Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Testing the Cenozoic multisite composite δ18O and δ13C curves: New monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207)

Sexton, Phillip Francis, Wilson, Paul A. and Norris, Richard D. 2006. Testing the Cenozoic multisite composite δ18O and δ13C curves: New monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography 21 (2) , PA2019. 10.1029/2005PA001253

[thumbnail of SEXTON__Orca_1359.pdf]
Preview
PDF
Download (2MB) | Preview

Abstract

[1] Until recently, very few high-quality deep ocean sedimentary sections of Eocene age have been available. Consequently, our understanding of Eocene paleoceanography has become heavily reliant on “composite” records patched together from multiple sites in different ocean basins and generated using multiple taxa (potential sources of “local” noise in the global signal). Here we test the reliability of the early to middle Eocene composite δ18O and δ13C stratigraphies (Zachos et al., 2001) by generating new monospecific records in benthic foraminiferal calcite from a single locality, Demerara Rise, in the tropical western Atlantic (Ocean Drilling Program Leg 207). We present new stable isotope correction factors for commonly used Eocene benthic foraminiferal species. We find that interspecies isotopic offsets are constant across the isotopic range, supporting the notion that the inconstant intertaxa offsets reported elsewhere result from mixing species within genera. In general, the δ18O stratigraphy from Demerara Rise supports the validity of the Eocene δ18O composite, while revealing a temporary warming punctuating middle Eocene cooling. This warming may correspond to the so-called “Middle Eocene Climatic Optimum” previously documented in the Southern Ocean. The composite and Demerara Rise records for δ13C differ substantially. By removing the intersite and intertaxa sources of uncertainty in δ13C, we obtain a clearer picture of carbon cycling during the Eocene. Secular change in interocean δ13C gradients through the Eocene reveals that intervals of climatic warmth (especially the early Eocene) are associated with very small water mass ageing gradients.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Environmental Sciences
Uncontrolled Keywords: Benthic foraminifera; Eocene; stable isotopes; warm climates; ocean drilling program; Demerara Rise
Additional Information: Publisher's copyright requirements "Permission to Deposit an Article in an Institutional Repository. Adopted by Council 13 December 2009. AGU allows authors to deposit their journal articles if the version is the final published citable version of record, the AGU copyright statement is clearly visible on the posting, and the posting is made 6 months after official publication by the AGU." See http://www.agu.org/pubs/authors/usage_permissions.shtml
Publisher: American Geophysical Union
ISSN: 0883-8305
Last Modified: 06 May 2023 05:20
URI: https://orca.cardiff.ac.uk/id/eprint/1359

Citation Data

Cited 90 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics