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Abstract: Active power outputs of a wind farm connected to a weak power grid greatly affect the
stability of grid-connected voltage source converter (VSC) systems. This paper studies the impact
of active power outputs and control parameters on the subsynchronous oscillation characteristics
of full-converter wind farms connected weak power grids. Eigenvalue and participation factor
analysis was performed to identify the dominant oscillation modes of the system under consideration.
The impact of active power output and control parameters on the damping characteristics of
subsynchronous oscillation is analysed with the eigenvalue method. The analysis shows that when
the phase-locked loop (PLL) proportional gain is high, the subsynchronous oscillation damping
characteristics are worsened as the active power output increases. On the contrary, when the PLL
proportional gain is small, the subsynchronous oscillation damping characteristics are improved
as the active power output increases. By adjusting the control parameters in the PLL and DC link
voltage controllers, system stability can be improved. Time-domain results verify the analysis and
the findings.

Keywords: weak grids; full-converter wind; active power output; control parameters; subsynchronous
oscillation; eigenvalue analysis

1. Introduction

In recent years, as a clean, renewable and relatively proven technology, wind power generation
has grown significantly in order to tackle the climate change and replace fossil fuels generators.
By the end of 2019, the cumulative installed capacity of wind power worldwide reached 650 GW,
of which 60.4 GW was newly added [1]. With the development of wind power and high voltage direct
current transmission system (HVDC), subsynchronous interaction (SSI) has attracted the attention of
academia and industry. The SSI is generally classified into the following three types: subsynchronous
resonance (SSR), subsynchronous control interaction (SSCI) and subsynchronous torsional interaction
(SSTI) [2]. In 2009, an SSI incident occurred in southern Texas, USA. A doubly fed induction generator
(DFIG)-based wind farm was integrated into the grids via a high-series compensation transmission
line. This caused a subsynchronous control interaction, resulting in a large number of wind turbine
trips [3,4]. In 2012, the Guyuan wind farm in China also experienced the interaction between the
control of DFIG and series compensation devices, causing the SSI event.
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With the increase of grid-connected wind power capacity and the use of long-distance transmission
lines, the support from the grids for wind farm connection is weakened [5]. There is a different type
of interaction observed recently between full-converter wind farms and weak AC networks. In 2015,
the permanent magnet synchronous generators based wind farm in Xinjiang, China, suffered from a
severe oscillation event without series compensation. The oscillation frequency coincided with the
torsional vibration frequency of the nearby thermal power unit, which led to the torsional vibration
protection action of the thermal power unit resulting in generator shut down [6]. This type of interaction
between full-converter wind farms and weak AC networks is also called subsynchronous oscillation
(SSO), which is the topic investigated in this paper.

The dominant elements that affect the subsynchronous interaction characteristics in different
scenarios of wind farms connected to the grids [6–25]. References [7–9] established DFIG-based wind
farms interconnected with the grids and analysed the influence of the number of wind turbine generators
(WTGs), wind speed, series compensation, line resistance, and outer and inner loop control parameters
on subsynchronous interaction. For instance, reference [8] points out that when the DFIG-based wind
farm is connected to series capacitive compensated transmission systems, the system damping decreases
with the rise of series compensation or the decrease of total line resistance. Meanwhile, the variations
of series compensation also affect the oscillation frequency of subsynchronous interaction. As for SSO
in the full-converter wind farm or the VSC connected to AC grid system, the eigenvalue analysis,
impedance-based analysis and the complex torque coefficient approach are conducted in [6,10–20]
to research the dominant elements that affect the SSO characteristics. AC system strengths, WTGs
number, wind speed, converter control parameters, PLL parameters and aggregation characteristics
of wind farms are considered in these works. The work in [6] indicates the SSO will occur with
the decrease of the AC system strengths. And control parameters also have great impacts on the
SSO characteristics. In addition, SSO caused by the interconnection of direct-drive wind farms via
voltage source converter based high voltage direct current (VSC-HVDC) transmission system has been
studied in the references [21–28]. These elements, including wind farm control parameters, HVDC
control parameters, PLL parameters and filter parameters are analysed and the coordinated controller
is designed.

Until recently, there were very few papers specifically analysing the impact of the active power
output of wind farms on the SSO characteristics. However, the change of active power output during
the operation of wind farms will have a more significant impact on system stability. References [17–20]
established the model of full-converter wind farm integrated into the grids or the VSC connected to
AC grid. The SSO characteristics of the system are studied, and the impact of active output is analysed.
The works in [17–19] pointed out that as the active power output of wind farms increases, the damping
of the SSO mode decreases. However, it is revealed in [20] that increasing the active power output of
wind farms will increase the damping of the SSO mode and increase system stability. When the active
power output is too small, the system will result in diverging oscillation and loss of system stability.

