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Abstract
Reaction–diffusion processes across layered media arise in several scientific domains
such as pattern-forming E. coli on agar substrates, epidermal–mesenchymal coupling
in development, and symmetry-breaking in cell polarization. We develop a modeling
framework for bilayer reaction–diffusion systems and relate it to a range of existing
models. We derive conditions for diffusion-driven instability of a spatially homoge-
neous equilibrium analogous to the classical conditions for a Turing instability in the
simplest nontrivial settingwhere one domain has a standard reaction–diffusion system,
and the other permits only diffusion. Due to the transverse coupling between these two
regions, standard techniques for computing eigenfunctions of the Laplacian cannot be
applied, and so we propose an alternative method to compute the dispersion relation
directly. We compare instability conditions with full numerical simulations to demon-
strate impacts of the geometry and coupling parameters on patterning, and explore
various experimentally relevant asymptotic regimes. In the regime where the first
domain is suitably thin, we recover a simple modulation of the standard Turing condi-
tions, and find that often the broad impact of the diffusion-only domain is to reduce the
ability of the system to form patterns. We also demonstrate complex impacts of this
coupling on pattern formation. For instance, we exhibit non-monotonicity of pattern-
forming instabilities with respect to geometric and coupling parameters, and highlight
an instability from a nontrivial interaction between kinetics in one domain and diffu-
sion in the other. These results are valuable for informing design choices in applications
such as synthetic engineering of Turing patterns, but also for understanding the role
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of stratified media in modulating pattern-forming processes in developmental biology
and beyond.

Keywords Turing instabilities · Stratified media · Pattern formation · Synthetic
biology

1 Introduction

Since Turing’s initial insights into reaction–diffusion-driven morphogenesis (Turing
1952), a substantial research effort has elucidated various mathematical and biophys-
ical aspects of such symmetry-breaking instabilities leading from homogeneity to
patterned states (De Kepper et al. 1991; Cross and Hohenberg 1993; Maini et al.
2012; Kondo and Miura 2010; Green and Sharpe 2015; Woolley 2014). An important
and well-studied aspect of these instabilities is the underlying geometry, which can
influence both the stability of a homogeneous state, as well as the subsequent mode
selection of emergent patterns (Murray 2003). However, one less well-studied aspect
of geometry is the coupling between layered spatial domains, which can arise in a
variety of settings and is the primary object of interest in this paper.

Reaction diffusion processes arise in a diversity of layered settings, from bulk–
surface membrane–cytosol interactions (Halatek et al. 2018; Rätz and Röger 2014;
Kretschmer and Schwille 2016; Spill et al. 2016; Cusseddu et al. 2018) to epithelial–
mesenchymal couplings in developing skin (Cruywagen and Murray 1992; Shaw and
Murray 1990). Synthetic experiments involving pattern formation in monolayers also
exhibit clearly stratified regions of cells and culture medium (Sekine et al. 2018).
Additionally, many experiments involving bacterial pattern formation are performed
using colonies on the surface of a substrate, such as agar (Budrene and Berg 1991,
1995). Such systems either use natural chemotaxis mechanisms to initiate spatial pat-
tern formation of the bacterial density itself Tyson et al. (1999), or instead use synthetic
bacteria re-engineered to express additional quorum-sensing pathways that spatially
coordinate patterns in gene expression (Basu et al. 2005; Tabor et al. 2009; Grant et al.
2016). Other examples are synthetically reconstituted protein interaction systems with
bulk–membrane coupling such as the Min system (Loose et al. 2008; Kretschmer and
Schwille 2016; Frey et al. 2018),wheremolecular interactions (Denk et al. 2018;Glock
et al. 2019), or in vitro system geometries (Wu et al. 2016; Brauns et al. 2020; Halatek
and Frey 2018), are modified to stimulate changes in the observed protein patterns.
Examples of particular contemporary interest include the use of bacterial colonies as
exemplars of synthetic multicellular communication and self-organization (Balagaddé
et al. 2008; Dalchau et al. 2012; Payne et al. 2013; Grant et al. 2016; Karig et al. 2018),
for example using modified E. coli with engineered quorum-sensing signalling on the
surface of an agar plate (Grant et al. 2016; Payne et al. 2013; Cao et al. 2016, 2017).
Some of these systems take advantage of the geometry of colony growth and nutri-
ent diffusion to influence pattern formation (Payne et al. 2013; Cao et al. 2016, 2017)
while in other systems the bacteria are confined (Grant et al. 2016; Boehm et al. 2018),
but the signalling molecules can diffuse into the inert agar layer below the chemically
active colonies. The impact of this leaching on the prospects of a Turing instability
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in experimentally relevant geometries has not been fully characterized and is a key
motivation for our study.

Our first objective is to develop a two-domainmodel of reaction–diffusion processes
coupled in a stratified bilayer and to determine conditions for the Turing instability,
on the assumption that the upper region is sufficiently substantive in the transverse
direction to merit continuum modeling. Such a model is also applicable to a variety
of other settings beyond multilayered bacterial pattern formation, such as developing
skin. Our second objective is to focus on the Turing instability for multilayered bac-
terial systems, where signalling molecules only diffuse in the lower (agar) layer and
especially where the upper layer is asymptotically thin relative to the scale of the pat-
tern and the depth of the lower layer. The main biological motivation is to determine
to what extent the diffusive bulk helps, or hinders, the ability of an engineered system
to exhibit Turing-type patterning.

In terms of model development, domain-coupled reaction–diffusion systems
broadly fall into three major types: instantaneously coupled, bulk–surface models
and bulk–bulk models. The first type are models where the components occupy the
same physical space (or the reactions occur in thin regions where a homogenization
approximation is sensible) (Yang et al. 2002; Epstein et al. 2007; Yang and Epstein
2003; Fujita and Kawaguchi 2013). Such models are essentially just larger reaction–
diffusion systems with linear coupling between subsystems, and amenable to block
matrix analysis in the study of Turing instabilities (Catllá et al. 2012), but do not
capture the spatial separation of the domains. When applied to layered media, these
models effectively assume vertical transport between distinct layers (such as that of
Fig. 1) is instantaneous. However, considering physical scales representative of syn-
thetic pattern formation experiments using E. coli (Grant et al. 2016; Boehm et al.
2018), and summarized below in Table 1, one has an agar block with a depth of a
few millimeters, say three, and a diffusion rate on the scale of 4 × 10−10 m2 s−1.
Thus the timescale for vertical transport is in the region of 375 minutes, which is short
compared to the timescales on which experimental measurements of the equilibrated
system are recorded (1500–3000 min, Grant et al. (2016); Boehm et al. (2018)) but far
from instantaneous. Hence, suchmodels are inappropriate for themotivating examples
here.

A second class of model considers bulk–surface coupling, where one component is
confined to the boundary of the main bulk domain, and reactants flow between the two
regions, such as in the case of proteins diffusing in the cytoplasmandbinding on the cell
membrane (Rätz and Röger 2014;Madzvamuse et al. 2015; Spill et al. 2016; Cusseddu
et al. 2018; Paquin-Lefebvre et al. 2018; Halatek et al. 2018; Frey et al. 2018). There
is substantial recent interest in such models, from very theoretical results on existence
and fast reaction-limiting behavior (Rätz 2015; Anguige and Röger 2017; Hausberg
and Röger 2018), to spike dynamics (Gomez et al. 2018) and a myriad of applications
to understanding cell polarity (Thalmeier et al. 2016; Kretschmer and Schwille 2016;
Halatek et al. 2018; Geßele et al. 2020). One particularly well studied example is the
pole-to-pole Min protein oscillation in E. coli, which has the biological function of
guiding the cell division machinery to midcell (Kretschmer and Schwille 2016). Such
intracellular protein patterning systems have been studied experimentally and theo-
retically in a wide range of system geometries, such as spherical (Klünder et al. 2013;
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Levine and Rappel 2005), elliptical (Halatek and Frey 2012; Wu et al. 2016; Geßele
et al. 2020), and planar membrane geometries (Halatek and Frey 2018). A striking
feature of these examples is that the geometry itself has a major impact on pattern
formation and pattern selection, which has been confirmed experimentally (Wu et al.
2016; Brauns et al. 2020). More generally, the Turing instability has also been studied
in the context of membrane cytosol models (Rätz and Röger 2014; Madzvamuse et al.
2015). Overall, linear stability analysis (as used by Turing) is highly applicable to such
membrane cytosol systems because the nonlinear interactions are typically restricted
to the lower-dimensional membrane surface. The dynamics in the extended bulk are
typically linear such that a general solution (or a good approximation) can be obtained
analytically and used to satisfy the linearized reactive boundary condition. This is jus-
tified because the membrane can be considered as a surface with no transverse extent,
and so transverse gradients only play a role in the cytosolic layer close to themembrane
surface. However, in multilayered cellular systems, the transverse lengthscales are at
least that of many cells, and hence transverse gradients cannot be neglected a priori
and thus should be accommodated in the modeling. Models accounting for this repre-
sent the final class, with two separated spatial domains with an interface and suitable
coupling boundary conditions. From the perspective of pattern formation, this kind
of model has only been subject to recent numerical exploration (Vilaca et al. 2019),
though it is used in the derivation of the second class—bulk surface models—given
appropriate distinguished limits and scaling assumptions (for example, Chapman et al.
(2016), Fussell et al. (2019)).

Hence, we will develop models of the latter type, with an exploration of the con-
ditions for the Turing instability, and their detailed study in the context of a stratified
model with an inert underlying agar layer. Turing instabilities of reaction–diffusion
systems have been studied on a variety of complex spatial domains such as compact
manifolds (Varea et al. 1999; Chaplain et al. 2001), networks (Asllani et al. 2014; Ide
et al. 2016; Nakao and Mikhailov 2010), and many of the aforementioned complex
system geometries (Halatek and Frey 2012; Klünder et al. 2013; Halatek and Frey
2018). The primary difficulty in such cases, compared to the textbook example of a
continuous line, is determining the corresponding set of eigenfunctions and eigenval-
ues of the spatial transport operators, which for some system geometries do not need
to coincide between domains (e.g., in the surface bulk elliptical case (Halatek and Frey
2012)). In such cases, approximate solutions for the system’s eigenfunctions need to
be derived that are orthogonal in the patterning layer. Examples that deviate even fur-
ther from the classical case are growing domains (Crampin et al. 1999; Plaza et al.
2004; Krause et al. 2019; Sánchez-Garduño et al. 2019) and spatially heterogeneous
reaction–diffusion processes (Benson et al. 1998; Page et al. 2003, 2005; Haim et al.
2015; Kolokolnikov and Wei 2018), for which the canonical approach does not work.
In such cases, novel approaches to pattern-forming instabilities have recently been
developed for growth (Madzvamuse et al. 2010; Gorder et al. 2019) and heterogeneity
(Krause et al. 2020) under certain simplifications, but such analyses are quite different
to the classical case. In a similar direction, as part of our objective in exploring the
Turing instability for layered reaction–diffusion systems, we will aim to demonstrate
a much richer diversity of structure in the resulting dispersion relations (and hence
instability conditions), compared to classical counterparts.
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(a) (b)

Fig. 1 Example experimental system under consideration. a Here we consider cells growing in culture on
top of a solid reservoir of nutrients, such as agar. b The surface (cellular) region denoted �S has height Hε

and contains both reaction and diffusion terms, whereas the bulk (nutrient) region �B is of height H and
is assumed to have no reactions, but permits diffusion. Both have lateral extent L , with no-flux conditions
on all boundaries except for the interface between the two regions, where a coupling condition is applied
(Color figure online)

As an outline, in Sect. 2, we present a two-domain layered model, where each
domain consists of closed two-dimensional rectangular regions, coupled through a
single shared boundary (See Fig. 1) and briefly discuss how it can be reduced to a
variety of other models. We focus on a special case of a two-domain model where we
assume linear coupling and no reactions in the second (bulk) region, but note that our
analysis can be applied with relatively simple modifications to more general cases. In
Sect. 3, we develop an approach to linear stability analysis of homogeneous states.
In Sect. 4, we derive a variety of asymptotic results regarding our dispersion rela-
tion, especially considering limits that are of particular relevance for synthetic pattern
formation in E. coli colonies. We further explore these results and other parameter
regimes numerically in Sect. 5. Finally, we discuss our results in Sect. 6.

