions where the parameters are random variables

satisfying standard probability distributions, and directly amenable to standard

finite elasticity approaches, will be introduced. These models have the ability to

propagate uncertainties from input data to output mechanical responses. An ex-

plicit approach will be developed, thus providing a clear method and enriching our

knowledge of the mechanics of the problems in question by taking into account

material uncertainties.

1.3 Aims and outline of this thesis

The overall objective of this research is to highlight the need for mathematical

models to consider the variability in the mechanical responses of materials, and

to advocate for the use of stochastic modelling techniques for this purpose. To
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1.3. AIMS AND OUTLINE OF THIS THESIS

achieve this, an explicit strategy will be devised to calibrate homogeneous isotropic

hyperelastic models, generally used to capture the elastic responses of many bio-

logical systems (plants, tissues and organs), and whose random field parameters

follow probability laws, to the mean values and standard deviation of either the

stress-strain function, or the nonlinear shear modulus, which is a function of the

deformation under large strain, coinciding with the classical shear modulus under

small strain. Ideally, these models are calibrated and validated on multiaxial test

data [126, 127, 135, 192]. A review of the formal derivation of the key nonlinear

elastic parameters for isotropic hyperelastic materials is provided in [128]. The

parameters in question can take on different values, with each value corresponding

to each potential outcome of the experiments. As a result, in general terms, the

behaviour of materials can be determined by more than one parameterised model,

thus provoking the question of the selection of the optimal model for this purpose,

which will be addressed. The modelling framework that will be employed here

is a combination of finite elasticity and information theory [94–96, 196], and the

stochastic method developed in [129] can be employed to construct constitutive

models similar to those illustrated throughout this work. Numerical computations

were carried out in MATLAB, where specific use was made of inbuilt functions for

random number generation. Namely, “gamrnd” was used to generate the Gamma

distributed random variables and “gamcdf” to generate the Gamma cumulative

distribution function.

We begin in Chapter 2 with an outline of the prerequisite knowledge required,

firstly from finite elasticity in Section 2.1, and then from probability theory in

Section 2.3. A brief exploration of important results within the field of quasi-

equilibrated motion is presented in Section 2.2, providing the foundations for the

analysis to follow in Chapter 6. Chapter 3 explores the calibration procedure for

stochastic isotropic incompressible hyperelastic models. A set of model assump-

tions is presented in Section 3.1, followed by a practical example of applying the
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1.3. AIMS AND OUTLINE OF THIS THESIS

calibration procedure to rubberlike materials, using data obtained in [170], to ob-

tain the probability distribution of the random shear modulus µ (Section 3.2).

The calibration procedure is then applied theoretically to models with multiple

terms in Section 3.3, before being applied to the more specific cases of models

with both two terms and one term, in Sections 3.4 and 3.5, respectively.

In Chapter 4, simple experiments are performed on manufactured silicone spec-

imens to observe variations arising in the data. Full details of the manufactured

material are found in Section 4.2.1, while specific descriptions of the experimental

set up and techniques used are given in Sections 4.2.2 and 4.2.3, respectively. Sec-

tion 4.3 contains information regarding the assumptions and ideas we are required

to adopt in order to use stochastic modelling to represent the data obtained in

the experiments (Section 4.3.1), the statistical tests that were applied to verify

how the data sets obtained in the experiments should be treated in terms of the

material modelling (Section 4.3.2), the calibration of the random Piola-Kirchhoff

shear stress of three different material models to the experimental data obtained

for the rubber material under uniaxial stretch (Section 4.3.3), and details of how to

use Bayes’ theorem to select the best performing model to represent the obtained

data (Section 4.3.4).

Building on the general model calibration procedure outlined in Chapter 3,

some specific examples of deformations and instabilities of stochastic hyperelastic

bodies are explored in Chapter 5. Firstly, in Section 5.1, the conditions under

which a necking instability occurs for materials characterised by two-term Ogden

type models (Section 5.1.1), the Carroll model (Section 5.1.2), and the Gent-

Thomas model (Section 5.1.3), are determined. Section 5.2 then investigates the

behaviour observed in the inflation of spheres (Section 5.2.1) and cylinders (Sec-

tion 5.2.2), both in the deterministic case and stochastic case, respectively. The

limit-point instability criterion for both the spherical shells and cylindrical tubes

is also discussed within this chapter. This occurs when there is a change in the
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1.3. AIMS AND OUTLINE OF THIS THESIS

monotonicity of the internal pressure, in both the shells and tubes. Ultimately,

it is determined that, in an interval surrounding the deterministic critical value,

there is a percentage chance of the inflation that occurs being stable or unsta-

ble. It is possible to increase the probability of stable inflation by considering

sufficiently small values of the random parameter, below the deterministic critical

value obtained within the analysis presented. An examination of the cavitation

problems of incompressible spheres of stochastic isotropic hyperelastic material

under radial tensile dead loads is then presented in Section 5.3, with the stability

of the cavitation in both the deterministic and stochastic cases being the main

topic of discussion. In the case of a stochastic material, there is a probabilistic

interval, containing the deterministic critical value found during the analysis, in

which there is always a competition between the stable and unstable states, as

they both have a quantifiable chance of being found. Within this interval a cav-

ity may form, with a given probability, under smaller or greater loads than the

expected critical value.

The techniques developed throughout Chapter 5 are then extended and applied

to dynamic finite deformations of stochastic hyperelastic solids in Chapter 6. The

likely oscillation of stochastic hyperelastic solids is explored, then applied to in-

vestigate the generalised shear motion of stochastic hyperelastic cuboids (Section

6.1), the quasi-equilibrated radial-axial motion of a stochastic hyperelastic cylin-

drical tube (Section 6.2), with applications to a cylindrical tube made of stochastic

Mooney-Rivlin material, and the quasi-equilibrated radial motion of a stochastic

hyperelastic spherical shell (Section 6.3), with applications to a spherical shell

made of stochastic neo-Hookean material. The dynamic radial and radial-axial

deformations of the spherical shells and cylindrical tubes, respectively, are also

presented within these sections and, ultimately, it is determined that the ampli-

tude and period of the oscillation of these stochastic bodies are characterised by

probability distributions.
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Potential directions for future research within the area of stochastic modelling

are discussed in Chapter 7, whilst a formal conclusion to this research is provided

in Chapter 8.
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Chapter 2

Prerequisites

We begin by introducing some well-known results from finite elasticity theory,

probability and statistics, in Sections 2.1 and 2.3, respectively, that will be relied

upon in the upcoming chapters, and also some background material on quasi-

equilibrated motion (Section 2.2), providing a foundation for the analysis presented

in Chapter 6.

2.1 Finite elasticity theory

In general terms, the main objective of finite elasticity theory is to predict changes

that occur in the geometry of solid bodies upon the addition of forces. Finite

elasticity theory covers the simplest case where forces only depend on the current

deformation of the material and not on its history, and is based on average data

values. Here, as previously presented in [151], some of the key results relied upon

throughout this work are introduced.

A one-to-one mapping, χ, takes place between the reference (Lagrangian, ma-

terial) configuration, B0, with Cartesian coordinates (X1, X2, X3), and the current

(Eulerian, spatial) configuration, B, with Cartesian coordinates (x1, x2, x3), which

defines the deformation of the body in question [129]. This concept is demon-

strated in Figure 2.1.
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2.1. FINITE ELASTICITY THEORY

B0

B

current

configuration

reference

configuration

P

Figure 2.1: A typical deformation diagram representing a one-to-one mapping
between the reference configuration and the current configuration.

Consider a unit cube of homogeneous isotropic incompressible hyperelastic

material. In this context, the following definitions apply:

Definition 2.1.1 A material is said to be homogeneous if there exists a refer-

ence configuration such that all of the material particles respond in the same way

to the deformations described with respect to this configuration. In other words, it

is a deformation for which all measures of strain and rotation are constant.

Definition 2.1.2 A material is said to be isotropic if it has the same mechanical

properties in all directions.

Definition 2.1.3 A material is said to be incompressible if it can undertake

only volume preserving (isochoric) deformations.

Definition 2.1.4 The gradient tensor governs the deformation χ (see Figure

2.1), and is defined as:

F = ∇χ =


∂χ1

∂X1

∂χ1

∂X2

∂χ1

∂X3

∂χ2

∂X1

∂χ2

∂X2

∂χ2

∂X3

∂χ3

∂X1

∂χ3

∂X2

∂χ3

∂X3

 . (2.1.1)
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The transpose of F is

FT =


∂χ1

∂X1

∂χ2

∂X1

∂χ3

∂X1

∂χ1

∂X2

∂χ2

∂X2

∂χ3

∂X2

∂χ1

∂X3

∂χ2

∂X3

∂χ3

∂X3

 . (2.1.2)

Definition 2.1.5 Hyperelastic materials are a class of material models that

are described by a strain energy density, W (F), that depends on the deformation

gradient tensor, F, with respect to a fixed reference configuration, and is charac-

terised by a set of deterministic model parameters [70, 151, 209].

Definition 2.1.6 The right Cauchy-Green tensor C = FTF is a measure of

the deformation in the reference configuration. The left Cauchy-Green tensor

B = FFT is a measure of the deformation in the current configuration.

Definition 2.1.7 The principal invariants satisfy

I1(B) = tr B = I1(C), (2.1.3)

I2(B) =
1

2
[(tr B)2 − tr (B2)] = tr (Cof B) = I2(C), (2.1.4)

I3(B) = det B = I3(C). (2.1.5)

Definition 2.1.8 The principal invariants can be equivalently expressed in terms

of the principal stretches:

I1(B) = λ2
1 + λ2

2 + λ2
3, I2(B) = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, I3(B) = λ2

1λ
2
2λ

2
3.

(2.1.6)

Definition 2.1.9 The deformation of the area is described in terms of the cofactor

Cof F = det (F)F−T .
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2.1. FINITE ELASTICITY THEORY

Definition 2.1.10 The Jacobian J describes the deformation of the volume, and

is defined as J = det F. It is related to the Cauchy-Green tensors as follows;

det C = det B = J2. (2.1.7)

Definition 2.1.11 The Cauchy stress tensor describes the force per unit area

in the current configuration, and for an incompressible material is given by

σ = −pI + β1B + β−1B
−1, (2.1.8)

where I is the identity tensor,p is the Lagrange multiplier associated with the in-

compressibility condition (det F = 1), and the constitutive coefficients are given

by

β1 =
1

λ2
1 − λ2

2

(
λ2

1 + λ2
3

λ1

∂W
∂λ1

− λ2
2 + λ2

3

λ2

∂W
∂λ2

)
(2.1.9)

and

β−1 =
1

λ2
1 − λ2

2

(
1

λ1

∂W
∂λ1

− 1

λ2

∂W
∂λ2

)
, (2.1.10)

where, in the case of isotropic materials, W (F) =W(λ1, λ2, λ3).

Definition 2.1.12 The 1st Piola-Kirchhoff stress tensor represents the in-

ternal force per unit area acting within the deformed solid (in other words, within

the reference configuration):

P =
F

A
= σ

a

A
, (2.1.11)

where A is the cross-sectional area in the reference configuration.

The way in which these definitions are applied to a practical problem will now

be demonstrated in the following example:

Consider a unit cube of an isotropic incompressible material, subject to the

following homogeneous deformation, consisting of a simple shear superposed on a
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finite axial stretch [48,163]:

x1 =
X1√
a

+ kaX2, x2 = aX2, x3 =
X3√
a
, (2.1.12)

where (X1, X2, X3) and (x1, x2, x3) are the Cartesian coordinates for the reference

and the current configuration, respectively, and k > 0 and a > 0 are positive

constants representing the shear parameter and the axial stretch. In the case of

axial compression, we have 0 < a < 1, and in the case of axial tension, we have

a > 1.

Ericksen’s Theorem [180] states that a deformation of an arbitrary homoge-

neous isotropic hyperelastic body can be maintained by the application of surface

tractions only, or without body forces, if and only if it is a homogeneous deforma-

tion in the Cartesian coordinates. In this coordinate system also, the deformation

gradient F is constant. Figure 2.2 serves to demonstrate this concept.

Figure 2.2: A demonstration of the stretching and shearing of a unit cube.

For the homogeneous deformation (2.1.12), the constant deformation gradient

tensor is given by

F =


1/
√
a ka 0

0 a 0

0 0 1/
√
a

 , (2.1.13)
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and the corresponding left Cauchy-Green tensor is then

B =


k2a2 + 1/a ka2 0

ka2 a2 0

0 0 1/a

 . (2.1.14)

The stretches {λi}i=1,2,3, such that {λ2
i }i=1,2,3 are the eigenvalues of the left

Cauchy-Green tensor B, satisfy

λ2
1 =

1 + a3(1 + k2) +
√

[1 + a3(1 + k2)]2 − 4a3

2a
, (2.1.15)

λ2
2 =

1 + a3(1 + k2)−
√

[1 + a3(1 + k2)]2 − 4a3

2a
, (2.1.16)

λ2
3 =

1

a
. (2.1.17)

The constitutive coefficients of the Cauchy stress tensor (2.1.8) are given in

(2.1.9) and (2.1.10) where, in the case of isotropic materials, W (F) =W(λ1, λ2, λ3),

i.e. the strain-energy function is a symmetric function of the principal stretches

{λi}i=1,2,3 of F. Then the nonzero components of the Cauchy stress tensor in

Cartesian coordinates are

σ11 = σ33 + k2a2β1, (2.1.18)

σ12 = ka2

(
β1 −

β−1

a

)
, (2.1.19)

σ22 = σ33 +

(
a2 − 1

a

)(
β1 −

β−1

a

)
+ k2aβ−1, (2.1.20)

σ33 = −p+
β1

a
+ aβ−1. (2.1.21)

The principal components (or principal eigenvalues) of the Cauchy stress tensor

are given by [209]

σi = −p+ β1λ
2
i + β−1λ

−2
i , i = 1, 2, 3. (2.1.22)
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There are two points to make before proceeding to develop an expression for the

nonlinear shear modulus. Firstly, the stresses in the material body are constant

given a homogeneous deformation of the form defined in (2.1.12). Secondly, the

1st Piola-Kirchhoff stress tensor associated with the Cauchy stress tensor (2.1.22),

representing the force per unit area in the reference configuration, is defined as

[209]

P = JσF−T , (2.1.23)

where J is the Jacobian. A demonstration of the practical application of the

1st Piola-Kirchoff stress tensor will be presented in Chapter 4, in terms of the

modelling of data obtained in simple experiments on silicone. The important

point to note here is that the shear component of the 1st Piola-Kirchhoff stress

tensor;

P12 =
σ12

a
, (2.1.24)

is proportional to the shear strain ka.

The above observations justify the introduction of the nonlinear shear modulus

[128];

µ(a, k) =
P12

ka
=
σ12

ka2
= β1 −

β−1

a
. (2.1.25)

This modulus is a function of the deformation, is independent of the Lagrange

multiplier p, and can be estimated directly from experimental observations if the

shear force is known. Equivalently, by the representation (2.1.22) of the principal

Cauchy stresses, the nonlinear shear modulus (2.1.25) can be expressed as [128]

µ(a, k) =
σ1 − σ2

λ2
1 − λ2

2

. (2.1.26)

This modulus is always positive, assuming that the following Baker-Ericksen in-

equalities hold [209];

(σi − σj)(λi − λj) > 0 if λi 6= λj, i, j = 1, 2, 3. (2.1.27)
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(See Section 3.1 for further details).

When a → 1 in the deformation (2.1.12), simple shear is superposed on an

infinitesimal axial stretch. Consequently, the nonlinear shear modulus (2.1.25)

converges to the nonlinear shear modulus for simple shear,

µ̂(k) = lim
a→1

µ(a, k) = β̂1 − β̂−1, (2.1.28)

where β̂1 = lima→1 β1 and β̂−1 = lima→1 β−1, and the corresponding principal

stretches are λ̂i = lima→1 λi, i = 1, 2, 3.

Similarly, when k → 0, the deformation (2.1.12) becomes an infinitesimal shear

superposed on a finite axial stretch. In this case, the nonlinear shear modulus

(2.1.25) converges to

µ̃(a) = lim
k→0

µ(a, k) = β̃1 −
β̃−1

a
, (2.1.29)

where β̃1 = limk→0 β1 and β̃−1 = limk→0 β−1, and the principal stretches are

λ̃i = limk→0 λi, i = 1, 2, 3.

Assuming that limits can be taken independently and, thus, orderings can be

swapped, the linear elastic limit (i.e. k → 0 and a → 1) is considered. In this

case, the moduli defined by (2.1.25), (2.1.28) and (2.1.29) converge to the classical

shear modulus from the infinitesimal theory [209];

µ̄ = lim
a→1

lim
k→0

µ(a, k) = lim
k→0

µ̂(k) = lim
a→1

µ̃(a) = β̄1 − β̄−1, (2.1.30)

where β̄1 = lima→1 limk→0 β1 and β̄−1 = lima→1 limk→0 β−1, and the principal

stretches are given by λ̄i = limk→0 λi, i = 1, 2, 3.

For the shear moduli µ̂(k), µ̃(a) and µ̄, the nonlinear shear modulus at small
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shear superposed on finite axial stretch can be written as

µ̃(a) =
n∑
p=1

Cpgp(a), (2.1.31)

where Cp, p = 1, · · · , n, are the coefficients independent of the deformation, and

gp(a), p = 1, · · · , n, are functions of the stretch parameter a > 0. Similarly, under

simple shear, the nonlinear shear modulus is of the form

µ̂(k) =
n∑
p=1

Cphp(k), (2.1.32)

where hp(k), p = 1, · · · , n, are functions of the shear parameter k > 0.

This background knowledge of finite elasticity theory will provide the founda-

tions for the analysis of stochastic material modelling presented in later chapters.

2.2 Quasi-equilibrated motion

In this section, the concept of (universal) quasi-equilibrated motion in finite elas-

ticity, introduced in [208] and reviewed in [209], is evoked, and an outline of the

stochastic finite elasticity framework developed in [129], and applied to various

static stability problems in [130,132,133], is presented.

For the large strain time-dependent behaviour of an elastic solid, Cauchy’s

laws of motion (balance laws of linear and angular momentum) are governed by

the following Eulerian field equations [209, p. 40];

ρẍ = div σ + ρb, (2.2.1)

σ = σT , (2.2.2)

where x = χ(X, t) is the motion of the elastic solid, ρ is the material density,

which is assumed to be constant, b = b(x, t) is the body force, and σ = σ(x, t)
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is the Cauchy stress tensor. In order to obtain possible dynamical solutions,

Cauchy’s equation for particular motions can be solved, or known static solutions

to dynamical forms can be generalised, using quasi-equilibrated motion, a concept

which can formally be defined as follows:

Definition 2.2.1 [209, p. 208] A quasi-equilibrated motion, x = χ(X, t), is the

motion of an incompressible homogeneous elastic solid subject to a given body force,

b = b(x, t), whereby, for each value of t, x = χ(X, t) defines a static deformation

that satisfies the equilibrium conditions under the body force b = b(x, t).

The subsequent theorem then follows:

Theorem 2.2.2 [209, p. 208] A quasi-equilibrated motion, x = χ(X, t), of an

incompressible homogeneous elastic solid subject to a given body force, b = b(x, t),

is dynamically possible, subject to the same body force, if and only if the motion

is circulation preserving with a single-valued acceleration potential ξ, i.e.

ẍ = −grad ξ. (2.2.3)

For the condition (2.2.3) to be satisfied, it is necessary that

curl ẍ = 0. (2.2.4)

Then the Cauchy stress tensor takes the form

σ = −ρξI + σ(0), (2.2.5)

where σ(0) is the Cauchy stress for the equilibrium state at time t and I =

diag(1, 1, 1) is the identity tensor. In this case, the stress field is determined by

the present configuration alone. In particular, the shear stresses in the motion are

the same as those of the equilibrium state at time t.
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Proof: The Cauchy stress σ(0) for the equilibrium state under the body force

b = b(x, t) at time t satisfies

−div σ(0) = ρb. (2.2.6)

Firstly, we make the assumption that the motion x = χ(X, t) is quasi-equilibrated

under the body force b = b(x, t), and deduce that there is a single-valued function,

ξ, such that (2.2.3) holds. If the motion is quasi-equilibrated, then Definition 2.2.1

implies that, at any fixed time-instant t, the Cauchy stress takes the form (2.2.5),

where ξ = ξ(t) is a single-valued function of t. If we then substitute (2.2.5) into

(2.2.1), we obtain

ρẍ = −ρ grad ξ + div σ(0) + ρb. (2.2.7)

Then the equation stated in (2.2.3) follows from (2.2.6) and (2.2.7).

On the other hand, if (2.2.3) holds, with ξ a single-valued function, then sub-

stituting (2.2.3) and (2.2.6) into (2.2.1) yields the following result:

−ρ grad ξ = div
(
σ − σ(0)

)
, (2.2.8)

at any time-instant t. Following from (2.2.8), it can be observed that the Cauchy

stress σ takes the form (2.2.5). Hence, according to Definition 2.2.1, the motion

is quasi-equilibrated. 2

The theorem presented above may only be applicable to specific quasi-equilibrated

motions of specific materials. Regardless of this, in all elastic materials, for a

quasi-equilibrated motion to be dynamically possible under a given body force,

it is necessary, by Theorem 2.2.2, that the deformation is a possible equilibrium

state under that body force in all those materials, at every time instant. In order

to obtain quasi-equilibrated motions of isotropic materials subject only to surface
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tractions, we take the arbitrary constant in those deformations to be an arbitrary

function of time. Examples of this are the homogeneous motions that are pos-

sible in all homogeneous incompressible materials, and also those considered in

Sections 6.2 and 6.3 (for further information, see [209, p. 209]).

2.3 Probability and statistics

Some of the main concepts of probability and statistics that form the basis of the

analysis presented in later sections regarding the stochastic modelling of materials

will now be defined. For further details, see [74,96,101].

Definition 2.3.1 A random variable is a function X : Ω → R with the prop-

erty that {ω ∈ Ω : X(ω) ≤ x} ∈ F , where F is the event space, for each x ∈ R.

Such a function is said to be F-measurable.

Definition 2.3.2 The random variable X is called discrete if it takes values in

some countable subset {x1, x2, ...}, only, of R. The discrete random variable X

has probability mass function f : R→ [0, 1] given by f(x) = P(X = x).

Definition 2.3.3 The random variable X is called continuous if its distribution

function can be expressed as

F (x) =

∫ x

−∞
f(u)du, x ∈ R,

for some integrable function f : R→ [0,∞).

Definition 2.3.4 The integrable function f : R→ [0,∞) is called the probabil-

ity density function of X.

Definition 2.3.5 The expectation of a random variable X (also called the mean
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value of X) can be defined as follows;

E[X] =


∑

x∈S xf(x), X discrete;∫∞
−∞xf(x) dx, X continuous,

where S is the sample space and f(x) is the probability mass function in the case

where X is discrete, and the probability density function in the case where X is

continuous.

Definition 2.3.6 The variance of a random variable X is defined as;

Var (X) = E[X2]− E[X]2.

Definition 2.3.7 The standard deviation of a random variable X is defined

to be the square root of the variance;

‖X‖ =
√

Var (X).

Definition 2.3.8 The covariance of random variables X and Y intuitively de-

scribes how X and Y vary together, and is mathematically defined as

Cov [X, Y ] = E[(X − E[X])(Y − E[Y ])].

Definition 2.3.9 The correlation coefficient, defined as

corr [X, Y ] =
Cov [X, Y ]√

Var (X)Var (Y )
,

is a scale invariant measure of how X and Y co-vary.

Definition 2.3.10 The coefficient of variation is defined as the ratio of the
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standard deviation of a random variable X to its expectation;

Cv =
‖X‖
E[X]

.

All of the definitions presented here will be of various degrees of use within the

analysis presented in the sections comprising Chapter 3, and provide a foundation

for the investigations outlined in later chapters of this work.
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Chapter 3

Stochastic isotropic

incompressible hyperelastic

models: explicit calibration

In this chapter, an explicit calibration procedure for stochastic isotropic incom-

pressible hyperelastic models is presented. A set of model assumptions is given in

Section 3.1, with an outline of the strain-energy function the material in question

follows, and also various constraints on the parameters in the expression for the

random shear modulus and auxiliary random variables. Following this, in Section

3.2, an application of the calibration procedure is demonstrated in terms of rub-

berlike materials. Using data obtained in [170], explicitly stated in Table 3.1, the

probability distribution of the random shear modulus µ is established.

The assumptions stated in Section 3.1 provide the foundation for the two-step

calibration procedure developed in Section 3.3 for models with multiple terms,

which is then specialised in Sections 3.4 and 3.5, for models with two terms and one

term, respectively. In the first step of the calibration procedure, the mean value

of the nonlinear shear modulus is determined. Then, in step two, the probability

distribution followed by the nonlinear shear modulus is found, using the mean

value of the nonlinear shear modulus determined in the previous step. In the
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case of models with multiple-terms, this process is extended in order to determine

expressions for the variance and covariance of the random coefficients C1 and C2,

in terms of the parameters of the Gamma and Beta distributions.

3.1 Model assumptions

Firstly, it is of fundamental importance to recall that a hyperelastic model is de-

scribed by a strain-energy function W (F) that depends on the deformation gradi-

ent tensor, F, with respect to a fixed reference configuration, and is characterised

by a set of deterministic model parameters (see Section 2.1) [70, 151, 209]. In

contrast to this, a stochastic hyperelastic model is defined by a stochastic strain-

energy function, for which the model parameters are random variables that satisfy

standard probability laws [129, 194–196]. Notably, each model parameter is de-

scribed in terms of the first and second statistical moments, namely, the mean

value and the variance, respectively, which are usually adequate for the approxi-

mation in numerous practical circumstances [39,89,121] (see Section 2.3). Here, a

combination of finite elasticity and information theory will be relied upon, along

with the following general hypotheses [129,130,133]:

(A1) Material objectivity: The principle of material objectivity (or frame indif-

ference) states that constitutive equations must be invariant under changes

of frame of reference. It requires that the scalar strain-energy function,

W = W (F), depending only on the deformation gradient F, with respect

to the reference configuration, is unaffected by a superimposed rigid-body

transformation (which involves a change of position) after deformation, i.e.

W (RTF) = W (F), where R ∈ SO(3) is a proper orthogonal tensor (rota-

tion). Material objectivity is guaranteed by considering strain-energy func-

tions defined in terms of invariants.

(A2) Material isotropy: The principle of isotropy requires that the strain-energy
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function is unaffected by a superimposed rigid-body transformation prior

to deformation, i.e. W (FQ) = W (F), where Q ∈ SO(3). For isotropic

materials, the strain-energy function is a symmetric function of the principal

stretches {λi}i=1,2,3 of F, i.e. W (F) =W(λ1, λ2, λ3).

(A3) Baker-Ericksen inequalities: In addition to the fundamental principles of ob-

jectivity and material symmetry, in order for the behaviour of a hyperelastic

material to be physically realistic, there are some universally accepted con-

straints on the constitutive equations. Specifically, for a hyperelastic body,

the Baker-Ericksen (BE) inequalities are [17,120];

(σi − σj) (λi − λj) > 0 if λi 6= λj, i, j = 1, 2, 3, (3.1.1)

where {λi}i=1,2,3 and {σi}i=1,2,3 denote the principal stretches and the princi-

pal Cauchy stresses, respectively, and the strict inequality “>” is replaced by

“≥” if any two principal stretches are equal [17, 120]. In other words, these

inequalities state that the greater principal (Cauchy) stress occurs in the di-

rection of the greater principal stretch. Under these mechanical constraints,

the shear modulus of the material, under finite strains, is positive [127]. Fur-

thermore, either the positive or the negative Poynting effect can occur in a

material for which the BE inequalities hold [124, 125, 127, 133]. Concisely,

the Poynting effect is a nonlinear elastic effect observed when an elastic cube

is sheared between two plates and stress is developed in the direction normal

to the sheared faces, or when a cylinder is subjected to torsion and the axial

length changes [93, 136,158,171,207].

(A4) Finite mean and variance for the random shear modulus: For any given

deformation, the random shear modulus, µ, and its inverse, 1/µ, are assumed

to be second-order random variables. In other words, this means that they

have a finite mean value and finite variance [194–196].
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Assumptions (A1)-(A3) are well-known principles in isotropic finite elasticity [70,

151,209], while (A4) contains physically realistic expectations on the random shear

modulus, which will be drawn from a probability distribution.

Specifically, attention here is focused on stochastic incompressible hyperelastic

materials characterised by the following strain-energy function [129,194,196];

W(λ1, λ2, λ3) =
µ1

2m2

(
λ2m

1 + λ2m
2 + λ2m

3 − 3
)

+
µ2

2n2

(
λ2n

1 + λ2n
2 + λ2n

3 − 3
)
,

(3.1.2)

with distributions to be defined, where m and n are deterministic constants, and

µ1 and µ2 are random parameters. The random shear modulus for infinitesimal

deformations of these stochastic models is defined as µ = µ1 +µ2, which is consis-

tent with the purely elastic theory [127]. In this case, the BE inequalities (3.1.1)

are equivalent to

(
λ1
∂W
∂λ1

− λ2
∂W
∂λ2

)
(λ1 − λ2) > 0 if λi 6= λj, i, j = 1, 2, 3, (3.1.3)

with the strict inequality “>” being replaced by “≥” if any two principal stretches

are equal.

For the stochastic materials described by (3.1.2), condition (A4) is guaranteed

by the following constraints on the expected values [129,133,194–196]:


E [µ] = µ > 0,

E [log µ] = ν, such that |ν| < +∞,
(3.1.4)

i.e. the mean value µ of the shear modulus, µ, is fixed and greater than zero,

and the mean value of log µ is fixed and finite, implying that both µ and 1/µ

are second-order random variables, i.e. they have finite mean and finite variance

[187, 188]. These expected values are then used to find the maximum likelihood

probability for the random shear modulus, µ, with mean value µ, and standard
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deviation ‖µ‖ =
√

Var[µ], defined as the square root of the variance, Var[µ].

Critically, under the constraints (3.1.4), and by the Maximum Entropy Principle

(see Appendix B), µ follows a Gamma probability distribution [187, 188], with

hyperparameters ρ1 > 0 and ρ2 > 0 satisfying

µ = ρ1ρ2 and ‖µ‖ =
√
ρ1ρ2. (3.1.5)

The corresponding probability density function takes the form [1,100]

g(µ; ρ1, ρ2) =
µρ1−1e−µ/ρ2

ρρ12 Γ(ρ1)
, for µ > 0 and ρ1, ρ2 > 0, (3.1.6)

where Γ : R∗+ → R is the complete Gamma function

Γ(z) =

∫ +∞

0

tz−1e−tdt. (3.1.7)

Setting a constant deterministic value b > −∞, such that µi > b, i = 1, 2 (for

example, b = 0 if µ1 > 0 and µ2 > 0, although b is not unique in general), the

auxiliary random variable can be defined as follows [129]:

R1 =
µ1 − b
µ− 2b

, (3.1.8)

where 0 < R1 < 1, and the set {R1, 1 − R1} forms a complete probability distri-

bution. The random model parameters can then be expressed equivalently as

µ1 = R1(µ− 2b) + b, µ2 = µ− µ1 = (1−R1)(µ− 2b) + b. (3.1.9)

Under the following constraints [129,194–196]


E [log R1] = ν1, such that |ν1| < +∞,

E [log (1−R1)] = ν2, such that |ν2| < +∞,
(3.1.10)
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and by the Maximum Entropy Principle (see Appendix B), the random variable

R1, with mean value R1 and standard deviation ‖R1‖ =
√

Var [R1], follows a

standard Beta distribution [1, 100], with hyperparameters ξ1 > 0 and ξ2 > 0

satisfying

R1 =
ξ1

ξ1 + ξ2

and ‖R1‖2 = Var [R1] =
ξ1ξ2

(ξ1 + ξ2)2 (ξ1 + ξ2 + 1)
. (3.1.11)

The corresponding probability density function takes the form

β(r; ξ1, ξ2) =
rξ1−1(1− r)ξ2
B(ξ1, ξ2)

, for r ∈ (0, 1) and ξ1, ξ2 > 0, (3.1.12)

where B : R∗+ × R∗+ → R is the Beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt. (3.1.13)

For the random parameters given by (3.1.9), the corresponding mean values then

take the form

µ
1

= R1(µ− 2b) + b, µ
2

= µ− µ
1

= (1−R1)(µ− 2b) + b, (3.1.14)

and the variances and covariance are, respectively,

Var [µ1] = (µ− 2b)2 Var [R1] + (R1)2 Var [µ] + Var [µ] Var [R1], (3.1.15)

Var [µ2] = (µ− 2b)2 Var [R1] + (1−R1)2 Var [µ] + Var [µ] Var [R1], (3.1.16)

Cov [µ1, µ2] =
1

2
(Var [µ]− Var [µ1]− Var [µ2]) . (3.1.17)

When ρ1 ≈ 1, the probability distribution (3.1.6) reduces to an exponential
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distribution;

g2(µ; ρ2) =
e−µ/ρ2

ρ2

, for µ > 0 and ρ2 > 0. (3.1.18)

In this case, the mean value, µ, and standard deviation, ‖µ‖ (3.1.5), take com-

parable values. In practical applications, a situation of this kind may arise, for

example, when the sampled data contain a lot of noise.

3.2 Rubberlike materials

We now apply the above theory to the specific example of materials of a rubberlike

nature, based on the data obtained in [170].

Pioneering the research in this area were Rivlin and Saunders (1951) [170],

who reported the first experimental data in large deformations for a material

of a rubberlike nature. Taking these data into consideration, and making the

assumption that such a material can be described by the stochastic hyperelastic

model (3.1.2) under sufficiently small deformations, the probability distribution for

the random shear modulus, µ = µ1+µ2, for this material is derived (see Figure 3.1).

The assumption stated above is made in order to provide examples of probability

distributions based on real data measurements, without attempting to optimise a

specific hyperelastic strain-energy function to the given data. As further examples,

deterministic hyperelastic models calibrated to mean data values for rubberlike

materials under finite deformations were put forward in [49,82,126,152,200,210],

statistical models were derived computationally from artificially generated data

in [39, 142], while explicit stochastic hyperelastic models based on available data

sets consisting of mean values and standard deviations were detailed in [129].

The chosen data values are recorded in Table 3.1, with the Gamma proba-

bility distribution fitted to the shear modulus data, together with the normal

distribution derived from the Gamma distribution, and also the standard normal
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Figure 3.1: Probability distributions derived from the data values for the random
shear modulus, µ = µ1 + µ2, given in Table 3.1. Left: the Gamma distribu-
tion takes the form (3.1.6). The parameters for this distribution, along with the
normal distributions presented here, are recorded in Table 3.2. Right: the Beta
distribution takes the form (3.1.12), with parameters recorded in Table 3.3.

distribution fitted to the data, represented in Figure 3.1. Examining these dis-

tributions, it is noticeable that there is a distinct similarity between the Gamma

and normal distributions in this case. For each probability distribution, the mean

value µ and standard deviation ‖µ‖ are recorded in Table 3.2. For the normal

distribution derived from the Gamma distribution, the mean value and standard

deviation are given by (3.1.5), as for the Gamma distribution. For the auxiliary

random variable R1 = µ1/µ, the mean value R1 and standard deviation ‖R1‖ are

provided in Table 3.3.

Table 3.1: Experimental data for rubberlike material under sufficiently small de-
formations, with the values of µ1/2 and µ2/2 selected from Tables 1 and 2 of [170].

