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Abstract 

Spare parts are often associated with intermittent demand patterns that render their forecasting a 

challenging task. Forecasting of spare parts demand has been researched through both parametric and 

non-parametric approaches. However, little has been contributed in this area from a Bayesian 

perspective, and most of such research is built around the Poisson demand distributional assumption. 

However, the Poisson distribution is known to have certain limitations and, further, empirical evidence 

on the inventory performance of Bayesian methods is lacking. In this paper, we propose a new Bayesian 

method based on compound Poisson distributions. The proposed method is compared to the Poisson-

based Bayesian method with a Gamma prior distribution as well as to a parametric frequentist method 

and to a non-parametric one. A numerical investigation (on 7,400 theoretically generated series) is 

complemented by an empirical assessment on demand data from about 3,000 stock keeping units in the 

automotive sector to analyse the performance of the four forecasting methods. We find that both 

Bayesian methods outperform the other methods with a higher inventory efficiency reported for the 

Poisson Bayesian method with a Gamma prior. This outperformance increases for higher demand 

variability. From a practical perspective, the outperformance of the proposed method is associated with 

some added complexity. We also find that the performance of the non-parametric method improves for 

longer lead-times and higher demand variability when compared to the parametric one.  

 

Keywords: forecasting, inventory, intermittent demand, Bayesian method, empirical investigation. 
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1. Introduction 

Demand forecasting and inventory control of spare parts, or any items associated with 

intermittent demand, are challenging tasks for inventory managers. This is mainly due to the 

compound nature of such demand patterns (demand occurrences are interspersed by intervals 

of no demand at all), which are often associated in practice with a lack of historical data to 

enable reliable estimates for the parameters of the assumed demand distribution (Syntetos et 

al., 2016; Babai et al., 2020; Ruiz et al., 2020). Different approaches have been proposed in the 

literature to address these issues, originating in the frequentist, Bayesian, and non-parametric 

domains. Parametric approaches, both frequentist and Bayesian, assume the lead-time demand 

distribution to be known; the former further assume that the parameters of that distribution are 

unknown (yet not subject to change over time) and need to be forecasted, and the latter regard 

the data as known, having been observed from the realised sample, and the parameters unknown 

being probabilistically described through the prior distribution. Under the non-parametric 

approach, no particular distribution is assumed for the lead-time demand (though the 

distribution is assumed to remain the same over time) and bootstrapping is the most commonly 

used method, which consists of building an empirical distribution based on sampling from past 

demand data. There is a large body of literature that deals with parametric and non-parametric 

forecasting approaches, extending as far back as the 1970s. The reader is referred to Syntetos 

et al. (2016) and Hasni et al. (2019a) for an overview on these approaches.   

The focus of this paper is the Bayesian approach, which uses the Bayes Theorem to update a 

prior distribution (probabilities specified prior to data collection) into a posterior distribution 

(the probabilities following data analysis), by incorporating information (likelihoods) provided 

by the observed data. The Bayesian approach, with its own statistical theory, has been applied 

successfully in many areas and forecasting contexts. The ability to combine all information and 
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sources of uncertainty, and revise and update it as more data are acquired is particularly 

promising and appealing when (1) data are scarce and (2) there are considerable changes in the 

data. 

In the spare parts forecasting context, the Bayesian approach is often used and justified by the 

fact that most of the parts do not exhibit a constant failure rate (Dekker et al., 2013; Boutselis 

and McNaught, 2019). In fact, in practice the usage context is unlikely to stay the same 

throughout the lifecycle of a system, which renders the failure rate of a part changing over time. 

Moreover, the failure rate is often unknown either due to the absence of operational data at the 

time of initial provisioning, or due to the lack of data when changes in environment occur. 

Under such changes and uncertain conditions, parametric frequentist and non-parametric 

forecasting approaches are not adequate due to the assumption of constant demand distribution 

parameters over time. It is also worth pointing out that the Bayesian approach provides 

practitioners with an opportunity to incorporate intuition and previous experience in a 

quantifiable form by selecting an appropriate choice of the prior distribution. Practitioners can 

select a prior with a value for the variance that reflects their perceived level of uncertainty about 

the distribution of demand. As demand evolves, the observed data are used to update the 

likelihood function and, as a result, the posterior distribution of demand.  

There are a number of researchers that have used a Bayesian approach to forecast lead-time 

demand (e.g., Silver, 1965; Brown Jr and Rogers, 1973; De Wit, 1983; Azoury and Miller, 

1984; Azoury, 1985; Karmarkar, 1994; Popovic, 1987; Dolgui and Pashkevich, 2008; Yelland, 

2010). Within this research stream, Karmarkar (1994) developed a heuristic model that can be 

used to estimate the location of the percentiles directly in a Bayesian approach. The heuristic 

model thus tries to approximate upper-tail probabilities with a simple functional form while 

ignoring the general shape of the demand distribution. By estimating the location of the 
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percentiles directly, this approach seeks to avoid the pitfall of fitting a model using information 

about the centre of the distribution and then making inferences about the upper-tail 

probabilities. Karmarkar (1994) showed the better performance of the heuristic in achieving a 

target service level when compared to the case of Normal distribution with smoothed Mean 

Absolute Deviation (MAD) for estimating the demand (forecast error) variance. 

Aronis et al. (2004) proposed a Bayesian model based on the work of Popovic (1987) in which 

demand has a Poisson distribution and the prior conjugate distribution is Gamma. This leads to 

a posterior distribution equivalent to the negative binomial distribution (NBD). Although a 

Poisson distribution, with only one parameter, is a limited representation of slow-moving 

demand, this is compensated by the choice of a Gamma prior with two parameters to incorporate 

more information, and the resulting posterior distribution of NBD is much better supported with 

empirical evidence (Syntetos and Boylan, 2006; Syntetos et al., 2013). From a theoretical 

perspective, the proposed Bayesian method has the advantage of offering a closed form 

expression of the lead-time demand distribution that can be used easily to calculate a base-stock 

policy’s parameter. However, to the best of our knowledge the empirical performance of this 

Poisson-based Bayesian method has never been evaluated. Filling this gap constitutes one of 

the objectives of our paper. Dolgui and Pashkevich (2008) have proposed a Bayesian method 

using the Beta distribution as the prior and the Binomial distribution as the likelihood function, 

thus obtaining the beta-binomial distribution as the posterior distribution. However, this 

approach presents some challenges with respect to the estimation of the parameters of the 

posterior distribution (Dolgui and Pashkevich, 2008). In addition, there is no theoretical or 

empirical evidence in support of the Beta-Binomial distribution for intermittent demands 

(Eaves, 2002). This method will therefore not be considered further in this paper. 
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Hence, the motivation behind this research work is based on two arguments. First, the Bayesian 

approach is intuitively appealing when forecasting spare parts demand due to the appropriate 

assumption of demand distribution parameters changing over time, which reflects the changing 

failure rates. Second, there is strong empirical evidence in support of the compound Poisson 

demand assumption when modelling lead-time demand in a spare parts context (Syntetos et al., 

2013; Lengu et al., 2014). It seems natural then to propose a Bayesian method based on such 

distribution. Although in this case there is no known conjugate prior that leads to a posterior 

distribution in a closed form, we use an approximate likelihood function to circumvent the issue.  

It enables us to calculate the order-up-to-level without much loss of information on the observed 

data and in a reasonable computational time. We will show that the proposed Bayesian method 

leads to a higher inventory efficiency than alternative parametric and non-parametric 

forecasting methods when a periodic order-up-to-level inventory control policy is considered 

under a cycle service level constraint. Hence, the contribution of this paper is three-fold: 

1. We propose a new Bayesian method based on compound Poisson demand; 

2. We evaluate the empirical performance of the Poisson-based Bayesian method presented in 

Aronis et al. (2004); 

3. We compare the empirical performance of the two Bayesian methods to a parametric 

frequentist and a non-parametric one. 

The remainder of the paper is organised as follows. Section 2 presents the proposed Bayesian 

method as well as the three benchmark forecasting methods In Section 3, we describe the 

numerical investigation conducted to compare the forecasting methods and present the 

numerical results. Section 4 is dedicated to an empirical investigation and the discussion of its 

findings. Conclusions and next steps of research are presented in Section 5. 
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2. Proposed Bayesian method and benchmarks 

In this section, we first present the proposed compound Poisson Bayesian method, hereafter 

referred to as the CPB method, followed by the three considered benchmarks. 

2.1 Proposed compound Poisson Bayesian (CPB) method 

We assume that demand follows a compound Poisson distribution, which means that demand 

arrivals follow a Poisson process and the demand sizes are variable and characterised by a 

demand size distribution (a single parameter distribution is assumed for simplicity). This is in 

line with the compound nature of intermittent demand patterns we consider in this paper. We 

also assume that a set of observed demand data is available over n periods. The following 

notation is used throughout the paper to present: 

𝜆: the Poisson distribution parameter (demand arrival rate) 

𝜃: the demand size distribution parameter 

𝐷 = {𝑦1, 𝑦2, … 𝑦𝑛}: the observed demand data at the end of period n 

𝑓(𝜆): the prior distribution of the underlying parameter 𝜆 

𝑓(𝜃): the prior distribution of the underlying parameter 𝜃 

ℒ(𝜆, 𝜃|𝑦1, 𝑦2, … 𝑦𝑛): the likelihood function of the parameters 𝜆 and 𝜃, given the observed data 

{𝑦1, 𝑦2, … 𝑦𝑛} 

L: the replenishment lead-time 

St: the order-up-to-level at period t. 

If the two parameters (𝜆 and 𝜃) are assumed to be independent, then based on Bayes Theorem 

the posterior predictive distribution of demand 𝑦 given the observed data 𝐷 = {𝑦1, 𝑦2, … 𝑦𝑛}, 

denoted by 𝑃(𝑦|𝐷), is given by: 

𝑃(𝑦|𝐷) = ∫ ∫ 𝑃(𝑦|𝜆, 𝜃) (
𝑃(𝐷|𝜆, 𝜃)𝑓(𝜆, 𝜃)

𝑃(𝐷)
) 𝑑𝜆𝑑𝜃 
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= ∫ ∫ 𝑃(𝑦|𝜆, 𝜃) (

𝑃(𝐷|𝜆, 𝜃)𝑓(𝜆)𝑓(𝜃)

∫ ∫ 𝑃(𝐷|𝜆, 𝜃)𝑓(𝜆, 𝜃) 𝑑𝜆𝑑𝜃
) 𝑑𝜆𝑑𝜃 

∝ ∫ ∫ 𝑃(𝑦|𝜆, 𝜃) 𝑃(𝐷|𝜆, 𝜃)𝑓(𝜆)𝑓(𝜃)𝑑𝜆𝑑𝜃 

= ∫ ∫ 𝑃(𝑦|𝜆, 𝜃) ℒ(𝜆, 𝜃|𝐷)𝑓(𝜆)𝑓(𝜃)𝑑𝜆𝑑𝜃 

= ∫ ∫ 𝑃(𝑦|𝜆, 𝜃) ℒ(𝜆, 𝜃|𝑦1, 𝑦2, … 𝑦𝑛)𝑓(𝜆)𝑓(𝜃)𝑑𝜆𝑑𝜃                                                   (1) 

Note that the missing proportionality constant ∫ ∫ 𝑃(𝐷|𝜆, 𝜃)𝑓(𝜆, 𝜃) 𝑑𝜆𝑑𝜃 can always be 

deduced from the fact that 𝑃(𝑦|𝐷) is a probability density and it must therefore integrate to 

one. 

The likelihood function ℒ(𝜆, 𝜃|𝑦1, 𝑦2, … 𝑦𝑛) = ∏ ℒ(𝜆, 𝜃|𝑦𝑖)
𝑛
𝑖=1  is a product of 𝑛 compound 

Poisson distributions; the likelihood function is not a compound distribution (i.e. it is not 

conjugate) and it cannot be expressed in a simple form (for example, in terms of a sufficient 

statistic like the mean). As 𝑛 increases, it becomes increasingly more difficult to derive this 

function. An alternative would be to use numerical integration methods based on analytic 

approximations or quadrature. However, the computational effort involved would be 

considerable. Therefore, in this paper we propose a different approach, which requires much 

less computational effort. This approach takes advantage of the fact that compound Poisson 

distributions are Levy processes and thus infinitely divisible (Sato, 1999). More specifically, 

let us suppose that 𝑦𝑖~𝑓(𝜆, 𝜃)where 𝑓(𝜆, 𝜃) is the probability mass function of a compound 

Poisson distribution, 𝜆 is the arrival parameter and 𝜃 is the event size parameter. Furthermore, 

let 𝑛 be a fixed rational number and let 𝑇 = ∑ 𝑦𝑖
𝑛
𝑖=1 . Then 𝑇~𝑓(𝑛𝜆, 𝜃). 

The proof of this result for the individual compound Poisson distributions is summarised in 

Appendix A. More details of the proof can be found in Johnson et al. (2005). 
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Instead of taking the likelihood function ℒ(𝜆, 𝜃|𝑦1, 𝑦2, … 𝑦𝑛) which is a function of all 𝑛 

observations {𝑦1, 𝑦2, … 𝑦𝑛}, we use the likelihood function ℒ(𝜆, 𝜃|𝑇) where 𝑇 = ∑ 𝑦𝑖
𝑛
𝑖=1 . Our 

likelihood function will thus be a single compound Poisson distribution with parameters 𝑛𝜆 and 

𝜃. The likelihood function ℒ(𝜆, 𝜃|𝑇) only considers the total of the observations and, as such, 

it does not contain as much information as the function ℒ(𝜆, 𝜃|𝑦1, 𝑦2, … 𝑦𝑛) which considers all 

the individual observations. In number theoretic terms, the different possible combinations of 

observations {𝑦1, 𝑦2, … 𝑦𝑛} that sum up to 𝑇 are simply partitions of the number. 

It is important to point out that the use of the likelihood function ℒ(𝜆, 𝜃|𝑇) might involve some 

loss of information about the individual observations but the prior distributions should still 

allow us to get an accurate predictive distribution. Let us take, for example, the case where 𝑇 =

∑ 𝑦𝑖
20
𝑖=1 = 100. Considering just two extremes, the total 𝑇 could have come from a single 

observation of 100 or from 20 observations of size 5. The likelihood function ℒ(𝜆, 𝜃|𝑇) places 

equal weight on these two outcomes. If the posterior predictive distribution is based only on 

this likelihood function, it would be fair to conclude that it would not be particularly 

informative. The posterior predictive distribution, however, will also incorporate our beliefs 

about the parameters through the prior distribution. Finally, it should be noted that in practice 

most companies store demand data periodically, which means that data are somehow 

aggregated over a certain time period, and it is not straightforward to estimate the parameters 

of a continuous compound Poisson process (Prak et al., 2018). Therefore, our idea of 

aggregating the demand data to calculate the likelihood function is in line with the research 

dealing with inventory models under the compound Poisson process.  

For the purpose of the numerical and empirical investigation, the prior distribution used for the 

parameter 𝜆 is 𝑓(𝜆) = 𝑒−𝜆, 0 < 𝜆 < ∞. This distribution reflects the intermittent nature of 

demand arrivals and the domain of the distribution is the same as that of the parameter 𝜆. The 
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prior distribution for the parameter 𝜃 is 𝑓(𝜃) = 1. This is chosen for simplicity purposes in the 

numerical investigation. 

Based on these assumptions about the prior distributions, the posterior predictive distribution 

can be expressed as: 

𝑃(𝑦|𝐷) ∝ ∫ ∫ 𝑃(𝑦|𝜆, 𝜃, 𝐷) 𝑓(𝜆, 𝜃|𝐷)𝑑𝜆𝑑𝜃 = ∫ ∫ 𝑃(𝑦|𝜆, 𝜃, 𝐷) 𝑒−𝜆𝑑𝜆𝑑𝜃 

∝ ∫ ∫ 𝑃(𝑦|𝜆, 𝜃) 𝑃(𝐷|𝜆, 𝜃)𝑒−𝜆𝑑𝜆𝑑𝜃                                                                            (2) 

Without loss of generality, we assume that demand sizes follow a Geometric distribution, i.e. a 

Poisson-Geometric demand distribution is considered. The Geometric distribution is largely 

used in the inventory literature to model transaction sizes due to strong theoretical and empirical 

evidence in its support (Watson, 1987; Eaves, 2002; Teunter et al., 2010). Moreover, a strong 

goodness-of-fit of the Poisson-Geometric distribution (also known as the stuttering Poisson) is 

empirically demonstrated in the literature through investigations based on demand histories of 

more than 13,000 SKUs (Syntetos et al., 2013; Lengu et al., 2014). Hence, for the Poisson-

Geometric demand distribution, we have: 

𝑃(𝑦|𝐷) ∝ ∫ ∫ [𝑒−𝜆(1 − 𝜃)𝑦 ∑ (
𝑦 − 1
𝑗 − 1

)
[𝜆𝜃 (1 − 𝜃)⁄ ]𝑗

𝑗!

𝑦

𝑗=1
] × 

× [𝑒−𝑛𝜆(1 − 𝜃)𝑇 ∑ (
𝑇 − 1
𝑗 − 1

)
[𝑛 𝜆𝜃 (1 − 𝜃)⁄ ]𝑗

𝑗!
𝑇
𝑗=1 ] × 𝑒−𝜆𝑑𝜆𝑑𝜃        (3)  

For the demand over lead-time period 𝐿 (plus one review period, i.e. L+1 periods, to account 

for the periodic review in the inventory system we consider), the predictive distribution is given 

by: 

𝑃(𝑦|𝐷) ∝ ∫ ∫ [𝑒−𝜆(𝐿+1)(1 − 𝜃)𝑦 ∑ (
𝑦 − 1
𝑗 − 1

)
[𝜆(𝐿 + 1)𝜃 (1 − 𝜃)⁄ ]𝑗

𝑗!

𝑦

𝑗=1
] × 

× [𝑒−𝑛𝜆(1 − 𝜃)𝑇 ∑ (
𝑇 − 1
𝑗 − 1

)
[𝑛 𝜆𝜃 (1 − 𝜃)⁄ ]𝑗

𝑗!
𝑇
𝑗=1 ] × 𝑒−𝜆  𝑑𝜆𝑑𝜃                             (4) 
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2.2 Benchmark methods 

The inventory performance of the CPB method is compared to three different alternatives: (i) 

the Poisson Bayesian method put forward by Aronis et al. (2004), (ii) a parametric frequentist 

method, and (iii) a non-parametric forecasting method. These are presented below. 

• Poisson Bayesian method 

In the Aronis et al. (2004)’s Bayesian method, hereafter referred to as the PGB (Poisson Gamma 

Bayesian) method, the demand is Poisson distributed with parameter  and the prior distribution 

of  is Gamma with shape and scale parameters  and   respectively. The posterior predictive 

distribution of the demand per period when n demands 𝑦𝑖 have been observed, is NBD with a 

shape parameter  +∑ 𝑦𝑖
𝑛
𝑖=1  and scale parameter 

 + n

 + n+1
 (Baker and Kharrat, 2018). 