2 Two-RegionModel

We consider a layered two-domain model where each domain is governed by a dif-
ferent reaction–diffusion system. We consider several interacting species in these two
domains, which we write as � = �S

⋃
�B where we refer to �B = [0, L] × [0, H ]

as the bulk region, and �S = [0, L] × [H , H + Hε] as the surface region (see Fig. 1).
We write ûB ∈ R

n for the concentrations of reactants in the bulk, and ûS ∈ R
n for

the concentrations of reactants in the surface region. For simplicity, we consider a
simple one-dimensional lateral geometry (orthogonal to the direction of the coupling
condition), but note that the geometric details in the lateral direction(s) can be eas-
ily extended to much more complicated geometries, as long as eigenfunctions of the
Laplacian in these directions are separable from the transverse coordinate y. We only
consider reactions on the surface layer and assume the bulk only permits diffusion.

123



  136 Page 6 of 37 A. L. Krause et al.

We have the following equations for the species concentrations in the bulk and
surface regions:

∂ ûS

∂ t̂
= D̂S∇2ûS + f̂S(ûS), x̂ ∈ [0, L], ŷ ∈ [H , H + Hε], (1)

∂ ûB

∂ t̂
= D̂B∇2ûB, x̂ ∈ [0, L], ŷ ∈ [0, H ], (2)

where D̂S, D̂B are positive definite diagonal matrices. We further specify Neumann
(no-flux) boundary conditions on the outer boundaries as,

∂ ûS

∂ x̂
= ∂ ûB

∂ x̂
= 0, for x̂ = 0, L, (3)

∂ ûS

∂ ŷ
= 0, for ŷ = H + Hε,

∂ ûB

∂ ŷ
= 0, for ŷ = 0, (4)

and lastly coupling conditions on the interior boundary which conserve fluxes and
take the form,

D̂S
∂ ûS

∂ ŷ
= η̂ ĝ(ûS, ûB), D̂B

∂ ûB

∂ ŷ
= η̂ ĝ(ûS, ûB), for ŷ = H , (5)

where ĝ is a given function determining the transport between the surface and the
bulk region, and η̂ is a rate of transport across the boundary. Essentially, all of the
forthcoming analysis can be carried out with a general ĝ, as linearization will also
linearize this function. For brevity and concreteness, we will henceforth assume a
linear transport law, so that we have

ĝ = ûS − ûB . (6)

We non-dimensionalize the abovemodel via concentration, time and length scales cor-
responding to the reaction kinetics and a unit lengthscale L̂ , respectively. Specifically,
we define ûS = UuS, ûB = UuB , where U is a diagonal matrix of concentration
scales. Equally, we set t̂ = τ t , where τ is the timescale of the fastest reaction in the
surface and bulk, and x̂ = L̂x. The dimensional scalings are then chosen such that

f̂S(ûS) = (1/τ)U f S(uS), ĝ(ûS, ûB) = Ug(uS, uB). (7)

We define new dimensionless groupings h = H/L̂ , ε = Hε/L̂ , DS = τ D̂S/(L̂2),
DB = τ D̂B/(L̂2), L̃ = L/L̂ and η = τ η̂/L̂ . The nondimensional system is written
as

∂uS

∂t
= DS∇2uS + fS(uS), x ∈ [0, L̃], y ∈ [h, h + ε], (8)

∂uB

∂t
= DB∇2uB, x ∈ [0, L̃], y ∈ [0, h], (9)
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∂uS

∂x
= ∂uB

∂x
= 0, for x = 0 and L̃, (10)

∂uS

∂ y
= 0, for y = h + ε,

∂uB

∂ y
= 0, for y = 0, (11)

DS
∂uS

∂ y
= ηg(uS, uB), DB

∂uB

∂ y
= ηg(uS, uB), for y = h. (12)

There are several distinguished limits of the nondimensional system (8)–(12) that
reduce the model to different cases already present in the literature. In the limit ε → 0,
one can consider either scaling η ∼ O(ε) or scaling fS ∼ O(ε−1) in order to reduce
the system to a bulk–surface model, which is well-studied in the literature (though
primarily in radial geometries) (Levine and Rappel 2005; Rätz and Röger 2014; Rätz
2015; Madzvamuse et al. 2015; Cusseddu et al. 2018; Gomez et al. 2018; Paquin-
Lefebvre et al. 2018). The second scaling, indicating that the surface timescale is
rapid, can be related to assumptions regarding rapid surface reactions used to justify
reactive boundary conditions from the microscopic viewpoint (Chapman et al. 2016).
Finally, another limit is the case of infinite permeability, η → ∞, wherein the con-
centrations and fluxes are continuous across the interface. In this case, the system
can be seen as a single-domain model with a step function heterogeneity, which has
been studied extensively as an example of spatially heterogeneous reaction–diffusion
systems (Benson et al. 1998; Page et al. 2003; Kozák et al. 2019). Nonetheless, pattern
formation in the system above, as well as several other distinguished limits, has not
been analyzed yet in the literature.

In Table 1, we give the dimensional parameter scales to be considered in our frame-
work, taken from the keymotivating example of synthetic patterning inE. coli bacterial
colonies on an agar substrate (Grant et al. 2016; Boehm et al. 2018).While such experi-
ments can be conductedwith a variety of settings, an overall restriction on the variation
of these parameters is motivated by the range of the physical scales in these studies.
Here, bacteria are plated in squares of about 1 mm (Methods, Boehm et al. 2018) with
patterning cells considered in an 8×8 grid in one study (Supplementary Information,
Grant et al. 2016) and more generally the patterning fields are observed across about
22 such squares (Fig 5B, Boehm et al. (2018) and Fig 3E Grant et al. (2016)). Thus we
consider a range of L̂ ∼ 8 − −22 mm. For the diffusion matrices, the infinity (max)
norm ‖ · ‖∞ is presented, i.e., the maximum value of the matrix’s components. From
Grant et al. (Supplementary Material, Tables S8, S9, Grant et al. (2016)), diffusion
coefficients have been estimated in the range ‖ D̂S‖∞ ∼ 10−10 m2s−1 − 10−9 m2s−1

by model fitting to exemplar results. As this is also the scale of diffusion (or slightly
more than the scale) for the signalling molecule EGF in water (Nauman et al. 2007),
the same scale is used for ‖ D̂B‖∞. Similarly, in the parameter fitting by Grant et al.,
a reaction timescale on the scale of the faster reactions is such that 1/τ ∼ 8.4× 10−5

s−1 − 10−3 s−1, with the range arising from the use of different model kinetics in
parameter fitting. We further assume 10–50 layers of bacteria, with an E. coli bac-
terium size scale of about 10−6 m−2 × 10−6 m (Levin and Angert 2015), and hence
a surface depth on the scale of Hε ∼ 10−5 m−10−4 m. Finally, the depth of the
bulk is highly variable and easily changed upwards from the millimeter scale, and
so H is taken with the range of 1 − 10 mm; estimates for the interfacial permeabil-
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Table 1 Numerical scales of various dimensional parameters and parameter groupings in SI units, based
on patterning in synthetic pattern formation with E. coli bacterial colonies, using physical scales motivated
by the studies of Grant et al. (2016) and Boehm et al. (2018)

Parameter Range Justification

L̂ 8 × 10−3 m−2.2 × 10−2 m See text

‖ D̂S‖∞, ‖ D̂B‖∞ 10−10 m2 s−1 − 10−9 m2s−1 Table S8, Grant et al. (2016)

1/τ 8.4 × 10−5 s−1 − 1.0 × 10−3 s−1 Tables S8, S9, Grant et al. (2016)

Hε 10−5 m−10−4 m See text

H 10−3m −10−2 m See text

η̂ Unknown −

Table 2 Numerical scales of various non-dimensional parameters and parameter groupings, motivated by
the physical scales of synthetic pattern formation with E. coli bacterial colonies, in the studies of Grant
et al. (2016) and Boehm et al. (2018). For matrices, the infinity (max) norm ‖ · ‖∞ is used, which is the
modulus of the matrix component with largest magnitude. For the non-dimensional matrix Jacobian, this
norm is taken to be of order unity as the timescale is non-dimensionalized relative to τ , a representative
timescale associated with a fast reaction in the system. The non-dimensional lengthscale, L̃ , is retained
symbolically throughout the presentation to facilitate determining the impact of this scale, though it is unity
for these scalings. The parameter scales ε∗ and h∗ as well as the range of ε2∗/3 are presented as they will
be important in the asymptotic analyses below

Parameter Typical value/range

ε = Hε/L̂ 4.5 × 10−4 − 1.3 × 10−2

h = H/L̂ 0.045 − 1.3

L̃ = L/L̂ 1

ε∗ = ε‖D−1
S J‖1/2∞ 1.1 × 10−3 − 0.87

h∗ = h‖D−1
S J‖1/2∞ 0.11 − 87

ε2∗/3 4.0 × 10−7 − 0.3

‖DS‖∞ = τ‖ D̂S‖∞/L̂2 2 × 10−4 − 0.2

‖DB‖∞ ∼ ‖DS‖∞ 2 × 10−4 − 0.2

η = τ η̂/L̂ Unknown

ity, η̂, are currently unavailable. These dimensional parameter estimates generate the
non-dimensional scales of Table 2, which will guide the asymptotic and numerical
investigations presented below.

3 Linear Stability Analysis

For a linear stability analysis of homogeneous equilibria of (8)–(12), we require the
steady states to this system, which arise from specifying

fS(u∗
S) = g(u∗

S, u
∗
B) = u∗

S − u∗
B = 0,
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so that the surface reactions determine the spatially homogeneous steady state con-
centration in both regions, and our simple constitutive choice of g implies that these
concentrationsmust be equal.Wewill focus exclusively on the case of absence of reac-
tions in the bulk, as motivated by the underlying inert agar layer in synthetic pattern
formation with E. coli bacterial experiments (Grant et al. 2016; Boehm et al. 2018)
and which requires only a root of the surface kinetics for there to be a steady state.