λ1 1.90 1.80 1.70 1.90 1.80

λ2 1.07 1.25 1.39 1.02 1.09

µ1/2 (kg/cm2) 1.77 1.89 2.01 1.68 1.76

µ2/2 (kg/cm2) 0.20 0.23 0.21 0.29 0.21

µ = µ1 + µ2 (kg/cm2) 3.94 4.24 4.44 3.94 3.94
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Table 3.2: Parameters of the probability distributions derived from the data values
for the random shear modulus, µ = µ1 + µ2, given in Table 3.1.

Probability density function (pdf) µ ‖µ‖ ρ1 ρ2

Gamma pdf fitted to data 4.0907 0.2037 405.0214 0.0101

Normal pdf derived from Gamma pdf 4.0907 0.2037 - -

Normal pdf fitted to data 4.0907 0.2302 - -

Table 3.3: Parameters of the probability distribution for the random variable
R1 = µ1/µ derived from the data values provided in Table 3.1.

Probability density function (pdf) R1 ‖R1‖ ξ1 ξ2

Beta pdf fitted to data 0.8883 0.0175 287.2297 36.1194

3.3 Multiple-term models

The calibration procedure for models with n terms, where n > 2, will now be

presented [129]. In stochastic modelling, the measured standard deviation is con-

sidered, as well as the mean value of the modulus provided for each of the m

stretches. This differs from the deterministic approach, in which only one mean

value of the modulus for each of the stretches would be required. As a result, we

assume that the given data consist of mean values {µ̃
s
}s=1,··· ,m, and the associ-

ated standard deviations {ds}s=1,··· ,m of the nonlinear shear modulus (2.1.29) at

the prescribed stretches {as}s=1,··· ,m. Here, a two-step procedure used to calibrate

these models is presented, with the objectives of each step outlined at the outset.

Step 1: We begin by approaching the problem from the traditional determin-

istic angle [36,126,127,152]. The objective here is to determine the mean value of

the nonlinear shear modulus (2.1.29), and any other unknown constant parameter

which appears in the expression for the strain-energy function, by minimising the
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residual function

Rmean =

√√√√ m∑
s=1

(
µ̃(as)− µ̃s

)2

, (3.3.1)

between the mean nonlinear shear modulus µ̃ and the mean data values {µ̃
s
}s=1,··· ,m

at the prescribed stretches {as}s=1,··· ,m, resulting in the determination of the mean

values {Cp}p=1,··· ,n of the random constant coefficients {Cp}p=1,··· ,n, for the mean

value of the nonlinear shear modulus

µ̃(a) = lim
k→0

µ(a, k). (3.3.2)

The mean value of the random shear modulus (3.3.2) is defined as

µ̃(a) =
n∑
p=1

Cpgp(a), (3.3.3)

where gp(a), p = 1, · · · , n, are functions of the stretch parameter a > 0, and are

defined in (2.1.31).

The mean shear modulus in the linear elastic limit is given by

µ̄ = lim
a→1

µ̃(a) = µ̃(1). (3.3.4)

Step 2: The aim in this step is to determine the probability distribution that

the nonlinear shear modulus µ̃ follows, using the mean value of µ̃ established in

the first step. To achieve this, we need to calibrate the variance of the nonlinear

shear modulus (2.1.29), which is defined as

Var [µ̃(a)] =
n∑
p=1

Var [Cp]gp(a)2 + 2
n∑

p1=1

(
n∑

p2=p1+1

Cov [Cp1 , Cp2 ]gp1(a)gp2(a)

)
,

(3.3.5)

where Var [Cp] denotes the variance of Cp, and Cov [Cp1 , Cp2 ] denotes the covari-

ance between Cp1 and Cp2 . Consequently, (3.3.5) and the nonlinear shear modulus
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(3.3.2) lead to an expression for the standard deviation of µ̃;

‖µ̃(a)‖ =
√

Var [µ̃(a)]. (3.3.6)

Next, the optimal coefficients Var [Cp] are computed by minimising the residual

Rstd =

√√√√ m∑
s=1

(
‖µ̃(as)‖ − ds

)2

, (3.3.7)

between the standard deviation (3.3.6) and the associated data {ds}s=1,··· ,m, at the

prescribed data {as}s=1,··· ,m. We seek to determine the probability distribution for

the coefficients Cp given the variance. The stretch parameter is then fixed to a

convenient value, a0 > 0, that is used for calibration.

Our attention is now restricted to the linear case, described by the nonlinear

shear modulus µ̃(a0) = µ̄, which is a random variable. It is assumed that each

random coefficient Cp > 0, p = 1, · · · , n, has the form Cp = µ̄Rp, p = 1, · · · , n,

where the random variable Rp, p = 1, · · · , n, follows a Beta distribution, β(ξp, χp),

with ξp > 0 and χp =
∑n

q=1,q 6=p ξp > 0, p = 1, · · · , n. The expressions for the

mean value and the variance of Rp, denoted by Rp and Var [Rp], p = 1, · · · , n,

respectively, then satisfy

Rp =
ξp

ξp + χp
(3.3.8)

and

Var [Rp] =
R2
pχp

ξp(ξp + χp + 1)
, (3.3.9)

where

χp =
n∑

q=1, q 6=p

ξq, (3.3.10)

respectively. For each random coefficient Cp, p = 1, · · · , n, the mean value is given

by the expression

Cp = µ̄Rp =
ρ1ρ2ξp
ξp + χp

, (3.3.11)
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and the variance of Cp, p = 1, · · · , n, is given by

Var [Cp] = µ̄2 Var [Rp] +R2
p Var [µ̄] + Var [µ̄] Var [Rp]

=
ρ1ρ

2
2ξp(ξ

2
p + ξp + χp + ξpχp + χpρ1)

(ξp + χp)2(ξp + χp + 1)
.

(3.3.12)

The following mathematical expectations are then set [133,194–196];

E[µ̄] =
n∑
p=1

Cpgp(a0), µ̄ > 0, (3.3.13)

E[log µ̄] = ν, |ν| < +∞, (3.3.14)

where, by the constraint (3.3.13), the mean value of the nonlinear shear modulus,

given by µ̄ > 0, is fixed, and the logarithmic constraint (3.3.14) implies that both

the nonlinear shear modulus and its inverse, denoted by µ̄ and µ̄−1, respectively,

are second-order random variables, so they have a finite mean and variance. The

expectations (3.3.13) and (3.3.14) can now be implemented to determine the type

of probability distribution that the nonlinear shear modulus µ̄ follows. For the

sake of simplicity, an assumption is made that the shear modulus is equal to

µ̄ =
n∑
p=1

Cp, (3.3.15)

and that it follows a Gamma distribution, Γ(ρ1, ρ2), with ρ1, ρ2 > 0 satisfying

µ̄ = ρ1ρ2 (3.3.16)

and

Var [µ̄] = ρ1ρ
2
2, (3.3.17)

where µ̄ denotes the mean value of the shear modulus µ̄, and Var [µ̄] is the variance

of µ̄.
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Extending this further, it can be determined that

Var [µ̄− Cp] =
ρ1ρ

2
2χp(χ

2
p + ξp + χp + ξpχp + ξpρ1)

(ξp + χp)2(ξp + χp + 1)
, p = 1, · · · , n, (3.3.18)

and the covariance of Cp and µ̄− Cp, p = 1, · · · , n, is

Cov [Cp, µ̄− Cp] =
1

2
(Var [µ̄]− Var [Cp]− Var [µ̄− Cp])

=
ρ1ρ

2
2ξpχp(ξp + χp − ρ1)

(ξp + χp)2(ξp + χp + 1)
.

(3.3.19)

Letting ξij = ξi + ξj and χij =
∑n

q=1,q 6=i,j ξq, the expressions for the variance of

Ci + Cj and the covariance of Ci and Cj are

Var [Ci + Cj] =
ρ1ρ

2
2ξij(ξ

2
ij + ξij + χij + ξijχij + χijρ1)

(ξij + χij)2(ξij + χij + 1)
, (3.3.20)

and

Cov [Ci, Cj] =
1

2
(Var [Ci + Cj]− Var [Ci]− Var [Cj]), (3.3.21)

respectively.

For the random vector R, the following constraints are used [194,196]:

E[log Rp] = νp, |νp| < +∞, p = 1, · · · , n. (3.3.22)

Subsequently, R follows a Beta distribution [1, 100], β(ξ1, ξ2), with parameters

ξp > 1, p = 1, · · · , n, satisfying

E[Rp] =
ξp
n∑
q=1

ξq

, p = 1, · · · , n. (3.3.23)

The expected values are then given by

E[Rp] = Rp, p = 1, · · · , n, (3.3.24)
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with Rp, p = 1, · · · , n, defined as in (3.3.8).

Further to this, it can also be determined that

Var [CiCj] = C2
i Var [Cj] + C2

j Var [Ci] + Var [Ci] Var [Cj] (3.3.25)

and

Var

[
Ci
Cj

]
=
C2
i

C2
j

(
Var [Ci]

C2
i

+
Var [Cj]

C2
j

− 2 Cov [Ci, Cj]

CiCj

)
. (3.3.26)

The results presented here provide general expressions that can be employed

in the explicit calibration of stochastic isotropic hyperelastic models with multiple

terms. We now specialise to the specific case of models with two terms.

3.4 Two-term models

Following the method structure set out in Section 3.3 for models with multiple

terms, in the more specific case of models with two terms, the procedure is as

follows:

Step 1: Here, we once again aim to determine the mean value of the nonlinear

shear modulus (2.1.29), and any other unknown constant parameter which appears

in the expression for the strain-energy function, by minimising the residual func-

tion (3.3.1), where m = 2 in this case, between the mean nonlinear shear modulus

µ̃ and the mean data values {µ̃
s
}s=1,2, at the prescribed stretches {as}s=1,2. The

mean values {Cp}p=1,2 of the random constant coefficients {Cp}p=1,2 can then be

determined for the mean value of the nonlinear shear modulus (3.3.2). We begin

by approaching this from the deterministic perspective [36,126,127,152].

The mean shear modulus in the linear elastic limit (3.3.4), in this case, takes

the form

µ̄ =
2∑
p=1

Cpgp(1) = C1g1(1) + C2g2(1) = C1 + C2, (3.4.1)
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where the functions gp(1), p = 1, 2, are defined in the expression for the nonlinear

shear modulus (2.1.31), which here yields

µ̃ = C1g1(1) + C2g2(1). (3.4.2)

Step 2: The probability distribution that the nonlinear shear modulus µ̄

follows in this case will now be determined, using the mean value of µ̄ established

in step one. An expression for the variance of µ̄ after defining the variance of the

nonlinear shear modulus is then determined.

For a two-term model, the expression for the variance (3.3.5) can be simplified

to give

Var [µ̃(a)] = Var [C1] g1(a)2 + Var [C2] g2(a)2 + 2 Cov [C1, C2] g1(a)g2(a). (3.4.3)

Equations (3.4.2) and (3.4.3) then lead to the following expression for the standard

deviation of µ̃;

‖C1g1(a) + C2g2(a)‖ =
√

Var [C1] g1(a)2 + Var [C2] g2(a)2 + 2 Cov [C1, C2] g1(a)g2(a).

(3.4.4)

Next, the optimal coefficients Var [Cp], p = 1, 2, are computed by minimising

the residual (3.3.7), with m = 2, between the standard deviation (3.4.4) and the

associated data {ds}s=1,2, at the prescribed stretches {as}s=1,2. In the case of two-

term models, we aim to determine the probability distribution for the coefficients

Cp, p = 1, 2, given the variance. To proceed, we fix the stretch parameter to a

convenient value, a0 > 0, to be used for calibration. Here, a0 = 1 is chosen. For

this chosen value of a0, the random shear modulus (3.4.2) is equal to

µ̄ =
2∑
p=1

Cpgp(1) = C1 + C2. (3.4.5)
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For the case in question, we have a0 = 1, and so

Rp(1) = gp(1)Cp(µ̄)−1 = Cp(µ̄)−1, p = 1, 2. (3.4.6)

Now (3.4.6) can be rewritten in terms of the random coefficients C1 and C2 using

(3.4.5). Thus, we obtain

Rp = Cp(C1 + C2)−1, p = 1, 2, (3.4.7)

and so the auxiliary random parameters can be expressed, at p = 1, 2, in terms of

the random coefficients C1 and C2, as

R1 =
C1

C1 + C2

and R2 =
C2

C1 + C2

. (3.4.8)

Note, here we have that R2 = 1 − R1, and so in this case, it is not necessary to

calculate R2 specifically, as it can be determined through the computation of R1.

These parameters are such that Rp > 0, p = 1, 2, and satisfy

2∑
p=1

Rp(a0) = 1, (3.4.9)

where a0 = 1. By (3.4.7), the random coefficients are

Cp = Rp(C1 + C2), p = 1, 2. (3.4.10)

Using (3.4.5), expression (3.4.10) can be rewritten as

Cp = Rpµ̄, p = 1, 2. (3.4.11)

Therefore, the random coefficients can be expressed as

C1 = R1µ̄ and C2 = (1−R1)µ̄. (3.4.12)
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For the random nonlinear shear modulus µ̃(a0) = µ̄, the mathematical expec-

tations (3.3.13) and (3.3.14), for n = 2 and a0 = 1, become

E[µ̄] = C1 + C2, µ̄ > 0, (3.4.13)

and

E[log µ̄] = ν, |ν| < +∞, (3.4.14)

respectively, where, by the constraint (3.4.13), the mean value of the nonlinear

shear modulus, given by µ̄ = C1 +C2 > 0, is fixed, and the logarithmic constraint

(3.4.14) implies that both the nonlinear shear modulus and its inverse, denoted by

µ̄ and µ̄−1 respectively, are second-order random variables, so they have a finite

mean and variance. The expectations (3.4.13) and (3.4.14) imply that the non-

linear shear modulus µ̄ follows a Gamma distribution, Γ(ρ1, ρ2), with parameters

ρ1 > 0 and ρ2 > 0 [1, 100, 187, 188]. Hence, the expressions for the mean shear

modulus in the linear elastic limit, and the variance of this mean shear modulus,

are given by (3.3.16) and (3.3.17), respectively.

Now (3.3.17) can be rewritten in terms of the random coefficients, C1 and C2,

and the mean values of these random coefficients, C1 and C2, using (3.4.1). Hence,

after substitution and some minor rearrangement, we obtain the following;

C1 + C2 = ρ1ρ2 (3.4.15)

and

Var [C1 + C2] = ρ1ρ
2
2. (3.4.16)

For the random vector R = (R1, 1 − R1)T , the constraint (3.3.14) becomes

[194,196]:

E[log Rp] = νp, |νp| < +∞, p = 1, 2.

R then follows a Beta distribution [1, 100], β(ξ1, ξ2), with parameters ξp > 1,
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p = 1, 2, satisfying (3.3.22) with n = 2, or explicitly in terms of the values of p,

E[R1] =
ξ1

ξ1 + ξ2

> 0 (3.4.17)

and

E[1−R1] =
ξ2

ξ1 + ξ2

> 0. (3.4.18)

The expected values are given by (3.3.24) with p = 1, 2. Using (3.4.17) and

(3.4.18), it can then be deduced that

Rp =
ξp

ξ1 + ξ2

, p = 1, 2, (3.4.19)

with Rp = Cp/µ̄, p = 1, 2. In this case, every random variable Rp, p = 1, 2, follows

a standard Beta distribution, β(ξ1, ξ2), with parameters ξ1 and ξ2.

The variance of Rp (3.3.9) can be explicitly written in terms of the values of p

as

Var [R1] =
R1

2ξ2

ξ1(ξ1 + ξ2 + 1)
(3.4.20)

and

Var [1−R1] =
(1−R1)2ξ1

ξ2(ξ1 + ξ2 + 1)
, (3.4.21)

with the corresponding standard deviations of (3.4.20) and (3.4.21) given by

‖R1‖ =

√
R1

2ξ2

ξ1(ξ1 + ξ2 + 1)
(3.4.22)

and

‖1−R1‖ =

√
(1−R1)2ξ1

ξ2(ξ1 + ξ2 + 1)
, (3.4.23)

respectively.

The hyperparameter vectors (ρ1, ρ2) and (ξ1, ξ2) are identified by minimising

the residual for the standard deviation, given by (3.3.7), with m = 2.

In (3.4.8), the expression for the random auxiliary parameters Rp was defined
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in terms of the random constant coefficients Cp, where we have p = 1, 2 in this case.

Previously, it was stated that µ̄ = C1 +C2, and so C1 = R1µ̄ and C2 = (1−R1)µ̄.

Hence, (3.3.16) and (3.3.17) then lead to

µ̄ = ρ1ρ2 (3.4.24)

and

‖µ̄‖2 = ρ1ρ
2
2. (3.4.25)

Further, from C1 = R1µ̄, it can be determined that the mean value of C1 is

C1 = R1µ̄. An expression for R1 was stated in (3.4.19) and so, using (3.4.22),

‖R1‖ =
1

ξ1 + ξ2

√
ξ1ξ2

ξ1 + ξ2 + 1
. (3.4.26)

The variance of C1 is then given by the expression

Var [C1] = µ̄2‖R1‖2 + ‖µ̄‖2R1
2 + ‖µ̄‖2‖R1‖2. (3.4.27)

Similarly, in (3.4.12), the expression for C2 is given by C2 = (1−R1)µ̄, and so,

as in the case of C1, it can be observed that C2 = (1 − R1)µ̄. Once again, from

(3.4.19), an expression for (1 − R1) can be obtained, and so, using (3.4.23), it is

clear that

‖1−R1‖ =
1

ξ1 + ξ2

√
ξ1ξ2

ξ1 + ξ2 + 1
. (3.4.28)

A comparison between expressions (3.4.26) and (3.4.28) leads to the conclusion

that the standard deviations of both R1 and 1−R1 are equal, so

‖R1‖ = ‖1−R1‖. (3.4.29)
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The variance of C2 is then given by the expression

Var [C2] = µ̄2‖R1‖2 + ‖µ̄‖2(1−R1)2 + ‖µ̄‖2‖1−R1‖2, (3.4.30)

which, using (3.4.29), yields

Var [C2] = µ̄2‖R1‖2 + ‖µ̄‖2(1−R1)2 + ‖µ̄‖2‖R1‖2. (3.4.31)

To proceed, each term in (3.4.27) and (3.4.31) must be evaluated. The first

term in both of these expressions is µ̄2‖R1‖2. Using (3.4.24) and (3.4.26), it can

be deduced that

µ̄2‖R1‖2 =
ρ2

1ρ
2
2

(ξ1 + ξ2)2

ξ1ξ2

ξ1 + ξ2 + 1
. (3.4.32)

For the second term ‖µ̄‖2R1
2, (3.4.19) and (3.4.25) lead to

‖µ̄‖2R1
2 =

ρ1ρ
2
2

(ξ1 + ξ2)2
ξ2

1 =
ρ1ρ

2
2

(ξ1 + ξ2)2

ξ2
1(ξ1 + ξ2 + 1)

ξ1 + ξ2 + 1
. (3.4.33)

Thirdly, for ‖µ̄‖2‖R1‖2, using (3.4.25) and (3.4.26),

‖µ̄‖2‖R1‖2 =
ρ1ρ

2
2

(ξ1 + ξ2)2

ξ1ξ2

ξ1 + ξ2 + 1
. (3.4.34)

The final term is given by ‖µ̄‖2(1−R1)2. Once again, using (3.4.19) and (3.4.25),

it can be determined that

‖µ̄‖2(1−R1)2 =
ρ1ρ

2
2

(ξ1 + ξ2)2
ξ2

2 =
ρ1ρ

2
2

(ξ1 + ξ2)2

ξ2
2(ξ1 + ξ2 + 1)

ξ1 + ξ2 + 1
. (3.4.35)

Substituting (3.4.32)-(3.4.35) into (3.4.27) leads to the following expression for the

variance of C1;

Var [C1] =
ρ1ρ

2
2

(ξ1 + ξ2)2

ξ1(ρ1ξ2 + ξ2
1 + ξ1ξ2 + ξ1 + ξ2)

ξ1 + ξ2 + 1
. (3.4.36)
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In a similar manner, the expression for the variance of C2 (3.4.31) becomes

Var [C2] =
ρ1ρ

2
2

(ξ1 + ξ2)2

ξ2(ξ1ρ1 + ξ1ξ2 + ξ2
2 + ξ2 + ξ1)

ξ1 + ξ2 + 1
. (3.4.37)

The covariance of C1 and C2 is given by

Cov [C1, C2] =
1

2
(Var [C1 + C2]− Var [C1]− Var [C2]). (3.4.38)

Following a similar procedure to that which was carried out to obtain the expres-

sions for the variance of C1 and C2 above, each term in (3.4.38) will be explicitly

evaluated. Firstly, we have the term Var [C1 + C2]. Using (3.4.24) and the fact

that µ = C1 + C2, it can be deduced that

Var [C1 + C2] = Var [µ̄] = ‖µ̄‖2 = ρ1ρ
2
2. (3.4.39)

The second and third terms in (3.4.38) are given in (3.4.36) and (3.4.37), respec-

tively. Substituting (3.4.36), (3.4.37) and (3.4.39) into (3.4.38), the expression for

the covariance of C1 and C2 is

Cov [C1, C2] =
ρ1ρ

2
2

(ξ1 + ξ2)2

[
ξ1ξ2(ξ1 + ξ2 − ρ1)

ξ1 + ξ2 + 1

]
. (3.4.40)

Further, note that, when ρ1 →∞, assuming that the standard deviation, ‖µ‖,

is constant, by (3.1.5),

ρ2 =
‖µ‖
√
ρ1

. (3.4.41)

Next, defining u = µ + ‖µ‖/√ρ1 > ‖µ‖/√ρ1, the probability density function

(3.1.6) takes the form

g1(u− ‖µ‖/√ρ1; ρ1, ‖µ‖/
√
ρ1) =

(u− ‖µ‖/√ρ1)ρ1−1e−(u−‖µ‖/√ρ1)/(‖µ‖/√ρ1)

(‖µ‖/√ρ1)ρ1Γ(ρ1)
.

(3.4.42)
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The limit of the above function as ρ1 →∞ is then equal to

lim
ρ1→∞

g1(u− ‖µ‖/√ρ1; ρ1, ‖µ‖/
√
ρ1) =

e−(u−µ)2/(2‖µ‖2)

√
2π‖µ‖

. (3.4.43)

Hence, the Gamma probability density function (3.1.6) is approximated by a nor-

mal (Gaussian) density function

h(u;µ, ‖µ‖) =
e−(u−µ)2/(2‖µ‖2)

√
2π‖µ‖

, (3.4.44)

where u is a random normal variable with mean value µ and standard deviation

‖µ‖.

When ρ1 ≈ 1, the probability distribution (3.1.6) reduces to an exponential

distribution (3.1.18), where the mean value µ and standard deviation ‖µ‖ (3.1.5)

take comparable values.

The strategy applied during this analysis can now be applied to investigate the

calibration of models with just one term.

3.5 One-term models

Further specialising the method set out in Section 3.3, the calibration procedure

for models with one term will now be demonstrated. For these models, there is

only one random coefficient, C1, which needs to be determined, and one random

auxiliary parameter, R1 = 1. To proceed, the two-step procedure demonstrated

in Section 3.3 is implemented [129].

Step 1: Here, the mean coefficient C1, and any other unknown constant pa-

rameter which appears in the expression for the strain-energy function are deter-

mined by minimising the residual function for the mean value (3.3.2), with m = 1.

As in Section 3.3, we firstly implement a deterministic method [36,126,127,152].
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In the case of one-term models, the mean value of expression (3.3.3) is

µ̃(a) = C1g1(a). (3.5.1)

The linear elastic limit here is

µ̄ = lim
a→1

µ̃(a) = lim
a→1

C1g1(a) = C1. (3.5.2)

Hence, combining (3.5.1) and (3.5.2) yields

µ̃(a) = µ̄g1(a). (3.5.3)

Step 2: Now the probability distribution that the nonlinear shear modulus µ̃

follows will be identified.

In this specific case of one-term models, (3.3.5) reduces to

Var [µ̃(a)] = Var [µ̄g1(a)] = Var [C1]g1(a)2. (3.5.4)

The corresponding standard deviation is

‖µ̃(a)‖ = ‖µ̄g1(a)‖ =
√

Var [C1]g1(a)2 = ‖C1‖g1(a), (3.5.5)

where ‖C1‖ =
√

Var [C1] is the standard deviation of C1.

In this case, using (3.5.3), the random shear modulus (2.1.31) becomes

µ̃(a) = µ̄g1(a) = C1g1(a). (3.5.6)

At any stretch a = a0, (3.5.6) satisfies

µ̃(a0) = µ̄g1(a0) = C1g1(a0). (3.5.7)
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For the random nonlinear shear modulus µ̃(a0), the mathematical expectations

(3.3.13) and (3.3.14) can be rewritten, using (3.5.7), as

E[µ̄] = µ̄, µ̄ > 0 (3.5.8)

and

E[log µ̄] = ν, |ν| < +∞, (3.5.9)

respectively. It can then be observed that µ̄ follows a Gamma distribution,

Γ(ρ1, ρ2), with parameters ρ1, ρ2 > 0 [1, 100, 187, 188]. Using (3.5.3) and (3.5.5),

and choosing a0 = 1 for calibration, we observe that

‖µ̄‖ = ‖C1‖ =
C1√
ρ1

(3.5.10)

and

C1 = µ̄ = C1g1(1) = ρ1ρ2. (3.5.11)

After the optimal value of ‖C1‖ is computed by minimising the residual (3.3.7)

for the standard deviation, the hyperparameters (ρ1, ρ2) are obtained from equa-

tions (3.5.10) and (3.5.11), respectively.

3.6 Summary

In this chapter, the calibration procedure of stochastic isotropic incompressible

hyperelastic models was explicitly detailed. To provide a foundation for the anal-

ysis that will follow in later sections, a set of model assumptions was given in

Section 3.1. A specific example of an application of the calibration procedure to

the data obtained in [170] to establish the probability distribution of the random

shear modulus µ was explored in Section 3.2. Based on the assumptions presented

in Section 3.1, a two-step calibration procedure was presented in Sections 3.3 for

models with multiple terms, before the more specific cases of models with two
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terms and models with one term were investigated in Sections 3.4 and 3.5, re-

spectively. The process in each case involved determining the mean value of the

nonlinear shear modulus, and subsequently identifying the probability distribu-

tion that it follows using the mean value obtained in the previous step. For the

two-term and multiple-term models, this process was extended by determining

expressions for the variance and covariance of the random coefficients in terms of

the parameters of the Gamma and Beta distributions.

The calibration procedure of stochastic isotropic incompressible hyperelastic

materials outlined in this chapter will provide a mathematical foundation to the

model selection process, based on experimental data, which follows in Chapter 4,

and will also form the basis for the investigations into the likely deformations and

instabilities of stochastic hyperelastic bodies presented in Chapter 5.

While the calibration procedure presented here was first demonstrated in [129],

the work in the following chapters is based on original work published in [130,131,

134].
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Chapter 4

Uncertainty quantification of

elastic material responses:

testing, stochastic calibration and

Bayesian model selection

4.1 Introduction

To apply the theory presented in Chapter 3 to a real world example, and to support

the argument for the use of stochastic models over deterministic in the modelling

of solid materials, it was of the utmost importance to demonstrate the variation

arising within experimental data. As such, simple experimental tests were per-

formed on manufactured silicone specimens in uniaxial tension, and any variations

observed in the test data were taken into account within the mathematical mod-

elling. The tests performed contain critical information regarding the variability in

the constitutive responses between different specimens. Full details of the manu-

factured material are found in Section 4.2.1, while Sections 4.2.2 and 4.2.3 contain

specific descriptions of the experimental set up and techniques used, respectively.
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Employing the stochastic calibration method proposed in Section 3.3, homoge-

neous stochastic hyperelastic models are constructed from the experimental data

at a continuum level (Section 4.3). This section also contains information of the

assumptions and ideas adopted in order to use stochastic modelling to represent

the data obtained in the experiments, and the calibration of the random Piola-

Kirchhoff shear stress of three different material models to the experimental data

obtained for the rubber material under uniaxial stretch (Section 4.3.3), followed

by details of how to employ Bayes’ theorem to select the best performing model to

represent the obtained data (Section 4.3.4). The assumptions and ideas that are

relied upon for the stochastic modelling are discussed in Section 3.1. The results

presented here demonstrate that the data are more likely with the computations

performed by the Ogden model than with either the Mooney-Rivlin or Gent-Gent

models, advocating for its use in mathematically modelling this type of material.

4.2 Experimental measurements

In this section, the experimental set-up and techniques used to measure large

elastic deformations of manufactured silicone rubber specimens are described. The

experimental results obtained capture the inherent variability in the acquired data

between different specimens during tensile tests.

4.2.1 Specimen manufacture

Two batches of silicone were manufactured to investigate the consistency of the

specimen behaviour within the same batch, and within different batches. Each

sample was a simple rectangular shape with rounded edges, made using a standard

mould for this type of material. The approximate geometric parameters of each

tested specimen were: height 100mm, width 10mm, and depth 4mm. Examples

of undeformed specimens are illustrated in Figure 4.1.
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• For Batch 1, tensile testing specimens were cast using Tech-Sil 25 Silicone

(Technovent). This is a two part silicone, with a standard mixture ratio of 9:1

for Part A:Part B, respectively, as per the manufacturer’s recommendation,

and is generally allowed to cure at room temperature for at least 24 hours.

The silicone was mixed and de-gassed prior to casting, ensuring an even

mixture, and no air bubbles were present in the tensile specimens. Testing

specimens of equal dimensions were made within a mould that is typically

used for this purpose. The silicone was removed from the mould for testing

after 4 weeks.

• For Batch 2, the same make of silicone as in Batch 1 was used, with slight

variations in the mixture components to simulate an error that would be

within a realistic experimental range. Namely, the mixture ratio was 8.96:1.

Tensile testing specimens with the specified geometry were created using this

mixture. The silicone was also left to cure at room temperature, and taken

out of the mould for testing after 2 weeks.

The full details of the silicone mixture for the two batches are recorded in Table 4.1.

(a) (b)

Figure 4.1: Marked undeformed specimens, with height 100mm, width 10mm, and
depth 4mm: (a) A single specimen where the longer double arrow shows the grip
length, which was 30mm as standard, and reduced to 20mm for some tests, while
the shorter arrow indicates the gauge length, which was 20mm as standard and
10mm when using the reduced grip length; (b) Multiple specimens.
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Table 4.1: Full details of the silicone mixture for the two batches of tensile testing
specimens.

Batch number 1 2

Part A weight (g) 180 92.3

Part B weight (g) 20 10.3

Mixing ratio 9:1 8.96:1

Curing period 4 weeks 2 weeks

Number of specimens tested 6 2

4.2.2 Experimental set up

Two testing sessions were conducted to allow for variability in the experimental

results due to degradation of silicone properties over different testing days. To

conduct uniaxial tests on each silicone specimen, a bespoke fixture was designed

[217]. Uniaxial tests were conducted on the Zwick Roel Z050 testing machine, with

a 1KN load cell to measure tensile force. Specimens were mounted using a set of

roll clamps, and the general experiment set-up can be observed in Figure 4.2. The

standard test method used consisted of a pre-load of 2N, 30mm grip length of the

specimens, and loading at a speed of 30mm/min. However, testing parameters,

such as the grip length and testing speed, were varied between specimens, as

detailed in Table 4.2. Tests were stopped once specimens reached approximately

100% strain measured optically (see Section 4.2.3 for details). All specimens were

tested with the same technician loading the test specimens and using the test

machine.

4.2.3 Optical strain measurement

A video strain gauge system (Imetrum) was used to capture the global deformation

of the specimen during tensile tests. The system works by imaging the specimen
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Figure 4.2: Experimental set-up for uniaxial tensile testing of silicone specimens
mounted in roll grips, with lights and cameras for optical strain measurement.

Table 4.2: Specimen details and testing parameters.

Specimen

number

Silicone

batch

Testing

session

Testing

speed (mm/min)

Grip

length (mm)

Number

of tests

1 1 1 30 30 3

2 1 1 30 30 3

3 1 1 30 30 3

4 1 1 30 20 2

5 1 2 30 30 3

6 1 2 30 20 3

7 2 2 30 30 3

8 2 2 30 20 3
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in an unloaded state, and then tracking the position of markers on the surface of

the specimen throughout loading to measure displacements [55,203,216,217]. The

system was used with a single camera with a general purpose lens, and calibrated

using markers of a known distance apart within the field of view, as per the

manufacturer’s instructions. When processing the captured video, a digital strain

gauge was placed between two marker points. Specimens were marked using a

permanent marker in the positions indicated in Figure 4.3, so the digital gauge

length could vary. An example of a marked silicone specimen is shown in Figure

4.1.

(a) (b)

Figure 4.3: Schematic of silicone specimens with marker positions for: (a) 30mm
grip length, where A is 20mm, B is 10mm and C is 7mm, and (b) 20mm grip
length, where A is 10mm, B is 5mm, and C is 7mm.

Table 4.3: Post-processing parameters for the optical strain measurement system,
with the gauge lengths as indicated in Figure 4.3.

Settings 1 Settings 2 Settings 3 Settings 4

Tracking Algorithm Deform only Stretch, rotate and deform Deform only Deform only

Target 1 Size Random (based on user) Random (based on user) 45× 45 pixels 45× 45 pixels

Target 2 Size Random (based on user) Random (based on user) 45× 45 pixels 45× 45 pixels

Gauge Length A A A B
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When processing the data, the target size for each marker was varied. The

target area defines the area in which the software locates the surface marker.

Within the software, the user also has the option to control certain elements of

the tracking algorithm, for example, to account for the stretch and rotation in

specimens subjected to large deformations. The post-processing variations are

outlined in Table 4.3, and were allowed for the purpose of accounting for varying

user preferences.

The data values measured and recorded during the experimental tests cap-

ture the inherent variation between the constitutive behaviour of the different

specimens listed in Table 4.2. The values for the applied force versus maximum

vertical displacement in tensile loading for each individual specimen are shown

in Figure 4.4. The data collected and supplied by the experimental team was

given in this format. For the specimens in each batch, the data are represented

together in Figure 4.5, where the average values, which are typically used for the

calibration of deterministic models, are marked by red lines. This was the first

processing of the experimental data. In this figure, different quantities of interest

are also illustrated. Specifically, in addition to the applied force versus maximum

vertical displacement observed experimentally, the following nonlinear quantities

have been calculated:

• The first Piola-Kirchhoff (PK) tensile stress (2.1.11), representing the force

per unit area in the reference configuration, where F is the applied tensile

force and A = 40mm2 is the cross-sectional area.

• The nonlinear stretch modulus [127]

E =
σ

lnλ
=
λP

lnλ
, (4.2.1)

where λ is the stretch ratio and σ = λP is the Cauchy stress (representing

the force per unit area in the current configuration), with P the first Piola-
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Figure 4.4: Experimental data for applied force versus maximum vertical displace-
ment in tensile loading of individual silicone specimens listed in Table 4.2.
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Figure 4.5: Experimental data for applied force versus maximum vertical displace-
ment in tensile loading of the two batches of silicone specimens listed in Table 4.2,
together with the first Piola-Kirchhoff (PK) tensile stress given by (2.1.11), and
the nonlinear stretch and shear moduli defined by (4.2.1) and (4.2.2), respectively.
The red lines indicate the mean data values.
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Kirchhoff stress defined by (2.1.11).