In order to evaluate the empirical performance of this method, we need to estimate the 

parameters  and . To do so, we use the method of moments. Let ̂ and ̂ be the estimates of 

 and  when n demands 𝑦𝑖 are observed. Therefore, at each period the mean and variance of 

the demand, denoted by 𝑚𝑑 and 𝑣𝑑, respectively, are given by 

𝑚𝑑 =

(̂ + ∑ 𝑦𝑖
𝑛
𝑖=1 )(1 −

̂ +  𝑛

̂ +  𝑛 + 1
)

(
̂+ n

̂+ n+ 1
)

=
̂+∑ 𝑦𝑖

𝑛
𝑖=1

̂+ n
                                    (5) 

and  

𝑣𝑑 = (̂+∑ 𝑦𝑖

𝑛

𝑖=1

) (1-
̂+ n

̂+ n + 1
)(

̂+ n

̂+ n+ 1
)2 =

̂ +∑ 𝑦𝑖
𝑛
𝑖=1

(̂+ n)
+
̂ +∑ 𝑦𝑖

𝑛
𝑖=1

(̂+ n)
2              (6) 

which leads to 

̂ =
𝑚𝑑

2

𝑣𝑑 − 𝑚𝑑
− ∑ 𝑦𝑖 =

𝑛

𝑖=1

𝑚𝑑
2

𝑣𝑑 − 𝑚𝑑
− 𝑛𝑚𝑑                                            (7) 
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̂ =
𝑚𝑑

2

𝑣𝑑 − 𝑚𝑑
− ∑ 𝑦𝑖 =

𝑛

𝑖=1

𝑚𝑑

𝑣𝑑 − 𝑚𝑑
− 𝑛                                               (8) 

Equations (7) and (8) are used to calculate the shape and scale parameters of the negative 

binomial distribution of the demand per period. In order to calculate the shape parameter of the 

negative binomial distribution of the demand over (L+1) periods, the shape parameter should 

be multiplied by (L+1). The scale parameter remains the same. Hence, under the PGB 

forecasting method, a closed form expression of the lead-time demand distribution can be used, 

which enables to easily calculate the inventory policy parameters. The detailed calculation of 

the inventory policy parameter under the PGB method will be provided further in Section 3.1. 

• Parametric and non-parametric forecasting methods 

The parametric frequentist forecasting method considered as benchmark in this paper is the 

Syntetos-Boylan Approximation, hereafter referred to as SBA (Syntetos and Boylan, 2005); it 

is the method with most empirical evidence in its support. It constitutes a bias-correction 

modification to Croston’s method (Croston, 1972). The forecast of the demand at period t using 

SBA, denoted by 𝐹𝑡 , is given by: 𝐹𝑡 = (1 − α 2) (𝑍̂𝑡 𝑇̂𝑡)⁄⁄  where 𝑍𝑡 and 𝑇𝑡 are the actual 

demand size and demand interval at period t respectively, 𝑍̂𝑡 and  𝑇̂𝑡 are their respective 

estimates calculated using exponential smoothing and α a smoothing constant. Note that the 

update of the demand sizes and intervals take place only when demand occurs. The mean and 

variance of the lead-time demand are estimated by multiplying the forecast and the smoothed 

mean squared forecast error of the demand per period by (𝐿 + 1). 

The non-parametric method considered is the one proposed by Willemain, Smart and Schwarz 

(2004), hereafter referred to as WSS. WSS is a bootstrapping method that randomly samples, 

with replacement, (L+1) demand values from historical information. A two-state (zero / non-

zero) Markov process is used to model transition probabilities between the sampled (L+1) 
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demand values. The sampling procedure is replicated many times to build an empirical 

distribution of the lead-time demand.  

The SBA and WSS methods have been shown in the literature to be (among) the best 

performing ones for intermittent demand patterns and their operation is described in more detail 

in Syntetos et al. (2015) and Hasni et al. (2019b). More details on the calculation of the 

inventory policy parameters under SBA and WSS and their implementation will be given in 

Section 3.1. 

In the next two sections, we conduct both a numerical and an empirical investigation to analyse 

the inventory performance of the methods discussed thus far in the paper. The former allows 

for the consideration (by design) of a diverse and wide range of demand characteristics. The 

latter offers the ‘credibility’ associated with analysing empirical data. 

3. Numerical investigation 

3.1 Data and experimental settings 

The theoretical generated dataset used for the purpose of the numerical investigation consists 

of 7,400 demand series where each demand series is 100 periods long. The demand series are 

randomly generated from different compound Poisson distributions: 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) −

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝜃), 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) − 𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑆𝑒𝑟𝑖𝑒𝑠(𝜑) and 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) − 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜌). 

These distributions are chosen in conjunction with a well-informed selection of parameters to 

generate demand data with a reasonably wide range of demand arrival rates and transaction size 

modality and variability. In order to ensure that demand arrival is intermittent, we have 

considered the values of the parameter 𝜆 in the range 0.05-1.95, step 0.1. The transaction size 

variability ranges from 0.05 to 4.95 and the transaction size modality from 1 to 25. A sample 

of five demand series is generated for each combination of the parameter values to reduce 

sampling error. 



13 

 

To evaluate the performance of the four forecasting methods, as commonly performed in the 

literature, we consider their stock control implications, which are reflected by the stock on hand 

and backorders and their achieved service level (Teunter and Duncan, 2008; Teunter et al., 

2011; Khan et al., 2019; Klibi et al., 2018; Turrini and Meissner, 2019). We do so by 

considering an order-up-to-level (𝑇, 𝑆) inventory control policy, where the optimal order-up-

to-level is calculated to satisfy a target cycle service level (CSL). The CSL is the fraction of 

replenishment cycles in which all of the demand can be met from stock (Silver et al., 2017). 

Other service measures, such as the fill rate or the ready rate, are not considered because the 

bootstrapping WSS approach does not allow direct calculation of such measures. Under this 

policy, every T periods the inventory position is reviewed and an order is triggered if it is found 

to be below the order-up-to-level S (to raise it up to S). The order arrives after a lead-time L and 

any demand that is not satisfied from stock on-hand is backordered. Three lead-time values are 

considered in the numerical investigation L = 1, 3 and 5. Three target CSLs are used, namely: 

CSL = 85%, 90% and 95%.  

We (reasonably) assume that the inventory review is made every period (i.e. T = 1). At each 

period, the sequence of events is as follows: demand occurs (assumed at the end of the period), 

net inventory levels are determined, a new order is placed and an order (placed L periods ago) 

is received.  

Under the SBA forecasting method, the first 25 observations are used to initialise the 

forecasting method (using the mean demand over the within sample of 25 observations) and the 

next 25 observations are used to optimise the smoothing constants (to obtain the minimal mean 

square error). An out-of-sample with the last 50 observations is used to report performance. In 

order to calculate the optimal order-up-to-level, we assume that the lead-time demand follows 

a Negative Binomial distribution (NBD). Hence, at each period t the order-up-to-level tS is 
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calculated as )(1

,1, CSLS tLSBAt

−

+=  where (.)1

,1,

−

+ tLSBA  is the inverse of the cumulative NBD 

function of the demand over L+1 periods. The mean and variance of the NBD are calculated as  

µ𝑆𝐵𝐴,𝐿+1,𝑡 = (𝐿 + 1) ∗ 𝐹𝑡  and 𝜎𝑆𝐵𝐴,𝐿+1,𝑡
2 = (𝐿 + 1) ∗ 𝑀𝑆𝐸𝑡 respectively, where 𝐹𝑡 and 𝑀𝑆𝐸𝑡 

are the forecast and the smoothed mean squared forecast error per period calculated using SBA. 

