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19 Abstract 

20 Childhood conduct problems are an important public health issue as these children are 

21 at-risk of adverse outcomes. Studies using diffusion Magnetic Resonance Imaging (dMRI) 



2

22 have found that conduct problems in adults are characterised by abnormal white-matter 

23 microstructure within a range of white matter pathways underpinning socio-emotional 

24 processing, while evidence within children and adolescents has been less conclusive based on 

25 non-specific diffusion tensor imaging metrics. Fixel-based analysis (FBA) provides measures 

26 of fibre density and morphology that are more sensitive to developmental changes in white 

27 matter microstructure. The current study used FBA to investigate whether childhood conduct 

28 problems were related both cross-sectionally and longitudinally to microstructural alterations 

29 within the fornix, inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus 

30 (ILF), superior longitudinal fasciculus (SLF), and the uncinate fasciculus (UF). dMRI data was 

31 obtained for 130 children across two time-points in a community sample with high levels of 

32 externalising difficulties (age: time-point 1 = 9.47 – 11.86 years, time-point 2 = 10.67 -13.45 

33 years). Conduct problems were indexed at each time-point using the Conduct Problems 

34 subscale of the parent-informant Strengths and Difficulties Questionnaire (SDQ). Conduct 

35 problems were related to lower fibre density in the fornix at both time-points, and in the ILF at 

36 time-point 2. We also observed lower fibre cross-section in the UF at time-point 1. The change 

37 in conduct problems did not predict longitudinal changes in white-matter microstructure across 

38 time-points. The current study suggests that childhood conduct problems are related to reduced 

39 fibre-specific microstructure within white matter fibre pathways implicated in socio-emotional 

40 functioning. 

41 Keywords: Childhood conduct problems; Fixel-based analysis; Diffusion tensor 

42 imaging; Emotional processing.

43

44
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45 Antisocial behaviour is increasingly recognised as a public health issue (National 

46 Institute for Health and Care Excellence (NICE), 2013) and conceptualised in research as a 

47 multifaceted neurodevelopmental construct with its origins emerging early in development 

48 (Raine, 2018). Childhood conduct problems - characterised by a pattern of antisocial 

49 behaviours including aggression, angry mood, rule-breaking, and oppositional behaviour - are 

50 therefore understood as a behavioural precursor to later antisocial behaviour (Fairchild, Van 

51 Goozen, Calder, & Goodyer, 2013; Piquero, Farrington, Nagin, & Moffitt, 2010; Raine, 2018). 

52 In addition, early conduct problems are a risk factor for a range of negative outcomes - such as 

53 imprisonment, psychopathology, substance misuse, lower educational attainment and poorer 

54 physical health (Fergusson, John Horwood, & Ridder, 2005; Moffitt & Scott, 2008; Mordre, 

55 Groholt, Kjelsberg, Sandstad, & Myhre, 2011; Odgers et al., 2007; Odgers et al., 2008). The 

56 adverse developmental trajectory of childhood conduct problem highlights the importance to 

57 investigate underlying neurodevelopmental factors early in development that may contribute 

58 to childhood conduct difficulties. 

59 There is considerable evidence that children and adolescents with conduct problems are 

60 characterised by emotional processing impairments, such as reduced empathy, lower 

61 physiological affective responsivity, diminished capacity to learn about punishment and 

62 reward, and emotional dysregulation (Blair, 1999; Fanti et al., 2019; Gao, Raine, Venables, 

63 Dawson, & Mednick, 2010; Hunnikin, Wells, Ash, & Van Goozen, 2019; Van Goozen, 

64 Fairchild, Snoek, & Harold, 2007; Van Langen, Wissink, Van Vugt, Van der Stouwe, & Stams, 

65 2014). Using magnetic resonance imaging (MRI), studies have identified that children with 

66 conduct difficulties showed structural and functional abnormalities in limbic brain regions 

67 important for processing emotion, in particular the amygdala, and prefrontal regions implicated 

68 in affective decision-making, learning and regulation, such as the orbitofrontal and 
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69 ventromedial prefrontal cortex (Baker, Clanton, Rogers, & De Brito, 2015; Noordermeer, 

70 Luman, & Oosterlaan, 2016; Rogers & De Brito, 2016). In addition, youths high in antisocial 

71 behaviour demonstrated reduced functional connectivity between limbic and prefrontal regions 

72 (Finger et al., 2012; Stoddard et al., 2017). Theories of antisociality have therefore proposed 

73 that antisocial behaviour reflects dysfunction in neural networks implicated in emotional 

74 processing and learning, including disrupted connections between limbic and prefrontal 

75 regions (Blair, 2005; Kiehl, 2006; Raine, 2018).