In the view of the impact of active power output on SSO characteristics, some studies identified
that the greater the active power output, the worse the SSO damping characteristics will be [17–19].
However, some studies that found that the higher the active output, the better the SSO damping
characteristics will be [20]. Meanwhile, the existing researches are based on a certain set of control
parameter without considering the influence of different control parameters. Therefore, it is necessary to
study further the relationship between active power output and damping characteristics of SSO mode.

This paper investigates the impact of active power output on SSO characteristics by a small-signal
analysis based on analytical models. The correlation between the active power output and the damping
of the SSO mode with different control parameters is analysed through dynamic modelling and linear
system analysis. First, the critical factor that determines the correlation is identified. Then, based on
the eigenvalue analysis results, the strategy to increase the damping of SSO mode and improve system
stability is proposed. Case studies and time-domain simulation verify the analysis result.
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The rest of the paper is organized as follows: Section 2 builds the dynamic model of the system
with full converter wind farm connected to the AC grids. In Section 3, both eigenvalue analysis and
calculation of participation factors are carried to study the impact of active power output on SSO
characteristics. The correlation between the active power output and the damping of the SSO mode is
analysed with different control parameters and the critical factors that affect the SSO characteristics
are presented. Meanwhile, the strategy to improve the stability of the system is proposed. Section 4
presents case studies and time-simulation results. Finally, the brief conclusions are given in Section 5.

2. System Modeling

A full-converter wind model including wind turbine, synchronous generator (SG), machine-side
converter (MSC), DC link, grid-side converter (GSC), phase-locked loop (PLL), and converter control
system is considered. It is assumed that wind farms usually consist of the same type of wind turbines
with similar control parameters and operating conditions. Therefore, a wind farm is represented by
an equivalent wind turbine. The schematic diagram of grid-connected wind power system structure
is shown in Figure 1. Lf1 and Rf1 represent the filter inductance and filter resistance, respectively.
C1 represents the reactive power compensation parallel capacitor. R2+jX2 represents the equivalent
impedance of both 25 kV line and 220 kV line. R3+jX3 represents the equivalent impedance of the
transmission line near the grids. vpcc denotes the voltage of point of common coupling (PCC). vgrid

denotes the infinite grid voltage. i1 and i2 are the grid-side output current and transmission line
current, respectively. Since the grid-connected dynamics of full-converter mainly depends on the
control features of GSC, this paper ignores the machine-side dynamics. The wind turbine, SG and
MSC are simplified as constant power sources [6].
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Figure 1. The diagram of the grid-connected wind farm.

The following section will establish a dynamic mathematical model of the grid-connected system.
There are two dq reference frames in the dynamic mathematical model, namely the PLL-based dq
frame and the grid-based dq frame. The PLL-based reference frame aligns its d-axis with the PCC
voltage space vector vpcc through the PLL output phase. Meanwhile, the grid-based reference frame
has its d-axis aligned with the grid voltage space vector vgrid [10,17]. Superscripts ‘c’ and ‘g’ represent
variables in the PLL-based reference frame and the grid-based reference frame, respectively. Phasor
diagram of the component in different reference frames is shown in Figure 2.
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2.1. Modeling of DC-Link

Since the machine-side dynamics are ignored, it is assumed that the active power output of the
generator remains constant and is represented by Pwind. The dynamic mathematical model can be
obtained from the DC link active power balance equation as Equation (1).

CdcVdc
dVdc

dt
= Pwind − Pg (1)

CdcV2
dc,base

2P2
base

d(Vpu
dc )

2

dt
= Ppu

wind − Ppu
g (2)

Pg = vc
pcc,dic1d + vc

pcc,qic1q (3)

Pg and Pbase are the GSC power delivered to the grids and base power, respectively. Vdc and
Vdc,base are expresses as DC voltage and rated DC voltage, respectively. Superscript ‘pu’ represents per
unit variables. Subscripts ‘d’ and ‘q’ respectively notate the d-axis and q-axis components of variables.
Hereafter the dc-link dynamic mathematical model is expressed by Equation (2). For convenience,
the superscript ‘pu’ is omitted.