Under the WSS method, a sampling with 1,000 replications is used to generate the empirical 

distribution as in Syntetos et al. (2015) and Hasni et al. (2019b). In both cases, a within sample 

of 50 periods of each demand series is considered to initialise the forecasting and inventory 

parameters. The determination of the order-up-to-level at any period t in the out-of-sample 

when WSS is considered is schematically represented in Figure 1. Since the empirical 

distribution is discrete and reconstructed upon observed lead-time values only, some percentiles 

are not readily available. In such cases, linear interpolation is undertaken in order to ‘estimate’ 

the values of interest.  

 
Figure 1. Determination of St for the lead-time (+1) demand distribution. 

 

Under the PGB approach, at each period t in the out-of-sample, if n demand observations 𝑦𝑖 (𝑖 =

1,2, … 𝑛) are available with mean 𝑚𝑑,𝑡 and variance 𝑣𝑑,𝑡, we first calculate ̂𝑡 =
𝑚𝑑,𝑡

2

𝑣𝑑,𝑡−𝑚𝑑,𝑡
−

𝑛 𝑚𝑑,𝑡  and  ̂
𝑡
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𝑣𝑑,𝑡−𝑚𝑑,𝑡
− 𝑛 . Hence, the order-up-to-level tS is calculated as 

)(1

,1 CSLS tLt

−

+=  where (.),1 tL+  is the cumulative NBD function (of the lead-time demand) 
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probability 

St 

CSL 



15 

 

that has a shape parameter  𝑟𝑡 = (𝐿 + 1)(̂𝑡 +∑ 𝑦𝑖)
𝑛
𝑖=1  and a scale parameter 𝑝𝑡 =

̂𝑡 + n

̂𝑡 + n+1
. 

Note that the NBD function has equivalently a mean and variance given by µ𝐿+1,𝑡 =
𝑝𝑡 𝑟𝑡

1−𝑝𝑡
 and  

𝜎𝐿+1,𝑡
2 =

𝑝𝑡 𝑟𝑡

(1−𝑝𝑡)2  respectively. Also note that under both the PGB and SBA approaches, when 

NBD is used, the variance should be higher than the mean, therefore if the data give a variance 

lower than the mean, we assume  𝜎𝐿+1,𝑡
2 = 1.05 ∗ µ𝐿+1,𝑡 and 𝜎𝑆𝐵𝐴,𝐿+1,𝑡

2 = 1.05 ∗ µ𝑆𝐵𝐴,𝐿+1,𝑡. 

Under the CPB approach, if n demand observations 𝑦𝑖 are available (at any period t) with a sum 

𝑇 = ∑ 𝑦𝑖
𝑛
𝑖=1 , then the optimal order-up-to-level St is given by: 

==


− tt SS

yy

DyPCSLDyP
00

)|()|(
1

, 

where 𝑃(𝑦|𝐷) is calculated as described in Section 2.1 taking into account the normalizing 

constant. 

At the end of each period t, the net stock 𝑖𝑡 is calculated using: 𝑖𝑡 = 𝑖𝑡−1 + 𝑄𝑡−𝐿−1 − 𝐷𝑡 where 

𝑄𝑡−𝐿−1 is the order made at the end of period t-L-1 (received at the end of period t-1) and 𝐷𝑡 is 

the demand occurring at period t. The stock on hand 𝑖𝑡
+ = max (𝑖𝑡, 0), the backorders 𝑖𝑡

− =

max (−𝑖𝑡, 0) are calculated and the inventory position is updated using: 𝐼𝑡 = 𝑖𝑡 + ∑ 𝑄𝑡−𝑖
𝐿
𝑖=1 . 

Then the order is calculated as: 𝑄𝑡 = max (𝑆𝑡 − 𝐼𝑡 , 0). 

If the within sample is composed of N1 periods and the out-of-sample of N2 periods, then for 

each series the average stock on hand, 𝑆𝑂𝐻̅̅ ̅̅ ̅̅ , and average backorders, 𝐵̅, are calculated using 

(9). These averages per series are then calculated across all series for each forecasting method. 

𝑆𝑂𝐻̅̅ ̅̅ ̅̅ =
1

𝑁2
∑ 𝑖𝑡

+

𝑡=𝑁1+𝑁2

𝑡=𝑁1+1

 and 𝐵̅ =
1

𝑁2
∑ 𝑖𝑡

−

𝑡=𝑁1+𝑁2

𝑡=𝑁1+1

                                                    (9)                         

At each period t in the out-of-sample (i.e. t = 1..N2), we calculate CSLt using (10) to indicate 

that there is no backorder at period t. 

𝐶𝑆𝐿𝑡 = {
1  𝑖𝑓 𝑖𝑡

− = 0
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                           (10)                         
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Then, the average achieved CSL for each series is calculated using (11). An average is then 

calculated across all series for each forecasting method.  

𝐶𝑆𝐿 =
1

𝑁2
∑ 𝐶𝑆𝐿𝑡                                                     (11)

𝑡=𝑁1+𝑁2

𝑡=𝑁1+1

 

It should be noted that, when calculating the order-up-to-level St, the numerical evaluation of 

the predictive distribution in the CPB method is more computationally demanding than that of 

SBA. In fact, the former based on (4) requires a double numerical integration and more 

summations than the latter that is simply based on a simple numerical integration of the 

probability distribution function of NBD. These additional integrations and summations imply 

a higher complexity for the CPB method; it may be harder to be understood and implemented 

by practitioners than SBA. 

3.2 Numerical results 

For each forecasting method, target CSL and lead-time, we report in Table 1 the numerical 

results of the inventory performance. Table 1 shows the average stock on hand, the average 

backorders and the achieved CSL.  

