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Abstract. In multiple sclerosis studies, lesion volume (or lesion load)
derived from conventional T2 imaging correlates modestly with clinical
assessment. Determining which specific white matter pathways are im-
pacted by lesions may provide additional insights regarding task-specific
clinical impairment. Using diffusion MRI, we introduce a set of tract-
based metrics that go beyond traditional lesion load approaches and
show how they relate to task performance (i.e., working memory, infor-
mation processing and verbal fluency) in a cohort of 40 patients with
multiple sclerosis.
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1 Introduction

Lesion load (LL) is a volumetric index derived from structural MRI often used
in clinical practice to characterise the degree of damage in the brains of pa-
tients with multiple sclerosis (MS). Focal lesions on T2-weighted brain imaging
in MS reflect the permanent footprint of previous episodes of inflammation [1].
Although widely used in the diagnosis, prognosis and monitoring of people with
MS [2], LL correlates only modestly with clinical measures of disability; resulting
in the so-called clinical-radiological paradox [3,4]. There are likely to be several
explanations, including the occurrence of focal lesions in critical vs non-critical
white matter (WM) pathways for a given cognitive function, and the presence
of diffuse WM micro-structural damage that is not easily seen on conventional
MRI. While LL is a convenient outcome measure in clinical studies of MS, there
is a need for more advanced, and anatomically- and microstructurally-specific



imaging metrics to allow clinicians and neuroscientists to disentangle the rela-
tionship between focal and diffuse pathology with clinical disability in MS [5].

A variety of MRI-based approaches that probe various physical properties
of brain tissue have been shown to be sensitive to demyelination and axonal
loss in MS [6, 7] (for review, see [8]). Diffusion MRI (dMRI) allows information
about the structural architecture and tissue micro-structure to be obtained by
probing the random motion of water molecules [9]. The ability to derive quan-
titative features such as fractional anisotropy (FA) or mean diffusivity (MD)
from diffusion tensor imaging (DTI) [10] and to virtually reconstruct pathways
with tractography [11] has led to an exponential growth of dMRI clinico-research
studies. In MS, multiple groups have examined the relationship of DTI measures
within the normal-appearing WM and cognitive function [12–15]. Most studies
report significant associations, although these were not always stronger than
the relationship between cognitive performance and LL [3,4], potentially due to
inconsistencies and limitations in tractography and associated microstructural
metrics at the time.

Indeed, applying tractography to MS data can be problematic due to prema-
ture termination of streamlines within lesions [16,17]. However, recent advances
in local modeling and tractography such as multi-tissue multi-shell constrained
spherical deconvolution (MSMT-CSD, [18]) and anatomically-based tractogra-
phy [19, 20] allow the propagation of streamlines through lesions more reli-
ably [21–27]. Furthermore, although tractography still faces significant challenges
in the field in general [28–30], recent machine learning based approaches have
shown promise in reproducible tract segmentation across subjects [31]. Based
on these recent methodological breakthroughs, we propose a set of tract-based
metrics to improve the link between WM lesions and clinical correlates. We
demonstrate the utility of the proposed metrics in a cohort of 40 MS patients.

2 Theory and Methods

2.1 Clinical assessment

40 subjects (27 women, mean age: 58 years, range: 44-78) with longstanding
relapse-onset MS were recruited to this study (mean disease duration: 27 years,
range: 15-47; median Expanded Disability Status Scale (EDSS) at clinical as-
sessment: 2.5, range 0-6.0). The participants were cognitively assessed (see [32])
and the MS functional composite (MSFC, [33]) score was derived as a compos-
ite of walking speed, dexterity and information processing. Additionally, perfor-
mance was assessed on three tasks involving 1) working memory (Letter-Number
Sequencing, LNS [34]); 2) information processing speed (Speed of Information
Processing adjusted for motor speed, SoIP [35]); and 3) verbal fluency (category
switching, CF-Switching [36]). Performance on these type of tasks has been asso-
ciated with compromise of widespread brain networks including fronto-temporo-



parietal regions. This study was approved by the local ethics committee and all
participants gave written informed consent.

2.2 Acquisition

Patients were scanned using dMRI within 12 months of their clinical assessment
using a Siemens PRISMA 3T system using a 32-channel receive-only RF head
coil. All participants underwent the following sequences: (1) 3D T2-weighted
spin echo sequence (TR/TE: 3200/1408ms; voxel size: 1×1×1mm3), (2) 3D T2-
FLAIR sequence (TR/TE: 5000/388ms, TI: 1800ms, voxel size = 0.5×0.5×0.5
mm3), (3) 3D T1 MPRAGE (TR/TE: 2300/3 ms; flip angle: 9◦; voxel size:
1.0×1.0×1.0 mm3), (4) Diffusion-weighted spin-echo EPI with 14 b0 images, 30
directions at b = 1200 s/mm2, 60 directions at b = 2400 s/mm2 and 2×2×2mm3

voxels.