2.2. Outer and Inner Control Loop of GSC

The GSC control block diagram is shown in Figure 3. DC-link voltage control (DVC) and reactive
power control are adopted for GSC, which contributes to balancing the power flow through DC
link, maintaining DC-link voltage and operating at unit power factor for wind farm. The dynamic
mathematical model of the outer and inner loop can be expressed as

dx1
dt = Kidc(V2

dc −V2
dc,ref)

dx2
dt = Kii(ic1d,ref − ic1d)

dx3
dt = Kii(ic1q,ref − ic1q)

(4)


vc

d = KpdcKpi(V2
dc −V2

dc,ref) + Kpix1 −Kpiic1d+

x2 −ωLf1ic1q + vc
pcc,d

vc
q = Kpi(ic1q,ref − ic1q) + x3 +ωLf1ic1d

(5)

where x1, x2 and x3 represent intermediate state variables. Kpdc and Kidc notate DVC proportional gain
and integral gain, respectively. Kpi and Kii are the proportional gain and integral gain of the inner
current control loop, respectively. Subscript ‘ref’ denotes the system reference value.
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2.3. Phase-Locked Loop Model

PLL uses the three-phase voltage at PCC bus as inputs to obtain the phase of the PCC voltage to
achieve synchronization between the wind farm and the grids. The control block diagram of the PLL is
illustrated in Figure 4. The PLL principle has been well documented [26] and will not be discussed
here. ω0 represents the rated angular frequency of the grids. ∆ω notates the frequency deviation. θpll

is the voltage phase of the PLL output. Kppll and Kipll denote the PLL proportional gain and integral
gain, respectively. PLL dynamic mathematical model can be expressed as

dxpll
dt = KiPLLvc

pcc,q
d∆θpll

dt = ω0 + ∆ω
(6)
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2.4. Grid Dynamics

The grid dynamics mainly include shunt capacitor dynamics, filter inductance dynamics,
and transmission line equivalent inductance dynamics. The dynamic mathematical model of the grid
is established in the grid-based reference frame. The grid dynamic mathematical model can be written
as Equation group (7): 

dig1d
dt = 1

Lf1
(vg

d − vg
pcc,d −Rf1ig1d +ω0Lf1ig1q)

dig1q
dt = 1

Lf1
(vg

q − vg
pcc,q −Rf1ig1q −ω0Lf1ig1d)

dig2d
dt = 1

Lg
(vg

pcc,d − vg
grid,d −Rgig2d +ω0Lgig2q)

dig2q
dt = 1

Lg
(vg

pcc,q − vg
grid,q −Rgig2q −ω0Lgig2d)

dvg
pcc,d
dt = 1

C1
(ig1d − ig2d +ω0C1vg

pcc,q)
dvg

pcc,q
dt = 1

C1
(ig1q − ig2q −ω0C1vg

pcc,d)

(7)

Rg and Lg denote the total equivalent resistance and inductance of the grid, including the
transformers and the transmission lines. The impedance from the PCC to the grid can be represented
as a single impedance Rg + jω0Lg, Rg = RT1 + RT2 + R2 + R3, Lg = LT1 + LT2 + L2 + L3.
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3. Eigenvalue Analysis

3.1. Analysis of the Dominant Oscillation Mode

In this paper, a wind farm consisting of fifty 2 MW wind turbines connected to the AC grid
through long-distance transmission lines is used as the target test system. The parameters of the system
are listed in Table 1. The short circuit ratio (SCR) of this system is 1.53, which indicates that the wind
farm is connected to a very weak AC grid [27]. The parameters of the wind generator are shown in
Table 2.

Table 1. Parameters of the grid-connected system.

Parameter Value (pu, SB = 100 MVA)

Transformer T1(575 V/25 kV) XT1 = 0.06, RT1 = 0.006
Transformer T2(25 kV/220 kV) XT2 = 0.065, RT2 = 0.0065

Long-distance transmission line X2 = 0.525, R2 = 0.0525
Short-distance transmission line X3 = 0.01, R3 = 0.001

Table 2. The parameters of a single wind generator.

Parameter Value (pu, SB = 2 MVA)

Rated power 2 MW
Rated frequency 50 Hz

GSC filter Xf1 = 0.15, Rf1 = 0.003, yc1 = 0.25
DC capacitor 0.09 F

Rated DC voltage 1100 V
DVC Kpdc = 1.1, Kidc = 137.5

Current control Kpi = 0.4758, Kii = 3.28
PLL Kppll = 314, Kipll = 24,700

In the system dynamic mathematical model established in this paper, the state variables
are x = [ ig1d, ig1q, ig2d, ig2q, vg

pcc,d, vg
pcc,q, xpll, ∆θpll, Vdc, x1, x2, x3]. By linearizing the dynamic

mathematical model at an operating condition x0, the small signal model of the system can be
established as Equation (8) shows.

d∆x
dt

= A∆x (8)

In Equation (8), A represents the eigenmatrix of the small signal model as shown in Appendix A
and ∆x denotes incremental state vector.