• The nonlinear shear modulus, given by the universal formula [127]

µ =
E lnλ

λ2 − λ−1
=

λP

λ2 − λ−1
, (4.2.2)

where λ is the stretch ratio and E is the stretch modulus defined by (4.2.1).

Formal definitions and explicit derivations of key nonlinear elastic moduli in homo-

geneous isotropic finite elasticity, and their universal relations under large strains,

can be found in [127].

4.3 Stochastic modelling

In this section, specific stochastic homogeneous hyperelastic models are constructed,

where the parameters are characterised by probability distributions and optimised

to the collected data. Deterministic hyperelastic models calibrated to mean data

values of rubberlike material under finite deformations can be found, for example,

in [43, 49, 82, 127, 152, 200, 210]. Statistical models derived from numerically gen-

erated data are proposed in [39,142], while explicit stochastic hyperelastic models

based on data sets consisting of mean values and standard deviations are presented

in [129].

4.3.1 Stochastic isotropic incompressible hyperelastic mod-

els

As stated in earlier chapters, a homogeneous hyperelastic material is defined by a

strain-energy function W (F) with respect to a reference configuration [70,151,209],

and characterised by a set of deterministic model parameters, which contribute to

the constant elastic moduli under small strains, or to the nonlinear elastic moduli,

which are functions of the deformation under large strains [127]. In contrast, a
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stochastic hyperelastic model has parameters which are defined by probability den-

sity functions [129, 194–196] where, typically, each model parameter is described

in terms of its mean value and its variance, which hold information regarding the

range of values about the mean value [33,39,89,121,142]. Here, stochastic homoge-

neous isotropic incompressible hyperelastic models are constructed. These rely on

the assumptions outlined in Section 3.1 [129–134]. The principle of maximum en-

tropy is employed, which then enables the construction of their probability distri-

butions based on the available information. Approaches for the explicit derivation

of probability distributions for the elastic parameters of stochastic homogeneous

isotropic hyperelastic models calibrated to experimental data for rubber-like ma-

terial and soft tissues were proposed in [129,196].

4.3.2 Hypothesis testing

Prior to attempting to construct models based on the collected data, standard

statistical tests [59] were applied to verify whether the entire data set can be

treated as one, or whether the data set of each batch must be modelled separately.

In general, a goodness of fit test will demonstrate how well the data fits the

model. Specifically, it is desirable that the data here is normally distributed, and

so a goodness of fit test in this case will allow the rejection of the hypothesis that

other distributions are behind the data.

Firstly, an unpaired t-test [201] was used to compare the shear modulus data

at small strain for the two batches. In general terms, an unpaired t-test is useful

as a technique to compare the means of two samples of data, with both samples

containing distinct test subjects. The idea here was to generate a probability for

how likely it is that the moduli of the two batches come from the same distribu-

tion. This test provided a p-value (or probability) of approximately 10−12. The

‘standard’ significance level is 0.05, meaning that if the p-value is less than this

standard threshold, we can be 95% certain that the data does not come from the
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distribution, and thus the hypothesis that the distribution is behind the data can

be rejected. In the specific case here, we have p ≈ 10−12, which is clearly less than

the 0.05 significance level, and therefore enables the rejection of the null hypoth-

esis that the moduli of the two batches come from the same distribution. As a

result, the distributions had to be calibrated to the different batches separately.

The significant differences between the data corresponding to the two batches are

illustrated in Figure 4.6.

Further, a χ2 (chi-square) goodness-of-fit test [184] was employed to check

whether or not the null hypothesis that the shear modulus data of each batch

come from a Gamma distribution can be rejected. A chi-square goodness-of-fit

test is used to determine how well a theoretical distribution fits to an empirical

distribution, where an empirical distribution is derived from the sample, and the

theoretical distribution is constructed based on the prior knowledge of the distri-

bution and its parameters. In the current case, the p-values for the Batch 1 and

2 fits were 0.1 and 0.07, respectively, which are both greater than the 0.05 signifi-

cance level, and thus the hypothesis that the shear moduli are Gamma-distributed

could not be rejected.

Table 4.4: Parameters of the probability distributions derived from the data values
for the random shear modulus at small strain.

Probability density function (pdf) µ ‖µ‖ ρ1 ρ2

Gamma pdf fitted to Batch 1 data 0.2837 0.0171 275.4403 0.0010

Normal pdf fitted to Batch 1 data 0.2837 0.0170 - -

Gamma pdf fitted to Batch 2 data 0.2663 0.0083 1029.4047 0.0003

Normal pdf fitted to Batch 2 data 0.2663 0.0084 - -

Figure 4.7 illustrates the Gamma and normal (Gaussian) probability distribu-

tions fitted to the shear modulus data at small strain. Note here the similarity

between the represented Gamma and normal distributions [131]. This is to be
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Figure 4.6: Box plots of the shear modulus at small strain data of the two batches.
On each box, the grey dots represent the data, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme data points.
Critically, these distributions are significantly different.

Figure 4.7: Probability distributions derived from the data values for the random
shear modulus at small strain. The parameters for these distributions are recorded
in Table 4.4.
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expected in this case because, when ρ1 →∞, the Gamma probability distribution

(3.1.6) is approximated by a normal distribution (see Appendix D for a detailed

proof). Table 4.4 provides the fitted variables for both distributions. It can be

observed that ρ1 is very large compared to ρ2, justifying the similarity between the

two distributions. The fitted values for the shear modulus are also comparable to

those recorded in Tables 4.6 and 4.7, corresponding to the three hyperelastic mod-

els for which the shear modulus satisfies a Gamma distribution. However, elastic

moduli cannot be characterised by the normal distribution since this distribution

is defined on the entire real line, whereas elastic moduli are typically positive.

4.3.3 Stochastic calibration

Applying the stochastic method developed in Section 3.3, the analysis is now spe-

cialised to three different stochastic hyperelastic strain-energy functions which are

then calibrated to the collected experimental data. These strain-energy functions

are presented in Table 4.5, while their constitutive parameters fitted to the exper-

imental measurements for Batch 1 and Batch 2 are recorded in Tables 4.6 and 4.7,

respectively. Specifically, in the case of the Ogden model, the calibration proce-

dure presented in Chapter 3 was followed, and the parameters here provided the

most stable solution. The load-deformation results are plotted in Figures 4.8 and

4.9, demonstrating that all three models perform well, but exhibit different levels

of accuracy when compared to the actual data.

4.3.4 Bayesian model selection

In this section, Bayes’ theorem [22, 122] is employed to select a model among

competing models calibrated to the given data. Bayes’ theorem is used to describe

the probability of an event occurring, based on the prior knowledge of conditions

that are potentially related to the event in question. In practical applications,

Bayes’ theorem is relied upon in many machine learning techniques, and also
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Table 4.5: Incompressible isotropic hyperelastic models, W(λ1, λ2, λ3), their non-
linear shear modulus µ(λ) at a given stretch λ = a, and the shear modulus at
infinitesimal deformation, limλ→1 µ(λ) = µ.

Material Model Strain-Energy Density Shear Moduli

W(λ1, λ2, λ3)

Mooney-Rivlin C1

2
(λ2

1 + λ2
2 + λ2

3 − 3) + C2

2

(
λ−2

1 + λ−2
2 + λ−2

3 − 3
)

µ(a) = C1 + C2

a

[137,168] C1, C2 independent of deformation µ = C1 + C2

Gent-Gent −C1

2β
ln [1− β (λ2

1 + λ2
2 + λ2

3 − 3)] + 3C2

2
ln

λ−2
1 +λ−2

2 +λ−2
3

3
µ(a) = C1

1−β(a2+2/a−3)
+ 3C2

2a2+1/a

[152,161] C1, C2, β independent of deformation µ = C1 + C2

Ogden
∑3

p=1
Cp
2α2
p

(
λ

2αp
1 + λ

2αp
2 + λ

2αp
3 − 3

)
µ(a) =

∑3
p=1

Cp
αp

a1−αp(1−a3αp)
1−a3

[150] Cp independent of deformation; α1 = 1, α2 = −1, α3 = −2, µ =
∑3

p=1 Cp

Table 4.6: Parameters of the stochastic constitutive models given in Table 4.5,
calibrated to Batch 1 data, and the corresponding random nonlinear shear modulus
µ = µ(λ) at λ = 1.15.

Stochastic Model Calibrated Parameters Shear Modulus (MPa)

(mean value ± std deviation) (mean value ± std deviation)

Mooney-Rivlin C1 = 0.0936± 0.0030 µ = 0.2411± 0.0130

C2 = 0.1696± 0.0115

Gent-Gent C1 = 0.0971± 0.0042 µ = 0.2532± 0.0136

C2 = 0.1826± 0.0110

β = 0.0434

Ogden C1 = −0.0645± 0.0143 µ = 0.2719± 0.0720

C2 = −0.0764± 0.0155

C3 = 0.4861± 0.0534
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Figure 4.8: Stochastic models calibrated to the Batch 1 data, with the parameters
recorded in Table 4.6, showing: (a) the first Piola-Kirchhoff tensile stress, (b) the
nonlinear stretch modulus, (c) the nonlinear shear modulus, and (d) the relative
error for the shear modulus mean values.
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Figure 4.9: Stochastic models calibrated to the Batch 2 data, with the parameters
recorded in Table 4.7, showing: (a) the first Piola-Kirchhoff tensile stress, (b) the
nonlinear stretch modulus, (c) the nonlinear shear modulus, and (d) the relative
error for the shear modulus mean values.
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Table 4.7: Parameters of the stochastic constitutive models given in Table 4.5,
calibrated to Batch 2 data, and the corresponding random nonlinear shear modulus
µ = µ(λ) at λ = 1.15.

Stochastic Model Calibrated Parameters Shear Modulus (MPa)

(mean value ± std deviation) (mean value ± std deviation)

Mooney-Rivlin C1 = 0.1029± 0.0001 µ = 0.2277± 0.0056

C2 = 0.1435± 0.0063

Gent-Gent C1 = 0.1007± 0.0011 µ = 0.2397± 0.0056

C2 = 0.1625± 0.0053

β = 0.0421

Ogden C1 = −0.0437± 0.0111 µ = 0.2563± 0.0272

C2 = −0.0844± 0.0112

C3 = 0.4505± 0.0345

within the biomedical field in medical testing.

Here, P (M) denotes the prior probability of choosing a model M before the

data values D are taken into account, and P (D|M) denotes the likelihood, or the

probability, of obtaining the data values D from the model M . Bayes’ theorem

states that

P (M |D) =
P (M)P (D|M)

P (D)
, (4.3.1)

where P (M |D) is the posterior probability of the model M , or in other words, the

probability that the hypothesis is true after taking the relevant data into consid-

eration, and P (D) is the normalisation value, known as the marginal likelihood,

which is a likelihood function as described above, where, as the name suggests,

some parameter variables have been marginalised. In addition, this theorem sup-

plies a methodology for estimating the odds for a model M (i) to another model
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M (j), in light of the data D;

Oij =
P (M (i)|D)

P (M (j)|D)
=
P (M (i))P (D|M (i))

P (M (j))P (D|M (j))
=
P (M (i))

P (M (j))
Bij, (4.3.2)

where

Bij =
P (D|M (i))

P (D|M (j))
(4.3.3)

is the Bayes factor. The objective of the Bayes factor in this context is to appraise

the support for the use of one material model over another. Formula (4.3.2) states

that the posterior odds Oij for the model M (i) against the model M (j), given the

data D, are equal to the prior odds multiplied by the Bayes factor. In particular,

if the models have equal prior probabilities, P (M (i)) = P (M (j)), so there is no

prior favourite, then, by (4.3.2), the posterior odds are equal to the Bayes factor,

i.e. Oij = Bij.

If, however, the Bayes factor is equal to 1, then Occam’s razor [97–99, 204]

would imply that a larger prior probability should be assigned to the simpler

model, rather than to the more complex one, purely for frugal reasoning.

Maintaining a general framework, it is assumed that P (D|M) is an arbitrary

probability that is symmetric about the mean value D = 0 and decreasing in the

absolute value of D. In this case, the Bayes factor Bij satisfies the inequality [27]

Bij ≥
‖D(j)‖+

√
2 ln (‖D(j)‖+ 1.2)

e‖D(i)‖2/2

√
2

π
, (4.3.4)

where ‖D(i)‖ and ‖D(j)‖ designate the standard deviation that the predicted quan-

tity of interest computed with the model M (i) and M (j), respectively, deviates from

the observed data value D. The formula for calculating ‖D(i)‖, for example, is as

follows

‖D(i)‖ =
|Q(i) −D|
‖D‖

, (4.3.5)

where, for the quantity of interest, Q(i) is the expected value computed with the
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model M (i), while D and ‖D‖ represent the experimentally observed mean value

and standard deviation, respectively. The expression on the right-hand side of

(4.3.4) provides an explicit lower bound on the Bayes factor Bij. Hence, assuming

that the prior probabilities are equal, the lower bound on the Bayes factor, given by

(4.3.4), represents a lower bound on the posterior odds. This lower bound on Bij

is an estimate of the amount of evidence against the model M (i), or alternatively,

the maximum support for the model M (j), provided by the data.

These bounds are now applied to select the best performing model among

the models calibrated to the experimental data. For example, at λ = 1.15, for

each model recorded in Table 4.6, the standard deviations that the mean shear

modulus µ deviates from the experimental mean data value 0.2909, given that

the experimental standard deviation is 0.0170, are calculated. Applying formula

(4.3.5) yields the following:

‖D(1)‖ =
|0.2411− 0.2909|

0.0170
= 2.9294 for Mooney-Rivlin model,

‖D(2)‖ =
|0.2532− 0.2909|

0.0170
= 2.2176 for Gent-Gent model,

‖D(3)‖ =
|0.2719− 0.2909|

0.0170
= 1.1176 for Ogden model.

Assuming no prior favourite model, so equal prior probabilities, by (4.3.4), it

follows that the Bayes factors, or the odds, for the Ogden model against each of

the other two models satisfy B31 ≥ 1.9713 and B32 ≥ 1.6174, respectively. Now,

taking P (D|M (1)) = 1 − P (D|M (3)), by the lower bound on the Bayes factor

B31, the likelihood of obtaining the data with the Ogden model is P (D|M (3)) ≥

0.6634. Similarly, assuming equal prior probabilities and taking P (D|M (2)) =

1− P (D|M (3)), the lower bound on B32 implies P (D|M (3)) ≥ 0.6179. Therefore,

for uniaxial tension, the data at λ = 1.15 are more likely to be reproduced with

the Ogden model than with any of the other two models.

The lower bounds on the Bayes factors Bij for each model M (i) against another

model M (j) at various stretch ratios are illustrated in Figure 4.10. From these
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Figure 4.10: Lower bounds on the Bayes factors for each model against the other
at various stretch ratios.
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bounds, it can be understood that the Gent-Gent model is generally more likely

to represent the data than the Mooney-Rivlin model, and the Ogden model is more

likely than both the Mooney-Rivlin and the Gent-Gent models. These results are

consistent with those in Figures 4.8(d) and 4.9(d), where the relative errors for

the mean values of the shear modulus are shown. The relative error (a measure

of the uncertainty of the measurement compared to the size of the measurement)

was calculated using |µ
model

− µ
data
|/µ

data
, where µ

model
is the mean value of the

shear modulus for the respective model and µ
data

is the mean value of the shear

modulus obtained from the experimental data.

4.4 Summary

Motivated by the need to quantify uncertainties in the mechanical responses of

solid materials to achieve repeatability between experiments in engineering appli-

cations, in this chapter, experimental tests were performed on different samples of

a manufactured rubber-like material under tensile loading, and a stochastic mod-

elling strategy was employed to derive constitutive models that account for the

variability in the collected data. Specifically, isotropic incompressible hyperelastic

models with model parameters defined as spatially-independent random variables

characterised by probability density functions were constructed. Furthermore, a

methodology to compare different models using an explicit lower bound on the

Bayes factor was applied in order to select the model that was most likely to

reproduce the experimental data.

The objective of this chapter is to highlight the need for continuum models to

consider the variability in the elastic behaviour of materials at large strains, com-

plementing the theoretical investigations of how elastic solutions of fundamental

problems in nonlinear elasticity can be extended to stochastic hyperelastic mod-

els, which will be presented in Chapters 5 and 6. Overall, it is the hope that the

results presented in this chapter will motivate and inspire others to collect and

Page 77



4.4. SUMMARY

report on their data in a similar manner.
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Chapter 5

Likely deformations and

instabilities of stochastic

hyperelastic bodies

Extending the more general concepts discussed in Chapter 3, the likely deforma-

tions and instabilities of stochastic hyperelastic bodies are now discussed for a

variety of material models. Firstly, in Section 5.1, an in-depth analysis into the

occurrence of a necking instability in materials modelled by four different stain-

energy functions, namely, two-term Ogden-type models (Section 5.1.1), the Carroll

model (Section 5.1.2), and the Gent-Thomas model (Section 5.1.3), is presented.

The purpose of this is to apply stochastic modelling techniques to a simpler defor-

mation to aid understanding, before extending the analysis of the more complex

material deformations from the traditional deterministic approach to the novel

stochastic perspective in later sections and chapters. The conditions under which

a necking instability occurs for a particular material are outlined, followed by a

deterministic analysis which allows a critical point to be established. Tradition-

ally, any value below this critical point would be unstable, and anything above

would be stable, thus implying the occurrence of necking. A stochastic analysis

is then presented, in which the stability of points within an interval surrounding
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the deterministic critical value is analysed, allowing the probability of necking

occurring at points within this interval to be realised.

The inflation of stochastic spheres and circular cylinders is discussed in Sections

5.2.1 and 5.2.2, respectively. In both cases, an approach based on the procedures

outlined in both [38] and [151] is developed, and the behaviour of the spheres

and cylinders is analysed. Firstly, the purely elastic case is investigated, with a

description of the qualitative behaviour of the pressure in both the spheres and

cylinders during inflation in terms of the uniaxial compressive stress response of

the material being presented. As in [38], three types of behaviour are established;

either the pressure increases monotonically, it increases to a maximum value then

decreases, or it increases, decreases, then increases again. The three types of

behaviour are then demonstrated using the well-known Mooney-Rivlin model. The

limit-point instability criterion for both spherical shells and cylindrical tubes is

discussed, and the critical value where a limit-point instability occurs is established

in both scenarios. A limit-point instability implies the existence of a localised

bulging in the material (for further details on this, see [62, 218]). Following this,

a stochastic approach is presented, and a description of the criteria for instability

is suggested for both spheres and cylinders in this probabilistic case.

In Section 5.3, explicit solutions to the cavitation problems of incompressible

spheres of stochastic isotropic hyperelastic material under radial tensile dead loads

are investigated. The question of the influence of the stochastic model parameters

on the predicted nonlinear elastic response of the material is addressed by present-

ing explicit solutions to the cavitation problems of incompressible spheres made

of a class of stochastic isotropic hyperelastic materials, described by a two-term

Ogden-type model [129, 194, 196], under uniform radial tensile dead loads. For

the purely elastic problem, involving isotropic incompressible materials, there is

a critical tensile traction that strictly separates the cases where cavitation can

or cannot occur. The stability of the cavitated solution is analysed, followed by
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distinguishing between a supercritical cavitation, and a subcritical, or snap, cavi-

tation. Attention is then refocused on the stochastic problem where, in addition to

the mean critical traction, the probability distribution of stable deformation under

radially symmetric tension is also derived. It is established that, due to the prob-

abilistic nature of the material parameters, there is always competition between

the two cases. Therefore, cavitation can no longer be discussed as a certainty, but

now in terms of ‘likely cavitation’, obtained under a given tensile traction with a

given probability. In this case, equivalent material behaviour is found when the

model parameters are drawn from probability distributions.

By approaching these varying deformations from the stochastic perspective,

we are able to gain further insight into the behaviour of the materials in ques-

tion, and to develop enhanced mathematical models to be used in many practical

applications.

5.1 Necking instability

To begin, the conditions under which a necking instability occurs for a particular

material are discussed. Necking instability is a well-known material deformation,

occurring in materials which undergo a maximum load in testing, and deformation

localises in an area on the order of the thickness of the material specimen, at some

location along the specimen length. Necking instabilities are highly nonlinear due

to material and geometric nonlinearities. The full necking response, including

bifurcation from the uniform deformation, is analysed in [13].

By considering first this simple deformation, an enhanced understanding of ex-

tending the analysis from the traditional deterministic viewpoint to the stochastic

perspective can be well understood, before the stochastic approach is presented

for the more complex material deformations discussed in Sections 5.2, 5.3 and

Chapter 6.

The onset of necking for four different material models is investigated within
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Sections 5.1.1, 5.1.2, and 5.1.3. The conditions for instability are unique for each

material model. A deterministic analysis is presented, in which a critical value

is found. In this traditional analysis, values below the critical value would be

unstable, and anything above this value would be stable. This problem is then

approached from a stochastic perspective, where an interval surrounding the de-

terministic critical point is observed, and the probability of necking occuring for

values within this interval is obtained, providing a clearer, enhanced understanding

of the conditions under which a necking instability occurs in each model presented.

5.1.1 Two-term Ogden-type models

Firstly, the situation considering the conditions under which a necking instability

may occur in a Mooney-Rivlin material is addressed.

The Mooney-Rivlin model is characterised by the strain-energy function

W(λ1, λ2, λ3) =
C1

2
(λ2

1 + λ2
2 + λ2

3 − 3) +
C2

2
(λ−2

1 + λ−2
2 + λ−2

3 − 3), (5.1.1)

where C1 and C2 are constants, with C1, C2 > 0. Assuming that this material is

subject to the normal tension

λ1 = λ > 1, λ2 = λ3 =
1√
λ
< 1, (5.1.2)

the strain energy function takes the equivalent form

W (λ) =
C1

2
(λ2 + 2λ−1 − 3) +

C2

2
(λ−2 + 2λ− 3). (5.1.3)

For a model to have an instability, at some point, we must have W ′′(0) < 0.

Alternatively, we can find a critical point where W ′′(λ) = 0, and observe that a
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change of sign occurs. The second derivative of (5.1.3) is

W ′′(λ) = C1(1 + 2λ−3) + 3C2λ
−4, (5.1.4)

where, since C1, C2 > 0 and λ > 1, we have W ′′(λ) > 0, and so this model is

always stable. Hence, necking does not occur in the Mooney-Rivlin model.

Let

f(λ) =
3λ−4

1 + 2λ−3
. (5.1.5)

Defining g(λ) = f ′(λ), we have

g(λ) =
−6(λ−8 + 2λ−5)

(1 + 2λ−3)2
. (5.1.6)

Expressions (5.1.5) and (5.1.6) are depicted in Figure 5.1(a) and (b), for small and

large values of λ, respectively. A plot demonstrating that a necking instability does

not occur in the Mooney-Rivlin model discussed above is then given in Figure 5.2.

Next, the model in question is characterised by the strain-energy function

W(λ1, λ2, λ3) =
C1

2
(λ2

1 + λ2
2 + λ2

3 − 3) +
C2

2
(λ−1

1 + λ−1
2 + λ−1

3 − 3), (5.1.7)

where C1 and C2 are constants, with C1, C2 > 0. As before, we assume that this

material is subject to the normal tension (5.1.2), so the strain-energy function

(5.1.7) takes the equivalent form

W (λ) =
C1

2
(λ2 + 2λ−1 − 3) +

C2

2
(λ−1 + 2

√
λ− 3), (5.1.8)

with

W ′′(λ) = C1(1 + 2λ−3) +
C2

2

(
2λ−3 − 1

2
λ−

3
2

)
. (5.1.9)
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(a)

(b)

Figure 5.1: The behaviour of the functions f(λ) (5.1.5) and g(λ) (5.1.6), respec-
tively: (a) at small values of λ, and (b) at large values of λ.
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Figure 5.2: Plot demonstrating the stability of the Mooney-Rivlin model.

Setting (5.1.9) equal to 0, we have

C1(1 + 2λ−3) +
C2

2

(
2λ−3 − 1

2
λ−

3
2

)
= 0, (5.1.10)

which can be rearranged to give

C1

C2

=
1
4
λ−

3
2 − λ−3

1 + 2λ−3
. (5.1.11)

It is then possible to deduce two conditions regarding the stability of the model

using (5.1.11); when

C1

C2

>
1
4
λ−

3
2 − λ−3

1 + 2λ−3
, (5.1.12)

for any λ > 1, the model is stable, and when

C1

C2

<
1
4
λ−

3
2 − λ−3

1 + 2λ−3
, (5.1.13)
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the model is unstable.

Let

f(λ) =
1
4
λ−

3
2 − λ−3

1 + 2λ−3
, (5.1.14)

then, defining g(λ) = f ′(λ), we have

g(λ) =
3λ−4 − 3

8
λ−

5
2 + 3

4
λ−

11
2

(1 + 2λ−3)2
. (5.1.15)

Expressions (5.1.14) and (5.1.15) are demonstrated in Figures 5.3(a) and (b), for

small and large values of λ, respectively.

To find the maximum value of f(λ), we set the expression for g(λ) (5.1.15)

equal to 0, solve this equation for λ, then substitute the obtained value of λ back

into (5.1.14). Doing so, we obtain

λ = (34 + 24
√

2)1/3. (5.1.16)

Substituting (5.1.16) back into (5.1.14), we obtain

max
λ

f(λ) ≈ 0.0152. (5.1.17)

Therefore, if C1/C2 > supλ>1 f(λ) ≈ 0.0152, necking does not occur.

In (3.4.12), it was determined that C1/C2 = R1/(1−R1), so in this case, we

have

R1

(1−R1)
> 0.0152, (5.1.18)

from which it can then be deduced that R1 > 19/1269. Therefore, for a necking

instability to occur, we must have R1 < 19/1269.

From a deterministic perspective, it would be possible to deduce whether or

not a necking instability has occurred based on the values of the random variables

C1 and C2. However, this approach only allows one particular piece of material to

be dealt with. Adopting a stochastic approach enables us to deal with an infinite
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(a)

(b)

Figure 5.3: The behaviour of the functions f(λ) (5.1.14) and g(λ) (5.1.15), respec-
tively: (a) at small values of λ, and (b) at large values of λ. Note that f(λ) is the
right-hand side of (5.1.12), and g(λ) is the derivative of f(λ).
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set of materials, thus allowing the determination of the probability distribution

that C1 and C2 follow. As a result, any uncertainties that may occur within the

experimental data can be taken into account and, as such, we are able to give

a more accurate suggestion as to whether or not necking is likely to occur for a

given material, chosen at random from the set. Naturally, the question that now

arises is; “what is the probability that the body chosen from the set is stable under

necking tests?”. In other words, “what is the probability that R1 > 19/1269?”.

It can be observed that R1 follows a Beta distribution, given by the expression

β(x; ξ1, ξ2) =
xξ1−1(1− x)ξ2−1

B(ξ1, ξ2)
. (5.1.19)

We then have

P

(
R1 >

19

1269

)
= 1−

∫ 19
1269

0

β(λ; ξ1, ξ2)dλ, (5.1.20)

which gives the probability that R1 satisfies the inequality in question. Alter-

natively, since the random variables C1 and C2 follow a Gamma distribution,

Γ(ρ1, ρ2), it can be observed that

C1

C2

> sup
λ>1

f(λ) =⇒ C1 > µ̄(1−R1)α, (5.1.21)

where supλ>1f(λ) = α. Then we have

µ̄ < C1

(
1 + α

α

)
, (5.1.22)

or equivalently,

C1

C2

=
C1

µ̄− C1

> α. (5.1.23)

The mean nonlinear shear modulus is defined in (3.3.16), and we have 0 < C1 < µ̄.

The probability that the inequality for µ̄ holds is then given by

P

(
µ̄ < C1

1 + α

α

)
=

∫ C1
1+α
α

0

g(u; ρ1, ρ2)du, (5.1.24)
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where g(u; ρ1, ρ2) denotes the Gamma distribution defined in (3.1.6). Where α ≈

0.0152, it can be determined that µ̄ < C1(1269/19), and the integral (5.1.24)

becomes

P

(
µ̄ < C1

1269

19

)
=

∫ C1
1269
19

0

g(u; ρ1, ρ2)du. (5.1.25)

In the deterministic case, with parameters ρ1 = 400 and ρ2 = 0.0013, the mean

value of the nonlinear shear modulus is

µ̄ = ρ1ρ2 = 0.52. (5.1.26)

For a necking instability to occur, the following inequality must be satisfied;

C1

C2

=
R1

1−R1

> α, (5.1.27)

or, equivalently,

R1 >
α

1 + α
. (5.1.28)

Since we have C1 = µ̄R1 (3.4.12), it can be observed that

C1 > µ̄
α

1 + α
. (5.1.29)

It has previously been deduced that supλ f(λ) ≈ 0.0152, and so α ≈ 0.0152,

enabling the following expression to be determined;

C1 = C1 = µ̄
α

1 + α
≈ 0.0078. (5.1.30)

Therefore, the following conclusions can be made: If C1 < 0.0078, a necking

instability occurs, and if C1 > 0.0078, necking does not occur.

This is a very black-and-white approach, and no account is taken of the fact

that there is not necessarily a 100% guarantee of whether a necking instability

will occur or not. The stochastic approach which follows takes this into account,
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giving an enhanced understanding of the likelihood as to whether or not necking

will occur [127,133,196].

Stochastically, if the value of C1, calculated in the deterministic case, is given

as C1 = 0.0078, then in the immediate proximity of this value, there will be a

50% chance of a necking instability occurring, and, as such, a 50% chance that

necking does not occur. Similarly, in the area surrounding C1, denoted by C1 + ε,

where ε > 0 is a very small value, there will be a percentage chance of a necking

instability occurring, denoted here by p, meaning that there will be a (1 − p)%

chance that necking does not occur. Figure 5.4 demonstrates this concept; the

black dashed line denoting the deterministic critical value, the red and blue lines

denoting the probability of whether necking occurs or not, respectively, both in

the analytical case (dark red/blue) and in the simulation (light red/blue), with

each case in good agreement with each other.

Figure 5.4: Probability distribution (5.1.24) of whether a necking instability oc-
curs or not for a stochastic hyperelastic material described by (5.1.7) following a
Gamma distribution (3.1.6) with parameters ρ1 = 400 and ρ2 = 0.0013, in both
the simulated and analytical case around a deterministic critical point 0.0078.

A plot demonstrating the behaviour of the model given in (5.1.7) around the

critical point 0.0078 is given in Figure 5.5.
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Figure 5.5: The occurence of a necking instability in the model given in (5.1.7)
for different values around the critical point 0.0078.

5.1.2 Carroll model

The conditions under which a necking instability occurs for a material described

by the Carroll model [38], characterised by the strain-energy function;

W(λ1, λ2, λ3) =
C1

2
(λ2

1 +λ2
2 +λ2

3−3)+
√

3C2

(√
λ−2

1 + λ−2
2 + λ−2

3 −
√

3

)
, (5.1.31)

where C1 and C2 are constants, with C1, C2 > 0, are now discussed.

Assuming that this material is subject to the normal tension (5.1.2), the strain-

energy function takes the equivalent form

W (λ) =
C1

2
(λ2 + 2λ−1 − 3) +

√
3C2

(√
λ−2 + 2λ−

√
3
)
, (5.1.32)

with

W ′′(λ) = C1(1 + 2λ−3) +
√

3C2

[
2λ−6 + 8λ−3 − 1

(λ−2 + 2λ)
3
2

]
, (5.1.33)
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which, after setting the right-hand side equal to 0, gives

C1

C2

−
√

3(1− 8λ−3 − 2λ−6)

(1 + 2λ−3)(λ−2 + 2λ)
3
2

= 0. (5.1.34)

From this, the following two conditions regarding the stability of the model can

be stated; when

C1

C2

>

√
3(1− 8λ−3 − 2λ−6)

(1 + 2λ−3)(λ−2 + 2λ)
3
2

, (5.1.35)

the model is stable, and when

C1

C2

<

√
3(1− 8λ−3 − 2λ−6)

(1 + 2λ−3)(λ−2 + 2λ)
3
2

, (5.1.36)

the model is unstable.

Let

f(λ) =

√
3(1− 8λ−3 − 2λ−6)

(1 + 2λ−3)(λ−2 + 2λ)
3
2

. (5.1.37)

Then, for C1/C2 to be stable, we must have C1/C2 > supλ>1 f(λ). Define

g(λ) = f ′(λ) =
3
√

3(27λ2 − λ5 + 30λ−1 − 2λ−4 + 4λ−7)

(2λ3 + 1)
5
2 (2λ−3 + 1)2

. (5.1.38)

Plots of both (5.1.37) and (5.1.38) are then presented in Figures 5.6(a) and (b),

where it becomes clear that the function f(λ) has a maximum.

To find the maximum value of f(λ), we set (5.1.38) equal to 0 and solve the

resulting equation for λ, which yields λ = −1.0677 and λ = 3.0390. Since λ > 1,

we take λ = 3.0390 here. Substituting this value for λ back into (5.1.37), we

obtain the following approximate maximum value of f(λ);

max
λ

f(λ) ≈ 0.0749. (5.1.39)

Therefore, if C1/C2 > supλ>1 f(λ) ≈ 0.0749, necking does not occur.
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(a)

(b)

Figure 5.6: The behaviour of the functions f(λ) (5.1.37) and g(λ) (5.1.38), respec-
tively: (a) at small values of λ, and (b) at large values of λ. Note that f(λ) is the
right-hand side of (5.1.35), and g(λ) is the derivative of f(λ).
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From (3.4.12), for stability, we must have

R1

(1−R1)
> 0.0749. (5.1.40)

It can then be deduced that R1 > 749/10749. Hence, for a necking instability

to occur, we must have R1 < 749/10749. Approaching this from a stochastic

perspective, the question of the probability that R1 > 749/10749 will now be

addressed.

As in Section 5.1.1, R1 follows a Beta distribution given by (5.1.19). The

probability that R1 satisfies the given inequality is

P

(
R1 >

749

10749

)
= 1−

∫ 749
10749

0

β(λ; ξ1, ξ2)dλ. (5.1.41)

Since the random variables C1 and C2 follow a Gamma distribution, Γ(ρ1, ρ2), we

have the inequality (5.1.21) as before, where we let supλ>1 f(λ) = α. Some minor

rearrangement then yields (5.1.22), and equivalently (5.1.23). Using (3.3.16) and

0 < C1 < µ̄, the probability that the inequality for µ̄ holds is given by (5.1.24).

Where α ≈ 0.0749, it can be observed that µ̄ < C1(10749/749), and the integral

(5.1.24) becomes

P

(
µ̄ < C1

10749

749

)
=

∫ C1
10749
749

0

g(u; ρ1, ρ2)du. (5.1.42)

In the deterministic case, it can be established that (5.1.29) holds. Where

α ≈ 0.0749, we have

C1 = C1 = 0.52
0.0749

1 + 0.0749
≈ 0.0362. (5.1.43)

Therefore, the following conclusion can be made: If C1 < 0.0362, then a necking

instability occurs, and if C1 > 0.0362, necking does not occur.