2.3 Processing

Diffusion data were denoised [37] and corrected for subject motion and distor-
tion [38, 39]. Next, apparent fibre density (AFD) maps were derived from fiber
orientation distribution functions (fODFs) obtained from MSMT-CSD [18] us-
ing a single group response function. WM lesion masks were semi-automatically
delineated using 3D T2 and FLAIR images by a trained technician (co-author
TB, blinded to the purpose of the study) using NeuROI5.

For each dataset, automated WM tract segmentation was performed using
TractSeg [31] to obtain the following task-relevant bundles of interest (identified
by co-author MW): genu and splenium of the corpus callosum, cingulum (CG),
inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF). For each
bundle, 2000 streamlines were generated. The AFD was then averaged within
each bundle of interest. A whole brain set of streamlines was also derived by
concatenating all TractSeg outputs in each subject.

2.4 Proposed metrics

LL (Fig. 1a) is typically defined as the total volume (mm3) of the lesions (Vles),
or its normalized variation:

LL =
Vles

Vbrain
, (1)

where Vbrain is the intracranial brain volume (mm3). A meta-analysis recently
reported that only 5% of studies who calculate LL account for intracranial vol-
ume [4]. A simple extension of LL is the tractogram load (TL) metric (Fig. 1b),
defined as the following ratio:

TL =
Tles

T
, (2)
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Fig. 1. Graphical overview of various lesion load metrics for an example subject. a)
Conventional voxel-based lesion load (normalized by head size). b) Whole-brain trac-
togram load. c) Topology-based bundle load (example bundle: arcuate fasciculus). d)
Lesion-based Tractometry (example bundle: arcuate fasciculus).

where Tles is the volume of all streamlines (voxelized) passing through all seg-
mented lesions (i.e., the subset of streamlines) and T is the total volume of the
whole-brain tractogram. Note that this metric implicitly integrates distal infor-
mation about the entire streamlines as opposed to local lesion information only
(Vles). Similarly, the bundle load (BL) metric (Fig. 1c) is a refined sub-case of
TL and can be defined as the following ratio:

BL =
Bles

B
, (3)

where, for a given bundle, Bles is the total volume of the subset of streamlines
that traverse the lesion (i.e., not to be confounded with Vles which is the volume
of the lesion alone) and B is the total volume of the current bundle-of-interest.

Finally, we also present a lesion-informed Tractometry approach termed here
lesionometry (Fig. 1d) defined as:

Lesionometry =
1

nm

m∑
i=1

n∑
j=1

M(sij), (4)

where dMRI measures (e.g.,M = [FA, MD, AFD, ...]) are sampled at each ver-
tex j forming the streamline si that is traversing a lesion (Bles). If no lesion were
present within a bundle, then conventional tract-average was used.

We hypothesize that having a more focused approach around lesions may
result in stronger relationships between the metrics and their associated clinical
scores. The anticipated directions were as follows: an increase in lesion load
(LL, TL, BL) is associated with poorer task performance, and increased AFD
is associated with better performance. Pearson correlations were used to assess
correlation between the proposed metrics and clinical scores, after correcting for
age and gender. Data visualization was done using FiberNavigator [40].



3 Results

3.1 Lesion mapping

Fig. 2 (left) shows that most of the lesions were located in deep WM and periven-
tricular areas. Amongst the WM bundles that were extracted, 90% of the sub-
jects had at least one lesion in the corpus callosum region (Fig 2, right). Fig. 3
qualitatively illustrates the complete reconstruction of the ILF in a single sub-
ject where a lesion occurred in the inferior occipital lobe (Fig. 3, green arrow).
Streamlines traversing the lesion are color-coded using the anatomical FLAIR
image.

Fig. 2. Density map of all white matter lesions across 40 subjects. The group-average
map shows voxels where a lesion was present in at least one of the patients (left). The
lesion rate was also derived for the extracted bundles of interests (right).



Fig. 3. Tractography of the inferior longitudinal fasciculus (green) in an individual
with an MS lesion (green arrow). Streamlines successfully traversing the lesion (right,
axial view) are indicated in blue. Color overlay: Intensity normalized FLAIR image.

3.2 Volumetric metrics

At the whole-brain level, lesion volume (LV), lesion load (LL) and tractogram
load (TL) showed similar negative correlations with MSFC (Fig. 4). Although
TL exhibits a slightly lower correlation, the error margin appears less spread
than in LV and LL. This could potentially be explained by the presence of out-
liers in the latter cases. TL also shows that on average, 42% of the underlying
WM architecture can be indirectly affect by lesions. On the other hand, lesion
load only affects 0.4% of the brain.