When the active power output of the wind farm is maintained at 0.8 pu, the eigenmatrix is used
to calculate the eigenvalues of the system as shown in Table 3. It can be observed that there are four
oscillation modes in the target system, of which λ6,7 and λ9,10 belong to the SSO mode. However,
the real parts of the eigenvalues λ6,7 are positive, which indicates that the mode exhibits negative
damping and the system is unstable. For this mode, the participation factors of state variables are
shown in Figure 5. In Figure 5, the first six state variables represent the dynamics of the grids and the
last six state variables represent the dynamics of the wind farm. Therefore, this mode is related to both
the grid dynamics and the wind farm dynamics and reflects the subsynchronous interaction between
the AC grids and the wind farm. As far as the control loops are concerned, the participation factors of
these state variables (∆θpll, xpll, V2

dc, x1) are higher. That is, PLL and DVC have a greater impact on
this mode.
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Table 3. Eigenvalues of the weak grids-connected wind power system.

Mode Eigenvalue

λ1,2 −569.33 ± j1764.69
λ3,4 −87.53 ± j836.15
λ5 −976.21
λ6,7 2.62 ± j199.47
λ8 −91.51
λ9,10 −15.89 ± j55.99
λ11 −6.90
λ12 −6.89

Energies 2020, 13, x 7 of 18 

 

at an operating condition x0, the small signal model of the system can be established as Equation (8) 
shows.  

d
dt
Δ = Δx A x  (8) 

In Equation (8), A represents the eigenmatrix of the small signal model as shown in appendix A 
and Δx denotes incremental state vector.  

When the active power output of the wind farm is maintained at 0.8 pu, the eigenmatrix is used 
to calculate the eigenvalues of the system as shown in Table 3. It can be observed that there are four 
oscillation modes in the target system, of which λ6,7 and λ9,10 belong to the SSO mode. However, the 
real parts of the eigenvalues λ6,7 are positive, which indicates that the mode exhibits negative 
damping and the system is unstable. For this mode, the participation factors of state variables are 
shown in Figure 5. In Figure 5, the first six state variables represent the dynamics of the grids and the 
last six state variables represent the dynamics of the wind farm. Therefore, this mode is related to 
both the grid dynamics and the wind farm dynamics and reflects the subsynchronous interaction 
between the AC grids and the wind farm. As far as the control loops are concerned, the participation 
factors of these state variables (Δθpll, xpll, V2dc, x1) are higher. That is, PLL and DVC have a greater 
impact on this mode. 

Table 3. Eigenvalues of the weak grids-connected wind power system. 

Mode Eigenvalue 
λ1,2 −569.33 ± j1764.69 
λ3,4 −87.53 ± j836.15 
λ5 −976.21 
λ6,7 2.62 ± j199.47 
λ8 −91.51 

λ9,10 −15.89 ± j55.99 
λ11 −6.90 
λ12 −6.89 

 

Figure 5. Participation factors of the state variables in the dominant oscillation mode 

3.2. Impacts of the Active Power Outputs of the Wind Farm on Subsynchronous Oscillation Characteristics 
with Different Control Parameters 

There are two main factors that affect the eigenvalues in the weak grids: one is active power 
output (operating condition), and the other is the control structure and control parameters. By 
calculating the participation factors, it can be seen that the PLL and the DVC loop have a greater 
impact on the dominant oscillation mode. In this section, the eigenvalue method will be used to 

Grid dynamics Wind farm dynamics

Figure 5. Participation factors of the state variables in the dominant oscillation mode

3.2. Impacts of the Active Power Outputs of the Wind Farm on Subsynchronous Oscillation Characteristics
with Different Control Parameters

There are two main factors that affect the eigenvalues in the weak grids: one is active power output
(operating condition), and the other is the control structure and control parameters. By calculating
the participation factors, it can be seen that the PLL and the DVC loop have a greater impact on the
dominant oscillation mode. In this section, the eigenvalue method will be used to analyse the impact
of active power output on SSO characteristics with different control parameters. For convenience
of expression, the following sections will use comparative gain to express the control parameters.
The comparative gain represents a multiple of the pre-set value of the parameters given in Table 2.