 

Target 

CSL 

L = 1 L = 3 L = 5 

Stock on 

hand 
Backorders 

CSL 

(%) 

Stock on 

hand 
Backorders 

CSL 

(%) 

Stock on 

hand 
Backorders 

CSL 

(%) 

  

WSS 

  

85% 32.86 3.76 86.75 54.80 3.54 86.74 63.52 4.1 84.28 

90% 46.99 2.74 90.28 72.62 2.78 89.49 85.12 3.3 87.11 

95% 76.89 1.61 93.85 102.90 1.98 92.19 112.85 2.58 89.72 

  

SBA 

  

85% 33.84 3.73 83.92 54.30 3.54 82.47 69.57 3.57 80.74 

90% 47.09 2.70 88.94 69.67 2.69 87.08 85.75 2.79 85.32 

95% 72.00 1.62 93.92 96.66 1.73 92.08 167.6 1.84 91.12 

  

CPB 

  

85% 29.49 4.13 84.34 50.35 3.30 86.23 68.83 2.86 87.24 

90% 36.12 3.42 88.18 63.23 2.57 90.25 87.69 2.16 91.05 

95% 48.29 2.56 92.49 86.87 1.77 94.16 122.17 1.42 94.78 

  

PGB 

  

85% 32.00 3.65 87.65 52.14 3.16 88.84 68.63 2.91 89.33 

90% 44.45 2.61 91.52 68.49 2.26 92.18 87.68 2.08 92.53 

95% 68.21 1.49 95.53 98.00 1.31 95.76 121.18 1.21 95.84 

Table 1. Inventory performance of the four forecasting methods 
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The results in Table 1 show that for L = 1 and 3, the CPB method results in the lowest stock on 

hand. For L = 5, the stock on hand of the CPB method relatively increases and WSS leads to 

the lowest stock on hand. Obviously, the increase in the stock on hand leads to a decrease of 

the backorders. By looking at the achieved CSLs, the results show that the PGB method is the 

only one that achieves all the Target CSLs for all lead-times and our proposed Bayesian method 

achieves the Target CSL = 85% and CSL = 90% for L = 3 and 5. Furthermore, it is important 

to mention that the target CSL = 95% cannot be achieved by the WSS regardless of the lead-

time value. When the lead-time decreases, CSL achievement becomes easier, especially for L = 

1. This is expected; it is more likely for the WSS method to achieve target CSLs for lower lead-

times (Hasni et al., 2019b). With regard to the parametric frequentist method, the results show 

that SBA leads to an under-achievement of all targeted levels. The under-achievement is higher 

for high lead-times. This is also expected as SBA is associated with a (small) negative bias that 

leads to lower achieved CSLs (Syntetos et al., 2006).  

Since the results show that an increase of the stock on hand is accompanied with a decrease of 

the backorders and an increase in the achieved CSL, the outperformance of a particular method 

cannot be concluded. In order to deduce a more conclusive comparison of the performance of 

the four forecasting methods, it is necessary to perform an additional analysis based on their 

inventory efficiency. To do so, in what follows the relative performance of the forecasting 

methods is summarised in terms of inventory efficiency curves, as in Teunter et al. (2010) and 

Hasni et al. (2019c). Figures 2-4 show efficiency curves comparing average stock on hand and 

average backorders. This means that a forecasting method is more efficient if for a certain stock 

on hand, it leads to lower backorders. Efficiency curves considering the average stock on hand 

and the achieved CSL will be further presented. Figures 2-4 are for the lead-time L= 1, 3 and 5, 
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respectively. In each figure, the closer the curve is to the x-axis, the more efficient the 

forecasting method is.  

 

Figure 2. Stock on hand vs. backorders for L =1 

 

 

Figure 3. Stock on hand vs. backorders for L = 3 
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Figure 4. Stock on hand vs. backorders for L= 5 

 

The results show that, regardless of the lead-time value, the PGB method leads to the highest 

efficiency since it leads to the lowest backorders for a fixed stock on hand. This method is 

followed by our proposed CPB method and SBA. Note that the slight superiority of the PGB 

method compared to CPB is explained by the fact that the former uses a prior distribution (i.e. 

Gamma) with two parameters (leading to NBD), which offers a higher flexibility than the CPB 

method that is based on a single parameter prior distribution (i.e. Exponential). Note also that 

NBD, which is equivalent to a Poisson-Logarithmic distribution, has a strong empirical 

goodness-of-fit to lumpy demand patterns, which explains its high inventory performance 

(Syntetos et al. 2013). Moreover, these results show that the approximation made for the 

likelihood function in the CPB method implies some loss of performance, which limits the gain 

obtained from using the compound Poisson distribution when modelling the demand. The WSS 

bootstrapping method leads to the lowest performance. The results also show that the relative 

performance of our proposed Bayesian method increases with the lead-time. It is worth pointing 

out that when L = 5, the performance of our proposed Bayesian method becomes similar to that 
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of the PGB method for CSL = 85% and 90%. This performance improvement with the increase 

of the lead-time is attributed to the decrease of the variability of the lead-time demand, which 

renders the single parameter prior distribution sufficient to estimate the Poisson parameter in 

CPB. Note that the efficiency curves of our proposed CPB method, SBA and WSS almost 

overlap for the lead-time L = 1, which means that performance is very similar. However, for L= 

3 and 5, the outperformance of the two Bayesian methods becomes more obvious.  

 

The relative performance of the forecasting methods can also be summarised in terms of 

efficiency curves between the average stock on hand and the achieved CSL. This means that a 

forecasting method is more efficient if for a certain stock on hand, the method leads to a higher achieved 

service level. The results for lead times L=1, 3, 5 are presented in Figures 5, 6 and 7, respectively. 

With this set of efficiency curves, the higher the curve, the more efficient a forecasting method 

is. This is because a higher curve correspond to a higher achieved CSL for a given stock on 

hand. 

 

 

Figure 5. Stock on hand vs. achieved CSL for L = 1 
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Figure 6. Stock on hand vs. achieved CSL for L = 3 

 

 

Figure 7. Stock on hand vs. achieved CSL for L = 5 
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bootstrapping method last. A close look at the detailed numerical results over the series reveals 

that the superior performance of WSS in this case is explained by the fact that, although it leads 

to the highest backorders, the backorders occur less frequently than when SBA is used. Note 

that the higher achieved CSLs obtained by WSS compared to SBA confirms what is shown in 

Hasni et al. (2019c) when a highly variable demand is considered. The results also show that 

for lower lead-times (i.e. L = 1 or 3) and higher target CSLs (i.e. CSL = 95%), SBA leads to 

higher efficiency than the WSS bootstrapping method.  

 

4. Empirical investigation 

The dataset used for the purpose of the empirical investigation relates to the demand of spare 

parts from the automotive industry. The dataset is composed of 2,971 SKUs with a demand 

history of 24 months. The descriptive statistics of the demand dataset are summarised in Table 

1. Hence, we show the minimum, the first quartile, the median, the third quartile and the 

maximum value of demand intervals, demand sizes and the demand per period of the SKUs 

under concern. 

2,971 

SKUs 

Demand Intervals Demand sizes Demand per period 

Mean St. dev. Mean St. dev. Mean St. dev. 

Min. 1.04 0.21 1.00 0.32 0.54 0.54 

25%ile 1.10 0.30 2.05 1.14 1.46 1.32 

Median 1.26 0.52 2.89 1.75 2.33 1.91 

75%ile 1.41 0.73 5.00 3.30 4.17 3.44 

Max. 2.00 1.59 193.75 89.10 129.17 81.48 

Table 2. Descriptive statistics of the empirical dataset 

 

The descriptive statistics in Table 2 show that the demand dataset is composed of many SKUs 

with a low degree of intermittence since the average demand intervals can be almost equal to 

1. However, many SKUs exhibit a higher degree of intermittence and/or some lumpiness, e.g. 

in some cases the average demand size can be as high as 193 units. Information about the 
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number of SKUs and statistics related to different demand patterns in the dataset will be further 

presented in Section 5. 