At the local level, bundle-specific loads (BL) showed stronger associations
with tasks than the aforementioned global measures (Fig. 5). For example, the
splenium showed stronger association with SoIP (Pearson’s r = -0.50, p = 0.001)
than typical LV (Pearson’s r = -0.35, p = 0.03). In addition, the bilateral ILF
showed greater association with CF-switching (Pearson’s r = 0.35, p = 0.01)
than conventional LL (Pearson’s r = 0.30, p = 0.05).

3.3 Tractometry-based metrics

Fig. 6 shows results for the lesionometry approach across three tasks. In most
cases, the lesion-based tract-averaging (orange) showed greater correlations than
typical whole-tract averages (blue). In particular, the link between the left and
right CG and LNS (Fig. 6, middle) almost doubled (e.g., from r = 0.18 to r =
0.32 and r = 0.17 to r = 0.31, respectively). As anticipated, AFD was positively
associated with task performance.



Fig. 4. Global correlations between MSFC and the 3 whole-brain measures (Lesion
Volume, Lesion Load and Tractogram Load). As the load increases, the MSFC perfor-
mance decreases. The correlation between Tracogram Load and MSFC appears to be
less driven by outliers.

Fig. 5. Bundle load correlations across 3 cognitive tasks show dissociating patterns
across bundles. For example, the ILF correlated with CF-switching but not as much
with SoIP, whereas the splenium shows correlation with SoIP but not so strongly with
LNS.

Fig. 6. Lesionometry comparison between whole-bundle (WB, blue) and lesioned-
bundle (LB, orange) AFD averages. In general, the LB approach shows greater corre-
lations with task than the conventional WB average. The overlapping bar alpha value
was set to 0.5 (i.e., red color).



4 Discussion and Conclusion

Focal WM lesions are the hallmark of MS, but inadequately explain disability,
creating a clinico-radiological paradox [3, 4]. Neuropathology shows that axonal
pathology is widespread in the brain in MS. The diffuse axonal damage in MS
may be an independent process, or may be driven by anterograde and retrograde
degeneration originating at the site of focal lesions [41]. Imaging techniques ca-
pable of unravelling the relationship between focal and diffuse pathology, and
the correlates of MS disability, remain an unmet need. Diffusion MRI provides
quantitative information about WM microstructure. Tractography in MS could
provide valuable information about how lesion location relates to key WM bun-
dles, and also inform on the microstructure within lesions and at distant but
related sites. However, tractography has been relatively underutilised in MS,
perhaps because of technical challenges [16,17]. Here we demonstrate how dMRI
and tractography can generate meaningful metrics relating to the burden of le-
sions, but also their interaction with the structural WM network.

Using lesion mapping, we were able to recreate the known predisposition of
WM lesion location [42]. However, we also developed a novel metric by demon-
strating the relationship between lesions and WM tracts, which reflected the
proportion of the WM tracts that interacted with lesions (TL). Although TL
did not improve the strength of correlations beyond LL with a composite mea-
sure of disability in people with MS, a reduction in the error margins suggests
that this metric may be worthy of further investigation. Nonetheless, it provides
a convenient way of visualising the structural network affected by lesions (see
Fig. 1b) and also illustrates the high proportion of the WM fibres that interact
with a lesion beyond conventional 2D slice-based visualizations.

At the local level, we were able to demonstrate that BL could provide valu-
able information beyond global metrics to explain task-specific performance.
Such a targeted approach may therefore be preferred when trying to relate task
performance to specific WM bundles. From a tractometry point-of-view, the le-
sionometry approach showed stronger association with task performance than
typical whole-bundle averages of dMRI measures. Given that focal damage is
suspected to extend beyond the visible site of the lesions (i.e., along WM tracts
traversing the lesion), sampling dMRI measures selectively within the damaged
portion of the bundle may allow more sensitivity to underlying changes in tissue
microstructure.

It is already known that the location of the lesions is relevant to clinical
disability [43–46]. Furthermore, profiling dMRI measures along WM bundles us-
ing the lesionometry approach introduced in this paper, will in theory result
in tract profiles that are more sensitive to the underlying lesions. Finally, the
metrics introduced in this paper were assessed using an exploratory approach
to provide interested readers with an immediate application; undoubtedly, these
features could be leveraged in a more advanced context using machine learning.



In summary, we introduced a set of easy-to-use tract-based metrics to comple-
ment existing LL approaches to quantify the extent of brain damage associated
with WM lesions in clinical applications.
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