3.2.1. Impacts of Active Power Outputs with Different PLL Proportional Gains

To evaluate this case, Kppll is selected between 0.1 and 1.2 times of its pre-set value. When the
active power output increases from 0.6 pu to 1.0 pu, the variations of the dominant eigenvalues with
different Kppll are shown in Figure 6 (only those parts are shown where the imaginary part is positive).
When the value of Kppll is large (e.g., when the factors are larger than 0.3 times), the eigenvalues move
toward the right half plane (RHP) with the increase of the active power output, the mode damping
decreases, and the system stability decreases. The active power output is negatively related to the
mode damping. When the value of Kppll is small (e.g., when the factors are smaller than 0.3 times),
the eigenvalues move towards the left half plane (LHP) as the active power output increases. The active
power output is positively correlated with the mode damping. There are only slight changes of the
frequency of the SSO modes with different active power outputs.
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When Kppll takes these intermediate values, the correlation between the active power output and
the mode damping will change from negative correlation to positive correlation with the decrease
of Kppll. When Kppll takes the critical value, the real part of the dominant eigenvalues changes with
the active power output as shown in Figure 7. Moreover, as depicted in Figure 7, the real part of
the dominant eigenvalues gradually increases when the active power output increases from 0.6 pu
to 0.75 pu, while the real part of the dominant eigenvalues decreases when the active power output
increases from 0.75 pu to 1.0 pu. It can be found that when Kppll takes the critical value, the mode
damping decreases first and then increases as the active power output increases.
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In addition, it can also be seen from Figure 6 that when the active power output is negatively
correlated with the mode damping, the larger the value of Kppll, the greater the variation of the mode
damping with the active power output will be. That is, the stability of the system is more affected by
the active power output. Conversely, when the active power output is positively correlated with the
mode damping, the smaller the value of Kppll, the stability of the system is more affected by the active
power output.

From the results above, a conclusion can be drawn that when selecting a larger Kppll, the active
power output is negatively correlated with the damping of this SSO mode, while when selecting a
smaller Kppll, the active power output is positively correlated with the damping of this SSO mode.
Moreover, there is a critical value Kppll for correlation. Meanwhile, the closer Kppll is to the critical
value, the less the system stability is affected by the active power output.
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3.2.2. Impacts of Active Power Outputs with Different PLL Integral Gain

In the two cases where Kppll is selected to be larger (negative correlation) and smaller (positive
correlation), the impact of the active power outputs on the mode damping with different Kipll is
observed. When the active power output increases from 0.6 pu to 1.0 pu, the dominant eigenvalue is
plotted as shown in Figure 8. As shown in Figure 8a, with different Kipll, the dominant eigenvalues
move towards the RHP as the active power output increases and in effect decreasing the mode damping.
At the same time, Figure 8b shows response with smaller Kppll value. With different Kipll, the dominant
eigenvalues move towards the LHP as the active power output increases and the mode damping
increases. It can be observed that adjusting Kipll does not affect the correlation between the active
power output and the damping of this SSO mode. However, under the same active power output
condition, the damping of the SSO mode increases when Kipll decreases. This is because the typical
control parameters of a PLL are designed to ensure good phase tracking responses. However, in a
weak grid, a fast PLL response will enlarge the interaction between the weak grid and the wind turbine
converter, which will reduce the system stability. Therefore, a smaller integral gain is selected to
improve the stability by compromising the PLL response characteristics.
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3.2.3. Impacts of the Active Power Outputs with Different DVC Proportional Gain.

According to the above analysis on PLL parameters, four representative PLL parameters are
selected as shown in Table 4. The impact of Kpdc on the correlation between the active power output
and the damping of the dominant SSO mode is analysed with the four different PLL parameters.
When the active power output increases from 0.6 pu to 1.0 pu, the variations of the dominant eigenvalues
with different Kpdc are presented in Figure 9.

Table 4. Four different PLL parameters.

Kppll Kipll

Case 1 314 (the pre-set value) 24,700 (the pre-set value)
Case 2 314 24,700 × 0.8
Case 3 314 × 0.2 24,700
Case 4 314 × 0.2 24,700 × 0.8
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The Kppll of PLL is selected to be larger in Figure 9a,b. Figure 9a,b show that with different Kpdc,
the dominant eigenvalues move towards the RHP as the active power output increases, and the mode
damping decreases. The Kppll of PLL is selected to be smaller in Figure 9c,d and shows that with
different Kpdc, the dominant eigenvalues move towards the LHP as the active power output increases,
and the mode damping increases. Therefore, adjusting Kpdc does not change the correlation between
the active power output and the mode damping. However, when the active power output is negatively
correlated with the mode damping, the smaller the value of Kpdc, the greater the variation of the mode
damping with the active power output. That is, system stability is more affected by the active power
output (as shown in Figure 9a,b). Conversely, when the active power output is positively correlated
with the mode damping, the greater the value of Kpdc, the greater the system stability affected by the
active power output (as shown in Figure 9c,d).

Meanwhile, it can be found that the increase in Kpdc leads to increase the mode damping under
the same active power output condition. When the damping of the SSO mode is small, the stability can
be improved by increasing Kpdc. Comparing Figure 9a,c with Figure 9b,d, it can be seen that better and
improved system stability can be achieved by simultaneously decreasing Kipll and increasing Kpdc.

A conclusion can be drawn from the analysis that the correlation between the active power
output and the damping of the dominant SSO mode mainly depends on Kppll. When Kppll is large,
the active power output is negatively correlated with the damping of this SSO mode. When Kppll is
small, the active power output is positively correlated with the damping of the dominant SSO mode.
Moreover, there is a critical range for Kppll, in which SSO damping is near consistent irrespective to the
change of active power variation. Meanwhile, the system stability can be improved by appropriately
decreasing Kipll or increasing Kpdc.
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4. Case Study and Simulation Verifications

To validate the effectiveness of the conclusions in Section 3, the impact of the active power output
on the eigenvalues of the system is analysed with different control parameters shown in Figure 1.
At the same time, the detailed simulation model of the studied system is developed in Matlab/Simulink
(2018a, MathWorks, Natick, MA, USA) for validation.

4.1. Verification of the Negative Correlation when the PLL Proportional Gain is Large

When the active power output is 0.6pu, the system has good stability through trial-and-error
and adjustment of control parameters. The control parameters in this case are called the based-case
as shown in Table 5. When the control parameters of the based-case in Table 5 are used (with the
larger Kppll selected), the eigenvalue locus of the two SSO modes with the increase in active power
output are plotted in Figure 10a. It is found that under the control parameters of the based-case,
the eigenvalues λ6,7 move to the RHP with the increase of active power output. The mode damping
decreases continuously, and the system stability is weakened. When the active power output reaches
0.75 pu, λ6,7 first crosses the imaginary axis and enters the RHP. The system becomes unstable. That is,
there is a negative correlation between the active power output and the damping of the λ6,7 mode.
The results proved that when Kppll is large, the active power output is negatively correlated with the
damping of this SSO mode.

Table 5. Four different control parameters

Parameters Based-Case Group 1 Group 2 Group 3

PLL
Kppll 314 314 314 × 0.2 314 × 0.2
Kipll 24,700 24,700 × 0.8 24,700 × 0.8 24,700 × 0.7

DVC
Kpdc 1.1 1.1 × 1.6 1.1 × 1.6 1.1 × 2
Kidc 137.5 137.5 137.5 137.5

Inner current control loop Kpi = 0.4758 Kii = 3.28
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Figure 10. The impacts of the active power output on the SSO modes with the different control
parameters. (a) Pre-set values. (b) Group 1.

When the control parameters of group 1 in Table 5 are used, the impact of the active power output
on the eigenvalues of the SSO modes is shown in Figure 10b. Clearly, the eigenvalues are always in the
LHP during the variations of active power output. The damping of the λ6,7 mode is always positive,
and the system remains stable. Therefore, it is proved that the system stability can be improved by
decreasing Kipll and increasing Kpdc.
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In order to verify the above analysis, an electromagnetic transient simulation model of the
grid-connected wind farm system in Figure 1 is built in MATLAB/Simulink. The studied system
adopts the control parameters of the based-case and the group 1 control parameters, respectively.
At t = 3 s, the active power output of the wind farm increases from 0.7 pu to 0.75 pu. Responses
of active power output, DC voltage and phase-a voltage of the PCC are observed and analysed.
The corresponding time-domain simulation results are presented in Figure 11. It can be seen that when
the active power output increases from 0.7 pu to 0.75 pu, the system with the control parameters of
the based-case oscillates and becomes unstable. As shown in Figure 11a, the wind power has 31Hz
oscillation. This further confirms the conclusion in Section 3 that the active power output is negatively
correlated to the damping of this λ6,7 mode with a lager Kppll. Furthermore, the system with the group
1 control parameters is able to keep stable after disturbance, indicating that the damping of the SSO
mode increased after adjusting Kipll and Kpdc. The simulation results are consistent with the analysis
results above.
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4.2. Verification of the Positive Correlation when the PLL Proportional Gain Is Small

