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Abstract: We developed a simple form of thermal molecular beam catalytic reactor system which is
capable of measuring sticking probabilities and reaction probabilities, together with angle-resolved
scattering of molecules and products during catalytic reactions at the surface. This includes very
fast determination of the angle dependence of the reaction product flux at steady-state. It was
employed to determine the oxidation of CO on Pt{110}-(1 × 2), including individual molecular sticking
and scattering. The initial sticking probability of oxygen on Pt{110} shows a small variation between
140 and 750 K surface temperature, from 0.45 to 0.28. The saturation uptake drops from 1.5 ± 0.2 ML
at 140 K to 0.6 ML at 300 K and to 0.23 ± 0.02 ML at 750 K. The initial sticking probability of CO
at 300 K is 0.80 and decreases to 0.62 at 470 K. Beyond that temperature, it descends steeply down
to near zero at 570 K, due to the high desorption rate of CO at that temperature. Kisliuk precursor
mobility parameters K were calculated from shape of the sticking curves. For 300 K, a value of
0.11 ± 0.01 was found, which increases to 0.76 ± 0.01 at 470 K, indicating a change from considerable
mobility in the precursor state, to more limited mobility before desorption at high temperature.
In temperature-programmed CO-O2 reaction experiments, CO2 production was observed to initiate
in the temperature region 460–510 K. Using isothermal angle-resolved experiments, the CO2 flux
was determined in the

[
110

]
plane at temperatures of 470–620 K. Two sharp scattering lobes at

positions of ±16◦ off the surface normal were found, with a high cosine power angle dependence,
which were attributed to desorption from the {111}-like microfacets of the 1 × 2 reconstructed surface,
with products evolving over a high barrier.

Keywords: platinum; carbon monoxide; oxidation; catalysis; molecular beam;
temperature programmed desorption; surface science

1. Introduction

Molecular beam methods are important means of analyzing the surface reactivity and structure
of single crystal surfaces. By using a molecular beam to supply the crystal continuously with
new reaction mixture, it is possible to measure reactions under steady-state conditions, which is
not possible by ARTPD (angle-resolved temperature programmed desorption), since, due to the
temperature ramping, it is essentially a non-steady-state kind of experiment. Recent, elegant work on
CO oxidation on Pt{111} for example has shown two channels for reaction, on terrace and step edges,
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which may be distinguished by the desorption characteristics of CO2 [1]. In this paper, we report data
for the adsorption, desorption and reaction of CO and oxygen on the {110} surface of platinum using a
new design of a molecular beam apparatus. The CO oxidation was measured in angle-resolved mode
under steady-state conditions.

The reconstructed clean Pt{110}-(1 × 2) surface has a missing-row type structure [2–4]. The Pt
atoms build close-packed rows along the

[
110

]
direction with every second row missing. Due to these

missing rows, there is a series of troughs between the close packed rows. The walls of the troughs can
be described as {111} microfacets.

Adsorption of CO is known to lift the reconstruction of the missing-row structure. Above an
exposure of 1 L, single Pt atoms of the first layer diffuse out of the

[
110

]
atomic rows and occupy lattice

sites being out of phase with regard to the (1 × 2) periodicity [5]. This happens even at temperatures
as low as 250 K [6]. The lifting of the reconstruction leads to a (1 × 1) low energy electron diffraction
(LEED) pattern at CO coverages of about 0.6 ML [7]. This is not due to a bulk-truncated structure but
because of a random distribution of top layer Pt atoms on the bulk layer underneath which has a (1 × 1)
periodicity [8]. Oertzen et al. mentioned that the phase transition starts at a CO coverage of 0.2 ML and
is completed at 0.5 ML [9]. At 300 K, CO adsorbs exclusively at on-top sites up to a coverage of 0.5 ML.
Above this coverage, a small amount of CO also adsorbs on bridge sites [10]. The room-temperature
saturation coverage of CO is 0.88 ML (1 ML = 9.22 × 1014 molecules cm−2) [11].

In contrast, the adsorption of O2 does not lift the Pt{110}-(1 × 2) missing-row structure [12].
Performing quantitative X-ray photoelectron spectroscopy (XPS) and work function studies, Freyer et al.
found a saturation coverage for room temperature adsorption onto the (1 × 2) reconstructed surface of
0.35 ML [7]. This value is quite low in comparison to other authors. Walker et al. measured a saturation
coverage of close to 1 ML for room temperature adsorption [13]. Below 0.25 ML, oxygen is adsorbed in
a state where it fluctuates across ridge bridge sites. Between 0.25 and 0.5 ML, oxygen is pinned at fcc
sites on the walls of the {111} microfacets. Due to lateral interactions, only every other site along the
row can be occupied at these coverages. As shown by Walker et al., above 0.5 ML, oxygen produces a
coverage-dependent variable unit mesh structure [13], and this results in a change from second- to
first-order behavior for the oxygen desorption above this coverage.