The lead-time for all SKUs is less than a month, therefore we assume in the empirical 

investigation that the lead-time L = 1 month.  

Like in the numerical investigation, we consider an order-up-to policy with the same target 

CSLs. The demand history, composed of 24 months, is split into two parts: the within-sample 

is composed of 13 months and the remaining part (i.e. 11 months) is used for the out-of-sample 

performance evaluation. The settings of the forecasting methods are the same as previously 

described. 

For the four forecasting methods, the efficiency curves of the average stock on hand versus the 

average backorders are given in Figure 8 and the efficiency curves of the average stock on hand 

versus the achieved CSL are given in Figure 9. The detailed numerical results of the average 

stock on hand, the average backorders and the achieved CSL are shown in Appendix B. 

 

 

Figure 8. Empirical results: stock on hand vs. achieved CSL 

 

85%

87%

89%

91%

93%

95%

97%

99%

4 6 8 10 12 14 16

A
ch

ie
ve

d
 C

SL

Average stock on hand 

CPB

PGB

SBA

WSS

CSL = 85%

CSL = 90%

CSL = 95%



24 

 

 

Figure 9. Empirical results: stock on hand vs. backorders 
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Further, the empirical results show that the CPB method leads to an over-achievement of all 

target CSLs. However, when the PGB, SBA and WSS methods are used, they enable the 

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

5 7 9 11 13 15 17

A
ve

ra
ge

 b
ac

ko
rd

er
s

Average stock on hand

CPB

PGB

SBA

WSS

CSL = 85%

CSL = 90%

CSL = 95%



25 

 

achievement of the targets CSL = 85% and CSL = 90%, but not CSL = 95%. It is also worth 

pointing out that due to the lower variability of the demand in the empirical dataset compared 

to the theoretical dataset, the empirical performance of CPB improves compared to PGB. This 

can be explained by the fact that the single parameter prior distribution used in the CPB (i.e., 

the exponential) becomes sufficient to estimate the Poisson demand process parameter. This is 

different to the case of the theoretical dataset where the demand variability is higher, which 

explains the relative higher performance of PGB due to the two-parameter distribution used for 

the Poisson demand process parameter. Finally, it should be noted that the empirical results 

reveal that SBA and CPB lead to almost the same achieved CSLs, which can be 2% higher than 

that of WSS. This over achievement also comes with lower backorders. 

In order to better analyse the comparative performance of the forecasting methods with respect 

to the different SKUs’ demand patterns, we have split the SKUs in the dataset into four 

categories according to the categorisation scheme proposed by Syntetos et al. (2005). We use 

two categorization criteria: the demand interval p and the squared coefficient of variation of 

demand sizes CV2. The first category includes the SKUs with a smooth demand, with the cutoff 

values p  1.32 and CV2  0.49. The second category includes the SKUs with an intermittent 

demand, with the cutoff values p >1.32 and CV2  0.49. The third category includes the SKUs 

with an erratic demand, with the cutoff values p  1.32 and CV2 > 0.49. The fourth category 

includes the SKUs with a lumpy demand, with the cutoff values p > 1.32 and CV2 > 0.49. The 

number of SKUs in each category and its percentage in the dataset are shown in Figure 10. 
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Figure 10. Number of SKUs per category and their percentages 

 

Table 3 and Table 4 show the detailed inventory performance results of the smooth and lumpy 

SKUs respectively. The detailed results of the two other categories are reported in Appendix C. 

The stock on hand vs. CSL efficiency curves of the four forecasting methods in the four 

categories are presented in Appendix D. 

 303 

SKUs 

Target 

CSL 

Stock On 

Hand 
Backorders CSL 

  85% 3.41 0.09 95.38% 

WSS 90% 4.11 0.07 96.67% 

  95% 5.22 0.05 97.39% 

  85% 2.56 0.14 90.88% 

SBA 90% 3.14 0.08 94.57% 

  95% 4.12 0.03 97.81% 

  85% 3.92 0.04 97.45% 

CPB 90% 5.33 0.00 99.67% 

  95% 8.13 0.00 99.97% 

  85% 2.55 0.15 90.64% 

PGB 90% 3.07 0.08 94.45% 

  95% 3.95 0.03 97.75% 

Table 3. Empirical results: detailed inventory performance of smooth SKUs 
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 623 

SKUs 

Target 

CSL 

Stock On 

Hand 
Backorders CSL 

  85% 8.06 0.65 86.76% 

WSS 90% 10.35 0.48 90.77% 

  95% 13.34 0.32 94.21% 

  85% 6.15 0.87 85.23% 

SBA 90% 8.05 0.68 88.60% 

  95% 11.70 0.46 92.24% 

  85% 7.03 0.79 87.90% 

CPB 90% 9.24 0.58 91.87% 

  95% 13.66 0.34 95.80% 

  85% 6.82 0.80 86.28% 

PGB 90% 8.69 0.62 89.41% 

  95% 11.94 0.39 93.16% 

Table 4. Empirical results: detailed inventory performance of lumpy SKUs 

 

The results in Table 3 show that when the intermittence is very low and the demand is smooth, 

the four forecasting methods lead to an overachievement of the target CSL. Figure D1 shows 

that WSS leads though to the lowest efficiency in terms of the achieved CSL for a fixed stock 

on hand. The results in Table 4 show that for SKUs with a lumpy demand, WSS leads to higher 

achieved CSLs compared to SBA and PGB and a higher efficiency for high target CSLs, which 

is expected since WSS is known to be associated with good inventory performance for lumpy 

demands (Hasni et al., 2019b). However, as shown in Figure D3, WSS is associated with the 

lowest inventory efficiency. For the intermittent demand category, the four efficiency curves 

(as shown in Figure D2) almost overlap, which means that there is no clear outperformance of 

a particular forecasting method. Note that the CPB is associated with the highest achieved CSLs 

for all categories as well as the highest inventory efficiency.  

5. Conclusion 

Several Bayesian approaches have been developed in the inventory forecasting literature to deal 

with spare parts demand or intermittent demand items in general. However, such research has 

been mainly based on the Poisson demand assumption and is associated with very little 
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empirical validation (Syntetos et al., 2013; Lengu et al., 2014). We have attempted in this paper 

to overcome this limitation by developing a Bayesian-based method under the assumption that 

demand follows a compound Poisson distribution.  