76 More recent research has used diffusion tensor imaging (DTI) to examine white matter 

77 microstructure between brain regions within children and adolescents high in antisociality. DTI 

78 measures such as fractional anisotropy (FA) are sensitive to the anisotropic organisation of a 

79 white matter fibre and generally increases with age, whereas mean diffusivity (MD) can 

80 represent the mean mobility of water molecules and generally decreases with age (Lebel & 

81 Beaulieu, 2011). Given the theorised abnormality between limbic and prefrontal regions in 

82 relation to antisociality, there has been much focus on examining the microstructure of the 

83 uncinate fasciculus (UF) - a long range white matter pathway that connects limbic regions 

84 within the temporal lobe to frontal regions. While DTI studies have found that adults with 

85 antisocial behaviour have reduced white matter organisation in the UF (Craig et al., 2009; 

86 Hoppenbrouwers et al., 2013; Sundram et al., 2012), and additional association pathways 

87 including the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), 

88 superior longitudinal fasciculus (SLF), and fornix (Bolhuis et al., 2019; Hoppenbrouwers et 

89 al., 2013; Karlsgodt et al., 2015; Lindner et al., 2016; Sethi et al., 2015; Sundram et al., 2012), 

90 studies investigating conduct problems in children and adolescents have produced mixed 

91 findings. There is evidence for greater white matter microstructural organisation in adolescents 

92 with conduct difficulties across association tracts (Breeden, Cardinale, Lozier, VanMeter, & 
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93 Marsh, 2015; Decety, Yoder, & Lahey, 2015; Haney-Caron, Caprihan, & Stevens, 2014; Li, 

94 Mathews, Wang, Dunn, & Kronenberger, 2005), while other studies have reported lower 

95 microstructural organisation (Grazioplene et al., 2020; Passamonti et al., 2012; Peper, De Reus, 

96 Van Den Heuvel, & Schutter, 2015; Sarkar et al., 2013; Zhang, Zhu, et al., 2014) or no 

97 difference compared to adolescents without conduct problems (Decety et al., 2015; Finger et 

98 al., 2012; Hummer, Wang, Kronenberger, Dunn, & Mathews, 2015; Passamonti et al., 2012; 

99 Puzzo et al., 2018; Sarkar et al., 2013; Zhang, Gao, et al., 2014; Zhang, Zhu, et al., 2014). 

100 Many of these studies recruited youths with wide age ranges, which may have 

101 contributed to the inconsistent findings given that white matter microstructure develops in a 

102 time-dependent fashion within major white-matter tracts (Lebel & Beaulieu, 2011; Lebel, 

103 Walker, Leemans, Phillips, & Beaulieu, 2008). In addition, the effects of cooccurring forms of 

104 psychopathology could influence white matter microstructure given the comorbidity of conduct 

105 problems with alternative externalising and internalising difficulties (Lahey et al., 2008; 

106 Patalay et al., 2015), which may have contributed to the inconsistent literature. It is therefore 

107 important to examine the effect of conduct problems alongside additional forms of 

108 psychopathology to investigate the specificity of altered white matter microstructure.

109 One further potential reason for the contrasting results observed in children and 

110 adolescents may be due to the metrics previously used in DTI studies to index white matter 

111 microstructure. Measures such as FA and MD are relatively non-specific at distinguishing 

112 between specific fibre properties, such as axon density, crossing fibres and myelination, which 

113 are separate physio-anatomical white matter properties important for understanding 

114 developmental changes (Beaulieu, 2014). Recent developments in diffusion MRI analysis 

115 techniques provide the means and opportunity to uncover more specific tissue properties 

116 compared with the diffusion tensor model. Analysis approaches such as Neurite Orientation 
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117 Dispersion and Density Imaging (NODDI; Zhang, Schneider, Wheeler-Kingshott, & 

118 Alexander, 2012) and fixel-based analysis (FBA; Raffelt et al., 2012, 2017) have been shown 

119 to be more sensitive to age-related development of specific microstructural properties such as 

120 axon density (Lynch, Cabeen, Toga, & Clark, 2020; Genc et al., 2020). FBA is a framework of 

121 particular interest for group-wise and longitudinal analyses, enabling fibre level comparisons. 