The activation energy for diffusion of CO on a Pt{110}-(1× 2) surface was measured by Oertzen et al.
to be about 9–13 kcal/mol, while the activation energy of diffusion for O2 is 30 kcal/mol for low coverages
and 40 kcal/mol for high coverages [9]. This means that the diffusion of O2 is negligible in comparison
to the CO diffusion. The CO oxidation will therefore take place nearly exclusively on the surface sites
that are occupied by oxygen, with CO diffusing to these sites for reaction. Oertzen et al. also found
a great anisotropy for O2 diffusion, with diffusion occurring only parallel to the crystallographic[
110

]
direction. This is consistent with the observation that O2 forms rows in the troughs of the

Pt{110}-(1 × 2) surface [9].
Using an ultrathin Pt{110} single crystal, Wartnaby et al. measured the excess energy of desorbing

CO2 molecules in comparison to thermally accommodated molecules [14]. They found that, when CO
is dosed onto a saturated oxygen overlayer, the excess energy is 9 ± 17 kJ/mol, while the excess
energy was 52 ± 21 kJ/mol for oxygen dosed onto a CO overlayer. They explained this behavior by a
drop of the reaction activation energy with increasing oxygen coverage and the formation of “hot”
oxygen atoms. The “hot” oxygen atoms could react with CO before thermal accommodation to the
surface and therefore carry their excess energy over to the product CO2.

The reaction mechanism of the CO oxidation reaction was found to be mainly of
Langmuir–Hinshelwood type on Pt surfaces, excluding any reaction via the direct collision of gas phase
CO with oxygen adatoms [15,16]. On the other hand, Bonzel and Ku predicted that the reaction on a
Pt{110}-(1 × 2) surface takes place via a Langmuir–Hinshelwood mechanism at conditions where CO
was pre-adsorbed on the surface while with O2 pre-adsorbed on the surface, it shifts to an Eley–Rideal
mechanism [17].
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Using a cross-correlation time-of-flight method combined with non-steady-state angle-resolved
thermal desorption (ARTPD), Matsushima et al. measured the angular and velocity distributions of
CO2 desorbing from a Pt{110}-(1 × 2) surface [18–20]. They found that the CO2 desorption is collimated
at angles of ±25◦ off the surface normal. At these angles, the translational temperature of desorbing
CO2 also reaches a maximum. The difference between the facet angles of the {111} facet normals of
about ±35.2◦, and the measured values have been explained by the “smoothing effect” of conducting
electrons and surface distortions, the latter reducing the facet angle to about ±30◦ as found by LEED
and TOF-SARS (time of flight scattering and recoiling spectrometry) investigations [21,22].

Relatively few angle-resolved measurements under steady-state conditions have been performed
on the CO oxidation reaction on Pt surfaces. Cao et al. performed such an investigation on a
Pt{113} surface, finding two desorption peaks at angles of −20 ± 2◦ and at +22 ± 2◦ off the surface
normal [23]. They assigned these results to reactions to the {001} and the {111} facets of this surface,
with facet normals of −25.2◦ and +29.5◦, respectively. On Pt{110}-(1 × 2), CO2 formation dynamics
was probed with angular and velocity resolution at relatively high O2 pressures of 1 × 10−7–1 × 10−4

Torr and found that reactions are dominated by the (1 × 2) regions of the surface giving hyperthermal
desorption directed at 25◦ from the surface normal [24]. These were attributed to reactions occurring
on the facets.

There has been a great deal of work on the kinetics, light-off and the spatiotemporal oscillations
of CO oxidation [25–30] including Ertl’s Nobel Prize-winning work [31,32], and the work described
above [18–20]. To the best of our knowledge, there have been no continuous angle-resolved
measurements under steady-state conditions combining the advantages of molecular beams to
access sticking, trapping, uptake and desorption in the CO oxidation reaction on a Pt{110}-(1× 2) surface.
Mullins et al. did this for the reaction at 90 K surface temperature on Pt{111} and found a cos12

dependence of the scattered flux. However, they used non-thermal and separate sources of O2

(from a microwave source) and supersonic CO [33]. Similarly, in the ground-breaking work of
Neugebohren et al., discussed below, high source pressure beams were used [1]. Near ambient
pressure XPS experiments have shown how local structure and oxide formation on Pt{110} influence
CO oxidation and provide motivation to continue to develop in-situ tools to probe catalytic reactivity
in response to surface nanostructural changes [34].

The aim of this study was to gain a further understanding of the oxidation of CO on a
Pt{110}-(1 × 2) surface, with continuous thermal beams. By performing the experiments under
steady-state conditions, we were able to observe the reaction at much higher temperatures than
possible with ARTPD. We used a recently-designed molecular beam machine that can perform fast
angle-resolved measurements even in steady-state mode in a continuous manner.

2. Results and Discussion

2.1. Inert Gas Scattering

To investigate the scattering behavior of Pt{110}-(1 × 2), experiments with helium and argon
were carried out. The results are shown in Figure 1. For helium, an intense sharp peak was observed
at an angle of 101 ± 3◦ and a small peak at 37 ± 3◦ (the beam enters the chamber at 45◦ and the
angle-resolved MS is at 90◦). In contrast, the scattering curve for argon shows a rather broad and
featureless distribution, although the signal maximum is also positioned at around 101◦. A specularly
reflected He beam from a flat Pd{111} surface shows a sharp maximum at 67.5◦ (see Figure S2). For a
sample with facets a specularly reflected beam should arise when the facet normal is held at 67.5◦

and thus specular peaks are expected at ± the facet angle which is ±35◦ for {111} micro facets on {110}
yielding peaks expected at 32.5 and 102.5◦ in our geometry. The experimentally measured angles
suggest the facets are slightly less steep than ±35◦.
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Figure 1. (a) Polar representation of the scattering of He and Ar from Pt(110), clearly showing the 
differences between the light and heavy inert gases. The latter has a much longer residence time on 
the surface and so becomes largely thermalized to the surface temperature. (b) The signal intensity is 
plotted as a function of crystal polar angle (Cartesian plot). 

For comparison with the experiment, we simulated the scattering at the surface. The Pt{110}-(1 
× 2) surface was modeled by assuming a cosine-shaped hard surface potential (Figure 2). The size of 
the scattered atoms has been neglected, and only fully elastic scattering has been assumed (“billiard 
ball model”). Double scattering on both facets was considered and was of minor influence in the 
idealized simulation. As the facet angle deviates from the geometrical value of 35.2° for an 
undistorted surface, an angle of 30° was used, as this value was reported from LEED [21] and TOF-
SARS experiments [22]. The angle between incident beam and detector was set to 45°, with a detector 
acceptance angle of ±5°. The result of the simulation is shown in Figure 2. It exhibits two sharp peaks 
at angles of 40° and 95°. 
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Figure 2. (a) Simulated signal intensity of a scattering simulation for Pt{110}-(1 × 2). Pictograms of the 
{110} crystal orientation at key specular positions: (b) pseudo-specular reflection from the surface 

Figure 1. (a) Polar representation of the scattering of He and Ar from Pt(110), clearly showing the
differences between the light and heavy inert gases. The latter has a much longer residence time on
the surface and so becomes largely thermalized to the surface temperature. (b) The signal intensity is
plotted as a function of crystal polar angle (Cartesian plot).

For comparison with the experiment, we simulated the scattering at the surface. The Pt{110}-(1 × 2)
surface was modeled by assuming a cosine-shaped hard surface potential (Figure 2). The size
of the scattered atoms has been neglected, and only fully elastic scattering has been assumed
(“billiard ball model”). Double scattering on both facets was considered and was of minor influence
in the idealized simulation. As the facet angle deviates from the geometrical value of 35.2◦ for an
undistorted surface, an angle of 30◦was used, as this value was reported from LEED [21] and TOF-SARS
experiments [22]. The angle between incident beam and detector was set to 45◦, with a detector
acceptance angle of ±5◦. The result of the simulation is shown in Figure 2. It exhibits two sharp peaks
at angles of 40◦ and 95◦.

For helium, the simulation fits the experimental result quite well except for the lack of intensity
of the peak at 37◦. The reason for this lies in shadowing effect of the facets in a non-ideal surface
which is underestimated in the simulation due to the assumption of dimensionless atoms and a hard
surface potential (facet bunches due to local miscuts can shadow the outgoing atoms). Each facet also
receives a different proportion of the flux so at ~102◦ the facet oriented for specular reflection sees the
vast majority of the flux, whereas the other facet is at grazing incidence and hence this orientation
generates a large signal. At 37◦, the beam is at near normal incidence and both facets see similar fluxes
so only approximately half of the beam hits the facet aligned for specular reflection, resulting in a
smaller signal.

There is some decrease in the transmission function of the system, particularly at high angles where
the beam grazes the crystal surface (the mass spectrometer apertures are designed to accept scattered
gas from the full width of the sample, but at grazing some beam spill over from the sample edges).
Otherwise, the well-reproduced Helium peak positions indicate that the assumed model is adequate
for the performed scattering experiment.

In contrast to the simulated scattering, the experimental result for Argon shows no separated peaks,
and is due to the fact that Ar scattering is not elastic due to its higher accommodation and a much
higher enthalpy of physisorption (~1–2 kJ/mol for He and about 10× that figure for Ar [35]). A more
detailed discussion of these data and fitting of the Ar data is given in the Supplementary Materials.
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Figure 2. (a) Simulated signal intensity of a scattering simulation for Pt{110}-(1 × 2). Pictograms of
the {110} crystal orientation at key specular positions: (b) pseudo-specular reflection from the surface
plane ignoring microfacets; (c) specular reflection from first facet ~102◦; and (d) specular reflection
from second facet at ~33◦.

2.2. Oxygen Interaction with Pt{110}

The results for the sticking experiments with oxygen are shown in Figure 3.
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The initial sticking probability s0 shows a gradual decrease with increasing surface temperature
above 400 K, from 0.34 to 0.27 at 750 K. At lower temperatures, there is a larger decrease from ~0.45 at
130 K to 0.36 at 350 K.

The high uptake at low temperatures, and big decrease up to 350 K, coincides with a low-temperature
oxygen desorption peak found by Wilf and Dawson at a temperature of 250 K that extends to 350 K [12].
A similar observation was made by Walker et al. [13], although they also found a very sharp peak at
approximately 220 K. They attributed this peak to the presence of molecularly chemisorbed oxygen O2.
Sticking probability versus uptake curves at several temperatures are given in the Supplementary
Materials (Figure S3).

The TPD spectra of oxygen are extremely sensitive to the surface structure of a Pt{110} surface.
Even a different cooling rate of the crystal after the usual annealing at 970 K results in significantly
altered spectra, possibly due to a change in the step density [22]. O2 TPD is therefore a good test for
the quality of the surface structure.

Desorption traces for oxygen TPD as a function of heating rate and coverage are shown in Figures 4
and 5, respectively. For heating rate dependent TPD (Figure 4), the crystal was dosed with 22.5 L
(3 × 10−5 mbar.s) of oxygen at 420 K.
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Figure 4. TPD spectra of oxygen for heating rates of 0.5, 1, 2, 3 and 4 K/s in the order of increasing
peak maximum. The clean Pt{110} sample was dosed with 22.5 L of oxygen at 420 K with TPD recorded
angle integrated from the main chamber MS. The insert shows a plot of the peak maximum points
linearised according to Equation (1).

The relationship between the peak maximum temperature Tmax and the heating rate β for
a first-order desorption is described by the following equation [12]:

ln
(

T2
max
β

)
= ln

(
Ed
ν1R

)
+

Ed
RTmax

(1)

where ν1 is the preexponential factor of desorption, Ed is the desorption energy and R is the molar
gas constant. Using this approach, we calculated a desorption energy of Ed = 218.6 ± 5.7 kJ/mol and
a preexponential factor of ν1 = 3.6 × 1015±0.4 s−1. These values are high in comparison to literature.
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Wilf and Dawson found a desorption energy for the β1 state of 134 kJ/mol, with a preexponential factor
of 1.7 × 109 s−1 [12], while Walker et al. measured the adsorption heat of O2 using microcalorimetry [13]
and found a value of 170 kJ/mol for the β1 oxygen state. They also calculated the desorption energy
using the Redhead formula [36] (Equation (2)):

Ed = RTmax

(
ln

(
ν1Tmax

β

)
− 3.64

)
(2)

They assumed a preexponential factor of ν1 = 1 × 1013 s−1 and found a value of Ed = 198 kJ/mol.
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Figure 5. TPD-spectra of oxygen on Pt{110} for different exposures. The sample was dosed at 420 K with
a pressure of 1 × 10−8 mbar O2. The measurements were performed on two different days (indicated
by n.d. for next day’s results). Due to the extreme sensitivity of oxygen TPD to the surface structure,
the TPD spectra of each day differ slightly from each other. The heating rate was 4 K/s. The insert shows
a plot of the TPD peak maximum at low coverage according to equation (3) for exposures up to 5 min.

From the coverage-dependent TPD spectra (Figure 5), we also calculated the desorption energy of
the first-order peak using the Redhead equation. With the preexponential factor of ν1 = 3.6× 1015 ± 0.4 s−1

from the heating rate dependent measurements and the averaged value of the peak maximum
temperature of Tmax = 706.4 ± 0.6 K, we found a desorption energy of Ed = 219.4 ± 6.6 kJ/mol,
in close agreement with the value obtained by our heating rate dependent measurement. Assuming a
preexponential factor of 1 × 1013 s−1, as used by Walker et al., gives a desorption energy of 184.8 kJ/mol,
in good agreement with their value. Finally, assuming a preexponential factor of 1.7 × 109 s−1, as found
by Wilf and Dawson, the desorption energy would be 133.8 kJ/mol, in agreement with their value.

For the second-order desorption peak, the data at lowest coverage were analyzed following
Equation (3), where the subscript max indicates values recorded at the maximum in the second-order
TPD peak.

ln
[

2RT2
maxθmax

β

]
=

Ed
RTmax

+ ln
[Ed
υ2

]
(3)

We found from the gradient and intercept of the inset in Figure 5 that the activation energy
for desorption is Ed = 103.2 ± 4.4 kJ/mol and the second-order prefactor υ2 is 4.2 × 10−9 ± 0.3 cm2
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molecule−1 s−1. Wilf and Dawson found an average desorption energy of this β2 state of 123 kJ/mol,
with a preexponential factor of 6.5 × 10−7 cm2 molecule−1 s−1 [12].

Although the values for desorption energy and the preexponential factor differ significantly
from author to author, the measurements are consistent with each other, as assuming a particular
preexponential factor gives consistent values for the desorption energy for all measurements. The large
scatter in the values for ν can be explained by the extreme sensitivity to slightly different peak maximum
temperatures that result in a large uncertainty for this parameter. Simulations of the spectra are given
in the Supplementary Materials, using a two-state model, and give reasonable fits to the experimental
curves (Figure S4).

2.3. CO Interaction with Pt{110}

Figure 6 shows a high-temperature first-order desorption peak (β1) at 490 K for all coverages,
with a second peak evolving at 398 K (β2). This behavior is consistent with literature [37–39]. Using the
Redhead equation assuming a frequency prefactor of ν = (4.5 ± 1.5) × 1014 s−1 (averaged from
values of ν = 6 × 1014 s−1 found by Fair and Madix [39] and ν = 3 × 1014 s−1 found by Engstrom
and Weinberg [16]), a value of Ed = 143 (±4) kJ/mol for the desorption activation energy for the β1

desorption peak in the high-coverage region was obtained. This is in reasonable agreement with their
values of Ed = 148 kJ/mol [39] and Ed = 151 (±6) kJ/mol [16], but is rather different from the value of
Ed = 129 kJ/mol found by Comrie and Lambert [37] who assumed a frequency prefactor of ν = 1013 s−1.
Again, recalculating their experimental results with ν = 4.5 × 1014 s−1 gives a value of Ed = 144 kJ/mol,
which is in perfect agreement with our result. For the low-temperature β2 desorption peak, a desorption
activation energy of Ed = 102 (±3) kJ/mol was calculated assuming a frequency prefactor of ν = 1013 s−1.
This value is in agreement with the values of Ed = 108 kJ/mol found by Bonzel and Ku [38] and Ed =

105 kJ/mol found by Comrie and Lambert [37].
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was dosed at 200 K with a CO pressure of 5 × 10−8 mbar. The heating rate was 3 K/s.

Our results for the initial sticking probability of CO, and its saturation coverage, as a function of
crystal temperature, on Pt{110} are shown in Figure 7.
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Figure 7. Initial sticking probability and saturation uptake of CO as a function of crystal temperature.

At 300 K, we found a value of 0.80 ± 0.04, which is in good agreement with the values of 0.8 found
by Fair and Madix [39] and 0.83 found by Wartnaby et al. [11]. Between 330 and 480 K, the initial
sticking probability (s0) stays almost constant at 0.62 ± 0.04. This is consistent with the conclusion of
Fair and Madix [39] that the initial sticking probability is temperature independent over a wide region,
although our values show an earlier decline in s0 at temperatures above 480 K and the onset of a rise
below 320 K. Above 480 K, the initial sticking probability falls steeply to 0 at 570 K, due to entering the
tail of the β1 TPD desorption peak with a peak maximum temperature of 490 K. The behavior of the
initial sticking probability confirms the similarity in the s0 values found for several different noble
metal surfaces (Rh{110}, Pd{110}, Rh{111} and Pd{111} have values in the range 0.4–0.7, as seen in [40]
and references therein).

The saturation coverage values of the crystal for different temperatures were obtained from the total
CO uptake by normalizing to a saturation coverage of 0.88 ML at 300 K. Saturation coverage declines with
increasing temperature up to 490 K, the CO TPD peak maximum temperature. For higher temperatures,
it shows a slight drop to very low values, finally reaching zero coverage at 570 K.

The sticking probability curves of CO (an example is shown in Figure 8) show precursor-mediated
adsorption behavior [11]. CO is trapped into a weakly held mobile precursor state, which can be
described as a two-dimensional gas [39]. This mobility gives the possibility of finding sites for
adsorption on the surface even if the arrival site is blocked. Some of our sticking curves have been
fitted by the Kisliuk expression [41], Equation (4).

s
s0

=
1− θ

1 + (K− 1)θ
(4)

where s is the instantaneous sticking probability, s0 is the initial (zero coverage) sticking probability
and θ is the relative coverage of the crystal surface for a particular temperature, normalized to
saturation coverage. The parameter K describes the mobility of the precursor state with small values
for a highly mobile precursor and a value of K = 1 for an immobile precursor, which gives rise to the
Langmuir adsorption isotherm.
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The results for the temperature dependence of K are shown in Figure 9:
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Figure 9. The dependence of the Kisliuk precursor mobility parameters for CO adsorption on Pt{110}
with temperature.

It shows a strong tendency towards higher values and thus less mobile precursors with increasing
temperature, due to a shorter lifetime of the precursor state and a reduced number of site visits. Th value
of K = 0.11 (±0.01) found for 300 K is low compared to the value of 0.25 found by Wartnaby et al. [11].
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In contrast, a value of 0.13 at 327 K for CO adsorption on Pd{110} found by Jones et al. [38] fits well to
our values, again indicating similarity of these surfaces regarding CO adsorption.

2.4. CO Oxidation

Steady-state Temperature Programmed Reaction (TPR) experiments were carried out with different
CO/O2 ratios in the beam. Initially, when introduced to the clean surface at 373 K, the mixed beam
produces CO2 until the surface is covered with CO (Figure 10). With a high CO/O2 ratio, the CO2

evolution stops quickly (after ~25 s of reaction) due to surface poisoning with CO, whereas at a low
ratio it seems to reach near steady-state CO2 evolution.
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Figure 10. CO2 evolution during the introduction of a mixture of CO and oxygen on a clean Pt{110}
surface with a molecular beam at a constant temperature of 370 K. CO/O2 ratios are 0.3 (blue curve), 1.3
(red curve) and 3.3 (green curve).

If the CO poisoned surface is taken to higher temperatures when the CO desorption becomes
appreciable, oxygen can adsorb and thus CO oxidation is made possible (Figure 11). This “light-off” of
the steady-state reaction takes place in the temperature region between 460 and 510 K (which is also
the β1 CO desorption temperature range). At low CO/O2 ratios, the surface is not initially poisoned
with CO. The CO2 production shows therefore a steady decrease with temperature as the coverage of
CO decreases with increasing temperature. The highest rate is achieved with the ratio nearest to 1.

Angle-resolved CO oxidation measurements were performed at temperatures of 470–620 K,
slightly above the CO desorption temperature to avoid surface poisoning and to keep a steady state
of reaction. A high temperature was also necessary to keep the CO equilibrium coverage low, as at
temperatures above 250 K and CO coverages of more than 0.2 ML, the phase transition (1 × 2)→ (1 × 1)
takes place [9,42]. Steady-state experiments that were performed at room temperature or below, even
at CO/O2 ratios that should ensure that no surface poisoning occurred, showed too low a signal to
noise ratio and therefore could not be evaluated. For the angle-resolved measurements, the CO2 flux
was measured in the

[
110

]
plane. To achieve a high CO2 signal, a pressure ratio 1:1 of CO/O2 was used

in the beam.
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Figure 11. Pseudo-steady-state CO2 evolution while ramping the surface temperature at 4 K/s.
The crystal was supplied with a constant flux of CO and oxygen from the molecular beam. CO/O2 ratios
as in Figure 10.

The resulting curves showed a broad distribution over the measured angular range,
but, for temperatures above 470 K, three components are clearly visible. The curves were
deconvoluted into cosine power functions using a numerical least-square fit (Simplex and
Levenberg–Marquardt algorithms) to the function given in Equation (5).

I(θ) = I0 + I1 cosα1(θ− x1) + I2 cosα2(θ− x2) + I3 cosα3(θ− x3) (5)

with I(θ) the signal intensity for the crystal polar angle θ, I0 the baseline height, I1–I3 the peak heights,
α1–α3 their exponents and x1–x3 their angular positions. The two extreme temperatures are shown
in Figures 12 and 13, while the other scattering distributions at 523 and 573 K are given in the
Supplementary Materials (Figure S5a,b). The low temperature distribution is quite different from the
other three, which are all fairly similar in shape. The computed best fit parameters for the different
temperatures are listed in Table 1.

In all four cases two lobes were evident at angles of about ±16◦ from the Pt{110} surface normal,
appearing at approximately 74◦ and 106◦. We could not discriminate a crystal surface normal peak
in our data. The inclined angles for product evolution may be attributed to CO2 desorption normal
to the reaction sites on the {111} microfacets, and therefore shows sensitivity to the local structure in
the reaction, rather than average surface plane dependence. That is, the CO2 is generated at such sites
and desorbs directly over the lowest barrier directly into the gas phase in a direction perpendicular to
the local potential energy surface.

At the transition state of the reaction, the O-CO complex forms on a highly repulsive potential
energy surface with respect to the local facet and the formation of CO2 leads to ejection of the molecule
with excess kinetic energy (in comparison to thermal). This kinetic energy leads to a high velocity
perpendicular to the reaction site in comparison to lateral thermal motion and hence is characterized
by a high exponent in the cosine fits (typically α is 10–20).
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Figure 12. Angle-resolved CO oxidation experiment at T = 473 K. The CO2 signal intensity is plotted
as a function of the crystal polar angle. Three cosineα-shaped peaks are fitted simultaneously, and their
sum are shown as solid lines.
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Table 1. CO2 angular desorption parameters from fitting of profiles in steady-state CO oxidation from
Pt{110}-(1 × 2) at four surface temperatures. Angles x1–x3 are highlighted and R2, the coefficient of
determination, for each fit is given. Data at 523 and 573 K are shown in Figure S5a,b.