Stochastically, if C1 = 0.0362 as deduced in the deterministic case, then in

Page 94



5.1. NECKING INSTABILITY

the immediate proximity of this value, there will be a 50% chance of necking

occurring. In the area surrounding C1, denoted by C1 + ε, where ε > 0 is a very

small value, there will be a p% chance of a necking instability occurring, and thus

a (1 − p)% chance that necking does not occur. This is demonstrated in Figure

5.7; the black dashed line denoting the deterministic critical value, the red and

blue lines denoting the probability of whether necking occurs or not, respectively,

both in the analytical case (dark red/blue), and in the simulation (light red/blue),

each case in good agreement with each other. A plot demonstrating the behaviour

of the Carroll Model around the critical point 0.0362 is given in Figure 5.8.

Figure 5.7: Probability distribution (5.1.24) of whether a necking instability occurs
or not for a stochastic hyperelastic material described by the Carroll Model (5.1.31)
following a Gamma distribution (3.1.6) with parameters ρ1 = 400 and ρ2 = 0.0013,
in both the simulated and analytical case around a deterministic critical point
0.0362.

5.1.3 Gent-Thomas model

In this section, to model the particular material in question, we use the two-term

Gent-Thomas model [64], characterised by the strain-energy function

W(λ1, λ2, λ3) =
C1

2
(λ2

1 + λ2
2 + λ2

3 − 3) +
3C2

2
ln

(
λ−2

1 + λ−2
2 + λ−2

3

3

)
, (5.1.44)

where C1, C2 > 0 are constants.

Assuming that this material is subject to the normal tension (5.1.2), the strain-
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Figure 5.8: The occurence of a necking instability in the Carroll Model for different
values around the critical point 0.0362.

energy function takes the equivalent form

W (λ) =
C1

2
(λ2 + 2λ−1 − 3) +

3C2

2
ln

(
λ−2 + 2λ

3

)
, (5.1.45)

with

W ′′(λ) = C1(1 + 2λ−3) + 3C2

[
−2λ6 + 10λ3 + 1

(2λ4 + λ)2

]
. (5.1.46)

Setting the right-hand side of (5.1.46) equal to 0, we then have

C1

C2

=
6λ6 − 30λ3 − 3

4λ8 + 12λ5 + 9λ2 + 2λ−1
= 3λ

(
2λ6 − 10λ3 − 1

4λ9 + 12λ6 + 9λ3 + 2

)
. (5.1.47)

The model is stable when

C1

C2

> 3λ

(
2λ6 − 10λ3 − 1

4λ9 + 12λ6 + 9λ3 + 2

)
, (5.1.48)
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and a necking instability occurs when

C1

C2

< 3λ

(
2λ6 − 10λ3 − 1

4λ9 + 12λ6 + 9λ3 + 2

)
. (5.1.49)

Now, let

f(λ) = 3λ

(
2λ6 − 10λ3 − 1

4λ9 + 12λ6 + 9λ3 + 2

)
. (5.1.50)

For reasons of comprehensibility, we now introduce the change of variable x = λ3

into (5.1.50), and obtain

f(x) = 3x
1
3

(
2x2 − 10x− 1

4x3 + 12x2 + 9x+ 2

)
. (5.1.51)

Let g(x) = f ′(x). Then

g(x) =
3x

1
3 (4x− 10)

4x3 + 12x2 + 9x+ 2
− −2x2 + 10x+ 1

x
2
3 (4x3 + 12x2 + 9x+ 2)

+

+
3x

1
3 (−2x2 + 10x+ 1)(12x2 + 24x+ 9)

(4x3 + 12x2 + 9x+ 2)2
.

(5.1.52)

Plotting both (5.1.51) and (5.1.52) yields the graphs given in Figures 5.9(a) and

(b). Figure 5.9(a) demonstrates the behaviour of these functions on a small scale,

while Figure 5.9(b) serves to demonstrate their behaviour as the scale is greatly

increased in both directions. From Figure 5.9(a), it can be seen that the function

f(x) has a maximum, occurring at the point maxx f(x) ≈ 0.1355. Analytically,

this value can be found by setting g(x) = 0, solving for x, and then substituting

the values obtained for x into f(x).

In summary, it has been deduced that if C1/C2 > supλ>1 f(λ) ≈ 0.1355,

we have stability, and, as such, a necking instability does not occur. Applying

the result in (3.4.12), we have R1/(1−R1) > 0.1355, and so, after some minor

rearrangement, it can be deduced that R1 > 271/2271. Therefore, for necking to

occur, we must have R1 < 271/2271. The question regarding the probability that

R1 > 271/2271 will now be considered.
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(a)

(b)

Figure 5.9: The behaviour of the functions f(x) (5.1.51) and g(x) (5.1.52), respec-
tively: (a) at small values of x, and (b) at large values of x.
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It has been determined that R1 follows a Beta distribution given by (5.1.19).

The probability that R1 satisfies the above inequality is given by

P

(
R1 >

271

2271

)
= 1−

∫ 271
2271

0

β(x; ξ1, ξ2)dx. (5.1.53)

Since the random variables C1 and C2 follow a Gamma distribution, Γ(ρ1, ρ2),

expression (5.1.21), where we let supλ>1 f(λ) = α, holds. As a result, the inequal-

ities (5.1.22) and (5.1.23) are also applicable here. Using (3.3.16) and 0 < C1 < µ̄,

the probability that the inequality given for µ̄ holds is given by (5.1.24). Where

α ≈ 0.1355, we have µ̄ < C1(2271/271), and (5.1.24) becomes

P

(
µ̄ < C1

2271

271

)
=

∫ C1
2271
271

0

g(u; ρ1, ρ2)du. (5.1.54)

As in Section 5.1.1, in the deterministic case, the inequality (5.1.29) holds.

Where α ≈ 0.1355, we have

C1 = C1 = 0.52
0.1355

1.1355
≈ 0.0621. (5.1.55)

Therefore, for a necking instability to occur, we must have C1 < 0.0621, with the

opposite being the case when C1 > 0.0621.

Stochastically, if the value of C1 is given as C1 = 0.0621, then in the imme-

diate proximity of this value, there will be a 50% chance of a necking instability

occurring, and in the area surrounding C1, there will be a (1 − p)% chance that

necking does not occur. This is demonstrated in Figure 5.10, where the black

dashed line denotes the deterministic critical value, the red and blue lines denote

the respective probability that necking occurs or not, both in the analytical case

(dark red/blue), and in the simulation (light red/blue), with each case in good

agreement with each other.

The plot in Figure 5.11 demonstrates the behaviour of a material described by
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Figure 5.10: Probability distribution (5.1.53) of whether a necking instability
occurs or not for a stochastic hyperelastic material described by the Gent-Thomas
Model (5.1.44) following a Gamma distribution (3.1.6) with parameters ρ1 = 400
and ρ2 = 0.0013, in both the simulated and analytical case around a deterministic
critical point 0.0621.

(5.1.44) for values around the critical value 0.0621.

The concepts presented here are now built upon and extended to develop a

stochastic analysis of the inflation of spheres and circular cylinders in Section 5.2,

and later of the cavitation of spheres in Section 5.3.
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Figure 5.11: The occurence of a necking instability in the Gent-Thomas Model for
different values around the critical point 0.0621.

5.2 Inflation of spheres and circular cylinders

Extending the theory presented in Section 5.1, the inflation of spheres and circular

cylinders will now be investigated from a stochastic perspective. This is not a new

concept in itself; the finite symmetric inflation and stretching of a cylindrical tube

of homogeneous isotropic incompressible hyperelastic material was first investi-

gated in [169], whilst the finite radially symmetric inflation of an elastic spherical

shell was studied in [72]. However, the stochastic approach presented here will

serve to enhance the previous studies relating to this subject. A general theory

of possible qualitative behaviours of both elastic tubes and spherical shells was

developed in [38], where it was demonstrated that, depending on the particular

material and initial geometry, the internal pressure may increase monotonically

(here, we will refer to materials which display this type of behaviour as type A,

although materials of other types under specific conditions may also behave in this

Page 101



5.2. INFLATION OF SPHERES AND CIRCULAR CYLINDERS

way, as will be demonstrated in the upcoming sections), or it may increase and

then decrease (materials of type B), or it may increase, decrease, and then increase

again (materials of type C). This formed the basis for further studies where these

deformations were examined for different material constitutive laws [69,221], and

opened the way to the modelling of more complex phenomena [79].

The behaviour of a structure depends on the inextricable relation between

its material properties and its geometry. Hence, it is of the utmost importance

to use suitable constitutive models for the materials in question, derived and

validated through experience and experiments. Until now, the method has been

to only consider average values to fit deterministic models. More recently, the

use of the information about uncertainties and the variability in the acquired

data in nonlinear elasticity has been proposed by the introduction of stochastic

hyperelastic models.

A crucial part of assessing the elasticity of materials is to quantify the uncer-

tainties in their mechanical responses under large deformations. As a result, in

this section, the probability distributions of stable deformations for spherical shells

and cylindrical tubes of stochastic isotropic hyperelastic material under radially

symmetric inflation are determined. For the deterministic elastic problem involv-

ing isotropic incompressible materials, there is a critical parameter value that

strictly separates the cases where inflation instability occurs or not, analogous to

the theoretical investigation presented in Section 5.1 regarding the presence of a

necking instability. However, for the stochastic problem, due to the probabilistic

nature of the material law, there is always competition between the stable and

unstable states. Hence, at a critical load, stable or unstable inflation occurs with

a given probability, and there is also a probability that the inflation may occur

under smaller or greater loads than the expected critical value. Therefore, it is no

longer appropriate to refer to ‘equilibria’, but rather ‘likely equilibria’, obtained

under a given internal pressure with a given probability.
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The stochastic elastic setting outlined here provides a general mathematical

framework applicable to a class of stochastic homogeneous hyperelastic materials

for which similar results can be obtained. As a specific example, reference is made

to the experimental data for vulcanised rubber of Rivlin and Saunders (1951) [170],

from which the probability distribution of the random shear modulus is derived,

and predictions of the inflation responses for a spherical shell and a cylindrical

tube made of a material characterised by this parameter are made.

In Sections 5.2.1 and 5.2.2, the deterministic elastic case is investigated first, for

stochastic spheres and circular cylinders, respectively. In both cases, an approach

based on both the proposed methods outlined in [38] and [151] is developed, and

the behaviour of the spheres and cylinders is analysed. Following this, a stochastic

approach is presented, and an enhanced description of the criteria for instability

is given.

5.2.1 Spheres

Figure 5.12: Schematic of inflation of a spherical shell, showing the reference state,
with inner radius A and outer radius B (left), and the current (deformed) state,
with inner radius a and outer radius b (right), respectively.

We begin with an investigation into the inflation of spheres made of a solid

material. For a homogeneous isotropic incompressible hyperelastic material, the
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strain energy function is defined as [38]

W =W(I1, I2), (5.2.1)

where the invariants I1 and I2 (2.1.6) are defined as

I1 = tr B = λ2
1 + λ2

2 + λ2
3 and I2 = tr B−1 =

1

λ2
1

+
1

λ2
2

+
1

λ2
3

, (5.2.2)

where B = V2 is the left Cauchy-Green tensor, V is the stretch tensor, and F is the

deformation gradient (see Section 2.1 for further details). The incompressibility

condition is given by

det F = λ1λ2λ3 = 1, (5.2.3)

where λi (i = 1, 2, 3) are the principal stretches.

The Cauchy stress tensor, σ, is given by

σ = −pI + 2
∂W
∂I1

B− 2
∂W
∂I2

B−1, (5.2.4)

where p denotes an unspecified scalar and I is the identity tensor. The principal

directions of σ are the same as the principal directions of the stretch tensor V.

Next, functions Ŵ , W̃ and W are introduced, defined by

Ŵ (λ, µ) = W

(
λ2 +

1

λ2µ2
+ µ2,

1

λ2
+ λ2µ2 +

1

µ2

)
W̃ (λ) = Ŵ

(
λ,

1√
λ

)
W (λ) = Ŵ (λ, 1).

(5.2.5)

Here, Ŵ describes the general response in terms of two independent principal

stretches, W̃ describes the response in the axisymmetric deformation, and W

describes the response in the plane deformation. For principal stretches defined
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as

λ1 = λ, λ2 =
1

λµ
, λ3 = µ, (5.2.6)

the principal stress differences are given by

σ1 − σ2 = λ
∂Ŵ

∂λ
and σ3 − σ2 = µ

∂Ŵ

∂µ
. (5.2.7)

The main stress difference of interest here will be

T = σ2 − σ1, (5.2.8)

where

T =


−λ∂Ŵ

∂λ
= T̂ (λ, µ)

−λ∂W̃
∂λ

= T̃ (λ)

−λ∂W
∂λ

= T (λ),

(5.2.9)

for general, axisymmetric and plane deformations, respectively. The function

T̃ (λ), which relates the compressive stress to the axial stretch in a uniaxial com-

pressive stress test, is the tensile stress corresponding to an in-plane stretch 1/
√
λ

in axisymmetric plane stress.

Now, a radially symmetric isochoric deformation of a hollow sphere is described

by

r3 − r3
0 = a3 − a3

0, θ = θ0, φ = φ0, (5.2.10)

where (r, θ, φ) are the spherical polar coordinates of a particle, a is the radius of

the inner boundary, and the subscript 0 denotes the initial value. The deformation

(5.2.10) can also be described using a nondimensional parameter α, with the initial

value denoted as α0, defined by

α =
b3

b3 − a3
and α0 =

b3
0

b3
0 − a3

0

, (5.2.11)
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respectively, where b is the outer radius. The nondimensional parameter α is a

measure of the porosity of the sphere. For a shell with arbitrary wall thickness, as

the sphere inflates, the porosity α increases, which leads to the local deformation

then being interpreted as a radial contraction. Since λ = dr/dr0 with r3 =

a3 − a3
0 + r3

0, the stretch is given by

λ =
dr

dr0

=
r2

0

r2
=

(
1− a3 − a3

0

r3

) 2
3

, (5.2.12)

with tangential and azimuthal stretches given by 1/
√
λ. Since

b3a3
0

b3
0a

3
=
α(α0 − 1)

α0(α− 1)
, (5.2.13)

equations (5.2.10)-(5.2.12) imply that

a3

a3
0

=
α− 1

α0 − 1
,

b3

b3
0

=
α

α0

and λ
3
2 = 1− a3

0(α− α0)

r3(α0 − 1)
. (5.2.14)

The radial equation of equilibrium is given by the expression

dσrr
dr

+
2

r
(σrr − σθθ) = 0. (5.2.15)

For the case of internal pressurisation, the boundary conditions are

σrr = −P at r = a and σrr = 0 at r = b. (5.2.16)

Since µ = 1/
√
λ, we have Ŵ = Ŵ (λ, 1/

√
λ) = W̃ (λ), and so (5.2.8) and (5.2.9)

give the principle stress difference σθθ − σrr as

σθθ − σrr = −λ∂W̃
∂λ

= T̃ (λ), (5.2.17)

with the stretch λ given in (5.2.14). Substitution of (5.2.17) into (5.2.15), and
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some minor rearrangement, allows us to determine that

∂σrr
∂r

=
2

r
T̃ (λ), (5.2.18)

which, after integration with respect to r between r = a and r = b, and making

use of the boundary conditions (5.2.16), yields the expression

P = 2

∫ b

a

T̃ (λ)
dr

r
. (5.2.19)

Making the change of variable r = 1 − x in the integral (5.2.19), the expression

for P can be rewritten as

P =
2

3

∫ xb

xa

T̃
(
x

2
3

) dx

1− x
, (5.2.20)

where we are integrating between the larger value xa and the smaller value xb,

with x, xa and xb defined as

x = λ
3
2 = 1− a3 − a3

0

r3
= 1− a3

0(α− α0)

r3(α0 − 1)
, (5.2.21)

xa =
a3

0

a3
=
α0 − 1

α− 1
, and xb =

b3
0

b3
=
α0

α
. (5.2.22)

A condition for the stationary values of the applied pressure P will now be

developed. Using Leibniz’ Rule, the expression given for P in (5.2.20) can be
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differentiated as follows:

dP

dα
=

2

3

d

dα

∫ xb

xa

T̃
(
x

2
3

) 1

1− x
dx

=
2

3

∫ xb

xa

∂

∂α
T̃
(
x

2
3

) 1

1− x
dx+

2

3
T̃

((
α0

α

) 2
3

)
1

1− α0

α

∂
(
α0

α

)
∂α
−

− 2

3
T̃

((
α0 − 1

α− 1

) 2
3

)
1

1− α0−1
α−1

∂
(
α0−1
α−1

)
∂α

=
2

3

1

α− α0

[
T̃

((
α0 − 1

α− 1

) 2
3

)(
α0 − 1

α− 1

)
− T̃

((
α0

α

) 2
3

)
α0

α

]
,

(5.2.23)

and so

dP

dα
=

2

3(α− α0)

[
α0 − 1

α− 1
T̃

((
α0 − 1

α− 1

) 2
3

)
− α0

α
T̃

((
α0

α

) 2
3

)]
. (5.2.24)

For reasons of simplicity, we introduce a response function

g̃(x) = xT̃ (x
2
3 ) (5.2.25)

into (5.2.24), and so

dP

dα
=

2

3(α− α0)

[
g̃

(
α0 − 1

α− 1

)
− g̃
(
α0

α

)]
. (5.2.26)

The condition for a stationary value of the pressure P is given by

g̃

(
α0 − 1

α− 1

)
= g̃

(
α0

α

)
. (5.2.27)

Using the expression x = λ3/2, it can be deduced that

xa = λ
3
2
a and xb = λ

3
2
b , (5.2.28)

with

Ta → T̃a(xa) and Tb → T̃b(xb), (5.2.29)
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which then implies

g(xa) = λ
3
2
aTa and g(xb) = λ

3
2
b Tb. (5.2.30)

Equation (5.2.27) can then be rewritten as

λ
3
2
aTa = λ

3
2
b Tb, (5.2.31)

where the terms λa, λb, Ta and Tb denote the values of the radial stretch λ and

the compressive radial stress T = σθθ − σrr at r = a and r = b, respectively. An

expression for d2P/dα2 at a stationary point can be deduced by differentiating

(5.2.26), then using the condition stated in (5.2.27), so

d2P

dα2
=

2

3(α− α0)

[
− α0 − 1

(α− 1)2
g̃′
(
α0 − 1

α− 1

)
+
α0

α2
g̃′
(
α0

α

)]
. (5.2.32)

Expressions (5.2.27) and (5.2.32) establish that the qualitative behaviour of

the pressure P in spherical inflation is determined by the form of the function g̃

on the interval (0, 1).

A description of the qualitative behaviour of the pressure during finite inflation

of a hollow sphere in terms of the uniaxial compressive stress response of the

material can now be outlined. For convenience, the response will be detailed in

terms of the compressive logarithmic strain ε, and so

T = T (ε) = T̃ (eε), ε = − lnλ. (5.2.33)

Using x = λ3/2, g̃(x) = xT̃ (x2/3) and (5.2.33), it can be deduced that

g̃(λ
3
2 ) = g(ε) = e−

3ε
2 T (ε). (5.2.34)

The condition for a stationary value of the pressure P , given in (5.2.27), deter-
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mines that the function g must take the same value at both the inner boundary

and the outer boundary of the hollow sphere in question. Hence, the monotonicity,

or loss thereof, of the function g on (0,∞) is the relevant material property in this

case. Rearranging (5.2.34), we obtain

T (ε) = e
3ε
2 g(ε). (5.2.35)

Differentiation of this expression with respect to ε then yields

dT (ε)

dε
=

3

2
g(ε)e

3ε
2 =

3

2
[e−

3ε
2 T (ε)]e

3ε
2 =

3

2
T (ε). (5.2.36)

Due to this, it can then be observed that the function g is monotonic if

dT

dε
≥ 3

2
T. (5.2.37)

For a material of type A, the condition (5.2.37) is met over the entire range

of the compressive axial strain ε; 0 ≤ ε < ∞. It follows that g̃(x) is monotonic

for 0 < x ≤ 1, and so (5.2.27) does not have a real root α∗ with α0 < α∗ < ∞.

Hence, since P has no stationary values, the pressure increases monotonically.

For a material of type B, the condition (5.2.37) is met for 0 ≤ ε ≤ ε1, and is

not met for ε1 < ε < ∞. It follows that g̃(x) has its maximum value in (0, 1) at

x1 = e−3ε1/2, so (5.2.27) has one real root, given by α∗, satisfying α0 < α∗ < ∞.

Since α∗ > α0, it is clear that the following inequalities hold;

g̃′
(
α0 − 1

α∗ − 1

)
> 0 and g̃

(
α0

α∗

)
< 0. (5.2.38)

The pressure P increases monotonically to a maximum value, given here by P ∗,

at porosity α∗, and decreases monotonically thereafter. For the case where g̃(x) =

constant for x ≤ x1, the pressure reaches its maximum value at α∗ = α0/x1 and

remains constant thereafter.
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For a material of type C, the condition (5.2.37) is met except on the finite

interval ε1 < ε < ε2. On the interval (0, 1), the function g̃ has a local maximum

at x1 = e−3ε1/2 and a local minimum at x2 = e−3ε2/2. From (5.2.22), it can be

observed that

xb =
α0

α
=⇒ α =

α0

xb
=⇒ α =

1

β0xb
, (5.2.39)

and so,

β0 =
1

α0

=⇒ α0 =
1

β0

. (5.2.40)

Then

xa =
1− 1

α0

1
α0

(α− 1)
=

1
α

(1− 1
α0

)
1
α0

(1− 1
α

)
=
β0xb(1− β0)

β0(1− β0xb)
=

(1− β0)xb
(1− β0xb)

, (5.2.41)

and hence

xa =
(1− β0)xb
(1− β0xb)

and β0 =
1

α0

, (5.2.42)

so that the values xa and xb are close for a thin-walled sphere and significantly

different for a thick-walled sphere, where the values of α0 are larger and smaller

in the respective cases. Thus, for sufficiently thin-walled spheres, (5.2.27) has two

admissible roots α∗ and α∗∗. The pressure P increases monotonically to a local

maximum P ∗ at α∗, decreases to a local minimum P ∗∗ at α∗∗, and then increases

monotonically. For sufficiently thick-walled spheres, (5.2.27) does not have an

admissible root, so the pressure P increases monotonically. In the case where

(5.2.27) has one admissible repeated root, where there is a critical value of α0, the

pressure P is monotonic but has an inflection point.

Although three types of behaviour have been described in detail, these types

do not exhaust the list of possibilities of different behaviours. The compressive

uniaxial stress response of most materials, however, is typically of type A, B or C.

Therefore, for a material of type A, and also a thick-walled sphere of material

of type C, it is expected that the pressure in spherical inflation will increase
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monotonically; for a material of type B, the pressure is expected to increase to a

maximum value, then decrease; and for thin-walled spheres of material of type C,

the pressure should increase, decrease, then increase again.

The pressure response for a pressurised spherical cavity of internal radius a0

in a medium of infinite extent is given by the expression

P =
2

3

∫ 1

a30
a3

T̃ (x
2
3 )

dx

1− x
. (5.2.43)

Differentiating (5.2.43), we have

dP

da
=

2

3

[∫ 1

a30
a3

∂

∂a

(
T̃ (x

2
3 )

1

1− x

)
dx+ T̃ (1

2
3 )
∂(1)

∂a
− T̃

((
a3

0

a3

) 2
3

)
1

1− a30
a3

∂
(a30
a3

)
∂a

]
,

(5.2.44)

which reduces to

dP

da
=

2

3

[
− T̃

((
a3

0

a3

) 2
3

)
1

1− a30
a3

∂
(a30
a3

)
∂a

]
= −2

3
T̃

(
a2

0

a2

)
a3

a3 − a3
0

(
− 3a3

0

a4

)
. (5.2.45)

Hence,

dP

da
=

2a3
0

a(a3 − a3
0)
T̃

(
a2

0

a2

)
, (5.2.46)

meaning that the pressure increases monotonically.

The three types of behaviour determined by Carroll (1987) [38] and outlined

above can be illustrated by considering the well-known Mooney-Rivlin strain en-

ergy function

W = D1(I1 − 3) +D2(I2 − 3), (5.2.47)

where D1 = C1/2 and D2 = C2/2. The function g̃ can be determined using (5.2.5),

(5.2.9), (5.2.25) and (5.2.47); from (5.1.1), and using (5.2.5), with (5.1.2), we have

(5.1.3), which, in keeping with the notation adopted in this section, we call W̃ (λ)
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here. Applying (5.2.9) allows us to determine that

T̃ (λ) = 2D1

(
1

λ
− λ2

)
+ 2D2

(
1

λ2
− λ
)
, (5.2.48)

and (5.2.25) then yields

g̃(x) = xT̃ (x
2
3 ) = 2D1

[(
x

1
3 − x

7
3

)
+
D2

D1

(
x−

1
3 − x

5
3

)]
. (5.2.49)

Letting κ = D2/D1, we then have

g̃(x) = 2D1

[(
x

1
3 − x

7
3

)
+ κ

(
x−

1
3 − x

5
3

)]
. (5.2.50)

Differentiation of (5.2.50) with respect to x gives,

g̃′(x) =
2

3
D1x

− 4
3

[
x

2
3 (1− 7x2)− κ(1 + 5x2)

]
. (5.2.51)

For κ = 0, it can be determined that g̃′ has one zero in (0, 1), at the point

x1 = 1/
√

7. By considering the function

κ̂(x) =
x

2
3 (1− 7x2)

(1 + 5x2)
, (5.2.52)

it can be seen that there is a critical value κcr ≈ 0.2145, such that the function g̃

has a local maximum and minimum in (0, 1) for 0 < κ < κcr, and is monotonic

in (0, 1) for κ > κcr. Hence, the Mooney-Rivlin strain-energy function defined in

(5.2.47) allows all three types of behaviour in spherical inflation; the material is

of type A for κ ≥ κcr, of type B for κ = 0, and of type C for 0 < κ ≤ κcr. Type

B behaviour in this case corresponds to a neo-Hookean material. In the case of

behaviour of type C, the pressure maximum and minimum, denoted P ∗ and P ∗∗
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respectively, for a sufficiently thin-walled sphere, occur at the roots α∗ and α∗∗ of

[(
α0 − 1

α− 1

) 1
3

+ κ

(
α− 1

α0 − 1

) 1
3

][
1−

(
α0 − 1

α− 1

)2
]

=

=

[(
α0

α

) 1
3

+ κ

(
α

α0

) 1
3

][
1−

(
α0

α

)2
]
.

(5.2.53)

This result is included for theoretical significance purposes. We do not take this

further.

Stochastic incompressible spherical shell

We consider now a spherical shell of stochastic hyperelastic material described by

(3.1.2), subject to the radially symmetric deformation (see Figure 5.12)

r = f(R)R, θ = Θ, φ = Φ, (5.2.54)

where (R,Θ,Φ) and (r, θ, φ) are the spherical polar coordinates in the reference

and current configurations, respectively, such that A ≤ R ≤ B [151, pp. 283-288].

The deformation gradient is F = diag (λ1, λ2, λ3), where

λ1 = f(R) +R
df

dR
= λ−2, λ2 = λ3 = f(R) = λ, (5.2.55)

and λ1, λ2 and λ3 represent the radial, tangential and azimuthal stretch, respec-

tively.

The radial equation of equilibrium (5.2.15) is equivalent to [38]

dP11

dR
+

2

R
(P11 − P22) = 0, (5.2.56)

where P = (Pij)i,j=1,2,3 denotes the first Piola-Kirchhoff stress tensor. From
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(5.2.56), it can be observed that

dP11

dλ

dλ

dR
+

2

R
(P11 − P22) = 0, (5.2.57)

which, using equation (5.2.55), can be rewritten as

dP11

dλ

λ−2 − f(R)

R
+

2

R
(P11 − P22) = 0. (5.2.58)

After some rearrangement and simplification, it is then determined that (5.2.56)

can be equivalently expressed as

dP11

dλ
λ−2 + 2

P11 − P22

1− λ3
= 0. (5.2.59)

For an incompressible material,

P11 =
∂W
∂λ1

− p

λ1

, P22 =
∂W
∂λ2

− p

λ2

, (5.2.60)

where p is the Lagrange multiplier for the incompressibility constraint (detF = 1).

The limit-point instability criterion for this type of material configuration will

now be discussed.

Limit-point instability criterion for spherical shells

Denoting

W (λ) =W(λ−2, λ, λ), (5.2.61)

where λ = r/R > 1, and using

∂W

∂λ
=

2µ1

m
(λ2m−1 − λ−4m−1) +

2µ2

n
(λ2n−1 − λ−4n−1), (5.2.62)

∂W
∂λ1

=
µ1

m
λ2m−1

1 +
µ2

n
λ2n−1

1 , (5.2.63)
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and

∂W
∂λ2

=
µ1

m
λ2m−1

2 +
µ2

n
λ2n−1

2 , (5.2.64)

we can deduce that,

dW

dλ
= − 2

λ3

[
∂W
∂λ1

− p

λ1

]
+ 2

[
∂W
∂λ2

− p

λ2

]
= − 2

λ3

∂W
∂λ1

+
2p

λ3λ−2
+ 2

∂W
∂λ2

− 2p

λ

= − 2

λ3

∂W
∂λ1

+ 2
∂W
∂λ2

.

(5.2.65)

Equivalently, we have

dW

dλ
= − 2

λ3
P11 + 2P22. (5.2.66)

Next, setting the external pressure (at R = B) equal to zero, by (5.2.59) and

(5.2.66), the internal pressure (at R = A) is equal to

T = −P11

λ2
|λ=λa

= −2

∫ λb

λa

P11

λ3
dλ+

∫ λb

λa

dP11

dλ
λ−2dλ

= −2

∫ λb

λa

P11

λ3
dλ− 2

∫ λb

λa

P11 − P22

1− λ3
dλ

=

∫ λb

λa

dW

dλ

dλ

1− λ3
,

(5.2.67)

where λa = a/A and λb = b/B are the stretches for the inner and outer radii,

respectively. It is worth recalling here that a volume element dV from the reference

configuation is transformed, after the deformation, into a volume element dv =

(det F)dV in the current configuration [209, p. 240], [151, p. 87], [70, p. 274].

Then, by the material incompressibility condition, det F = 1, the material volume

in the spherical shell is conserved, i.e. 4π(b3− a3) = 4π(B3−A3), or equivalently,

as a = Aλa and b = Bλb,

λ3
b = (λ3

a − 1)

(
A

B

)3

+ 1. (5.2.68)
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Hence, the internal pressure T (5.2.67) can be expressed as a function of the inner

stretch ratio, λa, only.

As in the case of a deterministic elastic shell, for a stochastic spherical shell,

a limit-point instability occurs if there is a change in the monotonicity of T , de-

fined by (5.2.67), as a function of λa. When the spherical shell is thin, 0 < ε =

(B − A)/A� 1, the internal pressure can be approximated as follows [70, p. 443];

T (λ) =
ε

λ2

dW

dλ
, (5.2.69)

and the critical value of λ where a limit-point instability occurs can be found by

solving

dT

dλ
= 0 (5.2.70)

for λ > 1, where T is described by (5.2.67).

A brief discussion of deterministic elastic spherical shells will now be presented,

before extending the theory to the stochastic case.

Deterministic elastic shell

In the deterministic case, following the approach set out in [151], for a spherical

shell of hyperelastic material defined by the strain-energy function (3.1.2), where

µ1 and µ2 are fixed positive constants, and µ = µ1 + µ2 > 0 is the corresponding

shear modulus, (5.2.61) is equal to

W (λ) =
µ1

2m2

(
λ−4m + 2λ2m − 3

)
+

µ2

2n2

(
λ−4n + 2λ2n − 3

)
. (5.2.71)

The internal pressure, given by (5.2.69), then takes the form

T (λ) = 2ε
[µ1

m

(
λ2m−3 − λ−4m−3

)
+
µ2

n

(
λ2n−3 − λ−4n−3

)]
, (5.2.72)
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and (5.2.70) is equivalent to

µ1

m

[
(2m− 3)λ2m−4 + (4m+ 3)λ−4m−4

]
+
µ2

n

[
(2n− 3)λ2n−4 + (4n+ 3)λ−4n−4

]
= 0.

(5.2.73)

Specifically, if µ2 = 0, then, when −3/4 < m < 3/2, the internal pressure increases

to a maximum value then decreases, otherwise the internal pressure increases

monotonically. If µ2 > 0, then (5.2.73) is equivalent to

µ1

µ
=

m [(2n− 3)λ2n−4 + (4n+ 3)λ−4n−4]

m [(2n− 3)λ2n−4 + (4n+ 3)λ−4n−4]− n [(2m− 3)λ2m−4 + (4m+ 3)λ−4m−4]
,

(5.2.74)

where 0 < µ1/µ < 1.

In particular, for a spherical shell of Mooney-Rivlin material, with m = 1 and

n = −1, the minimum value of µ1/µ such that an inflation instability occurs is

the minimum value of

η(λ) =
λ8 + 5λ2

λ8 + 5λ2 + λ6 − 7
, λ ≥ 71/6, (5.2.75)

i.e.

ηmin ≈ 0.8234. (5.2.76)

In this case:

(i) When ηmin ≤ µ1/µ < 1, the internal pressure increases to a maximum, then

decreases to a minimum, then increases again;

(ii) When 0 < µ1/µ < ηmin, the internal pressure is always increasing.

For spherical shells of Mooney-Rivlin material, with m = 1 and n = −1, the

internal pressure T (λ) (5.2.72), normalised by 2εµ, is plotted in Figure 5.13 (see

also [38, 69,221], [151, pp.283-288], [70, pp.442-447], and the references therein).
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Stochastic elastic shell

For a spherical shell of stochastic Mooney-Rivlin material, characterised by the

strain-energy function (3.1.2), with m = 1 and n = −1, the probability distribu-

tion of stable inflation, such that internal pressure monotonically increases as the

radial stretch increases, is

P1

(
µ >

µ1

ηmin

)
= 1−

∫ µ1/ηmin

0

p1(u)du, (5.2.77)

where ηmin is given in (5.2.76), p1(u) = g(u; ρ1, ρ2) if the random shear modu-

lus, µ, follows the Gamma distribution (3.1.6), with ρ1 = 405 and ρ2 = 0.01, and

p1(u) = h(u;µ, ‖µ‖) if µ follows a normal distribution (3.4.44), with µ = 4.09 and

‖µ‖ = 0.23 (see Table 3.2).

The probability distribution of inflation instability occurring, such that the

internal pressure begins to decrease, is

P2

(
µ <

µ1

ηmin

)
= 1− P1

(
µ >

µ1

ηmin

)
=

∫ µ1/ηmin

0

p1(u)du. (5.2.78)

The probability distributions given by equations (5.2.77)-(5.2.78) are illus-

trated numerically in Figure 5.14 (blue lines for P1 and red lines for P2). Specifi-

cally, µ1 ∈ (0, µ) was divided into 100 steps, then for each value of µ1, 100 random

values of µ were numerically generated from a specified Gamma (or normal) dis-

tribution and compared with the inequalities defining the two intervals for values

of µ1. For the deterministic elastic shell, which is based on the mean value of the

shear modulus, µ = ρ1ρ2 = 4.09, the critical value of µ1 = ηmin ·µ = 3.3683 strictly

separates the cases where inflation instability can occur or not. For the stochastic

problem, for the same critical value, there is, by definition, exactly 50% chance of

a randomly chosen shell for which inflation is stable (blue solid or dashed line if

the shear modulus is Gamma or normal distributed, respectively), and 50% chance

of a randomly chosen shell, such that a limit-point instability occurs (red solid or
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dashed line). To increase the probability of stable inflation (P1 ≈ 1), sufficiently

small values of µ1, below the expected critical value, must be considered, whereas

a limit-point instability is certain to occur (P2 ≈ 1) only if the model reduces to

the neo-Hookean case. However, due to the natural variability in the probabilistic

system, there will also exist events where there is competition between the two

cases.