When the control parameters of group 2 in Table 5 are used (the smaller Kppll is selected),
the eigenvalue locus with varied active power output is depicted in Figure 12a. It can be seen that
the eigenvalues λ6,7 move to the LHP as the active power output increases. The damping of this SSO
mode increases and the system stability is enhanced. Moreover, when the active power output of the
wind farm is too small (less than 0.75 pu), the eigenvalue λ6,7 will be in the RHP. The system will result
in diverging oscillation and become unstable. That is, the active power output is positively correlated
to the damping of the λ6,7 mode. It is proved that when Kppll is small, the active power output is
positively correlated with the damping of this SSO mode.

Similarly, when the control parameters of group 3 in Table 5 are adopted, the impact of active
power output on the eigenvalues of the SSO modes is shown in Figure 12b. In the process of active
power output change, the eigenvalues are always in the LHP. The damping of the λ6,7 mode is always
positive, and the system remains stable. This analysis indicates again that the stability of the system
can be enhanced by decreasing Kipll and increasing Kpdc.
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To validate the above analysis, group 2 and group 3 were selected as the control parameters of the
system respectively. At t = 3 s, the active power output of the wind farm decreases from 0.8 pu to
0.7 pu. Figure 13 presents the corresponding time-domain simulation results. It can be observed that
when the active power output decreases from 0.8 pu to 0.7 pu, the system using group 2 of control
parameters is unstable and the oscillation frequency of the wind power is 21 Hz. This result matches
the conclusion in Section 3 well, which demonstrates that there is a positive correlation between the
active power output and the damping of this λ6,7 mode with a smaller Kppll. Meanwhile, the system
using the control parameters of group 3 can remain stable after disturbance. This indicates that the
damping of the SSO mode increases after adjusting the parameters. The simulation results are in
accordance with the analysis results above.
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4.3. Simulation Verification for a Complex System

To verify the analyses, simulation has been carried out for a complex system with different wind
farm ratings, grid configurations and grid voltage levels, as shown in Figure 14. The system parameters
are given in Figure 14. The control parameters are given in Table 6. The simulation results are given in
Figures 15 and 16.
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In Figure 16, a small Kppll is used. Figure 16a gives the simulation results when the Group 6 
control parameters are used. When the wind power decreases, system tends to be unstable. If the 
control parameters are adjusted properly, by reducing Kipll and increasing Kpdc, as in Group 7, the 
system can be maintained as stable, as shown in Figure 16b. 
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Table 6. Four different control parameters.

Parameters Group 4 Group 5 Group 6 Group 7

PLL
Kppll 314 314 314 × 0.2 314 × 0.2
Kipll 24,700 24,700 × 0.8 24,700 × 0.8 24,700 × 0.7

DVC
Kpdc 1.1 × 1.2 1.1 × 1.8 1.1×1.8 1.1 × 2.0
Kidc 137.5 137.5 137.5 137.5

Inner current control loop Kpi = 0.4758 Kii = 3.28

In Figure 15, a large Kppll is used. Figure 15a gives the simulation results when the Group 4 control
parameters are used. When the wind power increases, system tends to be unstable. If the control
parameters are adjusted properly, by reducing Kipll and increasing Kpdc, as in Group 5, the system can
be maintained stable, as shown in Figure 15b.
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Figure 15. Simulation results of wind power increase with a large Kppll. (a) Using the Group 1 
parameter (b) Using the Group 2 parameter after adjustment. 

In Figure 16, a small Kppll is used. Figure 16a gives the simulation results when the Group 6 
control parameters are used. When the wind power decreases, system tends to be unstable. If the 
control parameters are adjusted properly, by reducing Kipll and increasing Kpdc, as in Group 7, the 
system can be maintained as stable, as shown in Figure 16b. 

Figure 15. Simulation results of wind power increase with a large Kppll. (a) Using the Group 1 parameter
(b) Using the Group 2 parameter after adjustment.

In Figure 16, a small Kppll is used. Figure 16a gives the simulation results when the Group 6 control
parameters are used. When the wind power decreases, system tends to be unstable. If the control
parameters are adjusted properly, by reducing Kipll and increasing Kpdc, as in Group 7, the system can
be maintained as stable, as shown in Figure 16b.