122 FBA produces metrics that index fibre density (FD), which represents the intra-axonal volume 

123 fraction of white matter fibres, fibre cross-section (FC), which refers to the cross-sectional area 

124 of voxels that a fibre occupies, as well as the combined effect of fibre density and cross-section 

125 (FDC) (Raffelt et al., 2017). These indices aim to quantify and disentangle fibre-specific white 

126 matter properties more accurately compared to more traditional DTI metrics such as FA 

127 (Kelley, Plass, Bender, & Polk, 2019).

128 Grazioplene et al. (2020) is the only study to date to have used fixel-based analysis to 

129 examine childhood conduct problems and white matter microstructure. Using a cross-sectional 

130 design, a group of 70 children with parent-rated aggressive behaviour were compared to 

131 matched controls aged 8 – 16 years old for FD across a range white matter tracts. Children 

132 showing aggression demonstrated lower FD in a cluster of limbic and cortical pathways 

133 including the IFOF and fornix relative to controls, higher FD in the corpus callosum, and 

134 dimensional analysis revealed an association between aggression and reduced FD in the 

135 cingulum bundle. The current study intended to build upon this study and previous research to 

136 investigate childhood conduct problems in relation to fibre density and morphology as both 

137 measures are sensitive to changes during development (Genc et al., 2018), and to examine these 

138 relationships within a longitudinal design to study the effects of conduct problems on white 

139 matter microstructural development.



7

140 Current Study

141 We investigated conduct problems and white matter microstructure in a large 

142 community-based sample of children aged 9-13 years across two time-points. We implemented 

143 FBA to investigate tract-specific fibre density and morphology within the fornix, IFOF, ILF, 

144 SLF and UF, which are all implicated within socio-emotional processing systems (Ameis & 

145 Catani, 2015) and have been linked with antisociality (Waller, Dotterer, Murray, Maxwell, & 

146 Hyde, 2017). Importantly, the age-ranges were narrow at each time-point across participants to 

147 examine white-matter microstructure at specific developmental stages and to allow us to 

148 precisely explore developmental changes across time. We also considered cooccuring 

149 dimensions of psychopathology to examine the specificity of white matter microstructure effect 

150 to conduct problems. We hypothesised that conduct problems would be cross-sectionally 

151 associated with lower FD, with no relationship observed for FC, consistent with research that 

152 has linked neurodevelopmental difficulties with decreased white matter fibre density in 

153 adolescence, rather than lower macroscopic cross-section of fibres  (Dimond et al., 2019; Genc

154 et al., 2020). We also predicted longitudinal relationships such that change in conduct problems 

155 across time-points would be associated with FD development within each tract, with no 

156 relationship emerging for FC development. 

157 Method

158 Participants

159 Participants were recruited as part of the Neuroimaging of the Children’s Attention 

160 Project (NICAP; Silk et al. 2016), an Australian longitudinal multimodal neuroimaging study 

161 of community-based cohort of children with and without Attention Deficit Hyperactivity 

162 Disorder (ADHD). This longitudinal study was approved by The Royal Children’s Hospital 

163 Melbourne Human Research Ethics Committee (HREC #34071). Written informed consent
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164 was obtained from the parent/guardian of all children enrolled in the study. Children were 

165 excluded from the study if they had a neurological disorder, intellectual disability, or serious 

166 medical condition (e.g. diabetes, kidney disease). 

167 Full details of the NICAP cohort and assessment methods are detailed in Silk et al. 

168 (2016). Briefly, children were initially recruited from 43 socio-economically diverse primary 

169 schools distributed across the Melbourne metropolitan area, Victoria, Australia (Sciberras 

170 2013), and underwent comprehensive assessment for ADHD at age 7 via the Diagnostic 

171 Interview Schedule for Children (DISC-IV) completed with parents face-to-face (Sciberras et 

172 al. 2013). Children were categorised as either meeting a negative or positive diagnosis for 

173 ADHD. At a 36-month follow-up, a subset of participants were invited for an appointment at 

174 The Melbourne Children’s campus, which included a child assessment, parent questionnaire, 

175 mock scan, and MRI scan at age 10 (subsequently referred to as time-point 1). Youths with 

176 ADHD represent an at-risk adolescent sample for conduct problems given the high comorbidity 

177 between ADHD and additional externalising difficulties including oppositional defiant 

178 disorder (ODD) and conduct disorder (CD) (Beauchaine, Hinshaw, & Pang, 2010; Blair, White, 

179 Meffert, & Hwang, 2013; Lahey et al., 2008). The DISC-IV was repeated at time-point 1 to re-

180 assess ADHD group status, as well as to examine ODD status (see Table 1); 40% of the children 

181 met diagnostic criteria for ADHD, 30 % met criteria for ODD, and 6.9 % met criteria for CD. 