To illustrate this, in Figure 5.15, the probability distribution of the normalised

internal pressure T (λ), defined by (5.2.69), as a function of the inner stretch

λ, when µ follows a Gamma distribution with ρ1 = 405 and ρ2 = 0.01, and

R1 = µ1/µ follows a Beta distribution with ξ1 = 287 and ξ2 = 36 (see Table 3.3)

is demonstrated. In this case, µ
1

= 3.63 = 0.89 · µ > ηmin · µ, and instability is

expected to occur. Nevertheless, the probability distribution suggests that there

is also around 10% chance that the inflation is stable.

Figure 5.13: The normalised internal pressure T (λ) defined by (5.2.72), for the
inflation of spherical shells of Mooney-Rivlin material, defined by the strain-energy
function (3.1.2) with m = 1 and n = −1. In this deterministic case, inflation
instability occurs if µ1/µ > ηmin.
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Figure 5.14: Probability distributions (5.2.77)-(5.2.78) of whether instability can
occur or not for a spherical shell of stochastic Mooney-Rivlin material, described
by (3.1.2) with m = 1 and n = −1, and the shear modulus, µ, following
either a Gamma distribution (3.1.6) with ρ1 = 405, ρ2 = 0.01 (continuous
lines), or a normal distribution (3.4.44) with µ = 4.09, ‖µ‖ = 0.23 (dashed
lines). Darker colours represent analytically derived solutions, given by equa-
tions (5.2.77)-(5.2.78), whereas lighter colours represent stochastically generated
data. The vertical line at the critical value, µ1 = 3.3683, separates the expected
regions based only on the mean value of the shear modulus.

Figure 5.15: Computed probability distribution of the normalised internal pres-
sure, T (λ) (5.2.69), for the inflation of a spherical shell of stochastic Mooney-Rivlin
material, given by (3.1.2) with m = 1 and n = −1, when µ follows a Gamma distri-
bution (3.1.6) with ρ1 = 405, ρ2 = 0.01, and R1 = µ1/µ follows a Beta distribution
(3.1.12) with ξ1 = 287, ξ2 = 36. As µ

1
= 3.63 = 0.89 · µ > ηmin · µ, instability is

expected to occur, but there is also around 10% chance that the inflation is stable.
The dashed black lines correspond to the expected pressure based only on mean
parameter values.
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5.2.2 Circular cylinders

In this section, analysis analogous to that in Section 5.2.1 will be presented with

regard to the inflation of circular cylindrical tubes.

Figure 5.16: Schematic of inflation and stretching of a cylindrical tube, showing
the reference state, with inner radius A and outer radius B (top), and the current
(deformed) state, with inner radius a and outer radius b (bottom), respectively.

For a homogeneous isotropic incompressible elastic material, the strain energy

function, invariants I1 and I2, and the Cauchy stress tensor σ are defined as in

(5.2.1), (5.2.2), and (5.2.4), respectively.

The functions Ŵ , W̃ and W are now introduced, defined as in (5.2.5). As

before, Ŵ describes the general response in terms of two independent principal

stretches, W̃ describes the response in the axisymmetric deformation, and W

describes the response in the plane deformation. For principal stretches defined

as

λi =

(
λ,

1

λµ
, µ

)
, i = 1, 2, 3, (5.2.79)
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the principal stress differences are given by (5.2.7). The main stress difference of

interest is once again given by (5.2.8), and explicitly defined in (5.2.9).

In the case of a hollow cylinder, the deformation is described by

r2 − r2
0

µ
= a2 − a2

0

µ
, θ = θ0, z = µz0, (5.2.80)

where (r, θ, z) are cylindrical coordinates and µ is a positive constant. Here, the

deformation in question describes the radial inflation and uniform axial stretching

of a circular cylindrical tube of initial inner radius a0. For convenience, we once

again introduce a measure of the porosity, denoted by α, with

α =
b2

b2 − a2
, and α0 =

b2
0

b2
0 − a2

0

, (5.2.81)

where b0 denotes the initial outer radius. After an initial axial stretching described

by

r2 =
r2

0

µ
, θ = θ0, z = µz0, (5.2.82)

the porosity does not change, and so the subsequent radial inflation, for fixed

values of µ, will be decribed by the variable α.

In this current case, the principal stretches in the coordinate directions are

defined as

λi =

(
dr

dr0

,
r

r0

,
dz

dz0

)
=

(
λ,

1

λµ
, µ

)
, i = 1, 2, 3, (5.2.83)

with the radial stretch, λ, given by λ = dr/dr0 with r2 = a2 − a2
0/µ + r2

0/µ,

determined to give

λ2 =
1

µ

[
1− µa2 − a2

0

µr2

]
. (5.2.84)

Using (5.2.80), (5.2.81) and (5.2.84), it can then be deduced that

µa2

a2
0

=
α− 1

α0 − 1
,

µb2

b2
0

=
α

α0

, and λ2 =
1

µ

[
1− a2

0(α− α0)

µr2(α0 − 1)

]
. (5.2.85)
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The radial equation of equilibrium is defined as

dσrr
dr

+
1

r
(σrr − σθθ) = 0, (5.2.86)

and the boundary conditions for the internal pressurisation of the tube are

σrr = −P at r = a and σrr = 0 at r = b. (5.2.87)

From (5.2.83), it can be deduced that

Ŵ (λ, µ) = W

(
λ,

1

λµ
, µ

)
, (5.2.88)

and so, using (5.2.8), we see that

T = σ2 − σ1 = −λ∂Ŵ
∂λ

= T̂ (λ, µ), (5.2.89)

leading to the condition

σθθ − σrr = T̂ (λ, µ), (5.2.90)

with the function T̂ defined by (5.2.5) and (5.2.9). Expressions (5.2.86)-(5.2.90)

give ∫ b

a

dσrr
dr

dr =

∫ b

a

1

r
T̂ (λ, µ)dr (5.2.91)

which, using the boundary conditions stated in (5.2.87), yields

P =

∫ b

a

T̂ (λ, µ)
dr

r
. (5.2.92)

Introducing the change of variables r = 1− x into (5.2.92) then gives

P =
1

2

∫ xb

xa

T̃

((
x

µ

) 1
2

, µ

)
dx

1− x
, (5.2.93)

where we are integrating between the larger value xa and the smaller value xb,
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with

x = µλ2, xa =
a2

0

µa2
=
α0 − 1

α− 1
, xb =

b2
0

µb2
=
α0

α
. (5.2.94)

The expression (5.2.93) gives the pressure as a function of the kinematical

variable α for the inflation of a hollow circular cylinder with axial prestretch. For

the case where inflation occurs with no prestretching, in other words, when µ = 1,

(5.2.93) may be written as

P =
1

2

∫ xb

xa

T
(
x

1
2

) dx

1− x
, (5.2.95)

since T̂ [(x/1)1/2, 1] = T̂ (x1/2, 1) = T (x1/2) with Ŵ (λ, 1) = W (λ), where T is the

plane strain response function defined in (5.2.9).

A condition for the stationary values of the pressure P will now be developed.

Differentiation of (5.2.95) yields

dP

dα
=

1

2

d

dα

∫ xb

xa

T̂

((
x

µ

) 1
2

, µ

)
dx

1− x

=
1

2

[∫ xb

xa

∂

∂α

T̂
((

x
µ

) 1
2 , µ
)

1− x
dx+

T̂
((

xb
µ

) 1
2 , µ
)

1− xb
∂xb
∂α
−
T̂
((

xa
µ

) 1
2 , µ
)

1− xa
∂xa
∂α

]
.

(5.2.96)

Using xa = α0 − 1/α− 1 and xb = α0/α then gives

dP

dα
=

1

2(α− α0)

[
α0 − 1

α− 1
T̂

((
α0 − 1

µ(α− 1)

) 1
2

, µ

)
− α0

α
T̂

((
α0

µα

) 1
2

, µ

)]
. (5.2.97)

Introducing a response function h, defined as

h(λ2, µ) = λ2T̂ (λ, µ), (5.2.98)

gives the condition for stationary values of the applied pressure P in the form

h

(
α0 − 1

µ(α− 1)
, µ

)
= h

(
α0

µα
, µ

)
, (5.2.99)
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since λ = [α0 − 1/µ(α− 1)]1/2. Where

x = λ2 =⇒ xa = λ2
a, xb = λ2

b , (5.2.100)

and

Ta → T̃a(xa) and Tb → T̃b(xb), (5.2.101)

we have

h(xa) = λ2
aTa and h(xb) = λ2

bTb, (5.2.102)

and so

λ2
aTa = λ2

bTb, (5.2.103)

where λa and λb denote radial stretches, and Ta and Tb denote principal stress

differences T = σθθ − σrr, evaluated at the inner and outer boundaries, given by

r = a and r = b, respectively.

The condition (5.2.103) is analogous to the condition (5.2.27) in the case of

spherical inflation. Performing a similar analysis to that detailed in Section 5.2.1,

it can be observed that the qualitative behaviour in cylindrical inflation depends

on the monotonicity of the function h(λ2, µ) on the interval 0 < λ < 1/
√
µ. This

function could be monotonic, have a local maximum or have a local maximum

and minimum. Corresponding to these cases, the pressure in cylindrical inflation

may increase monotonically in the case of type A behaviour, or type C for thick-

walled cylinders, it may increase to a maximum value P ∗, then decrease, which

is the case for type B, or it may increase to a maximum value P ∗, decrease to

a minimum P ∗∗, then increase again, as is the case for type C behaviour for

thin-walled cylinders. The axial prestretch, µ, expands or contracts the range of

relevant values of the radial stretch, λ,
(
0 < λ ≤ 1/

√
µ
)
, depending on whether

the prestretch is compressive (µ < 1) or tensile (µ > 1).
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For a material described by the strain energy function

W = C(λm1 + λm2 + λm3 − 3) (5.2.104)

with λi =
(
λ, 1/λµ, µ

)
, equation (5.2.9) gives

T̂ = −λ∂Ŵ
∂λ

= mC

(
1

λmµm
− λm

)
, (5.2.105)

since, using (5.2.5), Ŵ (λ, µ) =W . Hence

T̂ (λ, µ) = mC

(
1

λmµm
− λm

)
. (5.2.106)

Expressions (5.2.98) and (5.2.106) give

h(λ2, µ) = λ2T̂ (λ, µ) = λ2mC

(
1

λmµm
− λm

)
, (5.2.107)

so

h(λ2, µ) = mC(µ−mλ2−m − λm+2). (5.2.108)

The behaviour of such a material in cylindrical inflation is of type B for

−2 < m < 2, (5.2.109)

and is of type A otherwise. In particular, neo-Hookean and Mooney-Rivlin ma-

terials do not have a pressure maximum instability for cylindrical inflation. For

|m| < 2, the porosity α∗, at which the pressure reaches a maximum, is a root of

[
α0 − 1

µ(α− 1)

]1+m
2

−

[
α0 − 1

µ(α− 1)

]1−m
2

=

(
α0

µα

)1+m
2

−
(
α0

µα

)1−m
2

, (5.2.110)

which gives the same value for m and −m.
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For a material with strain energy function

W = M(λm1 + λm2 + λm3 − 3) +N(λn1 + λn2 + λn3 − 3), (5.2.111)

where m, n, M and N are constants, with |m| < 2 and |n| > 2, expression

(5.2.108), along with (5.2.9), leads to

h(λ2, µ) = mM(µ−mλ2−m − λ2+m) + nN(µ−nλ2−n − λ2+n). (5.2.112)

Analysis akin to that in Section 5.2.1 for spherical inflation demonstrates that this

material displays behaviour of type C in cylindrical inflation for sufficiently small

values of the ratio N/M .

For pressurisation of a cylindrical cavity of radius a0 in a medium of infinite

extent, with axial stretch µ, the pressure is given by the expression

P =
1

2

∫ 1

a20
µa2

T̂

((
x

µ

) 1
2

, µ

)
dx

1− x
. (5.2.113)

Differentiation of (5.2.113) yields

dP

dα
=

a2
0

a(µa2 − a2
0)
T̂

(
a0

µa
, 1

)
, (5.2.114)

and so it can be observed that the pressure P increases monotonically.

Stochastic incompressible cylindrical tube

Next, a cylindrical tube of stochastic hyperelastic material, characterised by the

strain energy function (3.1.2), is deformed through the combined effects of radially

symmetric inflation and axial extension [169] as follows (see Figure 5.16);

r = f(R)R, θ = Θ, z = αZ, (5.2.115)
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where (R,Θ, Z) and (r, θ, z) are the cylindrical polar coordinates in the reference

and current configurations, respectively, such that A ≤ R ≤ B, α > 0 is a given

deterministic constant, and f(R) ≥ 0 is to be determined. When α < 0, the tube

is everted so that the inner surface becomes the outer surface, and vice-versa.

The deformation gradient in this case is F = diag (λ1, λ2, λ3), where

λ1 = f(R) +R
df

dR
= λ−1α−1, λ2 = f(R) = λ, λ3 = α, (5.2.116)

and λ1, λ2 and λ3 represent the radial, tangential and longitudinal stretch, respec-

tively.

For a cylindrical tube, the radial equation is given by (5.2.86), and is equivalent

to

dP11

dλ
λ−1α−1 +

P11 − P22

1− λ2α
= 0. (5.2.117)

Comparable to the analysis of spherical shells, the limit-point instability cri-

terion for cylindrical tubes will now be discussed.

Limit-point instability criterion for cylindrical tubes

For a cylindrical tube of hyperelastic material described by the strain energy

function (3.1.2), the limit-point instability criterion can be deduced in a way that

is analogous to that presented for spherical shells in Section 5.2.1.

Denoting

W (λ) =W(λ−1α−1, λ, α), (5.2.118)

where λ = r/R and α = z/Z, and using

∂W
∂λ1

=
µ1

m
λ−2m+1α−2m+1 +

µ2

n
λ−2n+1α−2n+1, (5.2.119)

∂W
∂λ2

=
µ1

m
λ2m−1 +

µ2

n
λ2n−1, (5.2.120)
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and (5.2.60), it can be observed that

∂W

∂λ
= − 1

λ2α

[
∂W
∂λ1

− p

λ1

]
+

[
∂W
∂λ2

− p

λ2

]
= − 1

λ2α

∂W
∂λ1

+
p

λ2αλ−1α−1
+
∂W
∂λ2

− p

λ

= − 1

λ2α

∂W
∂λ1

+
∂W
∂λ2

,

(5.2.121)

which then gives

dW

dλ
= − P11

λ2α
+ P22, (5.2.122)

where P11 = ∂W/∂λ1 and P22 = ∂W/∂λ2. Setting the external pressure (at

R = B) equal to zero, by (5.2.117) and (5.2.122), the internal pressure (at R = A)

is equal to

T = −
∫ λb

λa

P11

λ2α
dλ+

∫ λb

λa

dP11

dλ
λ−1α−1dλ

= −
∫ λb

λa

P11

λ2α
dλ−

∫ λb

λa

P11 − P22

1− λ2α
dλ

=

∫ λb

λa

dW

dλ

dλ

1− λ2α
,

(5.2.123)

where λa = a/A and λb = b/B are the stretches for the inner and outer radii,

respectively. Due to the material incompressibility, the material volume in the

cylindrical tube is conserved, i.e. πα(b2 − a2) = π(B2 − A2), or equivalently, as

a = Aλa and b = Bλb,

b2 = a2 − A2

α
+
B2

α
, (5.2.124)

and so,

b2

B2
=

a2

B2
− A2

αB2
+

B2

αB2
=⇒ λ2

b =
a2

A2

A2

B2
− A2

αB2
+

1

α
, (5.2.125)

which then gives

λ2
b =

(
λ2
a −

1

α

)(
A

B

)2

+
1

α
. (5.2.126)

Hence, the internal pressure T is a function of the inner stretch ratio, λa, only.
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For the cylindrical tube, a limit-point instability occurs if there is a change in

the monotonicity of T , given by (5.2.123), as a function of λa. Assuming that the

tube is thin, where 0 < ε = (B − A)/A� 1, we approximate the internal pressure

as [151, p.290]

T (λ) =
ε

λα

dW

dλ
, (5.2.127)

and find the point instability by solving the equation (5.2.70) for λ > 1, with T

given by (5.2.127).

Deterministic elastic tube

In the deterministic case, once again following the approach set out in [151,

pp. 288-291], for a cylindrical tube of hyperelastic material described by the strain-

energy function (3.1.2), with µ1 and µ2 given positive constants, the function

(5.2.118) takes the form

W (λ) =
µ1

2m2

(
λ−2mα−2m + λ2m + α2m − 3

)
+

µ2

2n2

(
λ−2nα−2n + λ2n + α2n − 3

)
.

(5.2.128)

The internal pressure (5.2.127) is then equal to

T (λ) =
ε

α

[µ1

m

(
λ2m−2 − λ−2m−2α−2m

)
+
µ2

n

(
λ2n−2 − λ−2n−2α−2n

)]
, (5.2.129)

and (5.2.70) becomes

µ1

m

[
(m− 1)λ2m−3 + (m+ 1)λ−2m−3α−2m

]
+

+
µ2

n

[
(n− 1)λ2n−3 + (n+ 1)λ−2n−3α−2n

]
= 0.

(5.2.130)

In this case, if µ2 = 0, then, when −1 < m < 1, the internal pressure increases

to a maximum value then decreases, otherwise the internal pressure is always
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increasing. If µ2 > 0, then (5.2.130) is equivalent to

µ1

µ
=

m [(n− 1)λ2n−3 + (n+ 1)λ−2n−3α−2n]

m [(n− 1)λ2n−3 + (n+ 1)λ−2n−3α−2n]− n [(m− 1)λ2m−3 + (m+ 1)λ−2m−3α−2m]
,

(5.2.131)

where 0 < µ1/µ < 1.

We now specialise to the case where m = 1/2, n = −3/2, and α = 1. In this

case, (5.2.131) takes the form

µ1

µ
=

1 + 5λ−6

1 + 5λ−6 + 3λ−2 − 9λ−4
. (5.2.132)

The minimum value of µ1/µ for which inflation instability occurs is then the

minimum of the function

η(λ) =
λ6 + 5

λ6 + 5 + 3λ4 − 9λ2
, λ > 1, (5.2.133)

i.e.

ηmin ≈ 0.8035. (5.2.134)

For cylindrical tubes of hyperelastic material given by the strain-energy func-

tion (3.1.2), with m = 1/2 and n = −3/2, under the deformation (5.2.115), with

α = 1, the internal pressure, T (λ), defined by (5.2.129) and normalised by 2εµ, is

plotted in Figure 5.17 (see also [38], [151, pp. 288-291]).

Stochastic elastic tube

For a cylindrical tube of stochastic hyperelastic material described by the strain-

energy function (3.1.2), with m = 1/2 and n = −3/2, following the approach

in [151], the probability distribution of stable inflation, such that the internal

pressure always increases as the radial stretch increases, is

P1

(
µ >

µ1

ηmin

)
= 1−

∫ µ1/ηmin

0

p1(u)du, (5.2.135)
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Figure 5.17: The normalised internal pressure, T (λ) (5.2.129), for the inflation of
cylindrical tubes of hyperelastic materials, described by (3.1.2) with m = 1/2 and
n = −3/2. In this deterministic case, inflation instability occurs if µ1/µ > ηmin.

Figure 5.18: Probability distributions (5.2.135)-(5.2.136) of whether instability can
occur or not for a cylindrical tube of stochastic hyperelastic material, described by
(3.1.2) with m = 1/2 and n = −3/2, and the shear modulus, µ, following either a
Gamma distribution (3.1.6) with ρ1 = 405, ρ2 = 0.01 (continuous lines), or a nor-
mal distribution (3.4.44) with µ = 4.09, ‖µ‖ = 0.23 (dashed lines). Darker colours
represent analytically derived solutions, given by equations (5.2.135)-(5.2.136),
whereas lighter colours represent stochastically generated data. The vertical line
at the critical value, µ1 = 3.2869, separates the expected regions based only on
the mean value of the shear modulus.
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Figure 5.19: Probability distribution of the normalised internal pressure, T (λ)
(5.2.127), for the inflation of a cylindrical tube of stochastic hyperelastic material,
described by (3.1.2) with m = 1/2 and n = −3/2, when µ follows a Gamma
distribution (3.1.6) with ρ1 = 405, ρ2 = 0.01, and R1 = µ1/µ follows a Beta
distribution (3.1.12) with ξ1 = 287, ξ2 = 36. As µ

1
= 3.63 = 0.89 · µ > ηmin · µ,

instability is expected to occur, but there is also around 5% chance that the
inflation is stable. The dashed black lines correspond to the expected pressure
based only on mean parameter values.
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where ηmin is given in (5.2.134), p1(u) = g(u; ρ1, ρ2) if the random shear modulus,

µ, follows the Gamma distribution (3.1.6), with ρ1 = 405 and ρ2 = 0.01, or

p1(u) = h(u;µ, ‖µ‖) if µ follows the normal distribution (3.4.44), with µ = 4.09

and ‖µ‖ = 0.23 (see Table 3.2).

The probability distribution of an inflation instability occurring is

P2

(
µ <

µ1

ηmin

)
= 1− P1

(
µ >

µ1

ηmin

)
=

∫ µ1/ηmin

0

p1(u)du. (5.2.136)

The probability distributions given by (5.2.135)-(5.2.136) are shown in Fig-

ure 5.18 (blue lines for P1 and red lines for P2). For the deterministic elastic

tube, the critical value, µ1 = ηmin · µ = 3.2869, strictly divides the cases of in-

flation instability occurring or not. However, in the stochastic case, to increase

the chance that inflation is always stable (P1 ≈ 1), sufficiently small values of the

parameter µ1, below the expected critical point, must be taken, while instability

is guaranteed (P2 ≈ 1) only for the stochastic neo-Hookean tube.

As an example, in Figure 5.19, the probability distribution of the normalised

internal pressure T (λ) (5.2.127) as a function of the inner stretch λ, when µ follows

a Gamma distribution with ρ1 = 405 and ρ2 = 0.01, and R1 = µ1/µ follows a Beta

distribution with ξ1 = 287 and ξ2 = 36 (see Table 3.3) is demonstrated. Hence,

µ
1

= 3.63 = 0.89 ·µ > ηmin ·µ, and so an instability is expected to occur. However,

the probability distribution suggests that there is also around a 5% chance that

the inflation is stable.

By approaching the problem from this stochastic perspective, for both the

spherical shells in Section 5.2.1 and the cylindrical tubes discussed here, oppor-

tunities arise to gain more insight into the onset of instabilities within these con-

figurations. This view point can now be employed with the same aim to a range

of other potential deformations within the field of solid mechanics, as will now be

demonstrated with an in-depth analysis of the cavitation of stochastic isotropic

hyperelastic spheres.
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5.3 Cavitation of spheres

Building on the approach presented in Section 5.2 for the inflation of spherical

shells and cylindrical tubes, the phenomenon of cavitation, contained within the

theoretical context of finite elastostatics, will be the topic of focus within this

section. Finite elasticity theory covers the simplest case where internal forces

only depend on the current deformation of the material, and not on its history,

and is based on average data values. Here, within the context of stochastic elas-

ticity, the explicit solution to the cavitation problems of incompressible spheres

of stochastic isotropic hyperelastic material, described by a two-term Ogden-type

model [129,194,196], under radial tensile dead loads will be investigated. The word

“cavitation” was used to describe this void-formation within a solid by analogy to

the similar phenomenon observed in an elastic fluid [19,64].

For all homogeneous isotropic hyperelastic models considered so far in the

literature, cavitation appears as a supercritical bifurcation, where typically, fol-

lowing the bifurcation, the cavity radius increases monotonically as the applied

load increases [41]. It will be demonstrated here, however, that the restriction

that a material satisfies the Baker-Ericksen inequalities (3.1.1) is not sufficient to

exclude the possibility of a subcritical bifurcation, which in this case would be ex-

pected to be a snap cavitation. This occurs when there is a jump in the radius of

the cavitation immediately after bifurcation. The general conditions under which

a cavitation can appear through a supercritical or subcritical bifurcation will be

determined here, and further we will construct explicit examples of isotropic hy-

perelastic models that exhibit snap cavitation. We will combine finite elasticity

and information theory, and rely on the general hypotheses outlined in Section

3.1 [129,130,133]. Analogous to the case in Section 5.2, for the deterministic elas-

tic problem involving isotropic incompressible materials, there is a critical tensile

traction that strictly separates the cases where cavitation occurs or not. The

stochastic approach is then explored, where, due to the probabilistic nature of
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the model parameters, supercritical or subcritical bifurcation occurs with a given

probability, and there is also a probability that the cavity may form under smaller

or greater loads than the expected critical value. These phenomena are referred

to here as “likely cavitation”.

5.3.1 Stochastic isotropic hyperelastic models

Attention is now focused on stochastic homogeneous incompressible hyperelastic

materials characterised by the strain-energy function (3.1.2) [129,194,196], where

m and n are deterministic constants, and µ1 and µ2 are random variables following

given probability distributions. In the deterministic elastic case, µ1, µ2, m and n

are constants, and the model contains, as special cases, the neo-Hookean model,

the Mooney-Rivlin model, and the one- and two-term Ogden models. In both

the deterministic elastic and stochastic cases, the shear modulus for infinitesimal

deformations of these models is defined as µ = µ1 + µ2 [128, 129]. Further, this

description could be easily extended to include m and n as stochastic variables as

well.

As it is well known, the deformation of a homogenous isotropic hyperelastic

material under uniaxial tension is a simple extension in the direction of the tensile

force if and only if the BE inequalities (3.1.1) hold [120]. In this case, the BE

inequalities are equivalent to (3.1.3). Under these conditions, the shear modulus is

positive, but the individual coefficients may be either positive or negative, allowing

for some interesting nonlinear elastic effects to be captured (see [124,125,127,133]

and the references therein). In particular, here, the initiation of either stable or

unstable snap cavitation in a homogeneous isotropic sphere will be investigated.

For the stochastic materials described by (3.1.2), condition (A4) in Section

3.1 is guaranteed by the constraints on the expected values stated in (3.1.4).

Specifically, under these constraints, the random shear modulus µ, with mean

value µ and standard deviation ‖µ‖ =
√

Var [µ], follows a Gamma probability
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distribution [187,188], with hyperparameters ρ1 > 0 and ρ2 > 0 satisfying (3.1.5).

The corresponding probability density function takes the form (3.1.6), where Γ :

R∗+ → R is the complete Gamma function defined in (3.1.7).

As in Section 3.1, the auxiliary random variable is defined in (3.1.8) [129]. The

random model parameters are then expressed as in (3.1.9). Making the assump-

tion that (3.1.10) holds, the random variable R1 can be seen to follow a standard

Beta distribution [1, 100], with hyperparameters ξ1 > 0 and ξ2 > 0 satisfying

(3.1.11). The associated probability density function is given in (3.1.12), where

B : R∗+ × R∗+ → R is the Beta function (3.1.13). For the random coefficients

given in (3.1.9), the corresponding mean values take the form (3.1.14), and the

variances and covariance, respectively, are given in (3.1.15), (3.1.16), and (3.1.17).

It should be noted that the random variables µ and R1 are independent, depend-

ing on parameters (ρ1, ρ2) and (ξ1, ξ2), respectively, which are derived by fitting

distributions to given data. However, µ1 and µ2 are dependent variables as they

both require (µ,R1) to be defined. Explicit derivations of the probability distri-

butions for the random parameters when stochastic isotropic hyperelastic models

are calibrated to experimental data are presented in [129,196].

The overall aim in this section is to analyse the radially symmetric finite de-

formations of a sphere of stochastic hyperelastic material defined by (3.1.2), under

tension, when subject to prescribed surface dead loads applied uniformly in the

radial direction. The stochastic sphere can be regarded as an ensemble, or popu-

lation, of spheres, where each sphere has the same initial radius and is made from

a homogeneous isotropic incompressible hyperelastic material, with the elastic

parameters not known with certainty, but drawn from known probability distribu-

tions. The finite elasticity theory then applies for every hyperelastic sphere. For

the stochastic hyperelastic body, the question is: what is the probability distribu-

tion of stable radially symmetric deformation under a given surface dead load?
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5.3.2 Incompressible spheres

We begin by exploring the problem of a sphere of stochastic hyperelastic material,

described by the strain energy function (3.1.2), subject to a radially symmetric

deformation, caused by the sole action of a given radial tensile dead load. As

in [19], conditions on the constitutive law, such that, setting the internal pressure

equal to zero, where the radius tends to zero, the required external dead load is

finite, and therefore cavitation occurs, are obtained. Further, the stability of the

cavitated solution is analysed, and thus we distinguish between supercritical cavi-

tation, where the cavity radius monotonically increases as the dead load increases,

and subcritical (snap) cavitation, with a sudden jump to a finite internal radius

immediately after initiation. Up to now, in the deterministic elastic case, the onset

of snap cavitation in a homogenous isotropic sphere has not been discussed.

For the stochastic sphere, the radially symmetric deformation takes the form

r = g(R), θ = Θ, φ = Φ, (5.3.1)

where (R,Θ,Φ) and (r, θ, φ) are the spherical polar coordinates in the reference

and current configurations, respectively, such that 0 ≤ R ≤ B, and g(R) ≥ 0 is to

be determined. A demonstration of the effect of cavitation on a spherical shell is

given in Figure 5.20.

The corresponding deformation gradient is F = diag (λ1, λ2, λ3), with

λ1 =
dg(R)

dR
= λ−2, λ2 = λ3 =

g(R)

R
= λ, (5.3.2)

where λ1 and λ2 = λ3 are the radial and hoop stretches, respectively, and dg/dR

denotes the derivative of g with respect to R. By (5.3.2),

g2 dg

dR
= R2. (5.3.3)
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Figure 5.20: Schematic of cross-section of a sphere, showing the reference state,
with outer radius B (left), and the deformed state, with cavity radius c and outer
radius b (right), respectively.

Rewriting (5.3.3) yields

1

3
(g3)′ = R2, (5.3.4)

which can then be rearranged and integrated to give

g(R) = (R3 + c3)
1
3 , (5.3.5)

where c ≥ 0 is some constant to be determined. If c > 0, then g(R) → c > 0 as

R→ 0+, and a spherical cavity of radius c forms at the centre of the sphere, from

zero initial radius (see Figure 5.20). Otherwise, the sphere remains undeformed.

Assuming that the deformation (5.3.1) is due to a prescribed uniform radial

tensile dead-load applied uniformly on the surface of the sphere, in the reference

configuration, in the absence of body forces, the radial equation of equilibrium is

given by

dP11

dR
+

2

R
(P11 − P22) = 0, (5.3.6)
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or equivalently, by the chain rule, and using (5.3.2)

dP11

dλ

λ

dR
+ 2

P11 − P22

R
=

dP11

dλ

(
dg(R)

dR
− g(R)

R

)
+ 2(P11 − P22)

=
dP11

dλ
(λ−2 − λ) + 2(P11 − P22)

= 0

i.e.

dP11

dλ
λ−2 + 2

P11 − P22

1− λ3
= 0, (5.3.7)

where P = (Pij)i,j=1,2,3 is the first Piola-Kirchhoff stress tensor. By (5.2.61), with

λ = r/R = g(R)/R = (1 + c3/R3)1/3 > 1, we have

W (λ) =
µ1

2m2
(λ−4m + 2λ2m − 3) +

µ2

2n2
(λ−4n + 2λ2n − 3), (5.3.8)

and so

dW

dλ
= 2

(
µ1

m
λ2m−1 +

µ2

n
λ2n−1

)
− 2

(
µ1

m
λ−(4m+1) +

µ2

n
λ−(4n+1)

)
. (5.3.9)

For an incompressible material,

P11 =
∂W
∂λ1

− p

λ1

, P22 =
∂W
∂λ2

− p

λ2

, (5.3.10)

and so
dW

dλ
= − 2

λ3

[
∂W
∂λ1

− p

λ1

]
+ 2

[
∂W
∂λ2

− p

λ2

]
= − 2

λ3

∂W
∂λ1

+
2p

λ3λ−2
+ 2

∂W
∂λ2

− 2p

λ

= − 2

λ3

∂W
∂λ1

+ 2
∂W
∂λ2

.

(5.3.11)

Hence

dW

dλ
= −2P11

λ3
+ 2P22, (5.3.12)

where P11 = ∂W/∂λ1 and P22 = ∂W/∂λ2. Next, setting the internal pressure (at

Page 141



5.3. CAVITATION OF SPHERES

R → 0+) equal to zero, by (5.3.7) and (5.3.12), the external tension (at R = B)

is equal to

T =
P11

λ2
|λ=λb =

∫ λc

λb

dW

dλ

dλ

λ3 − 1
, (5.3.13)

and the applied dead load, in the reference configuration, is

P = Tλ2
b = λ2

b

∫ λc

λb

dW

dλ

dλ

λ3 − 1
, (5.3.14)

where λc and λb represent the stretches at the centre and outer surface, respec-

tively. The value of the required dead load, P0, for the onset of cavitation, or

in other words, for a bifurcation from the reference state, is obtained by taking

λc →∞ and λb = (1 + c3/B3)
1/3 → 1 as c→ 0+, so

P0 =

∫ ∞
1

dW

dλ

dλ

λ3 − 1
. (5.3.15)

The BE inequalities (3.1.3) imply

dW

dλ

1

λ3 − 1
> 0, (5.3.16)

and hence P0 > 0. If the critical dead load, given by (5.3.15), is finite, then

cavitation takes place, else, the sphere remains undeformed.

We now revisit briefly the deterministic elastic case, before extending to con-

sider the same problem in a stochastic setting.

5.3.3 Deterministic elastic spheres

In the deterministic elastic case, for a spherical shell of hyperelastic material de-

scribed by the strain-energy function (3.1.2), the function (5.2.61) takes the form

W (λ) =
µ1

2m2
(λ−4m + 2λ2m − 3) +

µ2

2n2
(λ−4n + 2λ2n − 3), (5.3.17)
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which then yields

dW

dλ
=

2µ1

m
(λ2m−1 − λ−4m−1) +

2µ2

n
(λ2n−1 − λ−4n−1), (5.3.18)

after differentiation with respect to λ. For the onset of cavitation, the critical

dead load defined by (5.3.13) is equal to

P0 =
2µ1

m

∫ λc

λb

λ2m−1 − λ−4m−1

λ3 − 1
dλ+

2µ2

n

∫ λc

λb

λ2n−1 − λ−4n−1

λ3 − 1
dλ. (5.3.19)

Introducing the change of variables x = λ3 − 1, (5.3.19) becomes

P0 =
2µ1

m

∫ (xc+1)1/3

(xb+1)1/3

(x+ 1)
2m−1

3 − (x+ 1)−
(4m+1)

3

x

1

3
(x+ 1)−

2
3 dx+

+
2µ2

n

∫ (xc+1)1/3

(xb+1)1/3

(x+ 1)
2n−1

3 − (x+ 1)−
(4n+1)

3

x

1

3
(x+ 1)−

2
3 dx,

(5.3.20)

which, after simplification, yields the expression

P0 =
2µ1

3m

∫ ∞
0

(x+ 1)
2m−3

3 − (x+ 1)−
(4m+3)

3

x
dx+

+
2µ2

3n

∫ ∞
0

(x+ 1)
2n−3

3 − (x+ 1)−
(4n+3)

3

x
dx,

(5.3.21)

where xc = λ3
c − 1→∞ and xb = λ3

b − 1→ 0. By (5.3.21), P0 is finite, and hence

a spherical cavity forms if and only if the following conditions are simultaneously

satisfied:

2m− 3 < 0, −4m− 3 < 0, 2n− 3 < 0, −4n− 3 < 0, (5.3.22)

or equivalently [41,88] (see also Example 5.1 of [19]), if and only if

−3/4 < m,n < 3/2. (5.3.23)
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In particular, cavitation is found in a neo-Hookean sphere (with m = 1 and n = 0),

but not in a Mooney-Rivlin sphere (with m = 1 and n = −1). The special

cases where m ∈ {−1/2, 1} and n = 0 are given as examples in [19], and when

m ∈ {1/2, 3/4, 1, 5/4} and n = 0, the explicit critical loads are presented in

[41]. When these bounds and the BE inequalities (3.1.1) are satisfied, the critical

pressure P0 is finite and the problem is to find the behaviour of the cavity in a

neighbourhood of this critical value. In each of those previously studied cases (see,

for example, Figure 2 of [41]), cavitation forms from zero radius and then presents

itself as a supercritical bifurcation with stable cavitation. In other words, the new

bifurcated solution exists locally for values of P > P0, and the radius of the cavity

monotonically increase with the applied load post-bifurcation.

Another theoretical possibility is that the bifurcation could be subcritical, so

the cavitated solution exists locally for values less than P0 and is unstable. A snap

cavitation, with a sudden jump to a cavitated solution with a finite radius, would

then be expected to occur. Here, it will be shown that, depending on the model

parameters, the family of materials (5.3.2) can exhibit both behaviours.

As an example, the variety of behaviours with the case m = 1 and n = −1/2,

for which (5.3.17) takes the form

W (λ) =
µ1

2

(
λ−4 + 2λ2 − 3

)
+ 2µ2

(
λ2 + 2λ−1 − 3

)
, (5.3.24)

will be illustrated. In this case, under the deformation (5.3.1), the BE inequalities

(3.1.3) are reduced to

µ1 + 2µ2
λ3

1 + λ3
> 0. (5.3.25)

In particular, when λ → 1, (5.3.25) implies that the random shear modulus is

positive, i.e. µ = µ1 +µ2 > 0, while if λ→∞, then µ1 + 2µ2 > 0. The function of

λ on the left-hand side of (5.3.25) is monotonically increasing when µ2 is positive,

and decreasing if µ2 is negative. Taking µ1 > 0, the two limits imply that the BE
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inequalities are satisfied for all values λ if

0 <
µ1

µ
< 2. (5.3.26)

For sufficiently small c/B, the corresponding dead-load traction, defined by (5.3.14),

is equal to

P =

(
1 +

c3

B3

)2/3 ∫ ∞
(1+c3/B3)1/3

dW

dλ

dλ

λ3 − 1

= 2µ1

[(
1 +

c3

B3

)1/3

+
1

4

(
1 +

c3

B3

)−2/3
]

+ 4µ2

(
1 +

c3

B3

)1/3

= 4µ

(
1 +

c3

B3

)1/3

− 2µ1

[(
1 +

c3

B3

)1/3

− 1

4

(
1 +

c3

B3

)−2/3
]
,

(5.3.27)

where the last expression was obtained by taking into account relation (3.1.8).

Letting c→ 0+ in (5.3.27), the critical tensile dead load (5.3.15) takes the form

P0 = 4µ− 3µ1

2
. (5.3.28)

As P0 is positive in (5.3.28), we have

0 <
µ1

µ
<

8

3
, (5.3.29)

which is guaranteed by (5.3.26).

The problem to be addressed now is to find the possible behaviour of the cavity

opening c as a function of P in a neighbourhood of P0. On differentiating (5.3.27)

with respect to c/B, we obtain

dP

d(c/B)
= 2

c2

B2

{
2µ

(
1 +

c3

B3

)−2/3

− µ1

[(
1 +

c3

B3

)−2/3

+
1

2

(
1 +

c3

B3

)−5/3
]}

.

(5.3.30)
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Figure 5.21: Gamma distribution (3.1.6), with ρ1 = 405, ρ2 = 0.01, for the random
shear modulus, µ > 0.
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Figure 5.22: Probability distributions of whether cavitation can occur or not in
a sphere of stochastic material, described by (3.1.2) with m = 1 and n = −1/2,
and the shear modulus, µ, following a Gamma distribution (3.1.6) with ρ1 = 405,
ρ2 = 0.01. Continuous coloured lines represent analytically derived solutions, given
by equations (5.3.34) and (5.3.35), and the dashed versions represent stochastically
generated data. The vertical line at the critical value, 5.4 = 4µ/3, separates the
expected regions based only on the mean value of the shear modulus, µ = ρ1ρ2 =
4.05.
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Hence, by Proposition E.0.1 given in Appendix E (with n = 3), when

µ1

µ
<

4

3
= inf0<c/B<1

[
2

(
1 +

c3

B3

)(
3

2
+
c3

B3

)−1
]
, (5.3.31)

where “inf” denotes infimum, the bifurcation is supercritical and the radius of the

cavity monotonically increases as the tensile dead load increases. However, if there

exists c0 > 0, such that

2

(
1 +

c3
0

B3

)(
3

2
+
c3

0

B3

)−1

<
µ1

µ
< 2, (5.3.32)

then the bifurcation is subcritical, and the required applied load starts to decrease

at c = c0, where there is a sudden jump in the opening of the cavity. In particular,

if (5.3.32) holds for c0 = 0, so

4

3
<
µ1

µ
< 2, (5.3.33)

then (5.3.29) is valid and the cavitation becomes unstable.

Thus, dP/d(c/B)→ 0 as c→ 0+, and, as in [131], the bifurcation at the critical

load P0 is supercritical (respectively, subcritical) if dP/d(c/B) > 0 (respectively,

dP/d(c/B) < 0) for arbitrary small c/B. Examples of both of these behaviours

are illustrated in Figures 5.23 and 5.24.
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Figure 5.23: Subcritical (left) and supercritical (right) cavitation found in a unit
sphere (with B = 1) of material model (5.3.17) with µ1 = 1 and either µ = 2/3
(left) or µ = 1 (right). The dashed line indicates the snap cavitation expected at
the bifurcation, leading to a sudden increase of the cavity size in the subcritical
case.
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Figure 5.24: Change of behaviour under various parameter values found in a unit
sphere (with B = 1) of material model (5.3.17) with µ1 = 1. Note the critical case
at µ = 3/4. The dashed line indicates the asymptotic behaviour for large values
of P and is given by P = (4µ− 2µ1)c/B.

5.3.4 Stochastic elastic spheres

Our attention now is turned to the stochastic case, with the stochastic model

described by (3.1.2), with m = 1 and n = −1/2, and the other model parame-

ters drawn from probability distributions. In this case, recalling that µ follows a

Gamma distribution, g(u; ρ1, ρ2), defined by (3.1.6), the probability distribution

of stable cavitation is equal to

P1

(
µ >

3µ1

4

)
= 1−

∫ 3µ1/4

0

g(u; ρ1, ρ2)du, (5.3.34)

and that of unstable cavitation is

P2

(
µ <

3µ1

4

)
=

∫ 3µ1/4

0

g(u; ρ1, ρ2)du. (5.3.35)
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For condition (5.3.33) to be satisfied in mean value, we choose

4

3
< R1 < 2, (5.3.36)

where R1 = µ1/µ.

Taking, for example, ρ1 = 405 and ρ2 = 0.01 (see Figure 5.21), the mean value

of the shear modulus is µ = ρ1ρ2 = 4.05, and the probability distributions given

by (5.3.34) and (5.3.35) are illustrated numerically in Figure 5.22 (blue lines for P1

and red lines for P2). In this case, if µ
1

= 5 < 5.4 = 4µ/3, then stable cavitation

is expected, but there is also about a 10% chance that unstable snap cavitation

occurs. Similarly, when 4µ/3 = 5.4 < µ
1

= 5.8 < 8.1 = 2µ, unstable cavitation

is expected, but there is also about a 10% chance that the cavitation is stable.

Stable and unstable cavitation of a stochastic sphere are illustrated numerically

in Figure 5.25. Specifically:

a) In Figure 5.25A, b = 0 in (3.1.8), and the random variable R1 = µ1/µ is

drawn from a Beta distribution with ξ1 = 287 and ξ2 = 36. In this case,

µ
1

= 3.6 < 5.4 = 4µ/3, and stable cavitation, with supercritical bifurcation

after the spherical cavity opens, is expected.

b) In Figure 5.25B, b = −3 in (3.1.8), and the random variable R1 = (µ1 +

3)/(µ + 6) draws its values from a Beta distribution with ξ1 = 325 and

ξ2 = 10. Thus, µ
1

= 6.75 > 5.4 = 4µ/3, and unstable cavitation, with

subcritical bifurcation after the spherical cavity forms, is expected.

For the numerical examples shown in Figure 5.25, the critical dead load is P0 =

4µ−3µ1/2, as given by (5.3.28), with µ and µ1 following probability distributions.

In each case, the expectation is that the onset of cavitation occurs at the mean

value P 0 = 4µ− 3µ
1
/2, found at the intersection of the dashed black line with the

horizontal axis. However, there is a chance that a cavity can form under smaller

or greater critical loads than the expected load value, as shown by the coloured
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interval about the mean value along the horizontal axis.

To briefly reiterate, in this section, for a stochastic elastic sphere under uniform

tensile dead load, the probabilities of stable or unstable cavitation are obtained,

given that the material parameters are generated from known probability density

functions. In the deterministic elastic case, there is a critical parameter value

that strictly separates the cases where either stable or unstable cavitation occurs.

By contrast, in the stochastic case, there is a probabilistic interval, containing

the deterministic critical value, where there is always a competition between the

stable and unstable states in the sense that both have a quantifiable chance to be

found. For the onset of cavitation, there is also a probabilistic interval where a

cavity may form, with a given probability, under smaller or greater loads than the

expected critical value.

5.4 Summary

In this chapter, the likely deformations and instabilities of stochastic hyperelas-

tic bodies were discussed. Firstly, in Section 5.1, an in-depth analysis into the

occurrence of a necking instability in materials modelled by four different strain-

energy functions was presented. The conditions under which necking occurs for

a particular material were outlined, followed by a deterministic analysis, which

allows a critical point to be established. A stochastic analysis is then imparted,

in which the stability of points within an interval surrounding the deterministic

critical value is analysed, allowing the determination of the probability of necking

occurring at points within this interval, leading to an enhanced representation of

the occurrence of a necking instability for each respective material model.

For hyperelastic spheres and circular cylinders under symmetric finite infla-

tion, it has been demonstrated in Section 5.2 that, when material parameters are

random variables, there is always competition between monotonic expansion and

limit-point instability. Specifically, in contrast to the deterministic elastic prob-
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A

B

Figure 5.25: Probability distribution of the applied load, P , producing cavitation
of radius c in a unit sphere (B = 1) of stochastic material, described by (3.1.2)
with m = 1 and n = −1/2, when µ follows a Gamma distribution (3.1.6) with
ρ1 = 405, ρ2 = 0.01, and: (A) R1 = µ1/µ follows a Beta distribution (3.1.12) with
ξ1 = 287, ξ2 = 36. As µ

1
= 3.6 < 5.4 = 4µ/3, stable cavitation is expected; (B)

R1 = (µ1 + 3)/(µ+ 6) follows a Beta distribution (3.1.12) with ξ1 = 325, ξ2 = 10.
As µ

1
= 6.75 > 5.4 = 4µ/3, instability is expected during cavitation. The dashed

black lines correspond to the expected bifurcation based only on mean parameter
values.
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lem where there is a critical value that strictly separates the cases where either

the radially symmetric inflation is stable or a limit-point instability occurs, for

the stochastic problem, there are probabilistic intervals for the model parameters,

where there is a quantifiable chance for both the stable and unstable states to be

found. This approach was then applied in the context of the cavitation of spheres

in Section 5.3.

For homogeneous isotropic incompressible spheres of stochastic hyperelastic

material, subject to radially symmetric surface dead loads, the possible homoge-

neous deformations were examined in Section 5.3. It was then determined which

of these deformations are stable. Here, it was demonstrated that a sudden jump

in the cavity opening, causing unstable snap cavitation, at the critical dead load,

can also occur in a homogeneous isotropic incompressible sphere, provided that

the material satisfies the Baker-Ericksen inequalities. If such a material could be

found, a sphere made of this material would suddenly increase its volume at a

critical load and show some form of hysteresis as the load is removed. In the

stochastic case, the probabilistic nature of the solution reflects the probability in

the constitutive law, and bifurcation and stability can be quantified in terms of

probabilities. In contrast to the deterministic elastic problem, where critical pa-

rameter values strictly separate the cases where either stable or unstable cavitation

occurs, for the stochastic problem, probabilistic intervals where both states have

a quantifiable chance to exist were obtained, analogous to the results obtained in

Section 5.2 for the inflation of spherical shells and cylindrical tubes. For the onset

of cavitation, there is a probabilistic interval where the cavity may form, with a

given probability, under smaller or greater loads than the expected critical value.

The stochastic approach that has been considered and applied to various de-

formations and instabilities in this chapter can be applied to a class of stochastic

hyperelastic models, enhancing further the understanding of the likelihood that

the deformations and instabilities in question take place, and the conditions under
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which they occur. The approach used in Section 5.2 in the analysis of the infla-

tion of spheres and cylinders has many practical applications. With the stochastic

approach outlined here, a greater appreciation of the likelihood of deformations

and instabilities occuring is gained, thus improving knowledge of biological struc-

tures and commercial vehicles, which could be mathematically modelled in this

way. This, in turn, could lead to an increase in the safety and performance of the

vehicles in question, or an enhancement in medical research in terms of treating

disease.
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Chapter 6

Likely quasi-equilibrated motion

of stochastic hyperelastic solids

Motivated by numerous long-standing and modern engineering problems, oscil-

latory motions of cylindrical and spherical shells made of linear elastic material

have generated a wide range of experimental, theoretical, and computational stud-

ies [6–8,31,50], whereas time-dependent finite oscillations of cylindrical tubes and

spherical shells of nonlinear hyperelastic material, relevant to the modelling of

physical responses in many biological and synthetic systems [3,10,47,79,81,83,110],

have been less investigated.

In this section, the stochastic framework developed in Chapter 5, and also

in [130, 132–134], is extended to study the dynamic problems of shear motions of

stochastic hyperelastic cuboids, and the radial oscillations of cylindrical and spher-

ical shells of stochastic incompressible isotropic hyperelastic material formulated as

quasi-equilibrated motions, building directly on the stochastic theory presented in

Sections 5.2 and 5.3. For these motions, the system is in equilibrium at every time

instant. Finite shear motions of a stochastic hyperelastic cuboid, which are not

quasi-equilibrated, under dynamic generalised shear are considered in Section 6.1,

to bridge the gap between the investigation of static deformations in Chapter 5 and

the dynamic problems considered here. It is found that, for hyperelastic bodies
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of stochastic neo-Hookean material, the amplitude and period of the oscillations

follow probability distributions that can be fully characterised. This is followed,

in Sections 6.2 and 6.3, by an investigation into the radial oscillatory motions of

stochastic cylindrical tubes and spherical shells with bounded wall thickness, re-

spectively. The dynamic evolution of these elastic systems, which exhibit inherent

uncertainties due to the material properties, is referred to here as “likely oscilla-

tory motions”. A summary of the quasi-equilibrated motion prerequisites which

will be relied upon for the following analysis is presented in Section 2.2.

The limiting cases of thin- and infinitely thick-walled structures are also dis-

cussed. Some less straight-forward calculations essential for these problems are

deferred to Appendix F. Ultimately, it is determined that the amplitude and pe-

riod of the oscillation of these stochastic bodies are characterised by probability

distributions. Specifically, for the cylindrical and spherical shells, when an impulse

surface traction was applied, a parameter interval where both the oscillatory and

non-oscillatory motions can occur with a given probability was observed, in a com-

plete contrast to the deterministic case, in which a single critical parameter value

separates the cases in which oscillations can or cannot occur. Concluding remarks

are then drawn in Section 6.4.

6.1 Generalised shear motion of a stochastic hy-

perelastic cuboid

We begin by considering a stochastic hyperelastic cuboid subject to dynamic gener-

alised shear, before the specific case of a cuboid made of a stochastic neo-Hookean

material is investigated.
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6.1.1 Dynamic generalised shear

The generalised shear motion of an elastic body is described by [47]

x =
X√
α
, y =

Y√
α
, z = αZ + u (X, Y, t) , (6.1.1)

where (X, Y, Z) and (x, y, z) are the Cartesian coordinates for the reference and

current configuration, respectively, α > 0 is a given constant, and u = z − αZ,

representing the displacement in the third direction, is a time-dependent function

to be determined. It is assumed here that the edges of the cuboid are aligned with

the directions of the Cartesian axes in the undeformed state (see Figure 6.1).

Figure 6.1: Schematic of generalised shear of a cuboid, showing the reference state
(left) and the deformed state (right), respectively.

By the governing equations (6.1.1), the condition (2.2.4) is valid for x =

(x, y, z)T if and only if

0 = curl ẍ =


∂z̈/∂y − ∂ÿ/∂z

∂ẍ/∂z − ∂z̈/∂x

∂ÿ/∂x− ∂ẍ/∂y

 =


∂ü/∂Y

−∂ü/∂X

0

 . (6.1.2)

This condition imposes very strict constraints on the motion. However, even

though the generalised shear motion (6.1.1) is not quasi-equilibrated, exact solu-

tions are still available, although these solutions are not universal [143,214].
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For the deformation (6.1.1), the gradient tensor (2.1.1) is equal to

F =


1/
√
α 0 0

0 1/
√
α 0

uX uY α

 , (6.1.3)

where uX and uY denote the partial first derivatives of u with respect to X and

Y , respectively. The corresponding left Cauchy-Green tensor is

B =


1/α 0 uX/

√
α

0 1/α uY /
√
α

uX/
√
α uY /

√
α u2

X + u2
Y + α2

 , (6.1.4)

and, in this case, the principal invariants (2.1.6) are

I1 = u2
X + u2

Y +
2

α
+ α2,

I2 =
u2
X

α
+
u2
Y

α
+

1

α2
+ 2α,

I3 = 1.

(6.1.5)

The associated Cauchy stress tensor takes the form (2.1.8) [73, pp. 87-91], where

p is the Lagrange multiplier for the incompressibility constraint (I3 = 1), and

β1 = 2
∂W

∂I1

, β−1 = −2
∂W

∂I2

(6.1.6)

are the nonlinear material parameters, with I1, I2 given in (6.1.5).

6.1.2 Shear oscillations of a cuboid of stochastic neo-Hookean

material

The case of a cuboid of stochastic neo-Hookean material is now presented, with

µ1 = µ > 0 and µ2 = 0 in (3.1.2) (where m = 1 and n = 1), where the non-zero
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components of the Cauchy stress tensor (2.1.8) are as follows;

σxx = σyy = −p+
µ

α
,

σzz = −p+ µ
(
u2
X + u2

Y + α2
)
,

σxz =
µ√
α
uX ,

σyz =
µ√
α
uY .

(6.1.7)

The neo-Hookean model was chosen for use here because the results can be demon-

strated explicitly. Then, by the equation of motion (2.2.1),

∂p

∂x
= 0,

∂p

∂y
= 0,

∂p

∂z
= −ρü+ µ (uXX + uY Y ) ,

(6.1.8)

where uXX and uY Y represent the second derivatives of u with respect to X and

Y , respectively. Hence, p is independent of x and y.

The undeformed cuboid is now considered to be long in the Z-direction, and an

initial displacement u0(X, Y ) = u(X, Y, 0) and velocity u̇0(X, Y ) = u̇(X, Y, 0) are

imposed. For the boundary condition, the following two cases are distinguished:

(i) If null normal Cauchy stresses, σxx = σyy = 0, are imposed on the faces

perpendicular to the X- and Y -directions, at all time, then p = µ/α is constant

and σzz = µ (u2
X + u2

Y + α2 − 1/α).

(ii) If σxx = σyy 6= 0, as σzz cannot be made point-wise zero, the normal force

acting on the cross-sections of area A in the z-direction at time t is denoted by

Nz(t) =

∫
A

σzzdA. (6.1.9)
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This force is considered to be zero, so Nz(t) = 0, at all times. Hence, p is inde-

pendent of z, and, by (6.1.8), the conclusion that p = p(t) can be made.

In both the above cases, (i) and (ii), respectively, by (6.1.8),

ü =
µ

ρ
(uXX + uY Y ) . (6.1.10)

The linear wave equation (6.1.10), describing the propagation of waves, will now

be solved by standard procedures, subject to the given initial and boundary con-

ditions. To solve this equation, the shear stresses σxz and σyz defined by (6.1.7)

are allowed to vanish at the sides, i.e.

σxz(0, Y, Z, t) = σxz(1, Y, Z, t) = 0 ⇐⇒ uX(0, Y, t) = uX(1, Y, t) = 0,

σyz(X, 0, Z, t) = σyz(X, 1, Z, t) = 0 ⇐⇒ uY (X, 0, t) = uY (X, 1, t) = 0.

(6.1.11)

In this case, the general solution takes the form

u(X, Y, t) =
∞∑
m=1

∞∑
n=1

[Amn cos (ωmnt) +Bmn sin (ωmnt)] cos (πmX) cos (πnY ) ,

(6.1.12)

where

ωmn = π

√
(m2 + n2)

µ

ρ
, (6.1.13)

and

Amn = 4

∫ 1

0

[∫ 1

0

u0(X, Y ) cos (πmX) dX

]
cos (πnY ) dY, (6.1.14)

Bmn =
4

ωmn

∫ 1

0

[∫ 1

0

u̇0(X, Y ) cos (πmX) dX

]
cos (πnY ) dY. (6.1.15)

These oscillations under the generalised shear motion (6.1.1) cannot be completely

‘free’, due to the non-zero tractions corresponding to the cases (i) and (ii), respec-

tively. The condition (6.1.2) is not satisfied here.
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As µ is a random variable, it follows that the speed of wave propagation,√
µ/ρ, is stochastic. Hence, both the period and the amplitude of the oscillations

are stochastic. As an example, the initial data u0(X, Y ) = cos(πX) cos(πY ) and

u̇0(X, Y ) = 0, leading to A11 = 1 and B11 = 0, are considered. In Figure 6.2,

the stochastic dynamic displacement on the edges (X, Y, Z) ∈ {(0, 0, Z), (1, 1, Z)}

is illustrated in the case when m = n = 1, A11 = 1, B11 = 0, ρ = 1, and µ is

drawn from the Gamma distribution (3.1.6) with hyperparameters ρ1 = 405 and

ρ2 = 0.01, as represented in Figure 5.21. The top plot of Figure 6.2 represents

two single simulations, with two different values of µ drawn from the distribu-

tion, illustrating the variety of outcomes that can be obtained. The middle plot

of Figure 6.2 then represents histograms of the ensemble data. Namely, since

not all material parameters are equally likely, not all outcomes are equally likely.

Specifically, the values of u(0, 0, t) are most likely going to be near the mean value

(dashed line) with the probability of observing alternative values of u decreasing

as we tend away from the mean. From Figure 6.2, it can be noted that extremal

probabilities always occur at the extreme displacement of the oscillations, or in

other words, when the cuboid is slowest. This is to be expected. However, in

between these probability maxima, the variance grows over time. Thus, although

the displacements are initially close (seen explicitly in the top of Figure 6.2 and

by the tight distribution around the mean in the bottom left of Figure 6.2), even-

tually, the phase difference dominates, causing the displacements to diverge (top

of Figure 6.2), and an increase in the variance of the distribution (bottom right of

Figure 6.2).
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Figure 6.2: Stochastic displacement u(X, Y, t) of the edges (X, Y, Z) ∈
{(0, 0, Z), (1, 1, Z)} of the cuboid in dynamic generalised shear, when m = n = 1,
A11 = 1, B11 = 0, ρ = 1, and µ is drawn from the Gamma distribution (3.1.6) with
ρ1 = 405 and ρ2 = 0.01. The top figure illustrates the displacement over time of
two cuboids, with randomly chosen values of µ, derived from the specified Gamma
distribution. The middle figure illustrates a probability histogram at each time
instant. Specifically, the integral of the probabilities over the displacements at any
given time instant is equal to 1. The histogram comprises of 1000 stochastic sim-
ulations and the colour bar defines the probability of finding a given displacement
at a given time. The dashed black line corresponds to the expected values based
only on mean value, µ = ρ1ρ2 = 4.05. The bottom two figures illustrate specific
histogram distributions at two given times (noted above each figure). These are
the distributions that would be seen if the middle figure was cut along the green
and magenta arrows, respectively.
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6.2 Quasi-equilibrated radial-axial motion of a

stochastic hyperelastic cylindrical tube

In this section, the stability and finite amplitude oscillations of a stochastic hyper-

elastic cylindrical tube, subject to the combined radial and axial quasi-equilibrated

dynamic deformation, are analysed.

6.2.1 Dynamic radial-axial deformation of a cylindrical tube

For a circular cylindrical tube, the combined radial and axial motion is described

by (see Figure 6.3)

r2 = a2 +
R2 − A2

α
, θ = Θ, z = αZ, (6.2.1)

where (R,Θ, Z) and (r, θ, z) are the cylindrical polar coordinates in the reference

and current configuration, respectively, such that A ≤ R ≤ B, A and B are the

inner and outer radii in the undeformed state, respectively, a = a(t) and b = b(t) =√
a2 + (B2 − A2) /α are the inner and outer radius at time t, respectively, and

α > 0 is a given constant (when α < 0, the tube is everted, so that the inner surface

becomes the outer surface). When α = 1, the time-dependent deformation (6.2.1)

simplifies to that studied in [23,106,107]. The case when α is time-dependent was

considered in [176].

The radial-axial motion (6.2.1) of the cylindrical tube is fully determined by

the inner radius a at time t, which in turn is obtained from the initial conditions.

Thus, the acceleration r̈ can be computed in terms of the acceleration ä on the

inner surface. By the governing equations (6.2.1), the condition (2.2.4) is valid for

the vector field x = rer, since

ẍ = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ + z̈ez, (6.2.2)
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Figure 6.3: Schematic of inflation of a cylindrical tube, showing the reference
state, with inner radius A and outer radius B (left), and the deformed state, with
inner radius a and outer radius b (right), respectively.

and

0 = curl ẍ =

(
1

r

∂ẍz
∂θ
− ∂ẍθ

∂z

)
er +

(
∂ẍr
∂z
− ∂ẍz

∂r

)
eθ +

1

r

(
∂(rẍθ)

∂r
− ∂ẍr

∂θ

)
ez,

(6.2.3)

where ẍr, ẍθ and ẍz are the components of (6.2.2), er, eθ, and ez are the associated

basis vectors in cylindrical coordinates, and the acceleration potential, ξ, satisfies

(2.2.3). Hence, this is a quasi-equilibrated motion, such that

−∂ξ
∂r

= r̈ =
ȧ2

r
+
aä

r
− a2ȧ2

r3
, (6.2.4)

and, by integrating (6.2.4), the acceleration potential, ξ, is given by [209, p. 215]

−ξ = ȧ2 log r + aä log r +
a2ȧ2

2r2
= ṙ2 log r + rr̈ log r +

1

2
ṙ2. (6.2.5)

The deformation gradient of (6.2.1), with respect to the polar coordinates (R,Θ, Z),
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is equal to

F = diag

(
R

αr
,
r

R
, α

)
, (6.2.6)

the Cauchy-Green deformation tensor is

B = diag

(
R2

α2r2
,
r2

R2
, α2

)
, (6.2.7)

and the principal invariants (2.1.6) take the form

I1 =
R2

α2r2
+
r2

R2
+ α2,

I2 =
α2r2

R2
+
R2

r2
+

1

α2
,

I3 = 1.

(6.2.8)

Thus, the principal components of the equilibrium Cauchy stress tensor at time t

are

σ(0)
rr = −p(0) + β1

R2

α2r2
+ β−1

α2r2

R2
,

σ
(0)
θθ = σ(0)

rr +
(
β1 − β−1α

2
)( r2

R2
− R2

α2r2

)
,

σ(0)
zz = σ(0)

rr +

(
β1 − β−1

r2

R2

)(
α2 − R2

α2r2

)
,

(6.2.9)

where p(0) is the Lagrangian multiplier for the incompressibility constraint (I3 =

1), and the nonlinear material parameters are given by (6.1.6), with I1 and I2

given in (6.2.8).

As the stress components depend only on the radius r, the system of equilib-

rium equations reduces to

∂σ
(0)
rr

∂r
=
σ

(0)
θθ − σ

(0)
rr

r
. (6.2.10)

Hence, by (6.2.9) and (6.2.10), the radial Cauchy stress for the equilibrium state
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at time t is equal to

σ(0)
rr (r, t) =

∫ (
β1 − β−1α

2
)( r2

R2
− R2

α2r2

)
dr

r
+ ψ(t), (6.2.11)

where ψ = ψ(t) is an arbitrary function of time. Substitution of (6.2.5) and

(6.2.11) into (2.2.5) then gives the principal Cauchy stress components at time t

as follows;

σrr(r, t) = ρ

(
aä log r + ȧ2 log r +

a2ȧ2

2r2

)
+

∫ (
β1 − β−1α

2
)( r2

R2
− R2

α2r2

)
dr

r
+

+ ψ(t),

σθθ(r, t) = σrr(r, t) +
(
β1 − β−1α

2
)( r2

R2
− R2

α2r2

)
,

σzz(r, t) = σrr(r, t) +

(
β1 − β−1

r2

R2

)(
α2 − R2

α2r2

)
.

(6.2.12)

In (6.2.12), the function β1 − α2β−1 can be interpreted as the following nonlinear

shear modulus [127];

µ̃ = β1 − β−1α
2, (6.2.13)

corresponding to the combined deformation of simple shear superposed on axial

stretch, with shear parameter k =
√
α2R2/r2 + α4r2/R2 − α6 − 1 and stretch

parameter α. As shown in [127], this modulus is positive if the BE inequalities

(3.1.1) hold. In this case, the integrand is negative for 0 < r2/R2 < 1/α and

positive for r2/R2 > 1/α. Using the first equation in (6.2.1), it is straightforward

to show that 0 < r2/R2 < 1/α (respectively, r2/R2 > 1/α) is equivalent to

0 < a2/A2 < 1/α (respectively, a2/A2 > 1/α). When α = 1, the modulus defined

by (6.2.13) coincides with the generalised shear modulus defined in [209, p. 174],

and also in [23].

In the limiting case when α → 1 and k → 0, the nonlinear shear modulus

(6.2.13) converges to the classical shear modulus from the infinitesimal theory [127]
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(see (2.1.30)),

µ = lim
α→1

lim
k→0

µ̃. (6.2.14)

In this case, as R2/r2 → 1, the three stress components defined by (6.2.12) are

equal.

Next, for the cylindrical tube deforming by (6.2.1), the inner and outer ra-

dial pressures acting on the curvilinear surfaces r = a(t) and r = b(t) at time t

(measured per unit area in the present configuration), are set as σ1(t) and σ2(t), re-

spectively [209, pp. 214-217]. Evaluating σ1(t) = −σrr(a, t) and σ2(t) = −σrr(b, t),

using (6.2.12), with r = a and r = b, respectively, then subtracting the results,

gives

σ1(t)− σ2(t) =
ρ

2

[(
aä+ ȧ2

)
log

b2

a2
+ ȧ2

(
a2

b2
− 1

)]
+

∫ b

a

µ̃

(
r2

R2
− R2

α2r2

)
dr

r

=
ρA2

2

[(
a

A

ä

A
+
ȧ2

A2

)
log

b2

a2
+
ȧ2

A2

(
a2

b2
− 1

)]
+

+

∫ b

a

µ̃

(
r2

R2
− R2

α2r2

)
dr

r
.

(6.2.15)

Setting the notation

u =
r2

R2
=

r2

α (r2 − a2) + A2
, x =

a

A
, γ =

B2

A2
− 1, (6.2.16)

we can rewrite the terms in (6.2.15) as

(
a

A

ä

A
+
ȧ2

A2

)
log

b2

a2
+
ȧ2

A2

(
a2

b2
− 1

)
=
(
ẍx+ ẋ2

)
log
(

1 +
γ

αx2

)
− ẋ2

γ
αx2

1 + γ
αx2

=
1

2x

d

dx

[
ẋ2x2 log

(
1 +

γ

αx2

)]
(6.2.17)
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and

∫ b

a

µ̃

(
r2

R2
− R2

α2r2

)
dr

r
=

∫ b

a

µ̃

[
r2

α (r2 − a2) + A2
− α (r2 − a2) + A2

α2r2

]
dr

r

=
1

2

∫ x2

x2+γ/α
1+γ

µ̃
1 + αu

α2u2
du.

(6.2.18)

Hence, (6.2.15) can be expressed equivalently as follows,

2x
σ1(t)− σ2(t)

ρA2
=

1

2

d

dx

[
ẋ2x2 log

(
1 +

γ

αx2

)]
+

x

ρA2

∫ x2

x2+γ/α
1+γ

µ̃
1 + αu

α2u2
du. (6.2.19)

Note here that when the BE inequalities (3.1.1) hold, µ̃ > 0, and the integral in

(6.2.15), or equivalently in (6.2.19), is negative if 0 < u < 1/α (i.e. if 0 < x <

1/
√
α), and positive if u > 1/α (i.e. if x > 1/

√
α).

In the static case where ȧ = 0 and ä = 0, (6.2.15) becomes

σ1(t)− σ2(t) =

∫ b

a

µ̃

(
r2

R2
− R2

α2r2

)
dr

r
, (6.2.20)

and (6.2.19) reduces to

2
σ1(t)− σ2(t)

ρA2
=

1

ρA2

∫ x2

x2+γ/α
1+γ

µ̃
1 + αu

α2u2
du. (6.2.21)

For the cylindrical tube in finite dynamic deformation, we set

G(x, γ) =
1

ρA2

∫ x

1/
√
α

(
ζ

∫ ζ2

ζ2+γ/α
1+γ

µ̃
1 + αu

α2u2
du

)
dζ, (6.2.22)

and find that G(x, γ) is monotonically decreasing when 0 < x < 1/
√
α, and

increasing when x > 1/
√
α. This function will be useful in establishing whether

the radial motion is oscillatory or not, as will be shown below.