The simulation of the complex system further verifies the proposed theoretical analysis.
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5. Conclusions

This paper investigates the influence of active power output on subsynchronous oscillation
characteristics in weak grids. Compared to the research in the literature, this is the first of its kind
to investigate the distinctive correlations between active power output and the damping of the SSO
mode. The reasons for the different correlation between active power output and SSO mode damping
have been explained. The findings and contributions of the study include:

The change of active power output in one direction can either improve or reduce SSO mode
damping. This work identifies that the correlation between active power variation and damping
mainly depends on the proportional gain of the phase-locked loop (PLL).

• When the PLL proportional gain is large, the active power output is negatively correlated with
the damping of the SSO mode. When the PLL proportional gain is small, the active power output
is positively correlated with the damping of the SSO mode. This clarifies the confusions in the
understanding of the correlation between active power output and SSO damping.

• The PLL integral gain and the DC voltage control proportional gain have little influence on the
correlation between the active power output and SSO damping. However, the system stability
can be improved by appropriately retuning the PLL integral gain and the DC voltage control
proportional gain.

• There is a critical range for the PLL proportional gain, in which SSO damping is near consistent
irrespective to the change of active power variation. The influence of active power output on the
stability can be minimized by selecting proper the PLL proportional gain first when the damping
variation is at the critical range. Then adjustment of other parameters will improve the stability.
This is valuable for engineering applications in designing PLL parameters.

For full-converter wind power systems, the grid-connected dynamics mainly depend on the
control of GSC and are not affected by the wind turbine types. The conclusions of this paper are
applicable to full-converter wind farms with induction generators or permanent magnet synchronous
generators. DFIG is not covered in the study, and the analysis of the DFIG-based wind farms and the
auxiliary control design will be undertaken in future research.
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Appendix A

The A matrix expression in Equation (8):



K1K9+K2K10−Rf1
Lf1

K1K10−K2K9
Lf1

−ω0 0 0
K2

1−1
Lf1

K1K2
Lf1

0 K1K11−K2K12+K7
Lf1

2K1KpdcKpi
Lf1

K1Kpi
Lf1

K1
Lf1

−K2
Lf1

K2K9−K1K10
Lf1

−ω0
K1K9+K2K10−Rf1

Lf1
0 0 K1K2

Lf1

K2
2−1
Lf1

0 K2K11+K1K12+K8
Lf1

2K2KpdcKpi
Lf1

K2Kpi
Lf1

K2
Lf1

K1
Lf1

0 0
−Rg
Lg

ω0
1

Lg
0 0 0 0 0 0 0

0 0 −ω0
−Rg
Lg

0 1
Lg

0 0 0 0 0 0
1

C1
0 −1

C1
0 0 ω0 0 0 0 0 0 0

0 1
C1

0 −1
C1

−ω0 0 0 0 0 0 0 0
0 0 0 0 −K2Kipll K1Kipll 0 K6Kipll 0 0 0 0
0 0 0 0 −K2Kppll K1Kppll 1 K6Kppll 0 0 0 0

−vg
pcc,d0
2τ

−vg
pcc,q0
2τ 0 0

−ig1d0
2τ

−ig1q0
2τ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2Kidc 0 0 0
−K1Kii −K2Kii 0 0 0 0 0 −K3Kii 2KiiKpdc Kii 0 0
K2Kii −K1Kii 0 0 0 0 0 −K4Kii 0 0 0 0


State variables:

x = [ig1d, ig1q, ig2d, ig2q, vg
pcc,d, vg

pcc,q, xpll, ∆θpll, Vdc, x1, x2, x3]

K1 = cosθpll0, K2 = sinθpll0

K3 = − sinθpll0ig1d0+ cosθpll0ig1q0, K4 = − cosθpll0ig1d0− sinθpll0ig1q0

K5 = − sinθpll0vg
pcc,d0+ cosθpll0vg

pcc,q0, K6 = − cosθpll0vg
pcc,d0− sinθpll0vg

pcc,q0

K7 = − sinθpll0vc
d0− cosθpll0vc

q0, K8 = cosθpll0vc
d0− sinθpll0vc

q0

K9 = K2ω0Lf1 −K1Kpi, K10 = −K1ω0Lf1 −K2Kpi

K11 = K5 −K4ω0Lf1 −K3Kpi, K12 = K3ω0Lf1 −K4Kpi

τ =
CdcV2

dc
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