182 Children were invited for a follow-up appointment (subsequently referred to as time-point 2) 

183 approximately 16 months following their initial visit (M = 16.08, SD = 2.32 months). Overall, 

184 only data from the two imaging time-points: time-point 1 (age: M = 10.38, SD = 0.44 years 

185 old) and time-point 2 (age: M = 11.72, SD = 0.51 years old); were included for analysis in the 

186 current study. Direct assessments and MRI scans were performed by a trained research assistant 

187 blind to the child’s diagnostic status. 
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188 Participant’s socio-economic status was indexed based on scores from the Index of 

189 Relative Socio-economic Advantage and Disadvantage (IRSAD) taken from the Socio-

190 Economic Indexes for Areas obtained at each time-point from the Australian Bureau of 

191 Statistics (https://www.abs.gov.au/websitedbs/censushome.nsf/home/seifa). IRSAD scores 

192 were developed based on several variables for a given area, including income, education, 

193 unemployment, and are standardised to a mean of 1000 with a standard deviation of 100. 

194 Participant’s estimated full-scale intellectual functioning (IQ) was assessed at a previous 

195 assessment at age 7 (Mage = 7.23, SDage = 0.38) using the vocabulary and matrix reasoning 

196 subtests of the Wechsler Abbreviated Scale of Intelligence (WASI (Wechsler, 1999).

197 Conduct problems

198 Conduct problems were indexed using the Conduct scale of the parent-rated Strengths 

199 and Difficulties Questionnaire (SDQ; Goodman, 1997) completed at time-point 1 and 2. The 

200 SDQ is a 25-item screening tool that assess children across several areas of functioning 

201 including conduct, emotional, hyperactivity/inattention, interpersonal problems, as well as 

202 examining prosocial behaviours. The conduct problems scale includes 5-items (e.g. “Often 

203 fights with other children”, “Often lies or cheats” and “Steals from home, school or elsewhere”) 

204 scored across 0 (Not true), 1 (Somewhat true), and 2 (Certainly true).

205 Magnetic resonance imaging (MRI)

206 Diffusion MRI data were acquired at two distinct time-points on a 3.0 T Siemens Tim 

207 Trio, at The Melbourne Children’s Campus, Parkville, Australia. Data were acquired using the 

208 following protocol: b = 2800 s/mm2 (60 directions), voxel-size = 2.4 x 2.4 x 2.4 mm, echo-time 

209 / repetition time (TE/TR) = 110/3200 ms, matrix = 110 x 110, 63 slices. A total of 152 

210 participants had longitudinal MRI data. Of those, 130 participants had useable diffusion MRI 

211 data at both time-points, therefore the subsequent image processing and analysis was performed 
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212 on these 130 participants with imaging data at two time-points. All dMRI data were processed 

213 using MRtrix3 (v3.0RC3; Tournier et al., 2019) using pre-processing steps from a 

214 recommended longitudinal fixel-based analysis (FBA) pipeline (Raffelt et al., 2017; Genc et 

215 al., 2018). Full details of processing and analysis steps are listed in Genc et al. (2020). Briefly, 

216 images were denoised, corrected for motion, eddy current and susceptibility induced 

217 distortions, bias field corrected, and upsampled. Fibre orientation distributions (FODs) were 

218 computed using a group average response function. To perform our analyses in a common 

219 space, we built a population-based template using FOD maps from 40 participants. First, we 

220 generated inter-subject templates using images from time-point 1 and 2 transformed to their 

221 midway space. Then, we generated an unbiased intra-subject template, which were used as 

222 input to the population template generation step (Raffelt 2017). Finally, we performed non-

223 linear registrations of each individual’s FOD image to this longitudinal template.

224 Images were visually inspected for motion artefact (assessed by the presence of 

225 Venetian blinding artefact), and whole datasets were excluded if excessive motion was present. 

226 In addition, we calculated mean frame-wise displacement using the FSL software library 

227 (v5.0.10) (Smith et al. 2004).