The pressure impulse, or, in other words, the suddenly applied pressure differ-
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ence, is set as

2α
σ1(t)− σ2(t)

ρA2
=

 0 if t ≤ 0,

p0 if t > 0,
(6.2.23)

where p0 is constant in time. Integrating (6.2.19) once then gives

1

2
ẋ2x2 log

(
1 +

γ

αx2

)
+G(x, γ) =

p0

2α

(
x2 − 1

α

)
+ C, (6.2.24)

with G(x, γ) defined by (6.2.22), and

C =
1

2
ẋ2

0x
2
0 log

(
1 +

γ

αx2
0

)
+G(x0, γ)− p0

2α

(
x2

0 −
1

α

)
, (6.2.25)

where x(0) = x0 and ẋ(0) = ẋ0 are the initial conditions. By (6.2.24),

ẋ = ±

√
p0
α

(
x2 − 1

α

)
+ 2C − 2G(x, γ)

x2 log
(
1 + γ

αx2

) . (6.2.26)

Physically, this system is analogous to the motion of a point mass with energy

E =
1

2
m(x)ẋ2 + V (x). (6.2.27)

The energy is E = C, the potential is given by V (x) = G(x, γ)− p0
2α

(
x2 − 1

α

)
, and

the position-dependent mass is m(x) = x2 log
(
1 + γ

αx2

)
. Due to the constraints

on the function G, this system has simple dynamics. Depending on the constant

µ, the system may have a static state or periodic motion. The radial motion is

periodic if and only if the following equation,

G(x, γ) =
p0

2α

(
x2 − 1

α

)
+ C, (6.2.28)

has exactly two distinct solutions, representing the amplitudes of the oscillation,

x = x1 and x = x2, such that 0 < x1 < x2 < ∞. Physically, these solutions

represent the points between which inflation and deflation occurs. By (6.2.16),
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the minimum and maximum radii of the inner surface in the oscillation are then

equal to x1A and x2A, respectively, and by (6.2.26), the period of oscillation is

T = 2

∣∣∣∣∫ x2

x1

dx

ẋ

∣∣∣∣ = 2

∣∣∣∣∣
∫ x2

x1

√
x2 log

(
1 + γ

αx2

)
p0
α

(
x2 − 1

α

)
+ 2C − 2G(x, γ)

dx

∣∣∣∣∣ . (6.2.29)

Both the amplitudes and period of the oscillation are random variables described

in terms of probability distributions.

The specific case of the radial oscillations of a cylindrical tube of stochastic

Mooney-Rivlin material will now be presented.

6.2.2 Radial oscillations of a cylindrical tube of stochastic

Mooney-Rivlin material

For cylindrical tubes of a stochastic Mooney-Rivlin material, defined by (3.1.2)

with m = n = 1 and µ = µ1 +µ2 > 0, evaluating the integral in (6.2.22) gives (see

Appendix F for detailed calculations)

G(x, γ) =
µ̃

2αρA2

(
x2 − 1

α

)
log

1 + γ

1 + γ
αx2

, (6.2.30)

where µ̃ = µ1 + µ2α
2. In this case, assuming that the nonlinear shear modulus µ

has a uniform lower bound, i.e.

µ > η, (6.2.31)

for some constant η > 0, it follows that

lim
x→0

G(x, γ) = lim
x→∞

G(x, γ) =∞. (6.2.32)

There is no connection between the existence, or indeed the non-existence, of

an oscillatory solution and a limit point instability. As an example, oscillatory

motions can be observed in tubes made of both neo-Hookean and Mooney-Rivlin
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materials, but in the neo-Hookean case, we have stability.

(i) If p0 = 0 and C > 0, then equation (6.2.28) has exactly two solutions, x = x1

and x = x2, satisfying 0 < x1 < 1/
√
α < x2 < ∞, for any positive constant C.

It should be noted that, by (6.2.12), if σrr(r, t) = 0 at r = a and r = b, so that

σ1(t) = σ2(t) = 0, then σθθ(r, t) 6= 0 and σzz(r, t) 6= 0 at r = a and r = b, unless

α→ 1 and r2/R2 → 1. That is, in general, these oscillations cannot be ‘free’, due

to the nonzero tractions [176].

Figure 6.4: The function G(x, γ), defined by (6.2.30), intersecting the (dashed
red) line C = 10 when p0 = 0 (left), and the associated velocity, given by (6.2.26)
(right), for a cylindrical tube of stochastic Mooney-Rivlin material when α = 1,
ρ = 1, A = 1, γ = 1, and µ̃ = µ = µ1 + µ2 is drawn from the Gamma distribution
(3.1.6) with ρ1 = 405 and ρ2 = 0.01. The dashed black lines correspond to the
expected values based only on mean value, µ = ρ1ρ2 = 4.05. Each distribution
was calculated from the average of 1000 stochastic simulations.

In Figure 6.4, for example, the stochastic function G(x, γ) (6.2.30) is repre-

sented as intersecting the line C = 10 to solve equation (6.2.28) when p0 = 0,

and the associated velocity (6.2.26), assuming that α = 1, ρ = 1, A = 1, γ = 1,

and µ follows the Gamma distribution (3.1.6) with hyperparameters ρ1 = 405 and

ρ2 = 0.01 (see Figure 5.21).

For a thin-walled tube [106, 175], where α = 1 and γ → 0, equation (6.2.24)
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takes the form

ẋ2 +
µ

ρA2

(
x2 +

1

x2

)
= ẋ2

0 +
µ

ρA2

(
x2

0 +
1

x2
0

)
, (6.2.33)

and has the explicit solution [175]

x =

√[
x0 cos

(
t

A

√
µ

ρ

)
+ ẋ0A

√
ρ

µ
sin

(
t

A

√
µ

ρ

)]2

+
1

x2
0

sin2

(
t

A

√
µ

ρ

)
. (6.2.34)

From this, it is clear that oscillatory motions depend on the initial conditions.

In this case, assuming that the shear modulus, µ, has a uniform lower bound,

equation (6.2.33) becomes [106]

x2 +
1

x2
=
ρA2

µ
ẋ2

0 + x2
0 +

1

x2
0

. (6.2.35)

This equation can be solved directly to find the amplitudes;

x1,2 =

√√√√√ ρA2

µ
ẋ2

0 + x2
0 + 1

x20
±
√(

ρA2

µ
ẋ2

0 + x2
0 + 1

x20

)2

− 4

2
. (6.2.36)

Noting that x2 = 1/x1, the period of the oscillations can be calculated as

T = 2

√
ρA2

µ

∣∣∣∣∣∣
∫ 1/x1

x1

dx√
ρA2

µ
ẋ2

0 + x2
0 + 1

x20
− x2 − 1

x2

∣∣∣∣∣∣ = πA

√
ρ

µ
. (6.2.37)

In Figure 6.5, the stochastic solution given by (6.2.34) is illustrated, with the

initial conditions x0 = 1 and ẋ0 = 4.5, assuming that ρ = 1, A = 1, and µ satisfies

the Gamma distribution (3.1.6) with hyperparameters ρ1 = 405 and ρ2 = 0.01.

(ii) When p0 6= 0 and C ≥ 0, substitution of (6.2.30) in (6.2.28) gives

p0 =
µ̃

ρA2
log

1 + γ

1 + γ
αx2

− 2αC

x2 − 1
α

. (6.2.38)
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Figure 6.5: Stochastic solution given by (6.2.34), with the initial conditions x0 = 1
and ẋ0 = 4.5, for a thin-walled tube, where ρ = 1, A = 1, and µ is drawn from the
Gamma distribution (3.1.6) with ρ1 = 405 and ρ2 = 0.01. The dashed black line
corresponds to the expected values based only on mean value, µ = ρ1ρ2 = 4.05.
The distribution was calculated from the average of 1000 stochastic simulations.

As the right-hand side of the above equation is a monotonically increasing function

of x, there exists a unique positive x satisfying (6.2.38) if and only if the following

condition holds,

lim
x→0

(
µ̃

ρA2
log

1 + γ

1 + γ
αx2

− 2αC

x2 − 1
α

)
< p0 < lim

x→∞

(
µ̃

ρA2
log

1 + γ

1 + γ
αx2

− 2αC

x2 − 1
α

)
,

(6.2.39)

that is,

−∞ < p0 <
µ̃

ρA2
log (1 + γ) . (6.2.40)

By (6.2.16), (6.2.23), and (6.2.40), the necessary and sufficient condition that

oscillatory motions occur is that the nonlinear shear modulus, µ̃, is uniformly

bounded from below as follows,

µ̃ >
p0ρA

2

log (1 + γ)
= α

σ1(t)− σ2(t)

logB − logA
, (6.2.41)

i.e. where p0 is small enough. By (6.2.13),

µ̃ = µ1 + µ2α
2 = µ1 + (µ− µ1)α2 = µα2 + µ1

(
1− α2

)
. (6.2.42)
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Hence, (6.2.41) is equivalent to

µ >
p0ρA

2

α2 log (1 + γ)
+ µ1

1− α2

α2
. (6.2.43)

The probability distribution of oscillatory motions occurring is then

P1

(
µ >

p0ρA
2

α2 log (1 + γ)
+ µ1

1− α2

α2

)
= 1−

∫ p0ρA
2

α2 log(1+γ)
+µ1

1−α2
α2

0

g(u; ρ1, ρ2)du,

(6.2.44)

where g(u; ρ1, ρ2) is the Gamma probability density function defined by (3.1.6),

and that of non-oscillatory motions, or in other words, the probability distribution

of a monotonic inflation, is

P2

(
µ <

p0ρA
2

α2 log (1 + γ)
+ µ1

1− α2

α2

)
= 1− P1

(
µ >

p0ρA
2

α2 log (1 + γ)
+ µ1

1− α2

α2

)

=

∫ p0ρA
2

α2 log(1+γ)
+µ1

1−α2
α2

0

g(u; ρ1, ρ2)du.

(6.2.45)

For example, when α = 1, ρ = 1, A = 1, γ = 1, and µ̃ = µ = µ1 + µ2 satisfies

the Gamma distribution (3.1.6) with ρ1 = 405 and ρ2 = 0.01, the probability

distributions given by (6.2.44)-(6.2.45) are shown in Figure 6.6 (blue lines for P1

and red lines for P2). Specifically, (0, µ), where µ = ρ1ρ2 = 4.05 is the mean

value of µ, was divided into 100 steps, then for each value of p0, 100 random

values of µ were numerically generated from the specified Gamma distribution and

compared with the inequalities defining the two intervals for values of p0. For the

deterministic elastic tube, the critical value p0 = µ log 2 ≈ 2.8072 strictly divides

the cases of oscillations occurring or not. For the stochastic problem, for the

same critical value, there is, by definition, exactly 50% chance that the motion is

oscillatory, and 50% chance that it is not. To increase the probability of oscillatory

motion (P1 ≈ 1), a sufficiently small impulse, p0, must be applied below the

expected critical point, whereas a non-oscillatory motion, or monotonic inflation,

is certain to occur (P2 ≈ 1) if p0 is sufficiently large. However, analogous to the
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Figure 6.6: Probability distributions of whether oscillatory motions can occur or
not for a cylindrical tube of stochastic Mooney-Rivin material, with α = 1, ρ = 1,
A = 1, γ = 1, and the shear modulus, µ, following the Gamma distribution
(3.1.6) with ρ1 = 405, ρ2 = 0.01. Dark coloured lines represent analytically
derived solutions, given by equations (6.2.44)-(6.2.45), whereas the lighter versions
represent stochastically generated data. The vertical line at the critical value, p0 =
2.8072, separates the expected regions based only on mean value, µ = ρ1ρ2 = 4.05.
The probabilities were calculated from the average of 100 stochastic simulations.

Figure 6.7: The function G(x, γ) (6.2.30) intersecting the (dashed red) curve
p0 (x2 − 1/α) /(2α)+C, with p0 = 1 and C = 7, (left), and the associated velocity
(6.2.26) (right) for a cylindrical tube of stochastic Mooney-Rivlin material when
α = 1, ρ = 1, A = 1, γ = 1, and µ̃ = µ = µ1 + µ2 is drawn from the Gamma
distribution (3.1.6) with ρ1 = 405 and ρ2 = 0.01. The dashed black lines corre-
spond to the expected values based only on mean value, µ = ρ1ρ2 = 4.05. Each
distribution was calculated from the average of 1000 stochastic simulations.

cases presented in Sections 5.2 and 5.3, the inherent variability in the probabilistic

system means that there will also exist events where there is competition between

the two cases.

In Figure 6.7, the stochastic function G(x, γ) (6.2.30) is illustrated as inter-

secting the curve p0 (x2 − 1/α) /(2α) + C, with p0 = 1 and C = 7, to find the
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solutions of equation (6.2.28), and the associated velocity (6.2.26), assuming that

α = 1, ρ = 1, A = 1, γ = 1, and µ satisfies the Gamma distribution (3.1.6) with

ρ1 = 405 and ρ2 = 0.01 (see Figure 5.21).

When C = 0, equation (6.2.38) can be solved explicitly to find the amplitude

x1 =

√
γ/α

(1 + γ) exp [− (p0ρA2) /(µ̃)]− 1
=

√
(B2 − A2) /α

B2 exp [−2α (P1 − P2) /µ̃]− A2
.

(6.2.46)

In the static case, by (6.2.21) and (6.2.23), at x = x1, the required pressure takes

the form

p
(s)
0 =

µ̃

αx2ρA2

γ − γ
αx2

1 + γ
αx2

+
µ̃

ρA2
log

1 + γ

1 + γ
αx2

. (6.2.47)

Thus, the difference between the applied pressure in the static and dynamic case,

given by (6.2.47) and (6.2.38), respectively, with C = 0, is

p
(s)
0 − p0 =

µ̃

αx2ρA2

γ − γ
αx2

1 + γ
αx2

. (6.2.48)

Hence, p
(s)
0 < p0 if 0 < x1 <

√
α, and p

(s)
0 > p0 if x1 >

√
α.

If the tube wall is thin [107, 175], then 0 < γ � 1 and α = 1, and (6.2.38)

becomes

p0

γ
=

µ

ρA2

(
1− 1

x2

)
− 2αC

x2 − 1
α

. (6.2.49)

The necessary and sufficient condition that oscillatory motions occur is that

−∞ = lim
x→0

[
µ

ρA2

(
1− 1

x2

)
− 2αC

x2 − 1
α

]
<
p0

γ
< lim

x→∞

[
µ

ρA2

(
1− 1

x2

)
− 2αC

x2 − 1
α

]
=

µ

ρA2
.

(6.2.50)

Thus, for the motion to be oscillatory, the shear modulus must be bounded from

below as follows;

µ >
p0

γ
ρA2 =

2

γ
(σ1(t)− σ2(t)) . (6.2.51)
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The probability distribution of oscillatory motions occurring is then

P1

(
µ >

p0

γ
ρA2

)
= 1−

∫ p0
γ
ρA2

0

g(u; ρ1, ρ2)du, (6.2.52)

and that of non-oscillatory motions is

P2

(
µ <

p0

γ
ρA2

)
= 1− P1

(
µ >

p0

γ
ρA2

)
=

∫ p0
γ
ρA2

0

g(u; ρ1, ρ2)du. (6.2.53)

Figure 6.8: Probability distributions of whether oscillatory motions can occur or
not for a thin-walled cylindrical tube of stochastic Mooney-Rivin material, with
ρ = 1, A = 1, and the shear modulus, µ, following the Gamma distribution
(3.1.6) with ρ1 = 405, ρ2 = 0.01. Dark coloured lines represent analytically
derived solutions, given by equations (6.2.52)-(6.2.53), whereas the lighter versions
represent stochastically generated data. The vertical line at the critical value,
p0/γ = 4.05, separates the expected regions based only on mean value, µ =
ρ1ρ2 = 4.05. The probabilities were calculated from the average of 100 stochastic
simulations.

Figure 6.9: Stochastic solution given by (6.2.54), with p0/γ = 1, for a thin-walled
tube, where ρ = 1, A = 1, and µ is drawn from the Gamma distribution (3.1.6)
with ρ1 = 405 and ρ2 = 0.01. The dashed black line corresponds to the expected
values based only on mean value, µ = ρ1ρ2 = 4.05. The distribution was calculated
from the average of 1000 stochastic simulations.

For ρ = 1, A = 1, and µ̃ = µ = µ1 + µ2 drawn from the Gamma distribution

(3.1.6) with ρ1 = 405 and ρ2 = 0.01, the probability distributions given by (6.2.52)-

(6.2.53) are shown in Figure 6.8 (blue lines for P1 and red lines for P2). For the
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deterministic thin-walled tube, the critical value p0/γ = µ = 4.05 strictly separates

the cases of oscillations occurring or not. However, in the stochastic instance, the

two cases compete.

If C = 0, then setting x0 = 1 and ẋ0 = 0, the equation of motion has the

explicit solution [175]

x =

√
µ
ρA2 − p0

2γ
µ
ρA2 − p0

γ

−
p0
2γ

µ
ρA2 − p0

γ

cos

(
2t

√
µ

ρA2
− p0

γ

)
. (6.2.54)

In Figure 6.9, the stochastic solution given by (6.2.54), with p0/γ = 1, is illus-

trated, assuming that ρ = 1, A = 1, and µ satisfies the Gamma distribution (3.1.6)

with hyperparameters ρ1 = 405 and ρ2 = 0.01.

If the tube wall is infinitely thick [176], then γ → ∞, and assuming that the

nonlinear shear modulus, µ̃, has a uniform lower bound, (6.2.40) becomes

−∞ = lim
x→0

[
µ̃

ρA2
log
(
αx2
)
− 2αC

x2 − 1
α

]
< p0 < lim

x→∞

[
µ̃

ρA2
log
(
αx2
)
− 2αC

x2 − 1
α

]
=∞.

(6.2.55)

Hence, the motion is always oscillatory for any value of the applied impulse.

6.3 Quasi-equilibrated radial motion of a stochas-

tic hyperelastic spherical shell

In this section, comparable to the analysis presented in Section 6.2 for cylindrical

tubes, the stability and finite amplitude oscillations of a stochastic hyperelastic

spherical shell under quasi-equilibrated dynamic radial deformation is examined,

beginning with the dynamic radial deformation of a spherical shell in Section 6.3.1,

before extending to the specific case of the radial oscillations of a spherical shell

made of a stochastic neo-Hookean material in Section 6.3.2.
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6.3.1 Dynamic radial deformation of a spherical shell

For a spherical shell, the radial motion is described by [18, 25, 86, 108] (see Fig-

ure 6.10)

r3 = a3 +R3 − A3, θ = Θ, φ = Φ, (6.3.1)

where (R,Θ,Φ) and (r, θ, φ) are the spherical polar coordinates in the reference

and current configuration, respectively, such that A ≤ R ≤ B, A and B are the

inner and outer radii in the undeformed state, and a = a(t) and b = b(t) =

3
√
a3 +B3 − A3 are the inner and outer radii at time t, respectively.

Figure 6.10: Schematic of inflation of a spherical shell, showing the reference state,
with inner radius A and outer radius B (left), and the deformed state, with inner
radius a and outer radius b (right), respectively.

As for the cylindrical tube, the radial motion (6.3.1) of the spherical shell is

determined entirely by the inner radius a at time t. By the governing equations

(6.3.1), the condition (2.2.4) is valid for the vector field x = rer, since

ẍ= (r̈ − rθ̇2 sin2 φ− rφ̇2)er+

+(rθ̈ sin φ+ 2ṙθ̇ sin φ+ 2rθ̇φ̇ cos φ)eθ+

+(rφ̈+ 2ṙφ̇− rθ̇2 sin φ cos φ)eφ,

(6.3.2)
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and

0 = curl ẍ =
1

r sin θ

[
∂(ẍφ sin θ)

∂θ
− ∂ẍθ

∂φ

]
er +

1

r

[
1

sin θ

∂ẍr
∂φ
− ∂(rẍφ)

∂r

]
eθ+

+
1

r

[
∂(rẍθ)

∂r
− ∂ẍr

∂θ

]
eφ,

(6.3.3)

where ẍr, ẍθ, and ẍφ are the components of (6.3.2), er, eθ and eφ are the associated

basis vectors in sperical coordinates, and the acceleration potential ξ satisfies

(2.2.3). Hence, this is a quasi-equilibrated motion, such that

−∂ξ
∂r

= r̈ =
2aȧ2 + a2ä

r2
− 2a4ȧ2

r5
, (6.3.4)

and integrating (6.3.4) gives [209, p. 217]

−ξ = −2aȧ2 + a2ä

r
+
a4ȧ2

2r4
= −rr̈ − 3

2
ṙ2. (6.3.5)

For the deformation (6.3.1), the gradient tensor with respect to the polar coordi-

nates (R,Θ,Φ) takes the form

F = diag

(
R2

r2
,
r

R
,
r

R

)
, (6.3.6)

the Cauchy-Green tensor is equal to

B = diag

(
R4

r4
,
r2

R2
,
r2

R2

)
, (6.3.7)

and the corresponding principal invariants (2.1.6) are

I1 =
R4

r4
+ 2

r2

R2
,

I2 =
r4

R4
+ 2

R2

r2
,

I3 = 1.

(6.3.8)
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The principal components of the equilibrium Cauchy stress at time t are then

σ(0)
rr = −p(0) + β1

R4

r4
+ β−1

r4

R4
,

σ
(0)
θθ = σ(0)

rr +

(
β1 − β−1

r2

R2

)(
r2

R2
− R4

r4

)
,

σ
(0)
φφ = σ

(0)
θθ ,

(6.3.9)

where p(0) is the Lagrangian multiplier for the incompressibility constraint (I3 =

1), and the nonlinear material parameters are given by (6.1.6), with I1 and I2

given in (6.3.8).

As the stress components depend only on the radius r, the system of equilib-

rium equations reduces to

∂σ
(0)
rr

∂r
= 2

σ
(0)
θθ − σ

(0)
rr

r
. (6.3.10)

Hence, by (6.3.9) and (6.3.10), the radial Cauchy stress for the equilibrium state

at t is equal to

σ(0)
rr (r, t) = 2

∫ (
β1 − β−1

r2

R2

)(
r2

R2
− R4

r4

)
dr

r
+ ψ(t), (6.3.11)

where ψ = ψ(t) is an arbitrary function of time. Substitution of (6.3.5) and

(6.3.11) into (2.2.5) gives the following principal Cauchy stresses at time t;

σrr(r, t) = −ρ
(
a2ä+ 2aȧ2

r
− a4ȧ2

2r4

)
+ 2

∫ (
β1 − β−1

r2

R2

)(
r2

R2
− R4

r4

)
dr

r
+

+ ψ(t),

σθθ(r, t) = σrr(r, t) +

(
β1 − β−1

r2

R2

)(
r2

R2
− R4

r4

)
,

σφφ(r, t) = σθθ(r, t).

(6.3.12)

In (6.3.12), the function β1−β−1 (r2/R2) can be regarded as the following nonlinear
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shear modulus [25,127]

µ̃ = β1 − β−1
r2

R2
, (6.3.13)

corresponding to the combined deformation of infinitesimal shear superposed on

finite axial stretch, defined by

x1 = αX1 + k
X2

α2
, x2 =

X2

α2
, x3 = αX3, (6.3.14)

with the shear parameter satisfying k → 0 and the stretch parameter α = r/R.

This modulus is positive if the BE inequalities (3.1.1) hold [127]. In this case, the

integrand in (6.3.12) is negative for 0 < r2/R2 < 1 (i.e. when 0 < a2/A2 < 1) and

positive for r2/R2 > 1 (i.e. when a2/A2 > 1).

When R2/r2 → 1, the nonlinear elastic modulus given by (6.3.13) converges

to the shear modulus from linear elasticity;

µ = lim
R2/r2→1

µ̃. (6.3.15)

In this case, the stress components given in (6.3.12) are equal.

For the spherical shell deforming by (6.3.1), the inner and outer radial pressures

acting on the curvilinear surfaces, r = a(t) and r = b(t) at time t, are set as

σ1(t) and σ2(t), respectively [209, pp. 217-219]. Evaluating σ1(t) = −σrr(a, t)

and σ2(t) = −σrr(b, t), using (6.3.12), with r = a and r = b, respectively, and
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subtracting the results, then gives

σ1(t)− σ2(t) = ρ

[(
a2ä+ 2aȧ2

)(1

a
− 1

b

)
− a4ȧ2

2

(
1

a4
− 1

b4

)]
+

+ 2

∫ b

a

µ̃

(
r2

R2
− R4

r4

)
dr

r

= ρ

[(
aä+ 2ȧ2

) (
1− a

b

)
− ȧ2

2

(
1− a4

b4

)]
+

+ 2

∫ b

a

µ̃

(
r2

R2
− R4

r4

)
dr

r

= ρA2

[(
a

A

ä

A
+ 2

ȧ2

A2

)(
1− a

b

)
− ȧ2

2A2

(
1− a4

b4

)]
+

+ 2

∫ b

a

µ̃

(
r2

R2
− R4

r4

)
dr

r
.

(6.3.16)

Setting the notation

u =
r3

R3
=

r3

r3 − a3 + A3
, x =

a

A
, γ =

B3

A3
− 1, (6.3.17)

we can rewrite the terms in (6.3.16) as

(
a

A

ä

A
+ 2

ȧ2

A2

)(
1− a

b

)
− ȧ2

2A2

(
1− a4

b4

)
=
(
ẍx+ 2ẋ2

) [
1−

(
1 +

γ

x3

)−1/3
]
−

− ẋ2

2

[
1−

(
1 +

γ

x3

)−4/3
]

=

(
ẍx+

3

2
ẋ2

)[
1−

(
1 +

γ

x3

)−1/3
]
−

− ẋ2

2

γ

x3

(
1 +

γ

x3

)−4/3

=
1

2x2

d

dx

{
ẋ2x3

[
1−

(
1 +

γ

x3

)−1/3
]}

(6.3.18)

and

∫ b

a

µ̃

(
r2

R2
− R4

r4

)
dr

r
=

∫ b

a

µ̃

[(
r3

r3 − a3 + A3

)2/3

−
(
r3 − a3 + A3

r3

)4/3
]

dr

r

=
1

3

∫ x3

x3+γ
1+γ

µ̃
1 + u

u7/3
du.

(6.3.19)
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Hence, (6.3.16) can be written equivalently as follows;

2x2σ1(t)− σ2(t)

ρA2
=

d

dx

{
ẋ2x3

[
1−

(
1 +

γ

x3

)−1/3
]}

+
4x2

3ρA2

∫ x3

x3+γ
1+γ

µ̃
1 + u

u7/3
du.

(6.3.20)

When the BE inequalities (3.1.1) hold, µ̃ > 0, and the integral in (6.3.20) is

negative if 0 < x < 1, and positive if x > 1.

In the static case, (6.3.16) reduces to

σ1(t)− σ2(t) = 2

∫ b

a

µ̃

(
r2

R2
− R4

r4

)
dr

r
, (6.3.21)

and (6.3.20) becomes

2
σ1(t)− σ2(t)

ρA2
=

4

3ρA2

∫ x3

x3+γ
1+γ

µ̃
1 + u

u7/3
du. (6.3.22)

For the dynamic spherical shell, we set

H(x, γ) =
4

3ρA2

∫ x

1

(
ζ2

∫ ζ3

ζ3+γ
1+γ

µ̃
1 + u

u7/3
du

)
dζ, (6.3.23)

and obtain that H(x, γ) is monotonically decreasing when 0 < x < 1, and increas-

ing when x > 1.

A pressure impulse that is constant in time is also set;

2
σ1(t)− σ2(t)

ρA2
=

 0 if t ≤ 0,

p0 if t > 0.
(6.3.24)

Integrating (6.3.20) once then gives

ẋ2x3

[
1−

(
1 +

γ

x3

)−1/3
]

+H(x, γ) =
p0

3

(
x3 − 1

)
+ C, (6.3.25)
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with H(x, γ) defined by (6.3.23), and

C = ẋ2
0x

3
0

[
1−

(
1 +

γ

x3

)−1/3
]

+H(x0, γ)− p0

3

(
x3

0 − 1
)
, (6.3.26)

where x(0) = x0 and ẋ(0) = ẋ0 are the initial conditions. From (6.3.25), we obtain

ẋ = ±

√√√√ p0
3

(x3 − 1) + C −H(x, γ)

x3
[
1−

(
1 + γ

x3

)−1/3
] . (6.3.27)

The analogy with the motion of a point mass in a potential still holds with appro-

priate modification. Hence, oscillatory motion of the spherical shell occurs if and

only if the following equation,

H(x, γ) =
p0

3

(
x3 − 1

)
+ C, (6.3.28)

has exactly two distinct solutions, representing the amplitudes of the oscillation,

x = x1 and x = x2, such that 0 < x1 < x2 < ∞. In this case, the minimum and

maximum radii of the inner surface in the oscillation are given by x1A and x2A,

respectively, and the period of oscillation is equal to

T = 2

∣∣∣∣∫ x2

x1

dx

ẋ

∣∣∣∣ = 2

∣∣∣∣∣∣∣
∫ x2

x1

√√√√ x3
[
1−

(
1 + γ

x3

)−1/3
]

p0
3

(x3 − 1) + C −H(x, γ)
dx

∣∣∣∣∣∣∣ . (6.3.29)

Here, the amplitude and the period of the oscillation are random variables char-

acterised by probability distributions.

Next, the specific case of the radial oscillations of a spherical shell of stochastic

neo-Hookean material will be presented.
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6.3.2 Radial oscillations of a spherical shell of stochastic

neo-Hookean material

For a spherical shell of stochastic neo-Hookean material, with m = 1, µ1 = µ > 0

and µ2 = 0 in (3.1.2), evaluating the integral in (6.3.23) gives (see Appendix F for

a detailed derivation)

H(x, γ) =
µ

ρA2

(
x3 − 1

) 2x3 − 1

x3 + x2 + x
−

2x
3+γ

1+γ
− 1

x3+γ
1+γ

+
(
x3+γ
1+γ

)2/3

+
(
x3+γ
1+γ

)1/3

 .
(6.3.30)

Assuming that the nonlinear shear modulus µ is uniformly bounded from below,

so

µ > η, (6.3.31)

for some constant η > 0, it follows that

lim
x→0

H(x, γ) = lim
x→∞

H(x, γ) =∞. (6.3.32)

(i) When p0 = 0 and C > 0, equation (6.3.28) has exactly two solutions, x = x1

and x = x2, satisfying 0 < x1 < 1 < x2 <∞, for any positive constant C. In this

case, by (6.3.12), if σrr(r, t) = 0 at r = a and r = b, so that σ1(t) = σ2(t) = 0,

then, σθθ(r, t) = σφφ(r, t) 6= 0 at r = a and r = b, unless r3/R3 → 1. That is, the

oscillations cannot be considered as ‘free’ in general, due to the nonzero tractions.

In Figure 6.11, the stochastic function H(x, γ) (6.3.30) is shown intersecting

the line C = 10 to solve equation (6.3.28) when p0 = 0, and the associated velocity

(6.3.27), assuming that ρ = 1, A = 1, γ = 1, and µ follows the Gamma distribution

(3.1.6) with hyperparameters ρ1 = 405 and ρ2 = 0.01 (see Figure 5.21).
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Figure 6.11: The function H(x, γ), defined by (6.3.30), intersecting the (dashed
red) line C = 10, when p0 = 0 (left), and the associated velocity, given by (6.3.27)
(right), for the spherical shell of stochastic neo-Hookean material, where ρ = 1,
A = 1, γ = 1, and µ is drawn from the Gamma distribution (3.1.6) with ρ1 = 405
and ρ2 = 0.01. The dashed black lines correspond to the expected values based
only on mean value, µ = ρ1ρ2 = 4.05. Each distribution was calculated from the
average of 1000 stochastic simulations.

(ii) When p0 6= 0 and C ≥ 0, substitution of (6.3.30) into (6.3.28) gives

p0 =
3µ

ρA2

 2x3 − 1

x3 + x2 + x
−

2x
3+γ

1+γ
− 1

x3+γ
1+γ

+
(
x3+γ
1+γ

)2/3

+
(
x3+γ
1+γ

)1/3

− 3C

x3 − 1
. (6.3.33)

The necessary and sufficient condition for the motion to be oscillatory is then that

p0 satisfies (see example in Figure 6.12)

−∞ = lim
x→0+

3µ

ρA2

 2x3 − 1

x3 + x2 + x
−

2x
3+γ

1+γ
− 1

x3+γ
1+γ

+
(
x3+γ
1+γ

)2/3

+
(
x3+γ
1+γ

)1/3

− 3C

x3 − 1
< p0,

(6.3.34)

and

p0 < sup
0<x<∞

3µ

ρA2

 2x3 − 1

x3 + x2 + x
−

2x
3+γ

1+γ
− 1

x3+γ
1+γ

+
(
x3+γ
1+γ

)2/3

+
(
x3+γ
1+γ

)1/3

− 3C

x3 − 1
.

(6.3.35)
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In the static case, by (6.3.22) and (6.3.24), the applied pressure takes the form

p
(s)
0 =

µ

ρA2

[(
1 + γ

x3 + γ

)4/3

+ 4

(
1 + γ

x3 + γ

)1/3

− 1

x4
− 4

x

]
. (6.3.36)

Figure 6.12: The function H(x, γ) (6.3.30) intersecting the (dashed red) curve
p0 (x3 − 1) /3 + C, with p0 = 1 and C = 3 (left), and the associated velocity
(6.3.27) (right) for the spherical shell of stochastic neo-Hookean material, where
ρ = 1, A = 1, γ = 1, and µ is drawn from the Gamma distribution (3.1.6) with
ρ1 = 405 and ρ2 = 0.01. The dashed black lines correspond to the expected values
based only on mean value µ = ρ1ρ2 = 4.05. Each distribution was calculated from
the average of 1000 stochastic simulations.

In Figure 6.12, the stochastic function H(x, γ) (6.3.30) is represented intersect-

ing the curve p0 (x3 − 1) /3 + C, with p0 = 1 and C = 3, to obtain the solutions

of equation (6.3.28) and the associated velocity (6.3.27), assuming that ρ = 1,

A = 1, γ = 1, and µ follows the Gamma distribution with ρ1 = 405 and ρ2 = 0.01.

If the spherical shell has an infinitely thick wall [18, 108], then γ → ∞, and

the necessary and sufficient condition for the motion to be oscillatory becomes

lim
x→0

[
3µ

ρA2

(
2x3 − 1

x3 + x2 + x
− 1

3

)
− 3C

x3 − 1

]
< p0 <

< lim
x→∞

[
3µ

ρA2

(
2x3 − 1

x3 + x2 + x
− 1

3

)
− 3C

x3 − 1

]
,

(6.3.37)

that is

−∞ < p0 <
5µ

ρA2
. (6.3.38)
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Thus, for the oscillations to occur, the shear modulus must satisfy [108]

µ > p0
ρA2

5
=

2

5
(σ1(t)− σ2(t)) . (6.3.39)

The probability distribution of oscillatory motions occurring is then

P1

(
µ > p0

ρA2

5

)
= 1−

∫ p0
ρA2

5

0

g(u; ρ1, ρ2)du, (6.3.40)

and that of non-oscillatory motions, or monotonic inflation, is

P2

(
µ < p0

ρA2

5

)
= 1− P1

(
µ > p0

ρA2

5

)
=

∫ p0
ρA2

5

0

g(u; ρ1, ρ2)du. (6.3.41)

For ρ = 1, A = 1, and µ̃ = µ = µ1 + µ2 drawn from the Gamma distribution

(3.1.6) with ρ1 = 405 and ρ2 = 0.01, the probability distributions given by (6.3.40)

and (6.3.41) are shown in Figure 6.13 (blue lines for P1 and red lines for P2). For

the deterministic thin-walled shell, the critical value p0 = 5µ = 20.25 strictly

separates the cases of oscillations occurring or not. However, as in Section 6.2, in

the stochastic case, there is competition between the two cases.

Figure 6.13: Probability distributions of whether oscillatory motions can occur or
not for an infinitely thick-walled spherical shell of stochastic neo-Hookean material,
with ρ = 1, A = 1, and the shear modulus, µ, following the Gamma distribution
(3.1.6) with ρ1 = 405, ρ2 = 0.01. Dark coloured lines represent analytically
derived solutions, given by equations (6.3.40)-(6.3.41), whereas the lighter versions
represent stochastically generated data. The vertical line at the critical value p0 =
20.25 separates the expected regions based only on mean value, µ = ρ1ρ2 = 4.05.
The probabilities were calculated from the average of 100 stochastic simulations.