We proceed by considering perturbations to this steady state of the form

uS = u∗
S + σwS(x, y, t), uB = u∗

B + σwB(x, y, t),

where |σ | 	 1, and in general the bulk and surface perturbations are n-dimensional
functions, where n is the number of species. We substitute these perturbations into
Eqs. (8)–(12) to find, from Eqs. (8)–(9), that the perturbations will satisfy

∂wS

∂t
= DS∇2wS + JSwS, x ∈ [0, L̃], y ∈ [h, h + ε], (13)

∂wB

∂t
= DB∇2wB, x ∈ [0, L̃], y ∈ [0, h], (14)

where the Jacobian, JS = ∂ fS/∂uS ∈ R
n×n , is evaluated at the steady state concen-

trations. We also have the coupling condition from Eq. (12) given by,

DS
∂wS

∂ y
= η(wS − wB), −DB

∂wB

∂ y
= η(wB − wS), for y = h. (15)

3.1 Spatially Homogeneous Perturbations

We now consider the appropriate generalization of stability in the absence of transport,
as is typically assumed in a Turing-type analysis. However, unless the reaction kinetics
are the same in both domains, which is not true in our setting, then spatially homoge-
neous perturbations are not consistent with Eqs. (13)–(15). Such perturbations will not
remain homogeneous under time evolution due to the coupling condition (15), except
in the mathematically fine-tuned case where the homogeneous surface perturbation is
along an eigenvector of JS with eigenvalue 0.

Previous studies of more complex systems (beyond those considered in textbook
Turing models) also highlight that, when generalizing the conditions that arise from
the stability of the homogeneous steady state with respect to spatially homogeneous
perturbations, onemust also consider a perturbationwith respect to the zeromode(s) of
the transport operator (Klika et al. 2018). However, given the assumption of complete-
ness, i.e., that separable solutions in x , y and t span the space of possible solutions, as
generally used in linear stability theory, the existence of zero modes of the transport
operator also requires mathematical fine-tuning. In particular, with ∇2u0S = 0 for the
zero mode of the transport operator acting in the surface layer, u0S, one has

u0S = A cos(kq x) cosh(kq(y − (h + ε))), kq = qπ/L̃,
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for a general A and q a natural number on enforcing the zero flux boundary conditions.
There is a directly analogous expression for the zero mode of the transport operator
within the bulk region.However, after rearrangement, the interfacial condition at y = h
requires

DSDB sinh(kqε) sinh(kqh)=η
(
DB cosh(kqε) sinh(kqh)−DS sinh(kqε) cosh(kqh)

)
.

One possible solution occurs for kq = 0, which generates a spatially homogeneous
mode that has already been considered above. Satisfying this equation for other kq
requires mathematical fine-tuning as kq is already constrained to a set of zero measure
and all other parameters are either geometrical or biophysical in origin.

Hence, to summarize, in contrast to the textbook Turing case, unless the surface
and bulk kinetics are the same, constraints on the parameters do not arise from the
constraint of stability to homogeneous perturbations; instead, this stability always
holds, at least in the absence of a mathematical fine-tuning of parameters and the
possibility of such fine-tuning is neglected below.

3.2 Spatially Inhomogeneous Perturbations

To proceed, we assume a separable solution in x , y and t for the linearized system (13)–
(15). With the usual assumption of a uniform temporal growth rate λ, the perturbation
ansatz for a single mode of a separable solution is

wS = eλt s(y) cos
(
kq x

)
, wB = eλt b(y) cos

(
kq x

)
, (16)

where kq = qπ/L̃ for q a natural number (including 0). Assuming completeness of
such a set of modes, then linear superposition entails that an arbitrary function may
be expanded via a weighted linear sum of individual modes. Hence, the question of
stability of a linear perturbation reduces to the same question for single modes, as
in the standard textbook analysis (Murray 2003), without the need for the modes to
be orthogonal. Noting that homogeneous modes are not feasible, as shown above, we
proceed to consider whether any heterogeneous modes exhibit instability (R(λ) > 0).
Furthermore,we note that even in the absence of completeness,R(λ) > 0 still provides
a sufficient condition for instability, though it is not strictly necessary.Wewill see later
that our conditions are not refuted by comparisons with numerics, and so we anticipate
that the set of modes we construct is at least generic if not a complete basis. We note
that for each q, there may be many distinct λ, and corresponding to each distinct pair
of (q, λ) we will have possibly different eigenfunctions s, and b. We will suppress
this dependence in the following, but it is important to keep in mind that the following
analysis applies for a given pair (q, λ). As we are looking for modes which grow in
time, leading to instability, we will impose R(λ) > 0 in the following. Substituting
these expansions into (13)–(14), we find that a given mode satisfies,

λs = DS(−k2q + ∂2y )s + JSs, y ∈ [h, h + ε], (17)

λb = DB(−k2q + ∂2y )b, y ∈ [0, h]. (18)
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After multiplying these equations by the inverse of the diffusion matrices and rear-
ranging, we find

s′′ = (k2q In + D−1
S (λIn − JS))s, y ∈ [h, h + ε], (19)

b′′ = (k2q In + λD−1
B )b, y ∈ [0, h], (20)

where ′ denotes the ordinary derivative with respect to y. These spatial functions are
required to satisfy the external boundary conditions b′(0) = s′(h + ε) = 0 and the
coupling conditions which read,

DSs′ = η(sq − bq), DBb′
q = η(sq − bq), for y = h. (21)

Tofind suitable (λ, q) that solve the coupled problem (19)–(21),wewillmake use of
the matrix-valued function defined by cosh(M) = (exp(M)+exp(−M))/2, for some
matrixM, aswell as sinh(M) = (exp(M)−exp(−M))/2.We recall the differentiation
identity cosh(yM)′ = M sinh(yM), which follows from this definition. We now seek
to take the square root of the matrices on the right-hand side of Eqs. (19) and (20) and
thus define

M2
S = (k2q In + D−1

S (λIn − JS)), and M2
B = (k2q In + λD−1

B ). (22)

We next consider solutions to Eqs. (19) and (20) via hyperbolic matrix functions.
As we will observe (e.g., Eq. (26) and the resulting dispersion relation), these matrices
will always be in terms of functions that can be expressed in terms of even powers of
MB and MS, and thus functions of M2

B and M2
S. This dependence on the squares of

these matrices follows as if f : C → C is analytic, then a matrix-valued function can
be defined via a power series in the matrix argument (Higham 2008).

The hyperbolic functions we will use are meromorphic with poles away from 0,
and hence the ambiguity in defining the square root matrices, MS and MB does not
play a role. Without loss of generality, we will consider the principal square roots of
the matrices for definiteness, so that eigenvalues of MB and MS are the square roots
with positive (or possibly zero) real parts of the eigenvalues of M2

B and M2
S.

Proceeding, we then have the following solutions to Eqs. (19) and (20) given by
the hyperbolic matrix functions:

s = cosh((y − h − ε)MS)α, b = cosh(yMB)β, (23)

for some nonzero constant vectors α,β. We note these functions satisfy the no-flux
conditions at the top and bottom boundaries by construction. We now use the coupling
conditions (15) to determine a condition for nontrivial α and β. These read,

−DSMS sinh(εMS)α = η(cosh(εMS)α − cosh(hMB)β), (24)

DBMB sinh(hMB)β = η(cosh(εMS)α − cosh(hMB)β). (25)
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We then have, writing Eqs. (24) and (25) as a 2n × 2n block matrix, the following
condition for nontrivial solutions to this system:

det

(
η cosh(εMS) + DSMS sinh(εMS) −η cosh(hMB)

η cosh(εMS) −η cosh(hMB) − DBMB sinh(hMB)

)

= 0. (26)

As this condition involves transcendental functions of λ, we note that in general for a
fixed spatial mode q, there will be infinitely many values of λ for which Eq. (26) is
satisfied. Equivalently, q only differentiates between eigenmodes in the x direction,
but cannot do so in y, and so these eigenmodes must be captured via multiplicity in λ.

While the condition given by Eq. (26) is in principle computable, it is difficult
to use to gain insight into Turing-like instabilities. Even simplifying the determinant
condition is nontrivial, as the four blocks will not in general commute, so we now
exploit the assumption of no reactions in the bulk to simplify this condition. We
have that M2

B is diagonal, and from our assumption that R(λ) > 0, we have that its
eigenvalues have positive real part. Therefore, the elements of cosh(MB) are given by
the hyperbolic cosine of the diagonal elements of MB , and since these are all positive
definite, cosh(hMB) is invertible.

Now we define the matrices A = η cosh(εMS) + DSMS sinh(εMS), B =
−η cosh(hMB), C = η cosh(εMS), D = −η cosh(hMB) − DBMB sinh(hMB).
By the above argument, we have that B is invertible. We then have that (26) can be
written (by exchanging rows and using the Schur complement) as,

det

(
A B
C D

)

= (−1)n det(B) det(C − DB−1A) = 0. (27)

Noting that DB−1 = In + DBMB tanh(hMB)/η, we have that

C − DB−1A = η cosh(εMS) −
(

In + 1

η
DBMB tanh(hMB)

)

(η cosh(εMS)

+DSMS sinh(εMS))

= −DBMB tanh(hMB)

(

cosh(εMS) + 1

η
DSMS sinh(εMS)

)

−DSMS sinh(εMS),

so Eq. (27) is equivalent to,

det

(

DBMB tanh(hMB)

(

cosh(εMS) + 1

η
DSMS sinh(εMS)

)

+ DSMS sinh(εMS)

)

= 0.

(28)
We note that the Turing instability conditions for the surface system in isolation—
neglecting spatial structure in y—are precisely that the growth rates λ computed from
det(MS) = 0 have negative real part for k0 = 0, and positive real part for some
kq > 0, and so this matrix encodes directly the classical case in this way. Furthermore,
for a fixed q, and with fixed model parameters, we expect that condition (28) admits
infinitely many distinct values of λ. The intuition for this is that in the uncoupled
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case (η = 0), the surface domain is a rectangle, and hence, the surface eigenfunctions
s(y) are also cosines of different spatial eigenvalues, which can vary independently
from kq . However, we know of no method to compute analytical expressions for such
spatial eigenvalues in the coupled case, and so instead use condition (28) to compute
λ directly, remaining aware of the inherent multiplicity. To further understand the
dispersion relation given by (28), and how it relates to classical conditions for Turing
instabilities, we now pursue several asymptotic reductions.