We have conducted a numerical investigation with a theoretically generated dataset composed 

of 7,400 demand series as well as an empirical experiment based on 2,971 spare parts from the 

automotive industry. Four forecasting methods have been included in the investigations, 

namely: Syntetos and Boylan Approximation (SBA), the WSS bootstrapping method, the 

Poisson-based Bayesian method and our proposed compound-Poisson based Bayesian method. 

Inventory efficiency curves show the two Bayesian methods leading, overall, to a close 

performance whilst they outperform SBA and WSS. The numerical results also show that the 

relative performance of our proposed method increases with the lead-time. The Poisson 

Bayesian method has led in some cases to superior performance compared to our proposed 

Bayesian method. This is explained by the fact that the approximation used for the likelihood 

function in the CPB method implies some loss of performance that is higher than the gain 

obtained from using the compound Poisson distribution to model the demand rather than the 

Poisson distribution. The superiority is also due to the fact that PGB uses a prior distribution 

(i.e. Gamma) with two parameters, which offers a higher flexibility than our proposed CPB 

method that is based on a prior distribution (i.e. Exponential) with one parameter. Hence, an 

interesting avenue for further research would be to test the performance of our proposed method 

with a prior distribution with two parameters such as Gamma.  

We have also performed an empirical comparative study of the forecasting methods by 

considering different demand categories in the dataset. The empirical results show that our 

proposed CPB method is associated with the highest achieved CSLs for all demand categories 

as well as the highest inventory efficiency. We have shown that for smooth demand the four 
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forecasting methods lead to an overachievement of the target CSL with WSS having the lowest 

stock on hand vs. CSL efficiency. However, for SKUs with a lumpy demand, the performance 

of WSS increases, especially for higher target CSLs. For the intermittent demand category, the 

four forecasting methods lead to a similar inventory efficiency. 

To conclude this research, it should be noted that our proposed CPB method is associated with 

a higher computational time compared to the PGB one, especially for some SKUs with high 

demand sizes. An interesting idea to extend this research would be to develop a numerical 

method to calculate the optimal inventory levels in a more computationally affordable way. It 

is also worth pointing out that despite the empirical and theoretical higher performance of the 

proposed Bayesian method, it is computationally more demanding and it is certainly more 

complicated and difficult to be understood by practitioners than parametric frequentist methods, 

particularly the SBA one. Hence, our recommendation to managers is to analyse if this 

outperformance is worth the considerable added complexity when selecting a forecasting 

method. 
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Appendix A. Moment generating function of the sum of compound Poisson 

distributions 

 

The probability generating function of a 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) − 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝜃) distribution is given by: 

𝑃[𝑌 = 𝑦] = 𝑒−𝜆(1 − 𝜃)𝑦 ∑ (
𝑦 − 1
𝑗 − 1

)
[𝜆𝜃 (1 − 𝜃)⁄ ]𝑗

𝑗!

𝑦
𝑗=1    

and the moment generating function of the 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) − 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝜃) distribution, denoted 

by 𝑀𝑌(𝑡), is given by: 

𝑀𝑌(𝑡) = 𝑒𝑥𝑝 [
𝜆

(1 − 𝜃)
(

𝜃

[1 − (1 − 𝜃)𝑒𝑡]
− 1)]   

Let 𝑦𝑖 follows a 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) − 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝜃) distribution and let  𝑇 = ∑ 𝑦𝑖
𝑛
𝑖=1 . Then the 

moment generating function of 𝑇 denoted by 𝑀𝑆(𝑡) is given by: 

𝑀𝑆(𝑡) = ∏ 𝑀𝑌(𝑡) = ∏ 𝑒𝑥𝑝 [
𝜆

(1 − 𝜃)
(

𝜃

[1 − (1 − 𝜃)𝑒𝑡]
− 1)]

𝑛

𝑖=1

𝑛

𝑖=1
 

= 𝑒𝑥𝑝 [
𝑛𝜆

(1 − 𝜃)
(

𝜃

[1 − (1 − 𝜃)𝑒𝑡]
− 1)]   

The last term is the moment generating function of the 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝜆) − 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝜃) 

distribution. 
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Appendix B. Detailed empirical results of inventory performance (all SKUs) 

 

 2,971 

SKUs Target CSL  Stock on hand Backorders CSL (%) 

WSS 

85% 6.61 0.76 87.49 

90% 8.28 0.63 90.12 

95% 10.62 0.52 92.31 

SBA 

85% 5.78 0.69 86.55 

90% 7.30 0.52 90.26 

95% 10.04 0.35 93.95 

CPB 

85% 7.42 0.49 91.74 

90% 10.02 0.32 95.43 

95% 15.38 0.16 98.20 

PGB 

85% 6.13 0.62 87.34 

90% 7.60 0.46 90.91 

95% 10.10 0.28 94.57 

 

Appendix C. Detailed empirical results of inventory performance of SKUs 

with intermittent and erratic demand patterns 

 

601 

SKUs 

Target 

CSL 

Stock On 

Hand 
Backorders CSL 

WSS 

85% 3.00 0.05 96.43% 

90% 3.68 0.03 98.18% 

95% 4.73 0.01 99.58% 

SBA 

85% 2.04 0.13 91.36% 

90% 2.58 0.08 94.58% 

95% 3.46 0.03 97.55% 

CPB 

85% 2.95 0.05 96.32% 

90% 4.06 0.02 98.79% 

95% 6.22 0.00 99.94% 

PGB 

85% 2.04 0.13 91.01% 

90% 2.50 0.09 94.07% 

95% 3.24 0.04 96.96% 

Table C1. Detailed empirical results of inventory performance of SKUs with an intermittent demand 
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1,444 

SKUs 

Target 

CSL 

Stock On 

Hand 
Backorders CSL 

WSS 

85% 8.16 1.24 82.42% 

90% 10.17 1.06 85.12% 

95% 13.04 0.91 87.40% 

SBA 

85% 7.85 0.96 84.34% 

90% 9.82 0.73 88.42% 

95% 13.31 0.50 92.48% 

CPB 

85% 10.18 0.65 90.29% 

90% 13.83 0.39 94.69% 

95% 21.47 0.19 98.15% 

PGB 

85% 8.29 0.85 85.58% 

90% 10.20 0.62 89.51% 

95% 13.46 0.39 93.52% 

Table C2. Detailed empirical results of inventory performance of SKUs with an erratic demand 

Appendix D. Efficiency curves of the forecasting methods for the four demand 

categories 

 

 

Figure D1. Empirical results: Stock on hand vs. achieved CSL (Smooth demand) 
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Figure D2. Empirical results: Stock on hand vs. achieved CSL (Intermittent demand) 

 

Figure D3. Empirical results: Stock on hand vs. achieved CSL (Lumpy demand) 

 

Figure D4. Empirical results: Stock on hand vs. achieved CSL (Erratic demand) 
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