228 White matter tract dissection

229 We chose to delineate five bilateral fibre pathways that have been previously found to 

230 show diminished white matter organisation for individuals with antisocial behaviour: Inferior 

231 fronto-occipital fasciculus (IFOF); superior longitudinal fasciculus (SLF); inferior longitudinal 

232 fasciculus (ILF); uncinate fasciculus (UF); and the fornix (FX) in our population template 

233 space. First, we transformed and warped tractography masks from the JHU-ICBM atlas (Smith 

234 et al., 2004) to our longitudinal template. Then, we placed anatomically informed regions of 

235 interest (ROIs) from a defined protocol (Wakana et al., 2007) ensuring that these regions 
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236 overlapped with both the warped tractography masks as well as the whole brain tractogram. 

237 Finally, we segmented fixels (fibre-specific voxels) from the whole-brain template which 

238 corresponded with our tracts of interest. 

239 Statistical Analysis

240 Statistical analyses were performed within R (version 3.6.2) and visualisations were 

241 carried out in RStudio (version 1.2.1335). We tested the cross-sectional relationship between 

242 SDQ conduct problems and each FBA metric (mean FD and mean FC) at each time-point. We 

243 also assessed the change in conduct problems scores and the change in each FBA metric 

244 (termed FDdiff/FCdiff) across time-points to assess the longitudinal relationship between conduct 

245 problems and white-matter development. For both cross-sectional and longitudinal analyses, 

246 linear mixed-effects models were computed using lme4 for each FBA metric with conduct 

247 problems entered as random effects and white-matter tract as fixed effects to explore the main 

248 effect of SDQ conduct problems and the interaction between conduct problems and white-

249 matter tract. We also included participant age, IQ, socio-economic status, sex, ADHD 

250 diagnostic status, participant in-scanner motion and total intracranial volume (for FC and 

251 FCdiff) as covariates within each model. Examples of the models used for the cross-sectional 

252 (1) and longitudinal analysis (2) for mean FD are detailed below: 

lmer(scale(FDtime1) ~ Conduct Problems * Tract + (1|ID) + Gender + Age + IQ + 

ADHDgroup + SocioEconomicStatus, data = data)

lmer(scale(FDdiff) ~ Conduct Problems Change * Tract + (1|ID) + Gender + Age 

+ IQ + ADHDgroup + SocioEconomicStatus, data = data)

(1)

(2)

Significant main effects and interactions for conduct scores and white-matter tracts 

were explored further by running individual correlations between conduct problems scores and 

the relevant FBA metric for each white matter tract. Within these individual correlations, we 
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covaried only for variables that were predictive in the previous mixed effects model to maintain 

statistical power. As multiple correlations were run for each FBA metric, p-values were 

adjusted when running the correlational analysis using False Discovery Rate (FDR) correction 

(Benjamini & Hochberg, 1995). All variables were centred prior to analysis.

Results

Table 1 details the demographic characteristics of the adolescent sample across time-

points. The sample included showed a range of conduct problem scores including 27.7% of 

children who were rated as high or very high risk of conduct problems at time-point 1 and 

24.7% at time-point. Figure 1A and 1B illustrate the age and conduct problems scores for the 

sample at each time-point. Mean FBA metrics for each white-matter tract are included across 

time-points in Table 2. Each FBA metric correlated highly across time-points for each tract (ps 

< .001).

Cross-sectional analysis

Linear mixed-effects models revealed that there was a main effect of conduct problems 

for mean FD at time-point 2, F(1,122) = 4.74, p = .03, but not for the remaining FBA 

metrics/time-points (ps > .10). There was a significant interaction between conduct problems 

and tract region for mean FD at both time-point 1, F(4, 492) = 5.05, p < .001, and time-point 

2, F(4, 512) = 5.77, p < .001, as well as for mean FC at time-point 1, F(4, 492) = 2.72, p = .03. 

This supported the investigation of tract-specific relationships with respect to conduct 

problems. There was no interaction between conduct problems and tract region for mean FC at 

time-point 2, F(4, 512) = 1.74, p = .14. 