Temperature/K 473 523 573 623

I0 1.68 ± 0.86 1.14 ± 0.46 0.99 ± 0.51 2.44 ± 0.24
I1 0.64 ± 0.30 5.77 ± 0.60 6.78 ± 0.66 4.97 ± 0.42
x1 65.4 ± 1.6 43.2 ± 2.0 43.6 ± 2.1 44.0 ± 1.7
α1 130.6 ± 129.2 14.6 ± 3.7 12.2 ± 2.9 17.0 ± 3.0
I2 6.09 ± 0.98 7.06 ± 0.42 7.70 ± 0.66 7.70 ± 0.20
x2 73.9 ± 7.3 74.3 ± 1.4 74.2 ± 1.3 77.0 ± 1.1
α2 2.74 ± 0.94 19.1 ± 2.7 19.2 ± 2.2 15.0 ± 2.1
I3 3.32 ± 1.69 10.6 ± 0.5 11.9 ± 0.5 9.35 ± 0.33
x3 107.3 ± 0.1 105.8 ± 0.1 105.6 ± 0.1 107.2 ± 0.1
α3 10.9 ± 4.9 15.8 ± 1.6 14.5 ± 1.2 21.9 ± 1.3
R2 0.968 0.993 0.986 0.988
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The third peak in CO2 evolution that appears with the crystal oriented at ~44◦ does not correspond
to a facet or a surface normal. We believe that this peak is likely to be due to the angle dependence of
the absolute amount of produced CO2. The angle integrated mass spectrometer showed a maximum in
the CO2 production at the facing beam position, so the third peak can be attributed to this maximum.

In an angle-resolved TPD study, Matsushima et al. found desorption angles of ±25◦ for a CO2

formation peak at 310 K and ±23◦ for a CO2 formation peak at 410 K [20]. They explained the difference
between facet angles and desorption angles with effects of conducting electrons and surface distortions
(see Introduction). Their method to deconvolute the measured curves in single peaks was to fit two
peaks to the outer parts of the curves assuming symmetrical behavior and to subtract these two peaks
from the measured curve to get a third peak centered at the surface normal. For several reasons,
this approach is inappropriate for our data: at very grazing angles between surface and beam, the beam
is spread across the face of the crystal and will overspill the edges leading to a dramatic drop in
apparent reaction products until at an angle of 135◦ the beam will only hit the side of the crystal.
The steep decrease at high angles is therefore an artificial effect, as described in Figure S1. This inherent
asymmetry in our experimental geometry therefore dictates our analysis approach.

Despite these difficulties, the achieved angles for the lobes are only slightly below the values
obtained by Matsushima et al. [20,24], but, importantly, we ran a continuous angle-resolved experiment
under low coverage steady-state reaction conditions. At 470 K, there are no obvious peaks in the curve,
although the computed best fit also showed two peaks at ~±17◦ from the surface normal. It may
well be that at 470 K the surface coverage of CO is sufficient to initiate a partial (1 × 2) → (1 × 1)
phase transition. This would be expected to decrease the amount of CO2 that desorbs from the {111}
microfacets of the Pt{110}-(1 × 2) surface. The newly formed (1 × 1) surface has lower corrugation and
so will not show such distinct facet desorption.

Note that Neugebohren et al. [1] mapped velocity-resolved rates of carbon monoxide at stepped
platinum surfaces and found two distinct channels for reaction, being dominated at low temperatures by
the more active step sites and at high temperatures by the more abundant terrace sites. The temperature
switch between channels is at ~700 K under their supersonic conditions. Our work is in the temperature
regime below this, where step sites on an otherwise flat surface might be most active. Of course, in the
work here, effectively all sites are step sites on Pt{110}, but the {111}-facetted (1 × 2) surface dominates
the distribution of evolving, activated CO2 molecules.

3. Experimental

The experiments were carried out in an ultra-high vacuum chamber (VG Scientific,
East Grinstead, UK) (Figure 14) pumped by a diffusion pump (Edwards Ltd, Burgess Hill, UK)
and an additional titanium sublimation pump (VG) to give a base pressure below 10−10 mbar.

The Pt{110} crystal was mounted centrally in the chamber on a manipulator capable of moving
in the X, Y and Z directions as well as rotating the crystal around its polar and azimuthal axes
(Figure 14). Both axes were equipped with stepper motors (VG) to allow automated angle-resolved
experiments by preprograming sequences of temperature ramps and angular movements. The crystal
was held by two tungsten wires spot-welded to its side, which were also used for conductive heating.
For low-temperature experiments, the crystal could be cooled down to 120 K by liquid nitrogen cooling.
The temperature of the crystal was measured by a K-type thermocouple (Goodfellow, Cambridge, UK)
spot-welded to the rear face.



Catalysts 2020, 10, 1229 15 of 18

Catalysts 2020, 10, x FOR PEER REVIEW 15 of 18 

 

 
Figure 14. Schematic diagram of the molecular beam apparatus. The small insert illustrates the angle-
resolved experimental facility. 

The Pt{110} crystal was mounted centrally in the chamber on a manipulator capable of moving 
in the X, Y and Z directions as well as rotating the crystal around its polar and azimuthal axes (Figure 
14). Both axes were equipped with stepper motors (VG) to allow automated angle-resolved 
experiments by preprograming sequences of temperature ramps and angular movements. The crystal 
was held by two tungsten wires spot-welded to its side, which were also used for conductive heating. 
For low-temperature experiments, the crystal could be cooled down to 120 K by liquid nitrogen 
cooling. The temperature of the crystal was measured by a K-type thermocouple (Goodfellow, 
Cambridge, UK) spot-welded to the rear face. 