4 Instability Conditions in Thin-Surface Regimes

In this section we compute instability conditions from Eq. (28) for a variety of dis-
tinguished limits modeling a thin-surface region, as motivated by synthetic patterning
in bacterial populations. First, we mention even simpler reductions of the system, as
a consistency check of our dispersion relation. We show that patterning is equivalent
in the limit of decoupling the interaction of the surface and bulk regions, that is for
sufficiently small η 	 1. This is pursued in Appendix A, where the classical Tur-
ing conditions are recovered as the surface system becomes isolated, as required. In
addition, in Appendix A, we also demonstrate that no patterning can occur for clas-
sical Turing kinetics once all diffusion coefficients are equal in each of the regions, a
direct analogue of the well-known result that the classical Turing instability requires
differential transport.

Noting that the full system is too rich to investigate in generality and that the
non-dimensional surface depth parameters, ε and ε∗ are small in Table 2 for the
motivating example of synthetic pattern formation in E. coli colonies, we proceed
below to studying pattern formation instabilities with thin-surface asymptotics. In the
experimental setting of Grant et al. (2016), the bacterial layer is always relatively
thin, owing to transport constraints in the bacteria, though the agar layer can take
different bulk heights. For this reason, after first introducing a thin-surface limit of the
dispersion relation (26) in Sect. 4.1, we consider subsequent limits of large or small
bulk thickness, h, in Sect. 4.2. We anticipate that the permeability of the interface,
η, is large in these experiments but do not have quantitative estimates, and so also
consider our asymptotics across varying values of this parameter. In Sect. 4.3, we
derive asymptotic results under a regular asymptotic assumption on k and λ (i.e., that
they remain comparable with non-asymptotic terms in the dispersion relation), and
collect these results inTable 3. Finally, in Sect. 4.4,wegive an example of distinguished
limits where this asymptotic assumption breaks down. Throughout the following, we
implicitly assume that the surface Jacobian, JS, has elements that are of the same order
and thus of the order of ‖JS‖∞, so that ‖JS A‖∞ is of the same scale as ‖JS‖∞‖A‖∞
for any matrix A considered.

4.1 Thin-Surface Limits
(
"2∗/3 � 1

)

Here,we consider an asymptotically thin surface, requiring ε‖MS‖∞ = Hε‖MS‖∞/L̃
	 1. First note that in the thin-layer limit below, the surface Jacobian JS only appears
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via

DSM2
S = k2q DS + λIn − JS. (29)

In addition, given patterning (i.e., R(λ) > 0), the matrix JS cannot be dominated by
the terms λIn or k2q DS within DSM2

S, since then the reaction kinetics are subleading
in the requirements for patterning, which thus contain only terms associated with
pure diffusion at leading order. However, pure diffusion cannot induce patterning, as
demonstrated in Appendix B. Thus we conclude that, given patterning

max(|λ|, k2q‖DS‖∞) ∼ O(‖JS‖∞), (30)

and also that ||MS||∞ has an upper bound ( and in particular the k2q term is in fact
bounded). Noting the boundedness of MS we have that cosh(εMS) is invertible, as
for ε sufficiently small this matrix has a determinant which is asymptotically 1 +
ε2trace(M2

S)/2 > 0. In addition, for sufficiently small ε, we have the Taylor expansion

tanh(εMS) = εMS

(
1 + O

(
ε2‖MS‖2∞/3

))
, (31)

where O(ε2‖MS‖2∞/3) means the same scale as ε2‖MS‖2∞/3, or smaller, as the
surface thickness tends to zero. Thus by right multiplying (26) by cosh(εMS)

−1 and
Taylor expanding, we obtain (to leading order) the relation

det

(

DBMB tanh(hMB) + ε

(
1

η
DBMB tanh(hMB) + In

)

DSM2
S

)

= 0, (32)

providing ε2‖MS‖2∞/3 	 1 (ensuring the invertibility of cosh(εMS) and the validity
of the Taylor expansion above). Furthermore, noting that ε∗ = ε‖D−1

S JS‖1/2∞ together
with the relations (30), which give themaximum scale of k2q and show that |λ|‖D−1

S ‖ ∼
O(‖D−1

S ‖∞‖JS‖∞) ∼ O(‖D−1
S JS‖∞), we have

ε2‖MS‖2∞ ∼ max
(
ε2k2q , ε

2‖D−1
S JS‖∞

)
∼ max

(

ε2
‖JS‖∞
‖DS‖∞

, ε2‖DS
−1‖∞‖JS‖∞

)

∼ ε2‖D−1
S JS‖∞ = ε2∗, (33)

using ‖DS
−1‖∞ ≥ 1/‖DS‖∞. The latter inequality is immediate in the two species

case on writing DS = diag(a, aξ) with ξ ≤ 1, as then ‖DS
−1‖∞ = 1/(aξ) ≥

1/a = 1/‖DS‖∞, with a trivial generalization to higher number of species. Hence,
for conditions associated with patterning, the relative error in the leading-order thin-
surface approximation arising from Eq. (31) is ε2∗/3, and thus, we require ε2∗/3 	 1.
Despite the very large range of potential parameters in Table 2, the scales for synthetic
patterning in bacterial colonies are consistent with this bound.
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4.2 Consideration of Bulk Depth h

Noting DS ≈ DB at least for the parameter estimates of Tables 1 and 2, and also
relations (30), (33), we also have

‖M2
B‖∞ = ‖k2q In + λD−1

B ‖∞ ∼ O(‖D−1
S JS‖∞),

‖DBM2
B‖∞ = ‖k2q DB + λIn‖∞ ∼ O(‖JS‖∞). (34)

Hence, an appropriate scale for the largest component of hMB is h∗ = h‖D−1
S JS‖1/2∞ ,

which ranges from small to large in Table 2 and thuswe proceed to consider simplifica-
tions of the expression MB tanh(hMB) within the instability condition (28) for small
and large values of h∗. For the small h∗ limit, a Taylor series expansion immediately
gives MB tanh(hMB) ∼ hM2

B , with relative corrections on the scale of h
2∗/3, and we

also have

‖MB tanh(hMB)‖∞ ∼ h‖M2
B‖∞ ∼ h∗‖MB‖∞ for h∗ 	 1. (35)

For large h∗ simplifications, first note that M2
B is diagonal, with diagonal com-

ponents that have positive real parts since R(λ) > 0 as we require instability.
Furthermore, similar to the synthetic patterning explored in experimental studies
(Grant et al. 2016; Boehm et al. 2018), we are interested in lateral patterning (in
the x direction of Fig. 1), thus, we take k2q > 0 and enforce k2q ≥ π/L̃ by wavemode
selection, which bounds the real part of M2

B away from zero.
For z ∈ C with R(z) �= 0, we have the limit

z tanh(z) → Sign(R(z))z as |z| → ∞,

asmay be deduced bywriting z in terms of its real and imaginary parts, with subsequent
use of the properties of trigonometric and hyperbolic functions. In addition, we have,
without loss of generality, defined MB by the diagonal matrix with positive semi-
definite real part for the square root of the diagonals of M2

B , and in fact no such square
root has zero real part since the diagonals of M2

B have positive real part. Consequently,
at leading order we have in the large h∗ limit that hMB tanh(hMB) → hMB and thus
MB tanh(hMB) → MB , with

‖MB tanh(hMB)‖∞ ∼ ‖MB‖∞ for h∗ � 1. (36)

Finally, with this definition of MB , which is diagonal with terms whose real parts are
bound away from zero, we also have that the diagonal elements, and hence the matrix
norm, do not blow up on taking the hyperbolic tangent (all of its singularities lie on
the imaginary axis) and thus ‖ tanh(hMB)‖∞ ∼ O(1) for h∗ ∼ O(1). This may be
summarized together with Eqs. (35) and (36) via

‖MB tanh(hMB)‖∞ ∼ min(h∗‖MB‖∞, ‖MB‖∞) = min(h∗, 1)‖MB‖∞. (37)
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We are now in a position to consider the small ε∗, thin surface, limit of the instability
condition given by Eq. (28), considering the full range of values of h∗, which is a
measure of the non-dimensional depth of the bulk relative to the patterning lengthscale.
We also consider the case h∗ ∼ O(ε∗) for relative completeness, even though Tables 1
and 2 highlight that h∗ � ε∗ is anticipated for experiments with synthetic pattern
formation within bacterial populations.

4.3 Thin-Surface Asymptotic Regimes with k2q‖DS‖∞, |�| ∼ ord(‖JS‖∞)

An example of patterning when k2q‖DS‖∞, |λ| 	 ord(‖JS‖∞) is given in the next
subsection, but here we consider thin-surface asymptotics with ε2∗/3 	 1 on fix-
ing k2q‖DS‖∞, |λ| ∼ ord(‖JS‖∞), where ord(‖JS‖∞) is defined to mean both
O(‖JS‖∞) and not o(‖JS‖∞). Hence, we are considering pattern formation that
occurs on the timescales of the kineticswith a lengthscale associatedwith the timescale
of the kinetics and the (largest) diffusion scale and, as previously noted, this simplifies
the instability condition (28) at leading order to

det

(

DBMB tanh(hMB) + ε

(
1

η
DBMB tanh(hMB) + In

)

DSM2
S

)

= 0, (38)

where the scale of the non-dimensional permeability η is unknown, and the possible
values of h∗ = h‖D−1

S JS‖1/2∞ ∼ h‖MB‖∞ arewide-ranging. Hence, there are several
nontrivial distinguished limits, which we proceed to document. Where possible, we
will also relate these limits to the isolated surface case, where λ is determined by the
dispersion relation det(M2

S) = det(λIn + k2q DS − JS) = 0, in order to understand
the impact of the bulk on the classical single-domain situation.

Case I h∗ 	 ε∗ 	 1: Noting that h∗ 	 ε∗ is equivalent to h 	 ε by definition, in
this limit Eq. (38) reduces to,

det

((
1

η
DBMB tanh(hMB) + In

)

DSM2
S

)

= det

(
1

η
DBMB tanh(hMB) + In

)

det (DS) det
(
M2

S

)
= 0. (39)

However the determinant with the hyperbolic tangent term cannot generate a root with
R(λ) > 0 and thus patterning. In particular, in Appendix A.2, following Eq. (53), it
is shown that when R(z2) > 0 one also has R(z tanh(z)) > 0. With R(λ) > 0 for
patterning, let z2 = h2(k2q +λ/dB), where dB is a bulk diffusion coefficient. Thus z2 is
an eigenvalue of h2M2

B , and all eigenvalues of thismatrix are of this form.Furthermore,
we haveR(z2) > 0 where z is an eigenvalue of hMB and satisfiesR(z tanh(z)) > 0.
However, for the hyperbolic tangent term in Eq. (39) to generate a root, at least one
eigenvalue of hMB , that is one such z, must satisfyR(z tanh(z)) < 0, a contradiction,
thus showing there are no roots from the determinant involving the hyperbolic tangent.
Hence, noting DS is positive definite, the only roots are those of the isolated Turing
modes, independent of η, and determined purely from det

(
M2

S

) = 0.
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Case II ε∗ 	 1, h∗/ε∗ = h/ε = ĥ ∼ ord(1): This limit corresponds to the entire
domain being thin with respect to the lengthscale in the x direction (L̃). In this case,
we have,

det

(

ĥDBM2
B +

(
εĥ

η
DBM2

B + In

)

DSM2
S

)

= 0. (40)

Equation (40) is a slight modification of the isolated surface Turing conditions in 1D
given by det(M2

S) = 0, and can similarly be written as an nth-order polynomial in
λ. Further, if η 	 ε‖DBM2

B‖∞ ∼ ord(ε‖JS‖∞), then the conditions for instability
are precisely those for an isolated surface. Similarly, if η = ord(ε‖DBM2

B‖∞) ∼
ord(ε‖JS‖∞), then we are left with a “quadratic” dispersion relation, which does not
simplify from the form given in (40) (“quadratic” meaning this dispersion relation will
give a polynomial of order 2n for λ, compared to the standard nth order polynomial). In
general such a relation could lead to quite different values of λ from the isolated case,
though we will not analyze it further here. If η � ε‖DBM2

B‖∞ ∼ ord(ε‖JS‖∞), we
then have the instability condition,

det
(
λ(1 + ĥ)In + k2q(ĥDB + DS) − JS

)
= 0, (41)

which can be seen as a homogenization, or averaging, of the bulk and surface layers.
Such an averaged dispersion relation has the potential to increase the ability of the
system to pattern compared to the isolated case by, e.g., introducing, or increasing,
the differential diffusion between species.