If the spherical shell wall is thin [25, 211, 213], then 0 < γ � 1, and setting
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C = 0, for example, the necessary and sufficient condition for the oscillatory

motions to occur becomes

−∞ = lim
x→0

µ

ρA2

(x+ 1) (2x4 − x2 − 1)

x3 (x3 + x2 + x)
<
p0

γ
< sup

0<x<∞

µ

ρA2

(x+ 1) (2x4 − x2 − 1)

x3 (x3 + x2 + x)

≈ 0.7414
µ

ρA2
,

(6.3.42)

where “sup” denotes supremum. Hence, for the motion to be oscillatory, the shear

modulus must be uniformly bounded from below as follows,

µ >
p0

γ

ρA2

0.7414
≈ 2.7

γ
(σ1(t)− σ2(t)) . (6.3.43)

The probability distribution of oscillatory motions occurring is then

P1

(
µ >

p0

γ

ρA2

0.7414

)
= 1−

∫ p0
γ

ρA2

0.7414

0

g(u; ρ1, ρ2)du, (6.3.44)

and that of non-oscillatory motions (or monotonic inflation) is

P2

(
µ <

p0

γ

ρA2

0.7414

)
= 1− P1

(
µ >

p0

γ

ρA2

0.7414

)
=

∫ p0
γ

ρA2

0.7414

0

g(u; ρ1, ρ2)du.

(6.3.45)

For ρ = 1, A = 1, and µ̃ = µ = µ1 + µ2 drawn from the Gamma distribution

(3.1.6) with ρ1 = 405 and ρ2 = 0.01, the probability distributions given by (6.3.44)

and (6.3.45) are shown in Figure 6.14 (blue lines for P1 and red lines for P2). For

the deterministic thin-walled tube, the critical value p0/γ = 0.7414µ = 3.0027

strictly separates the cases of oscillations occurring or not. However, in the

stochastic case, the two cases compete.

6.4 Summary

In this chapter, a synthesis on the analysis of finite amplitude oscillations resulting

from dynamic finite deformations of given isotropic incompressible nonlinear hy-
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Figure 6.14: Probability distributions of whether oscillatory motions can occur
or not for a thin-walled spherical shell of stochastic neo-Hookean material, with
ρ = 1, A = 1, and the shear modulus, µ, following the Gamma distribution
(3.1.6) with ρ1 = 405, ρ2 = 0.01. Dark coloured lines represent analytically
derived solutions, given by equations (6.3.44)-(6.3.45), whereas the lighter versions
represent stochastically generated data. The vertical line at the critical value,
p0/γ = 3.0027, separates the expected regions based only on mean value, µ =
ρ1ρ2 = 4.05. The probabilities were calculated from the average of 100 stochastic
simulations.

perelastic solids was presented. This was then extended to non-deterministic oscil-

latory motions of stochastic isotropic incompressible hyperelastic solids with simi-

lar geometries. Specifically, the generalised shear motion of a cuboid of stochastic

neo-Hookean material, and the radial motion of inflated cylindrical tubes and

spherical shells, of stochastic Mooney-Rivlin or neo-Hookean material, respec-

tively, were treated in a unified manner. For these finite dynamic problems, atten-

tion was focused on the periodic motion and the time-dependent stresses, while

taking into account the stochastic model parameters, which are random variables

described by given probability laws. In this case, it was observed that the ampli-

tude and period of the oscillation of the stochastic bodies are also characterised by

probability distributions, and, for cylindrical tubes and spherical shells, when an

impulse surface traction is applied, there is a parameter interval where both the

oscillatory and non-oscillatory motions can occur with a given probability. This is

in contrast to the deterministic problem, where a single critical parameter value

strictly separates the cases where oscillations can or cannot occur.

If the material is compressible (unconstrained), then the theorem on quasi-

equilibrated dynamics recalled in Section 2.2, is not applicable [209, p. 209]. Here,
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6.4. SUMMARY

the notion of quasi-equilibrated motion was relied upon to derive the analytical

results for incompressible cylindrical tubes and spherical shells. As such, the

same approach cannot be used for the compressible case. Nevertheless, as seen

from the generalised shear motion of a cuboid presented in Section 6.1, more

general elastodynamic problems can still be formulated where the motion is not

quasi-equilibrated. However, while stochastic versions of compressible hyperelastic

materials can also be obtained, as shown in [195], there are very few theoretical

results on the oscillatory motion of finitely deformed compressible hyperelastic

solids (for example, see [4]) available.

The analysis presented here is appropriate because time-dependent finite elastic

deformations, although relevant to the modelling of various physical systems, have

seldom been considered in more recent studies, which have focused primarily on

static elastic deformations or on dynamic viscoelasticity problems. Evidently,

further numerical and experimental investigations of oscillatory finite deformations

could aid to bridge the gap between these popular areas of research, and add some

valuable insight into specific applications as well.
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Chapter 7

Potential directions for future

research

The stochastic analysis theoretically presented within this work could potentially

be applied to many practical scenarios. For example, the inflation of cylinders

and spheres presented in Section 5.2 could provide the foundations for gaining an

enhanced insight into the circulatory system, as blood vessels could be treated in

this way. The physics of growing biological tissues could also be explored from

this stochastic angle [5], and there is the potential to mathematically model the

behaviour of human organs stochastically [44, 71, 112]. Further, in engineering

applications, aircraft fuselages could be treated in a similar manner. In this field,

not only is there a need to understand uncertainties in materials or data, but there

is also a requirement to reduce the uncertainties present to achieve repeatability

between experiments, and for the material in question to obtain optimal perfor-

mance. There are, of course, many further deformations of solid materials that

could potentially be extended from being treated in the traditional deterministic

sense, to being investigated from the stochastic perspective, taking into account

the variability that occurs within the material parameters for each respective de-

formation, thus enhancing the understanding of the behaviour of these materials

in every sense, both theoretical and practical.
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Theoretically, the analysis presented in Chapter 5 could also be extended

stochastically to the investigation of concentric tubes and spheres of solid ma-

terials. It would also then be possible to explore radially inhomogeneous tubes

and spheres, building on the stochastic extension previously mentioned.

A further avenue of development using the presented stochastical analysis is

that of machine learning and multiscale modelling, within the fields of biological,

biomedical and behavioural sciences [5].

The finite dynamic analysis presented in Chapter 6 can be extended, albeit

numerically, to other stochastic homogeneous hyperelastic materials. Examples of

this are provided in [129], using the stochastic strain-energy functions derived from

experimental data, and in [54], extending to inhomogeneous incompressible bod-

ies similar to those considered deterministically. For incompressible bodies with

inhomogeneous material parameters, the constitutive parameters of the stochastic

hyperelastic models can be treated as random fields, as described in [198, 199].

The combination of knowledge from elasticity, statistics, and probability theories

offers a richer set of tools compared to the elastic framework alone.

In terms of experimental data, there are numerous tests that can be performed

on solid materials, and the variation within the obtained data can be observed.

Following the approach laid out in Chapter 4, the mathematical model that best

represents the experimental data can be determined, leading to a more accurate

theoretical analysis of the behaviour of the material in question. As a specific

example, indentation tests could be performed on a silicone material similar to that

manufactured and used here, and the data could then be analysed and modelled

analogously to the approach demonstrated in Section 4.3.4.

Once we have stochastic parameters, the potential arises to apply the tech-

niques described here to the field of fracture analysis [29, 30]. By making the

parameters in question within fracture analysis stochastic, an insight into the con-

ditions under which a fracture occurs can be gained, thus leading to an enhanced
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treatment of problems of this kind. Further, and particularly within the study of

fracture path datasets [77], the enhancement of datasets could also be achieved

by building on the standard assumptions associated with the stochastic represen-

tation of random media.
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Chapter 8

Conclusion

In this thesis, the broad area of applying a stochastic approach to traditional de-

terministic material modelling problems to enhance the accuracy of the results

obtained has been explored. Uncertainties in experimental observations can arise

at many times during testing, such as from the inherent stiffness and inhomogene-

ity of the material in question, sample-to-sample intrinsic variability, or when the

data extracted from viscoelastic mechanical tests is elastic, and can occur in both

natural and engineered materials. The use of stochastic modelling techniques en-

ables these inevitable uncertainties, which lead to the dispersion of the obtained

data, to be accounted for. The approach presented here builds on the determin-

istic modelling that has been common practice for many years by incorporating

at least one probabilistic element into the model, leading to an enhanced insight

into the behaviours of materials during deformation.

The aim of this work was to devise an explicit method by which homogeneous

isotropic hyperelastic models, whose random field parameters follow probability

laws, could be calibrated to the mean values and standard deviation of either

the stress-strain function, or the nonlinear shear modulus. Using a combination

of finite elasticity and information theory, a calibration procedure for stochastic

isotropic incompressible hyperelastic models was presented in Chapter 3. Firstly,

a set of model assumptions was outlined in Section 3.1. These would prove fun-
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damental in the analysis that was to follow in later chapters of this work. An

example of an application of this calibration procedure was demonstrated in Sec-

tion 3.2 with regard to rubberlike materials, using the data obtained in [170], to

obtain the random shear modulus. A theoretical analysis then followed, with the

development of a calibration procedure for models with multiple terms in Section

3.3. The calibration procedure for the more specific cases of models with two terms

and models with one term was then presented in Sections 3.4 and 3.5, respectively.

Details of simple tests performed on manufactured silicone specimens in order

to observe variations arising in experimental data were given in Chapter 4, with

information given about the manufactured material in Section 4.2.1, and the ex-

perimental set up and techniques in Sections 4.2.2 and 4.2.3, respectively. Full

details of the stochastic modelling procedure were presented in Section 4.3, with

the assumptions that need to be made in order to use this procedure to represent

the experimental data in Section 4.3.1, details of the statistical tests that were

used to verify the treatment of the experimental data sets in terms of the mate-

rial modelling in Section 4.3.2, information about the calibration of the random

Piola-Kirchhoff shear stress of three material models, namely, the Mooney-Rivlin,

Gent-Gent, and Ogden models, to the data obtained for the material under uniax-

ial stretch in Section 4.3.3, and a guide on how to use Bayes’ theorem as a means of

choosing the best performing model to represent the obtained experimental data

in Section 4.3.4. The conclusion of this investigation was that the data obtained

were more likely with the computations performed by the Ogden model than with

either the Mooney-Rivlin or the Gent-Gent models, leading to the advocation of

its use when mathematically modelling materials of this type.

Several specific theoretical examples of deformations of stochastic hyperelastic

bodies were presented in Chapter 5. Extending further the general model cali-

bration procedure demonstrated in Chapter 3, firstly, the conditions under which

a necking instability occurs in materials represented by various different mathe-
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matical models were determined in Section 5.1. Following this, a detailed account

of the behaviour observed in the inflation of spherical shells and cylindrical tubes

was presented in Section 5.2. In both of these cases, the deterministic approach

was outlined first, followed by the extension to approaching the problem from the

stochastic perspective. A limit-point criterion for both the spherical shells and

cylindrical tubes was then determined. In contrast to the deterministic elastic

problem where there is a critical value that strictly separates the cases where ei-

ther the radially symmetric inflation is stable or a limit-point instability occurs,

for the stochastic problem, it was established that there are probabilistic inter-

vals for the model parameters, where there is a quantifiable chance for both the

stable and unstable states to be found. This approach was applied once again

in Section 5.3, to examine the cavitation problems of incompressible spheres of

stochastic hyperelastic material under radial tensile dead loads. The stability of

the cavitation in both the deterministic and stochastic cases is the main area of

discussion within this section, the main difference between the respective cases

being that, analogous to the results obtained in Section 5.2, in the deterministic

case, there is a critical parameter value that strictly separates the cases where

either stable or unstable cavitation occurs, whereas in the stochastic case, there is

a probabilistic interval surrounding the deterministic critical value, in which both

the stable and unstable states have a quantifiable chance of being found. In this

case also, in relation to the onset of cavitation, there is a probabilistic interval

where a cavity may form, with a given probability, under smaller or greater loads

than the expected critical value.

Extending further the techniques presented in Chapter 3, in Chapter 6, the

dynamic finite deformations of stochastic hyperelastic solids were discussed. Here,

the likely oscillation of these solids was investigated, then applied, firstly to ex-

plore the generalised shear motion of stochastic hyperelastic cuboids in Section

6.1, before drawing on the idea of quasi-equilibrated motion introduced in Section
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2.2 to consider the quasi-equilibrated radial-axial motion of a stochastic hypere-

lastic cylindrical tube (Section 6.2), and the quasi-equilibrated radial motion of a

stochastic hyperelastic spherical shell (Section 6.3). In these respective sections,

applications were made to a cylindrical tube made of a stochastic Mooney-Rivlin

material, and a spherical shell made of a stochastic neo-Hookean material, with

the dynamic radial-axial and radial deformations for the tubes and shells, respec-

tively, also being presented. Ultimately, the analysis presented demonstrated that

the amplitude and period of the oscillation of the respective stochastic bodies were

characterised by probability distributions.

Overall, the work presented here aims to place an emphasis on the need for

mathematical models to consider the variability in the mechanical responses of

solid materials to deliver an enhanced representation of the material in question.

The use of hyperelastic models in practical applications, from biological systems

to engineering materials, demands the utmost precision of the models used to

represent the experimental data obtained from these materials during testing, and

so, by incorporating the inherent variability, an improvement in the quality of

mathematical modelling can be achieved, leading to an enhanced insight into the

behaviour of these, often complex, materials.

The analysis presented here is timely, since “Today, it is well understood that

as soon as the probability theory can be used, then the probabilistic approach of

uncertainties is certainly the most powerful, efficient and effective tool for mod-

elling and for solving direct and inverse problems” [190].
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Appendix A

Measure theory prerequisites

Definition A.0.1 A function f : [a, b]→ R is said to be absolutely continuous

on [a, b] if, given ε > 0, there exists some δ > 0 such that

n∑
i=1

|f(yi)− f(xi)| < ε,

whenever {[xi, yi] : i = 1, · · · , n} is a finite collection of mutually disjoint subin-

tervals of [a, b] with
∑n

i=1 |yi − xi| < δ.
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Appendix B

Maximum Entropy Principle

First defined within the context of information theory by Shannon (1948) [179],

the measure of uncertainty (or entropy) of a discrete probability distribution

(R1, ..., Rn) is given by

H(R1, ..., Rn) = −
n∑
p=1

Rp logRp ≥ 0. (B.0.1)

Equation (B.0.1) is known as Shannon’s entropy. The Maximum Entropy Principle

is concerned with the explicit construction of the probability distribution that

maximises Shannon’s entropy under the following m+ 1 equality constraints;

n∑
p=1

Rp = 1,
n∑
p=1

Rpfpq = fq, q = 1, ...,m, (B.0.2)

where fq and fpq, p = 1, ..., n, q = 1, ...,m, are given. The values of fq and fpq are

usually given by data [187]. This is a constrained optimisation problem; solving

such a problem is equivalent to finding the maximum of the Lagrangian function;

L(R1, ..., Rn) = H(R1, ..., Rn)− Λ0

(
n∑
p=1

Rp − 1

)
−

m∑
q=1

Λq

(
n∑
p=1

Rpfpq − fq

)
,

(B.0.3)
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where {Λq}q=0,1,...,m are the Lagrange multipliers associated with the constraints

given in (B.0.2), respectively. The general form solution of this problem, first

stated by Jaynes (1957) [94,95], is

Rp = e−Λ0−
∑m
q=1 Λqfpq , p = 1, ..., n, (B.0.4)

and provides the most unbiased probability model under the given information.

Substituting expression (B.0.4) into (B.0.2) then yields

Λ0 = ln z, fq = − ∂

∂Λq

(ln z), q = 1, ...,m, (B.0.5)

where

z(Λ1, ...,Λm) =
n∑
p=1

e−
∑m
q=1 Λqfpq . (B.0.6)

The uncertainty (entropy) of the discrete distribution (B.0.4) then reduces to

Hmax = Λ0 +
m∑
q=1

Λqfpq. (B.0.7)
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Appendix C

Further calculations

corresponding to Section 3.4

The coefficient of variation for the two-term model presented in Section 3.4 can

be calculated in detail as follows:

Rearrangement of (3.4.20) leads to the following expression;

ξ2

ξ1(ξ1 + ξ2 + 1)
=

Var[R1]

R2
1

=
‖R1‖2

R2
1

=

(
‖R1‖
R1

)2

= δ2
R1
, (C.0.1)

and likewise, rearranging (3.4.21) yields, where R2 = 1−R1,

ξ1

ξ2(ξ1 + ξ2 + 1)
= δ2

1−R1
. (C.0.2)

Dividing (C.0.1) by (C.0.2) then gives

δ2
R1

δ2
1−R1

=
ξ2

2(ξ1 + ξ2 + 1)

ξ2
1(ξ1 + ξ2 + 1)

=
ξ2

2

ξ2
1

, (C.0.3)

and so, after some rearrangement, we obtain

ξ2 = ξ1
δR1

δ1−R1

. (C.0.4)
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Substituting equation (C.0.4) into equation (C.0.2) yields

δ2
1−R1

=
ξ1

ξ1
δR1

δ1−R1

(
ξ1 + ξ1

δR1

δ1−R1
+ 1
) =

δ1−R1

δR1

1(
ξ1 + ξ1

δR1

δ1−R1
+ 1
) , (C.0.5)

which, after rearrangement, gives

ξ1

(
1 +

δR1

δ1−R1

)
+ 1 =

1

δR1δ1−R1

. (C.0.6)

From the expression above, it is then possible to deduce a value for ξ1;

ξ1 =
1− δR1δ1−R1

δR1δ1−R1

(
1 +

δR1

δ1−R1

) =
1− δR1δ1−R1

δR1(δR1 + δ1−R1)
. (C.0.7)

Substitution of (C.0.7) into (C.0.4) allows an expression for ξ2 to be deduced,

namely;

ξ2 =

[
1− δR1δ1−R1

δR1(δR1 + δ1−R1)

]
δR1

δ1−R1

=
1− δR1δ1−R1

δ1−R1(δR1 + δ1−R1)
. (C.0.8)

Hence, we have obtained the following expressions for ξ1 and ξ2;

ξ1 =
1− δR1δ1−R1

δR1(δR1 + δ1−R1)
and ξ2 =

1− δR1δ1−R1

δ1−R1(δR1 + δ1−R1)
. (C.0.9)

Since we have obtained expressions for ξ1 and ξ2, it is now possible to determine

Var [R1], Var [1−R1], ‖R1‖, ‖1−R1‖, E[R1], E[1−R1], R1 and 1−R1.

Beginning with the variance of Rp, p = 1, 2, from (3.4.20) and (3.4.21), we

have

Var [R1] =
R2

1ξ2

ξ1(ξ1 + ξ2 + 1)
and Var [1−R1] =

(1−R1)2ξ1

ξ2(ξ1 + ξ2 + 1)
. (C.0.10)

For Var[R1], substituting in expressions (C.0.7) and (C.0.8) for ξ1 and ξ2, respec-
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tively, we obtain

Var [R1] =
R2

1

[
1−δR1

δ1−R1

δ1−R1
(δR1

+δ1−R1
)

]
[

1−δR1
δ1−R1

δR1
(δR1

+δ1−R1
)

][
1−δR1

δ1−R1

δR1
(δR1

+δ1−R1
)

+
1−δR1

δ1−R1

δ1−R1
(δR1

+δ1−R1
)

+ 1
]

=

R2
1(1−δR1

δ1−R1
)

δ1−R1
(δR1

+δ1−R1
)[

1−δR1
δ1−R1

δ2R1
δ1−R1

(δR1
+δ1−R1

)

]
=
R2

1(1− δR1δ1−R1)δ
2
R1
δ1−R1(δR1 + δ1−R1)

δ1−R1(δR1 + δ1−R1)(1− δR1δ1−R1)

= R2
1δ

2
R1
.

(C.0.11)

Thus, we have

Var [R1] = R2
1δ

2
R1
. (C.0.12)

By symmetry, it is clear that

Var [1−R1] = (1−R1)2δ2
1−R1

. (C.0.13)

By definition, the standard deviation of Rp, p = 1, 2, is given by

‖Rp‖ =
√

Var [Rp], p = 1, 2. (C.0.14)

From equations (3.4.26) and (3.4.28), it can be observed that

‖R1‖ =
√

Var [R1] = R1δR1 (C.0.15)

and

‖1−R1‖ =
√

Var [1−R1] = (1−R1)δ1−R1 . (C.0.16)

An expression for Rp was stated in (3.4.19). This expression can now be
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developed using (C.0.7) and (C.0.8). Therefore;

R1 =
ξ1

ξ1 + ξ2

=

1−δR1
δ1−R1

δR1
(δR1

+δ1−R1
)[

1−δR1
δ1−R1

δR1
(δR1

+δ1−R1
)

+
1−δR1

δ1−R1

δ1−R1
(δR1

+δ1−R1
)

]
=

[
1−δR1

δ1−R1

δR1
(δR1

+δ1−R1
)

]
[

(1−δR1
δ1−R1

)(δR1
δ1−R1

)

δR1
δ1−R1

(δR1
+δ1−R1

)

]
=

(1− δR1δ1−R1)δR1δ1−R1(δR1 + δ1−R1)

δR1(δR1 + δ1−R1)(1− δR1δ1−R1)(δR1δ1−R1)

=
δ1−R1

δR1 + δ1−R1

.

(C.0.17)

Hence, we have

R1 =
δ1−R1

δR1 + δ1−R1

, (C.0.18)

and, by symmetry,

R2 = 1−R1 =
δR1

δR1 + δ1−R1

. (C.0.19)

By definition, the mathematical expectations are given by

E[R1] = R1 and E[1−R1] = 1−R1. (C.0.20)

Therefore, using (C.0.18) and (C.0.19), the mathematical expectations (C.0.20)

can be rewritten in terms of δR1 and δ1−R1 ;

E[R1] =
δ1−R1

δR1 + δ1−R1

and E[1−R1] =
δR1

δR1 + δ1−R1

. (C.0.21)

Substituting (C.0.18) and (C.0.19) into (C.0.12) and (C.0.13), respectively,

then yields expressions for the variance of Rp, in terms of δR1 and δ1−R1 ;

Var [R1] = R2
1δ

2
R1

=

(
δ1−R1δR1

δR1 + δ1−R1

)2

(C.0.22)
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and

Var [1−R1] = (1−R1)2δ2
1−R1

=

(
δR1δ1−R1

δR1 + δ1−R1

)2

. (C.0.23)

By definition, the expressions for the standard deviation of Rp, p = 1, 2, in terms

of δR1 and δ1−R1 are then

‖R1‖ =
δ1−R1δR1

δR1 + δ1−R1

and ‖1−R1‖ =
δR1δ1−R1

δR1 + δ1−R1

. (C.0.24)

Hence,

‖R1‖ = ‖1−R1‖. (C.0.25)
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Appendix D

Normal distribution as limiting

distribution of the Gamma

distribution

Theorem D.0.1 The limiting distribution of the Gamma distribution with shape

and scale parameters ρ1 and ρ2, respectively, such that ρ1 → ∞, is the Gaussian

(normal) distribution with mean value ρ1ρ2 and standard deviation ρ2
√
ρ1.

Proof: If µ is a random variable following a Gamma probability distribution with

shape parameter ρ1 > 0 and scale parameter ρ2 > 0, then

µ = ρ1ρ2, ‖µ‖ =
√
ρ1ρ2, (D.0.1)

where µ = E[µ] is the mean value and ‖µ‖ is the standard deviation of µ, defined

as ‖µ‖ =
√

Var[µ], with Var[µ] denoting the variance of µ.

The moment generating function of µ is

Mµ(t) = E
[
etµ
]

= (1− ρ2t)
−ρ1 , t <

1

ρ2

. (D.0.2)

Subtracting the mean value µ from µ and dividing by the standard deviation ‖µ‖
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gives the following 1-1 transformation,

Y =
µ− µ
‖µ‖

, (D.0.3)

or equivalently,

Y =
µ

ρ2
√
ρ1

−√ρ1. (D.0.4)

The moment generating function of Y is then

MY (t) = E
[
etY
]

= E

[
e
t
(

µ
ρ2
√
ρ1
−√ρ1

)]
,

= e−t
√
ρ1E

[
e
t µ
ρ2
√
ρ1

]
,

= e−t
√
ρ1Mµ

(
t

ρ2
√
ρ1

)
,

= e−t
√
ρ1

(
1− t
√
ρ1

)−ρ1
, t <

√
ρ1.

(D.0.5)

Thus, the limiting moment generating function of Y when ρ1 →∞ takes the form

lim
ρ1→∞

MY (t) = lim
ρ1→∞

e−t
√
ρ1

(
1− t
√
ρ1

)−ρ1
, −∞ < t <∞. (D.0.6)

The above limit can be calculated as follows,

lim
ρ1→∞

e−t
√
ρ1

(
1− t
√
ρ1

)−ρ1
= lim

y=1/
√
ρ1→0+

e−(t/y)

(
1−ty

)−1/y2

= e
limy→0+

−ty−ln(1−ty)
y2 ,

(D.0.7)

where, applying L’Hôspital’s rule [111],

lim
y→0+

−ty − ln(1− ty)

y2
= lim

y→0

−t+ t/(1− ty)

2y
= lim

y→0+

t2

2(1− ty)
=
t2

2
. (D.0.8)

Therefore,

lim
ρ1→∞

MY (t) = e
t2

2 , −∞ < t <∞, (D.0.9)
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which is the moment generating function of a normal-distributed random variable.

Thus, the limiting distribution of a Gamma distribution with ρ1 →∞ is the nor-

mal distribution. This completes the proof. 2
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Appendix E

Stability analysis

Here, a corrected version of Proposition 5.2 of [19] and its proof is provided. In

particular, it is shown that, in the deterministic elastic case, both subcritical and

supercritical behaviours close to the bifurcation are possible, depending on the

material.

Proposition E.0.1 Let W (λ) be twice differentiable at λ = 1, and

P (c) = (1 + cn)(n−1)/n

∫ ∞
(1+cn)1/n

dW

dλ

dλ

λn − 1
,

where n > 1. Then limc→0+ (dP/dc) = 0, and if

lim
c→0+

P (c)− lim
λ→1

1

n(n− 1)

d2W

dλ2
> 0, (E.0.1)

then dP/dc > 0 for sufficiently small c > 0 (i.e. the bifurcation is supercritical),

while if

lim
c→0+

P (c)− lim
λ→1

1

n(n− 1)

d2W

dλ2
< 0, (E.0.2)

then dP/dc < 0 for sufficiently small c > 0 (i.e. the bifurcation is subcritical).

These cases are illustrated, for the particular example of the material presented

in Section 5.3, in Figures 5.23 and 5.24.
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Proof. Denote θ = (1 + cn)(n−1)/n and define P̂ (θ) = P (c). Then

P̂ (θ) = θ

∫ ∞
θ1/(n−1)

dW

dλ

dλ

λn − 1

and

dP

dc
=

dP̂

dθ

dθ

dc
,

where

dP̂

dθ
=

∫ ∞
θ1/(n−1)

dW

dλ

dλ

λn − 1
− θ1/(n−1)

n− 1

(
dW

dλ

1

λn − 1

)
|λ=θ1/(n−1) .

It follows that

lim
θ→1

dP̂

dθ
= lim

θ→1

∫ ∞
θ1/(n−1)

dW

dλ

dλ

λn − 1
− lim

θ→1

θ1/(n−1)

n− 1

dW

dλ

1

λn − 1
|λ=θ1/(n−1)

= lim
c→0+

P (c)− lim
θ→1

θ1/(n−1)

n− 1

(
dW

dλ

1

λn − 1

)
|λ=θ1/(n−1)

= lim
c→0+

P (c)− lim
λ→1

1

n(n− 1)

dW

dλ

1

λ− 1

= lim
c→0+

P (c)− lim
λ→1

1

n(n− 1)

d2W

dλ2
.

(E.0.3)

Provided that the above limit is finite (since cavitation is assumed), it follows that

lim
c→0+

dP

dc
= 0,

since

lim
c→0+

dθ

dc
= lim

c→0+
(n− 1)

cn−1

(1 + cn)
1
n

= 0.

This concludes the proof.

Note that the difference between this result and Proposition 5.2 of [19] comes

from the (correct) minus sign between the two terms on the right-hand side

of (E.0.3) (whereas a plus sign is found in the corresponding unlabelled expression
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appearing between equations (5.25) and (5.26) of [19]).
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Appendix F

Additional detailed calculations

to Sections 6.2 and 6.3

For the stochastic cylindrical and spherical shells discussed in Sections 6.2 and

6.3, respectively, detailed derivations of the general functions G(x, γ), defined by

(6.2.30), and H(x, γ), defined by (6.3.30), are provided, and calculations of the

limits of these functions, in the particular cases of thin-walled and infinitely thick-

walled shells, are given.

(I) For a Mooney-type model, the function G(x, γ) is defined by (6.2.22), where
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µ̃ = µ1 + µ2α
2t. In this case, we obtain

G(x, γ) =
1

ρA2

∫ x

1/
√
α

(
ζ

∫ ζ2

ζ2+
γ
α

1+γ

µ̃
1 + αu

α2u2
du

)
dζ

=
µ̃

ρA2

∫ x

1/
√
α

(
ζ

∫ ζ2

ζ2+
γ
α

1+γ

1 + αu

α2u2
du

)
dζ

=
µ̃

ρA2

∫ x

1/
√
α

{
1

α2

[
(1 + γ)

ζ

ζ2 + γ
α

− 1

ζ

]
+

1

α

[
ζ log ζ2 − ζ log

ζ2 + γ
α

1 + γ

]}
dζ

=
µ̃

2αρA2

(
1 + γ

α
log

x2 + γ
α

1
α

+ γ
α

− 1

α
log x2 +

1

α
log

1

α

)
+

µ̃

2αρA2

(
x2 log x2 − x2 − 1

α
log

1

α
+

1

α

)
− µ̃

2αρA2

(
x2 log

x2 + γ
α

1 + γ
− x2 +

γ

α
log

x2 + γ
α

1
α

+ γ
α

− 1

α
log

1

α
+

1

α

)
=

µ̃

2αρA2

(
x2 − 1

α

)
log

1 + γ

1 + γ
αx2

.

(F.0.1)

For the thin-walled tube [107,175], α = 1 and 0 < γ � 1, and approximating

log(1 + γ) by γ and log [1 + γ/ (αx2)] by γ/ (αx2), we find

G(x, γ) = γ
µ̃

2ρA2

(
x2 − 1

)(
1− 1

x2

)
. (F.0.2)

For the cylindrical cavity [176], γ →∞, hence

G(x, γ) =
µ̃

2αρA2

(
x2 − 1

α

)
log
(
αx2
)
. (F.0.3)

(II) For a neo-Hookean-type model, the function H(x, γ) is defined by (6.3.23),

where µ̃ = µ. Following [108], the corresponding strain-energy density is set

in the form

W0(u) =
µ

2

(
u−4/3 + 2u2/3 − 3

)
, (F.0.4)

and denote by W ′
0(u) its first derivative with respect to u. By standard

calculations (involving integration by parts and change of variables), we
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then obtain

H(x, γ) =
4

3ρA2

∫ x

1

(
ζ2

∫ ζ3

ζ3+γ
1+γ

µ̃
1 + u

u7/3
du

)
dζ

=
2

ρA2

∫ x

1

(
ζ2

∫ ζ3

ζ3+γ
1+γ

W ′
0(u)

u− 1
du

)
dζ

=
2

ρA2

∫ x

1

ζ2

W0(ζ3)

ζ3 − 1
−
W0

(
ζ3+γ
1+γ

)
ζ3+γ
1+γ
− 1

+

∫ ζ3

ζ3+γ
1+γ

W0(u)

(u− 1)2
du

 dζ

=
2

ρA2

{∫ x

1

ζ2

[
W0(ζ3)

ζ3 − 1
−
W0

(
ζ3+γ
1+γ

)
ζ3+γ
1+γ
− 1

]
dζ

+

∫ x

1

[
ζ2

∫ ζ3

ζ3+γ
1+γ

W0(u)

(u− 1)2
du

]
dζ

}

=
2

3ρA2

[∫ x3

1

W0(u)

u− 1
du+ x3

∫ x3

1

W0(u)

(u− 1)2
du−

∫ x3

1

uW0(u)

(u− 1)2
du

]

+
2

3ρA2

[ ∫ 1

x3+γ
1+γ

(1 + γ)
W0(u)

u− 1
du+ x3

∫ 1

x3+γ
1+γ

W0(u)

(u− 1)2
du

−
∫ 1

x3+γ
1+γ

[u(1 + γ)− γ]W0(u)

(u− 1)2
du

]

=
2

3ρA2

[
x3

∫ x3

1

W0(u)

(u− 1)2
du−

∫ x3

1

W0(u)

(u− 1)2
du

]

+
2

3ρA2

[
x3

∫ 1

x3+γ
1+γ

W0(u)

(u− 1)2
du−

∫ 1

x3+γ
1+γ

(1 + γ)
W0(u)

(u− 1)2
du

+

∫ 1

x3+γ
1+γ

γ
W0(u)

(u− 1)2
du

]
=

2

3ρA2

(
x3 − 1

) ∫ x3

x3+γ
1+γ

W0(u)

(u− 1)2
du

=
µ

3ρA2

(
x3 − 1

) ∫ x3

x3+γ
1+γ

2u4/3 + 4u+ 3u2/3 + 2u1/3 + 1

u2/3(u+ u2/3 + u1/3)2
du

=
µ

ρA2

(
x3 − 1

) 2x3 − 1

x3 + x2 + x
−

2x
3+γ

1+γ
− 1

x3+γ
1+γ

+
(
x3+γ
1+γ

)2/3

+
(
x3+γ
1+γ

)1/3

 .
(F.0.5)
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For the thin-walled shell [25, 211,213], 0 < γ � 1, and

H(x, γ) = γ
4µ

3ρA2

∫ x

1

u6 − 1

u5
du

= γ
µ

ρA2

(x+ 1) (2x4 − x2 − 1)

x3 (x3 + x2 + x)
.

(F.0.6)

For the spherical cavity [18,108], γ →∞, hence

H(x, γ) =
µ

3ρA2

(
x3 − 1

) 5x3 − x2 − x− 3

x3 + x2 + x
. (F.0.7)
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[4] U. Akyüz, A. Ertepinar. 1998. Stability and asymmetric vibrations of pres-

surized compressible hyperelastic cylindrical shells, International Journal of

Non-Linear Mechanics 34, 391-404.

[5] M. Alber, A. Buganza Tepole, W. Cannon, S. De, S. Dura-Bernal, K.

Garikipati, G. Karniadakis, W. Lytton, P. Perdikaris, L. Petzold, E. Kuhl.

2019. Integrating Machine Learning and Multiscale Modeling: Perspectives,

Challenges, and Opportunities in the Biological, Biomedical, and Behavioral

Sciences, arXiv:1910.01258.

218



BIBLIOGRAPHY

[6] F. Alijani, M. Amabili. 2014. Non-linear vibrations of shells: A literature re-

view from 2003 to 2013, International Journal of Non-Linear Mechanics 58,

233-257.

[7] M. Amabili. 2008. Nonlinear Vibrations and Stability of Shells and Plates,

Cambridge University Press, Cambridge, 2008.
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