Gases could be dosed onto the crystal surface either via leak valves (VG) (background dosing) 
or using a thermal molecular beam attached to the chamber, normally operated at ~40 mbar source 
pressure. The beam could be shut off using a computer-controllable shutter inside the beam system 
and a gold flag in the chamber right between beam nozzle and crystal. The beam was sharply 
collimated to give a spot of 3-mm diameter. The resulting beam flux was calculated from the sticking 
measurements with O2 to be F = 1.2 (±0.4) × 1018 molecules m−2 s−1 for a source pressure of 40 mbar. 
For this calculation, an O2 “saturation” coverage of 0.6 was assumed in the temperature range of 300–
400 K. 

Angle-integrated experiments could be performed using a quadrupole mass spectrometer (MS, 
Hiden Analytical, Warrington, UK) built into the main chamber without line of sight of the sample 
to analyze the background gas. A second quadrupole mass analyzer was situated in a differentially 
pumped side chamber at an angle of 45° to the molecular beam behind two collimator apertures to 
allow angle-resolved observations. Both spectrometers ran concurrently and analog inputs on both 
instruments were used to record sample temperature, orientation and molecular beam pressure 
synchronized with the MS data. 

The chamber was further equipped with an argon ion sputter gun and a LEED/AES unit for 
crystal cleaning and confirming surface order and cleanliness, respectively. The crystal was cleaned 
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Gases could be dosed onto the crystal surface either via leak valves (VG) (background dosing) or
using a thermal molecular beam attached to the chamber, normally operated at ~40 mbar source pressure.
The beam could be shut off using a computer-controllable shutter inside the beam system and a gold
flag in the chamber right between beam nozzle and crystal. The beam was sharply collimated to give
a spot of 3-mm diameter. The resulting beam flux was calculated from the sticking measurements with
O2 to be F = 1.2 (±0.4) × 1018 molecules m−2 s−1 for a source pressure of 40 mbar. For this calculation,
an O2 “saturation” coverage of 0.6 was assumed in the temperature range of 300–400 K.

Angle-integrated experiments could be performed using a quadrupole mass spectrometer
(MS, Hiden Analytical, Warrington, UK) built into the main chamber without line of sight of the sample
to analyze the background gas. A second quadrupole mass analyzer was situated in a differentially
pumped side chamber at an angle of 45◦ to the molecular beam behind two collimator apertures
to allow angle-resolved observations. Both spectrometers ran concurrently and analog inputs on
both instruments were used to record sample temperature, orientation and molecular beam pressure
synchronized with the MS data.

The chamber was further equipped with an argon ion sputter gun and a LEED/AES unit for
crystal cleaning and confirming surface order and cleanliness, respectively. The crystal was cleaned
by sputtering with argon ions, followed by heating in oxygen at 700 K and 5 × 10−8 mbar for 30 min.
Finally, the crystal was annealed at 970 K for 10 min. Cleanliness of the surface was checked by LEED
(VG) and oxygen TPD measurements. The sample was aligned by hand while viewing the LEED to
give datums for azimuth and polar angle motors.

Temperature programmed desorption, and sticking experiments using the King and Wells
technique [25] could be performed in the machine. Temperature programmed reaction (TPR)



Catalysts 2020, 10, 1229 16 of 18

experiments could also be made on a pseudo-steady-state basis by beaming gases at the crystal surface
while ramping surface temperature [26]. Angle-resolved experiments could be performed under
steady-state conditions by beaming gas at the crystal surface while automatically turning the crystal
around the polar axis and recording the angle-dependent flux of molecules with the mass spectrometer
in the side chamber. Typically, this could be achieve in 200 s. The yield curves were normalized by
baseline subtraction and division by the beam source pressure (there is a linear dependency of the
beam flux on the source pressure for P < 70 mbar) to obtain comparable values. They were averaged
over several experiments for noise reduction. Calibration of the sticking measurements is described in
the Supplementary Materials.

4. Conclusions

We constructed a simple thermal molecular beam reactor which can determine the angular
distribution of products from surface reactions under in-situ steady-state reaction conditions in a fast,
efficient manner. It can also be done in a pseudo-steady state, temperature-programmed manner.
Product scattering during CO oxidation could be achieved in about 200 s. The products are resolved
into two components at high temperature which desorb at ~±16◦, close to the normal to the {111}
microfacets of the Pt{110}-(1 × 2) surface. We determined the sticking probabilities and desorption
energies of oxygen and CO and show that reaction between them only occurs at steady state at low
CO:O2 ratios at low temperature, but can occur at high CO:O2 ratios at elevated temperature.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/11/1229/s1,
Figure S1: Apparent initial sticking probability s0,app of oxygen at 420 K, Figure S2: He, Ar and O2 scattering from
Pd(111) at 373, 573 and 873 K, respectively, Figure S3: Sticking probability of oxygen as a function of uptake for
different sample temperatures, Figure S4: Simulated oxygen TPD spectra, Figure S5: Angle-resolved CO oxidation
at 523 and 573 K surface temperature.
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