In some other (experimentally relevant) cases, this averaged system will decrease
the ability of the system to pattern compared to the isolated case. For instance, the
necessary differential diffusion for Turing patterning may be due to, for example,
substrate binding (Korvasova et al. 2015) that is only present in the surface system. In
an inert bulk region, there are fewer physical scenarios where differential diffusion is
likely as most biological proteins are roughly the same size. In such a case, we have
that DB = cB I , so that (41) can be rearranged to given,

det
((

λ(1 + ĥ) + k2q ĥcB
)
In + k2q DS − JS

)
= 0, (42)

which we can see as a shrinking and shifting to the left a root λ coming from the
isolated case. Effectively then, such a scenario leads to a smaller instability region in
parameter space, subject to the wavemode selection constraint that kq = qπ/L̃ , for a
natural number q.

Another plausibly relevant case of Eq. (41) is if DS = DB , i.e., the surface and
bulk diffusivities are the same. Here, the dispersion relation is that of the classic case
except λ and k2q are both scaled by (1 + ĥ). Hence the allowed values of (λ, k2q) are

those of the classic case divided by (1 + ĥ), which shrinks the range of the allowed
patterning wavenumbers relative to the classic case and thus leads to a smaller Turing
space compared to the isolated surface system, though again subject to the wavemode
selection constraint.
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Case III ε∗ 	 h∗ : This case proceeds similarly regardless of whether h∗ 	
1, h∗ ∼ ord(1) or h∗ � 1. Noting DS ≈ DB , ‖DSM2

S‖∞ ∼ ‖JS‖∞, from

Eqs. (29) and (30), ‖MB‖∞ ∼ O(‖D−1
S JS‖1/2∞ ) by square rooting the first of

relations (34), and Eq. (37), that is ‖MB tanh(hMB)‖∞ ∼ min(h∗, 1)‖MB‖∞ ∼
min(h∗, 1)‖D−1

S JS‖1/2∞ , we have

ε‖DSM2
S‖∞

‖DBMB tanh(hMB)‖∞
∼ ε‖JS‖∞

‖DS‖∞‖D−1
S JS‖1/2∞ min(h∗, 1)

∼ ε‖D−1
S JS‖∞

‖D−1
S ‖∞‖DS‖∞‖D−1

S JS‖1/2∞ min(h∗, 1)
.

Noting ‖DS
−1‖∞‖DS‖∞ ≥ 1, as deduced just below Eq. (33), and ε∗ =

ε‖D−1
S JS‖1/2∞ we thus have

ε‖DSM2
S‖∞

‖DBMB tanh(hMB)‖∞
� ε∗

min(h∗, 1)
∼ max

(

ε∗,
ε∗
h∗

)

	 1.

Hence the final term from relation (32), that is εDSM2
S,may always be dropped relative

to the first term, that is DBMB tanh(hMB). This reveals that the instability condition
simplifies to

det

(

DBMB tanh(hMB)

(
ε

η
DSM2

S + In

))

= det(DBMB tanh(hMB)) det

(
ε

η
DSM2

S + In

)

= 0. (43)

The hyperbolic tangent does not contribute to instability, by analogous reasoning
to Case I. Thus, there is no instability unless η is concomitantly small alongside
ε‖DSM2

S‖∞ ∼ ε‖JS‖∞. Writing out M2
S, we see that the impact of the bulk on the

surface system is simply to shift the eigenvalues to the left in the complex plane by
the quantity η/ε, and hence the Turing space for this system is strictly smaller than
the Turing space for an isolated one-dimensional system with surface kinetics.

Collecting all of these various limits together in Table 3, we can see a pattern
emerging. As η or h∗ is increased, we observe a trend of moving from the isolated
surface system to a reduced, or average system, and eventually, for h∗/ε∗ ∼ h/ε � 1
and η � ε‖JS‖∞, to no patterning being permitted. While it is not true in general that
the averaged case or the quadratic case correspond to a reduced ability for a system
to pattern, we anticipate that this is the case for most standard Turing systems, and
hence there is a broadly monotonic decrease on the ability of a system to pattern
as the bulk becomes larger or the boundary more permeable. This has concomitant
implications for prospective multilayered Turing systems, such as the experimental
studies involving bacterial patterning which motivate this study.
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Table 3 Thin-surface limits obtained in different asymptotic regimes given k2q‖DS‖∞, |λ| ∼ ord(‖JS‖∞).
Note that moving left to right corresponds to an increasing size of h∗, andmoving top to bottom corresponds
to increasing scales of η. No instabilities: det(DBMB tanh(hMB)) = 0; Isolated (1-D) surface: det(M2

S) =
0; Quadratic λ: det(ĥDBM2

B + (ĥcDBM2
B + In)DSM

2
S) = 0, c = ε/η ∼ ord(‖JS‖−1∞ ); Reduced

instability: det(cDSM
2
S + In) = 0, c = ε/η ∼ ord(‖JS‖−1∞ ); Averaged condition: Eq. (41)

Case I. Case II. Case III.
(h∗ 	 ε∗ 	 1) (ε∗ 	 1, ε∗/h∗ = ε/h ∼ ord(1)) (ε∗ 	 h∗)

η 	 ε‖JS‖∞ Isolated Isolated Isolated

η ∼ ord (ε‖JS‖∞) Isolated Quadratic condition, Eq. (40) Reduced instability

η � ε‖JS‖∞ Isolated Averaged condition, Eq. (41) No instabilities

4.4 Further Thin-Surface Asymptotic Regimes with
|�|, k2q‖DS‖∞ ∼ ord

(
"1/2‖JS‖∞

)

There exist nontrivial asymptotic limits which are not described by |λ|, k2q‖DS‖∞
∼ ord(‖JS‖∞), which can lead to instabilities not captured in Table 3, as we now
show. In particular, with |λ|, k2q‖DS‖∞ ∼ ord(ε1/2‖JS‖∞) and DB ≈ DS we then
have εDSM2

S ∼ −ε JS + ord(ε3/2‖JS‖∞), ‖DBM2
B‖∞ ∼ ord(|λ|, k2q‖DB‖∞) ∼

ord(ε1/2‖JS‖∞) and finally ‖hMB‖∞ ∼ ord(hε1/4‖D−1
S JS‖1/2∞ ) ∼ ord(hε∗/ε3/4).

Hence from Eq. (32), after expanding tanh(z) ∼ z
(
1 + ord

(
z2/3

))
for small z, we

have at leading order

det

(

hDBM2
B + εh

η
DBM2

B DSM2
S + εDSM2

S

)

= 0, (44)

with relative corrections of h2ε2∗/(3ε3/2) which is required to be much less than unity.
Further, noting we have already assumed h ∼ ord(ε1/2), we thus additionally require
ε2∗/(3ε1/2) 	 1 for Eq. (44) to hold. For the range of parameters detailed in Table 2,
we have ε2∗/(3ε1/2) ∈ [1.8×10−5, 2.3], and thuswe have Eq. (44) is typically valid for
parameters associated with synthetic patterning in bacterial colonies, but not always.

We proceed by noting that the first and third terms of Eq. (44) are ord(ε‖JS‖∞)

and the second is ord
(
ε2‖JS‖2∞/η

)
. Writing

λ = ε1/2μ, h = ε1/2ĥ, k2q DB = ε1/2K 2
q DB

with |μ|, K 2
q‖DB‖∞ ∼ ord(‖JS‖∞), ĥ ∼ ord(1).

We then have hDBM2
B = εĥ(K 2

q DB + μIn), and can factor an ε from Eq. (44) to
obtain,

det

(

ĥ(K 2
q DB + μIn) − εĥ

η

(
K 2
q DB + μIn

)
JS − JS

)

= 0, (45)

which, in general, can admit nontrivial instabilities due to the coupling of the surface
and the bulk. In particular, when η � ε‖JS‖∞, so that the second term is no longer
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retained in the leading order,wefind that the growth ratesμ are given as the eigenvalues
of JS/ĥ − K 2

q DB .
This matrix resembles the classical isolated-surface case except with a scaling of

the kinetics by ĥ and the appearance of the bulk diffusion parameters, rather than those
in the surface. Hence, we can use usual methods (e.g., the Routh–Hurwitz criterion)
to determine parameters that lead to instability in this case, noting that any values of
λ associated with instability will be of modulus ord(ε1/2), and hence will be asso-
ciated with slow growing modes. Additionally, we anticipate that such modes will
also exhibit small amplitude patterns, as is typical due to center-manifold reduction
near Turing-type bifurcations (Cross and Hohenberg 1993), and hence may not be
visible against experimental noise. While other distinguished limits may exist which
do not fall into the classifications given in Table 3, for brevity we do not pursue a
systematic classification of these here. In the next section, we will show that almost
all numerically computed dispersion relations given by condition (28) fall within the
asymptotics given in Table 3, with the exception of the case given in Eq. (45) which
was found numerically first, and subsequently motivated the above scaling.

5 Numerical Exploration of Example Systems

As an example of these dynamics we consider the Schnakenberg kinetics for surface
reactants uS = (uS, vS) given by

fS(uS, vS) =
(
a − uS + u2SvS, b − u2SvS

)

with a ≥ 0, b > 0. The spatially homogeneous steady state is given by u∗
S =

u∗
B = (

a + b, b/(a + b)2
)
. Unless otherwise stated, we will assume equal diffu-

sion coefficients between the surface and the bulk given by the diagonal matrices
DS = DB = diag(du, dv). Without bulk reactions, and given linear interfacial condi-
tions as summarized by Eq. (12) with the relations (6) and (7), we can immediately
apply condition (28) to determine whether, or not, we expect a solution to pattern,
and then compare these predictions with numerical simulations of the full nonlinear
system.

Numerically computing λ from condition (28) is substantially more involved than
typical Turing-type analyses (e.g., for polynomial dispersion relations (Murray 2003)
due to the transcendental nature of this determinant condition. In particular, we expect
that for any givenwavemode in the x direction given by kq = qπ/L̃ , for a natural num-
ber q, we have infinitely many distinct values of λ. These essentially correspond to the
wavemodes in the y direction which we have found only implicitly in our construction
of the dispersion relation. So to determine if, for a given set of parameters, condition
(28) admits a value of λ with R(λ) > 0 we resort to numerical heuristics. While
fast general-purpose methods exist for root finding of polynomials over the complex
numbers (Verschelde 1999), we are unaware of similar methods for more complicated
functions. In lieu of this, we developed a set of numerical heuristics to accurately deter-
mine whether or not a value of λ with R(λ) > 0 exists, and tested this against full
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(a) (b)

(c) (d)

Fig. 2 Dispersion relations in the x coordinate computed via (28) for a continuous variable kq , using the
parameters a = 0.1, b = 2, with surface diffusion parameters du = 10−3, and dv = 10−1. In a–c we take
DB = DS, though in d we set DB = du I2, corresponding to equal bulk diffusion between species. The
solid lines correspond to max(R(λ)) for different values of η for the bulk–surface condition, whereas the
dashed line corresponds to the single-domain classical case. For c, we anticipate there is an instability for
relatively low kq/π and large η due to surface–bulk interaction instabilities, as exemplified in Sect. 4.4 for
h ∼ ord(ε1/2) and ε2∗/(3ε1/2) 	 1 (Color figure online)

numerical simulations. We make use of the MATLAB function PatternSearch
as well as a deflation algorithm based on Muller’s method to find many candidate
roots with positive real part (Muller 1956; Conte and De Boor 2017), and then discard
any which are spurious. Throughout this section, we denote the largest such root by
max(R(λ)), noting that even in the classical case this maximum is needed as there are
generically n distinct values of λ.

We first consider numerical constructions of dispersion relations for the small
asymptotic limits described in the previous section. Here we considerR(λ) as a con-
tinuous function of the spectral parameter in the x direction, kq , as is commonly done
(Murray 2003). For ε, ε∗ 	 1, we have that the isolated reaction–diffusion system can
admit growth ratesλ comparable to a classical one dimensional reaction–diffusion sys-
tem, which wewill denote by λC (which can be computed in the standard way (Murray
2003)).We can then consider themaximum value ofR(λ) (across all values of λ found
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from condition (28)), and compare this to the isolated case. We have confirmed these
dispersion relations against full numerical simulations by simulating on a domain of
lateral size L̃ such that a particular mode kq = qπ/L̃ is admissible, and observing a
patterned solution.

We plot these dispersion curves in Fig. 2 for a variety of the geometric and coupling
parameters. As anticipated, the coupling strength η and geometric parameters h, h∗
and ε, ε∗ each influence the shape of these dispersion curves greatly. We now compare
these curves to the predictions in Table 3. For Case I (h 	 ε), we see that max(R(λ))

is almost unchanged to the standard case up to small corrections not captured by the
asymptotics. In Case II (h ∼ ε), we observe approximate equivalence of the disper-
sion curve to the isolated case for small η, and an apparent change in the dispersion
relation for increasing η. The Case III behavior (h � ε) is consistent with the asymp-
totics of Table 3 whenever R(λ) > 0 except for η ∼ ε‖JS‖∞ and η � ε‖JS‖∞
at relatively small values of kq/π . Given these constraints, this mismatch is antici-
pated to be due to the interaction between the surface kinetics and the bulk diffusion,
as described in Sect. 4.4 given the thin surface approximation ε2∗/(3ε1/2) 	 1 with
k2q ||DS||∞, |λ| ∼ord(ε1/2||JS||∞). As a consistency test of this suggestedmechanism,
in Fig. 2d we replace DB by a scaled identity matrix so that differential diffusion in the
bulk is no longer present, andwe see that all of the dispersion curves, for smaller values
of kq/π and η sufficiently large, fall below the axis as expected. This is true for differ-
ent scalar multiples of the identity, such as DB = dv I2 where the dispersion curves
were even more stable. We remark that considering other parameters demonstrates
that this nontrivial bulk–surface interaction can lead to a non-monotonic behavior of
the dispersion relation with respect to η.

As in the classical case, we expect that for sufficiently large domains, any region
where R(λ) > 0 should admit a patterned state. We confirmed this using L̃ = 100
for each of the dispersion curves, finding that they admitted patterned solutions for
long time simulations if and only if R(λ) > 0 for some region in kq -space. Similar
to the classical case, the layered model is always observed to stable at kq = 0 though
with a local maximum at this point, in contrast to the behavior of the classical Turing
instability dispersion relation.

To compare these dispersion relations against numerical simulations of the full non-
linear system, we compute a heterogeneity functional determining how far a solution
is from a homogeneous state (Berding 1987). For simplicity, and because the surface
layer is of primary interest in synthetic pattern formation within bacterial colonies, we
only consider the heterogeneity of the activator in the surface. We define the hetero-
geneity functional as

Fh(uS) = c
∫ 1

0

∫ h+ε

h

(
∂uS
∂x

)2

+
(

∂uS
∂ y

)2

dydx, (46)

where c > 0 is simply a positive definite (dimensional) scaling parameter. Note that
Fh(uS) ≥ 0 and for uS ∈ C1, F(uS) = 0 if and only if uS is spatially homogeneous.
While we do not anticipate this metric to be quantitatively comparable to max(R(λ)),
wenote that near the boundaryof aTuring instability, the amplitudeof patterns and their
growth rates in time both scale with the distance from the bifurcation point, typically
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as a square root of the growth rate (Cross and Hohenberg 1993). Hence this functional
should at least qualitatively scale with the growth of max(R(λ)) near the onset of
instability. The value c is taken so that Fh(uS) = max(R(λ)) when η = 0 for scaling
purposes. We note that these plots are intended to demonstrate qualitative, rather
than quantitative, behavior near the onset of instability. In particular, we anticipate
quantitative disagreement between Fh(uS) and max(R(λ)) when η is large, though
the functional will still indicate whether or not max(R(λ)) predicts pattern formation,
as well as the scaling of pattern heterogeneity as a function of max(R(λ)) near the
onset of instability.

To use this heterogeneity functional, the full system (8)–(12) was solved until a
final time of t = 105 to ensure a good representation of the steady state pattern. The
initial data were taken to be u0 = u∗(1 + ξu(x, y)) and v0 = v∗(1 + ξv(x, y)) with
ξu and ξv random fields such that at each value of (x, y), they are independently and
identically distributed normal random variables with zero mean and variance 10−4.
The equations were simulated using the COMSOL Multiphysics® software (http://
www.comsol.com) with at least 2 × 104 second-order triangular finite elements. A
non-uniform mesh was constructed such that the surface region �S was resolved with
at least 10 distinct triangular elements in any vertical cross section. Convergence was
checked in spatial and temporal discretizations, and a relative tolerance of 10−5 was
given to the adaptive timestepping algorithm.

In Fig. 3 we give examples of this heterogeneity functional across the ranges of the
geometric parameters ε, h, and η, alongside predictions from the instability condition
(28). As anticipated by the asymptotics, for very small ε (Fig. 3a), we see the system
fails to support spatial patterns for η ≥ 3.9 × 10−4. Additionally, we see a jump in
the value of the heterogeneity between η = 8 × 10−5 and η = 10−4. We plot values
of uB in Fig. 4 across this jump to demonstrate that this discontinuity in the value
of the spatial heterogeneity Fh(uS) for these parameters is due to different nonlinear
modes emerging as parameters are varied, and so it is sensible that it is not captured
in the linear analysis. Other discontinuities in the plots of the heterogeneity functional
in Fig. 3 are similarly due to different patterned states being selected, and we do not
further explore pattern multistability or dependence on initial data here.

In Fig. 3b, d, we see a region of intermediate values of η for which no patterning
occurs, andmore broadly across all of Fig. 3we see that aminimal value ofmax(R(λ))

occurs approximately for ηwithin the range (10−3, 1).We show examples of themode
selection process from Fig. 3d in Fig. 5. For small η = 10−4, we see stable multiple-
spike solutions that are essentially confined to the surface. As η increases further to
10−1, a single-spike solution is observed, at a smaller amplitude as the dispersion
relation has just crossed the instability threshold given in Fig. 3d. Further increases to
large η lead to stable spike solutions that remain essentially vertically homogeneous in
the surface, but have small transverse variations in the bulk due to the change in reaction
kinetics across the interface, as illustrated for η = 105. Further increasing η sharpens
these spike solutions across the domain, but does not impact the number of modes.
Besides the discontinuities in the heterogeneity due to nonlinear mode selection, there
is often a good match between the linear analysis (e.g. value of max(R(λ)) and the
heterogeneity, which can be expected near to the Turing bifurcation points in simpler
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(a) (b)

(c) (d)

Fig. 3 Non-trivial dependency of Turing instabilities on geometric parameters. Plots of max(R(λ)) given
by Eq. (28) in blue computed across 250 values of η for different parameter combinations, and plots of
Fh(uS) given by (46) in red asterisks for 100 values of η. The other parameters were taken as a = 0.1,
b = 2, du = 10−3, dv = 10−1, L̃ = 1. The constant c in Fh was fixed per set of parameters/panel to
match the maxima of max(R(λ)) and Fh across η to qualitatively compare these metrics. The parameter
sets corresponding to h = 10−1, ε = 10−1 and h = 1, ε = 10−1 gave qualitatively the same results as in
panel (c) with max(R(λ)) > 0 for all η (Color figure online)

settings due to the existence of normal forms of the pattern amplitude (Cross and
Hohenberg 1993).

In all of Fig. 3 we observe that max(R(λ)) appears to asymptotically approach a
fixed value for either η → 0 (which corresponds to the static Turing conditions) or
η → ∞, with the latter always being smaller than the former, though this may just
be a feature of the parameters explored here. However, in 3c (and the other cases
noted in the caption), we observe that an instability occurs for all values of η, which
is confirmed by numerical simulations of the full system.

As a further example which helps visualize the impact of varying the geometric
parameters and coupling constant η, we observe patterns primarily confined to the
surface but with some interaction with the bulk in Fig. 6. Again some mode selec-
tion effects are present (two vs three spot solutions for small and larger values of η

respectively), though due to generic aspects of multistability in two spatial dimen-
sional systems (Dewel et al. 1995), we suspect these depend somewhat on initial data,
rather than just parameter values. Finally, in Fig. 7, we give an example where no
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Fig. 4 One-dimensional plots of uS corresponding to parameters in Fig. 3a for two values of η in the top
two panels, and plots of the corresponding uB below (with L̃ = 1 in all cases). The surface concentration
uS is effectively homogeneous in the y direction, and so is essentially a one-dimensional pattern, shown
above. Note that the bulk concentrations are almost homogeneous, whereas the surface concentrations are
not (compare the scales of uS and uB ) (Color figure online)

Fig. 5 Plots of uS and uB corresponding to parameters in Fig. 3d for three values of η, and L̃ = 1. Here,
ε = 10−2 and h = 10−1 (Color figure online)

change in the number of unstable modes was apparent for variation in η, though the
structure of the solution does change.

WithinTuring-unstable regimes, the surface largely drives the structure of themodes
and hence the patterns can be thought of as quasi-one-dimensional (Figs. 6, 7). The
permeability η does control howmuch structure there is, both in the bulk in general and
in the surface modes’ variation in the y direction, though in all cases the largest spatial
variation is along the lateral coordinate x . For the largest permeability we explored
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Fig. 6 Plots of uS and uB corresponding to parameters in Fig. 3 with h = 0.5 and ε = 10−1 for three
values of η, and L̃ = 1 (Color figure online)

Fig. 7 Plots of uS and uB corresponding to parameters in Fig. 3 except that h = 10−1 and ε = 10−1 for
three values of η, and L̃ = 1 (Color figure online)

(η = 105), we see that the sizes of the surface and bulk can have a significant impact
on the relative shape of the solutions in the bulk region (cf Figs. 5c, 6c, and 7c). In
particular, we see that the deepest part of the bulk (y = 0) in Figs. 5c and 7c maintain a
fairly distinct periodic pattern between high and low activator concentrations, whereas
the larger bulk in Fig. 6c is substantially more homogeneous at y = 0. We also note
that for intermediate values of η, Figs. 6b and 7b have the largest visual gradients
in the activator in the surface layer, consistent with the intermediate-η values having
significant impacts on the predicted values of max(Rλ) in Fig. 2. This further demon-
strates nontrivial impacts of the bulk geometry on the structure of emergent patterns,
and such leeching into the bulk may be useful to help quantify its impact in synthetic
systems.
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6 Discussion

Motivated by recent interest in a range of biological contexts, we have developed and
analyzed a general class of reaction–diffusion models of pattern formation in stratified
media, though with an absence of reactions in the bulk and a linear coupling between
the layers. We have derived a criterion for pattern-forming instability in such media,
given by Eq. (26). In Appendix A we showed that the absence of differential transport
within each layer entails no patterning for these systems, in direct analogy to the
classical Turing instability.We have also demonstrated a range of interesting behaviors
via asymptotic reductions in thin domains, and numerical simulations. In particular,
this setting of a linearly coupled systemwith no reactions in the bulkwith a thin-surface
layer is also of significant biological interest, as several groups are using bacterial
colonies on inert substrates as amedium for engineered pattern formation via synthetic
biology (Grant et al. 2016; Boehm et al. 2018; Karig et al. 2018). However, as far as we
are aware, there is little theoretical understanding of how the inert substrate impacts
the surface reaction–diffusion systems in these kinds of geometries. Additionally,
to accurately model the real complexity of these experimental systems we would
need to account for intracellular (i.e., non-diffusible) proteins which play a role in
the reactions, as our reaction–diffusion framework only captures the dynamics of
diffusible signalling molecules.

Nevertheless, even in the simplified setting of an inert bulk and a thin surface, the
computed instability criteria aremuch richer than in the classical case. For instance, the
nine distinguished limits for |λ|, k2q‖DS‖∞ ∼ ord(‖JS‖∞) given in Table 3 demon-
strate a variety of behaviors not predicted by analyzing the surface reaction–diffusion
system alone, as is typical in applications. In addition, these distinguished limits,
though emergent from a complex multi-parameter system, depend on only three non-
dimensional parameter groupings, ε∗, h∗ and η/(ε‖JS‖∞). The first two of these,
respectively, are the surface and bulk depth relative to the lateral lengthscale, i.e. the
basic geometry. The final grouping is η/(ε‖JS‖∞) = τ η̂/(Hε‖JS‖∞). Noting that τ
is chosen such that ‖JS‖∞ ∼ ord(1), one can deduce more generally that τ/‖JS‖∞
is the dimensional timescale of surface reaction. Hence, the final parameter grouping
is the ratio of the interface permeability to the surface velocity scale, ‖JS‖∞Hε/τ ,
with the latter in turn given by the ratio of the surface depth and reaction timescale.

We further note that our instability condition (28), recovers the usual features of
Turing instabilities, such as requiring differential diffusion for their onset, and reducing
to the polynomial dispersion relation when the bulk becomes uncoupled from the
surface. The explicit coupling between bulk diffusion and surface reactions given by
(45) when |λ|, k2q‖DS‖∞ ∼ ord(ε1/2‖JS‖∞) suggests additional distinguished limits
from those in Table 3; the associated instabilities possess slower growth rates, but
nonetheless highlight substantial and non-trivial impacts of the bulk on the system’s
ability to pattern. We anticipate that there are other examples of nontrivial surface–
bulk coupling-driven instabilities, as suggested in the discussion of the Averaged and
Quadratic cases in Table 3, but leave investigation of these to further work.

Broadly, our asymptotic and numerical results on thin surfaces suggest that the
presence of the inert bulk generally decreases the ability of the surface system to
undergo a Turing instability compared to an isolated system. The exceptional cases,
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such as the homogenized limit (41) and the explicit coupling in Eq. (45), can in
principle lead to larger Turing spaces, though we have shown in some realistic cases
such as equal bulk diffusions (DB = In) that these do not enlarge the Turing space.
Note that in systems where diffusion varies significantly between domains (e.g., non-
diffusible proteins in the surface) the parameter space that admits pattern formation
can increase with increasing bulk size (see, for instance, Halatek and Frey (2018);
Brauns et al. (2020)). Exploring such interplays will be the focus of future work.

Our results suggest that experiments should aim todesign large and robust parameter
regimes using classical criteria for pattern-formation (e.g., using design approaches
such as in Dalchau et al. (2012)), as diffusion into the bulk region will likely decrease
the size of such Turing spaces. We have shown that even in cases where the broad
influence of the bulk is to decrease the ability of the system to pattern, such a decrease
will be non-monotonic in the geometric and transport parameters of the bulk region
in general, as illustrated with the non-dimensional bulk depth, h and permeability, η.
Many of the parameters may not be controllable, though one can often choose an agar
height h above a certain minimal threshold. The results in Table 3 broadly suggest that
the agar layer should bemade as thin as possible to limit the impact on a system’s ability
to pattern. There may also be opportunities to decrease the permeability into the bulk,
η, by using thicker filter paper or modifying the pore size or density, which would also
reduce the negative impact of the bulk on pattern formation, though due to metabolic
constraints (as the agar is primarily a nutrient) this too may be somewhat limited. We
do note that there are important experimental controls in the genetic circuits encoded
in the nonlinear reaction kinetics, which we have only caricatured in this study by
considering the two-species case with only diffusible morphogens. Finally, we have
shown instances of instability such that the bulk domain is a necessary component to
drive an otherwise stable surface system to a patterned state (e.g., Eq. (45) and the
following discussion), though we leave systematic analysis of such instabilities for
future work. This route to instability does not contradict the preceding suggestions
about reducing η and h, as it is likely inadmissible for bacterial pattern formation on
agar. Such an experimental setting entails that it is reasonable to assume DB ∝ I , and
hence by (45) we see that bulk diffusion will not drive an instability in this case.

We remark that the mode selection phenomena we have illustrated (e.g., in Fig. 5)
can be understood in the context of finite-size effects, which are well-studied in the
classical case (Murray 2003). Namely, given a dispersion relation for R(λC (kq)),
where λC is the growth rate of a classical Turing mode, one can tune the geometry
to select different spatial eigenvalues kq to give rise to non-monotonic effects as, for
instance, the domain size is increased. However, here the effects are more subtle as
we cannot explicitly compute the relationship between λ and eigenvalues of the full
spatial operator, and so can only implicitly observe these effects. Nevertheless, these
mode selection effects appear to be more prevalent compared to classical cases as
they require very small domains and other fine-tuning (Murray 2003). Additionally, in
our setting mode selection effects appear to be more prevalent across a wide range of
geometric parameters, whereas the classical cases have been studied almost entirely in
terms of a scalar length, and are generally restricted in parameter regimes where they
occur. In particular, we conjecture that the non-monotonic dependence of max(R(λ))
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on η seen in Fig. 3 is due to these effects, as we see different modes being excited on
either side of this region in Fig. 5.

There are numerous extensions of these results that are worth pursuing. In the
example setting of bacterial colony formation on an agar substrate, one might need to
augment the bulk evolution with a degradation reaction. We remark that such a simple
addition leads to substantial complexity as, if the surface equilibrium is nonzero, then
there does not exist a homogeneous equilibrium across the whole coupled system (a
degradation reaction in the bulk by itself will always lead to a homogeneous zero
equilibrium concentration). We anticipate that the mathematical structure in this case
will be even more intricate. A simpler addition, also of relevance to bacterial pattern-
ing on agar, would be the inclusion of non-diffusible reactants in the surface region.
This approach would also pave the way to account for all gene regulatory dynamics
in a quantitative model based on mass action kinetics. In such a case, we can apply
techniques to incorporate the impact of such reactants on the surface reaction kinetics
directly (in the linearized system) (Klika et al. 2012). Along similar lines, more com-
plicated transport functions g across the membrane can be studied, again leading to
new possibilities of differential transport, which can easily be added to the analysis
implemented here. We have also assumed that the same number of species diffuse
throughout both domains, but in principle one can generalize this by introducing dif-
ferent coupling functions g for the surface and bulk boundary conditions, presently
given in Eq. (12). Such an analysis is broadly similar though there are several key
details to account for, so we leave this for further work.

There are many biological examples of physical layered media with reactions in
multiple different spatial domains, such as in the epithelial–mesenchymal coupling
during the development of the skin in mammals (Vilaca et al. 2019). For example, in
the study of hair follicle morphogenesis, a substantial amount of biochemical research
has implicated Turing-type instabilities in the formation of follicle primordia (Mou
et al. 2006). More recently, it has been suggested that a simple activator–inhibitor
system is insufficient to capture the dynamical complexity in hair follicle patterning,
and so suggestions have been made that such patterns arise due to many coupled
processes,whichwill undoubtedly occur across the different domains of the epithelium
and the developing mesenchyme (Glover et al. 2017). Similar remarks can be made
about many kinds of skin and other organ patterning events across a range of species,
suggesting that general methodologies for stratified reaction–diffusion systems would
be useful to elucidate underlying physicochemical mechanisms. A related layered
system is the synthetic pattern formation studied in a monolayer of HEK293 cells
grown beneath a culturemedium (Sekine et al. 2018), where presumably bulk diffusion
plays a significant role in transporting signalling molecules.

While we have explored exemplar reaction–diffusion systems in such coupled
domains, there are more general transport mechanisms that could be studied. Both
chemotaxis and a range of mechanical taxis, as well as mechanical forces, could be
included in such a model. We note that a numerical study (Vilaca et al. 2019) has
made some progress towards such a model. The linear stability analysis for such prob-
lems is involved, but the approach presented here generalizes to these settings. Of
course, in the absence of a homogeneous steady state, one must develop new meth-
ods for the analysis of pattern-forming instabilities. This has been done recently for
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heterogeneous steady states (Krause et al. 2020), but extending such an analysis to
these coupled geometries is nontrivial. Mathematically, the limit of η → ∞ can be
thought of as a step function heterogeneity, as explored in Kozák et al. (2019), so
that the systems studied here are also in some sense a generalization of piecewise-
constant reaction–diffusion problems, providing another perspective on heterogeneous
reaction–diffusion systems.

Another related generalization would be to study discrete or hybrid discrete-
continuum formulations of these kinds of layered media, such as the recent hybrid
Turing-type model proposed in Macfarlane et al. (2020). Turing’s original paper con-
tained a study of discrete cells (Turing 1952), which was later extended in Othmer and
Scriven (1971) andmore recently inNakao andMikhailov (2010) to reaction–diffusion
systems on discrete networks. Such a formulation has been extended to consider mul-
tiplex networks, themselves a model of discrete layered media (Gomez et al. 2013),
within which Turing pattern formation has also been studied (Asllani et al. 2014;
Kouvaris et al. 2015). Such systems deserve exploration on their own, in addition to
relating them to spatially continuous analogues of Turing systems in stratified media.

Finally,wemention that one couldgeneralize fromour settingof twoplanar domains
to many more coupled domains, or to more complicated geometric settings, including
those relevant for more realistic models of development, such as in the blastula stage
or later stages of epithelial–mesenchymal development on complicated morpholo-
gies. While our approach may be generalizable to very different geometric settings,
the dispersion relation we have found in this simple case is already somewhat diffi-
cult to analyze, and full numerical simulations may be more expedient. Nevertheless,
analytically tractable results for this family of problems are valuable in understand-
ing the role of coupled domain structures in pattern formation, as such scenarios are
ubiquitous in biological settings.
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A Further Analysis of Possible Patterning Instabilities: Surface
Isolation and Equal Diffusion Coefficients

Here, we compute instability conditions from Eq. (28) for further distinguished limits,
in particular (i) the limiting of decoupling the interaction of the surface and bulk
regions, that is for sufficiently small η 	 1 and (ii) the limit of equal diffusion
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coefficients in each region for classical Turing patterning systems. In particular, (i)
provides a useful consistency check of the modeling framework, while (ii) confirms
that in the absence of differential transport within at least one layer or between them,
patterning cannot occur for classical Turing systems, in direct analogy to the behavior
of the single layer classical Turing instability.

A.1 Patterning in the Limit of an Isolated Surface System, via Sufficiently Small
Non-dimensionalized Permeability

We consider the patterning conditions for the isolated surface system in the case that
η → 0. Here, we denote the eigenvalues of MB as μBp, the eigenvalues of MS as
μSp, and the eigenvalues of JS as νp, where p = 1, 2, . . . , n in all cases, where n is
again the number of reactants. By continuity of the determinant, Eq. (28) reduces for
sufficiently small η to the condition

det(MB tanh(hMB)) det(MS sinh(εMS)) = 0, (47)

so that the bulk and surface components decouple. As these hyperbolic trigonometric
functions are at worst meromorphic, the zero of the determinants occur for eigenvalues
of thematricesMB, MS that, respectively, are roots of z tanh(hz) = 0, z sinh(εz) = 0
for z ∈ C. Hence, Eq. (47) is satisfied whenever μBp = j iπ/h, or μSp = j iπ/ε, with
j ∈ {0, 1, 2, . . .}, natural.
For the bulk component, this implies that det(M2

B + ( jπ/h)2 In) = 0 which, as
this is a diagonal matrix, implies that the allowed growth rates are given by

λp = −DBp(k
2
q + ( jπ/h)2) = −DBpπ

2(q2 + ( j/h)2)

≤ 0, for q, j ∈ {0, 1, . . .}, p ∈ {1, 2 . . . , n}, (48)

with DBp denoting the pth component of the diffusion matrix DB , and recalling that
kq = qπ/L̃ . Hence these solutions do not drive an instability, noting that although
these eigenvalues formally break the assumption we made that R(λ) > 0 used to
deduce Eq. (28), we have Eq. (47) is precisely (26) in the limit η → 0, and, hence, we
have not used this assumption to determine these eigenvalues.

Similarly, by the preceding discussion of the eigenvalues μSp of MS, we have a
condition for the existence of nontrivial eigenvectors for these eigenvalues given by

det(M2
S − μ2

Sp In) = det((q2 + j/ε)π2 In + D−1
S (λIn − JS)) = 0, (49)

which we recognize as exactly the condition one would find to compute λ in a tra-
ditional n species reaction–diffusion system posed on a rectangle with Neumann
boundary data (Klika et al. 2012). In practice finding all such solutions for a given
eigenpair q, j is a straightforward numerical problem. While these computations are
more easily implemented by noting that the η = 0 limit does separate into two uncou-
pled regions that can be analyzed via standard methods, these results serve as a useful
consistency check of Eq. (28).
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A.2 Identical Diffusion CoefficientsWithin Regions

Below we assume that the surface Jacobian, JS, can be diagonalized, noting that
diagonalizable matrices are a dense subset of complex-valued matrices and thus the
results derived below therefore hold in general due to continuity. In particular, we now
show that if there is identical diffusion for different species within each region, then
the spatially homogeneous steady state is linearly stable to the perturbations given by
Eq. (16) for kinetics in the surface layer that allow the classical Turing instability.

To proceed, we let DS = cS In and DB = cB In, so that M2
B = (k2q + λ/cB)In. As

JS can be diagonalized, we can also diagonalize M2
S = (k2q + λ/cS)In − (1/cS)JS.

Making this additional assumption, we rewrite these matrices using the n + 1 scalar
valuesm2

B = k2q +λ/cB andm2
p = k2q +λ/cS−νp/cS , where νp are the eigenvalues of

Js and p = 1, 2, . . . , n. We note that these scalars will never be zero as k2q is real and
non-negative, we require R(λ) > 0 and, restricting ourselves to kinetics that exhibit
the classical Turing instability, we have stable kinetics in the absence of diffusion, and
thus R(νp) < 0.

With the assumption of identical diffusion coefficients, all of thematrices in Eq. (28)
are diagonal and proportional to the identity except for M2

S, which can be diagonalized
using the eigenvectors of JS. Noting that all functions involving MS in (28) are both
even functions and analytic, we can simultaneously diagonalize the entire condition
using these eigenvectors. Doing so, we arrive at the following n scalar conditions from
Eq. (28),

cBmB tanh(hmB)

(

cosh(εmp) + cS
η
mp sinh(εmp)

)

+ cSm p sinh(εmp) = 0, (50)

where we note that only one of these conditions must be satisfied, and hence they lead
to independent roots for λ. We observe that cosh(εmp) = 0 cannot occur once mp

does not have zero real part, which is enforced by assumptions. Hence we can divide
Eq. (50) by this factor to find,

cScBmBmp

η
tanh(hmB) tanh(εmp) + cSm p tanh(εmp) + cBmB tanh(hmB) = 0.

(51)
We now argue that there are no possible instabilities given condition (51). We note

that forR(λ) > 0, bothm2
B andm2

p must have strictly positive real part. Given k2q ≥ 0,
R(λ) > 0, R(vp) < 0, we have R(m2

p) > 0, arg(m2
p) ∈ (−π/2, π/2) and hence

arg(mp) ∈ (−π/4, π/4) ∪ (−π,−3π/4) ∪ (3π/4, π), with mp = 0 excluded (and
identical bounds for mB). Thus all roots of mp tanh(εmp) and mB tanh(hmB) are
excluded and one may divide (51) by cScBm p tanh(εmp)mB tanh(hmB) to obtain,

1

η
+ 1

cBmB tanh(hmB)
+ 1

cSm p tanh(εmp)
= 0. (52)

Letting z = x + iy ∈ C, x, y ∈ R, with R(z2) > 0, we will show that
R(z tanh(z)) > 0, and subsequently apply this for z = mB and z = mS . Letting
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Q = (cosh(x) cos(y))2 + (sinh(x) sin(y))2 > 0, we can compute

R(z tanh(z)) = x cosh(x) sinh(x) − y cos(y) sin(y)

Q
= x sinh(2x) − y sin(2y)

2Q
.

(53)
Additionally,R(z2) > 0 implies x2 > y2 which then forcesR(z tanh(z)) > 0 since

x sinh(2x) − y sin(2y) > 0 for x2 > y2. The latter holds given x > 0, y ∈ (−x, x)
since then

x sinh(x) > y sinh(y) ≥ y sin(y).

The first inequality holds as the real function x sinh(x) is even and, for x > 0, mono-
tonic increasing, while the second inequality follows using the fact sinh(|y|) ≥ |y| ≥
sin(|y|) for all real y and the odd parity of y, sinh(y), sin(y). The case for x < 0 is
then inherited from the case x > 0 by parity. Hence, the left hand side of Eq. (52) must
have a strictly positive real part, and so this equation can never be satisfied. Therefore,
in the case of identical diffusion coefficients within each region, there are no values
of λ with positive real part.

B Pure Diffusion Does Not Induce Patterning

We, now, show that diffusion alone, in the absence of reaction terms, cannot induce
patterning in the modeling framework. In particular, in the absence of reaction kinet-
ics, and given our linear interfacial conditions, each species decouples and can be
considered in isolation. Without loss of generality we consider surface and bulk con-
centrations of the first species, denoted cs and cB below with respective diffusion
coefficients dB , dS in each region. Then, with �B and �S denoting the bulk and
surface regions, as in Fig. 1, and the subscript t denoting a time derivative, we have

1

2

∂

∂t

[ ∫

�B

dVdB∇cB · ∇cB +
∫

�S

dVdS∇cS · ∇cS

]

=
∫

�B

dVdB∇cBt · ∇cB +
∫

�S

dVdS∇cSt · ∇cS

=
∫

�B

dV∇ · (cBtdB∇cB) − cBtdB∇2cB +
∫

�S

dV∇ · (cSt · dS∇cS) − cStdS∇2cS

=
∫

∂�B

dScBtdB
∂cB
∂n

+
∫

∂�S

dScStdS
∂cS
∂n

−
[∫

�B

dVc2Bt +
∫

�S

dVc2St

]

= −
[∫

�B

dVc2Bt +
∫

�S

dVc2St

]

≤ 0,

where the surface integrals in the fourth line vanish, courtesy of the zero flux boundary
conditions (10) and (11), and the interfacial conditions (12), on noting relations (6)
and (7). This can also be recognized as a free energy inequality, or equivalently an
entropy inequality, corresponding to the second lawof thermodynamics given aFickian

123



  136 Page 34 of 37 A. L. Krause et al.

diffusive flux as a constitutive relation (Gurtin et al. 2013).Hence a standardmeasure of
heterogeneity cannot increase and thus initial conditions that are close to homogeneous
(in the sense of a suitable Sobolov norm) cannot induce patterns.
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