To follow up significant interactions, we ran zero-order/partial correlations between 

conduct problems and FD at both time-points and FC at time-point 1 for each white matter tract 

individually (see Table 3). We included variables that were significant predictors in the original 
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linear mixed effects models as covariates (total intracranial volume for FC at time-point 1, IQ 

for FD at time-point 2), although the results were unaltered when controlling for IQ and so the 

results are reported with this variable removed to maintain statistical power. Conduct problems 

were related with lower mean FD in the fornix at time-point 1 and 2, as well as the ILF at time-

point 2 (pFDR < .05). Conduct problems were associated with low mean FC in the UF at time-

point 2, although this failed to survive FDR-adjusted statistical significance. Figure 1C-1F 

illustrates these significant relationships.

Longitudinal analysis

Linear mixed-effects models revealed that there was no main effect of the change in 

conduct problems across time-points nor an interaction with tract region for either FDdiff and 

FCdiff (ps > .22) so no further analyses were conducted for these longitudinal FBA metrics. 

Specificity of cross-sectional findings to childhood conduct problems

Given the comorbidity of neurodevelopmental difficulties including conduct problems 

(Lahey et al., 2008; Patalay et al., 2015), we also assessed whether conduct problems were 

driving the observed findings in relation to the SDQ subscales. We ran multiple linear 

regressions entering all SDQ subscales (conduct, emotional, hyperactivity/inattention, 

interpersonal problems, and prosocial behaviours) to predict the specific FBA metrics at the 

relevant time-point that we had previously identified as associated with conduct difficulties. 

We continued to control for total intracranial volume when predicting FC. The analysis showed 

that when all SDQ subscales were entered as predictor variables, conduct problems was the 

primary unique predictor of reduced mean FD for the fornix across both time-points (time-

point 1, t(5, 119) = -1.95, p = .05, β = -.24; time-point 2, t(5, 124) = -2.28, p = .02, β = -.29) 

and within the ILF at time-point 2 (although this did not surpass statistical significance), t(5, 

124) = -1.83, p = .07, β = -.23, and the remaining SDQ subscales did not uniquely predict any 
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of these FBA metrics. SDQ Conduct Problems were however not uniquely predictive of mean 

FC within the UF t(6, 118) = -1.35, p = .18, β = -.13, likewise to the remaining SDQ subscales.

General Discussion

In this longitudinal study of children aged 9-13 years, we used fixel-based analyses to 

determine whether conduct problems were related to specific microstructural alterations within 

several white matter tracts both cross-sectionally and longitudinally. We identified that greater 

conduct problems were related to lower fibre density in the fornix at both time-points, as well 

as in the ILF at the second time-point. Longitudinally, the change in conduct difficulties did 

not predict the development of either fibre density or morphology across time-points. These 

results partially support our hypotheses as abnormalities related to conduct difficulties were 

specific to FD, rather than FC, although these alterations were not universal across all white 

matter tracts and did not extend to altered longitudinal development in FD. 

By using an advanced analysis technique to examine specific fibre properties within 

white matter tracts, we identified that conduct problems in childhood were related to reduced 

fibre density within several association white-matter pathways, which was consistent with 

Grazioplene et al. (2020). Specifically, we found that conduct difficulties in late 

childhood/early adolescence were characterised by a lower intra-axonal volume fraction for the 

fornix and ILF that indicates reduced density of axons along these pathways. The current 

research extended Grazioplene et al. (2020) to also examine fibre cross-section and found 

conduct problems were associated with macroscopic cross-section of fibres within the UF 

specific to the earlier time-point. Alterations to axonal microstructure, by way of reduced axon 

count or diameter, could result in deficiencies for processing speed and conduction velocity 

across the brain (Drakesmith et al., 2019; Horowitz et al., 2015), and altered white matter 

microstructure in these pathways may contribute to the risk of conduct difficulties. We however 
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note that only reduced fibre density within the fornix and ILF were specifically associated with 

conduct problems when co-occurring dimensions of psychopathology were controlled for, 

which may indicate that reduced axonal density is the driving property underlying 

microstructural alterations specific to conduct problems. The current study also examined the 

longitudinal effect of conduct problems on FBA metrics, but no associations emerged for white 

matter development. The current study increases our understanding of the specific underlying 

microstructural properties associated with conduct problems during development. 

The fornix, ILF and UF have each been implicated in wider socio-emotional networks 

(Ameis & Catani, 2015) and therefore developmental microstructural alterations – and 

potentially inefficient processing - within these networks may reflect emerging socio-

emotional impairments observed in relation to conduct difficulties. The UF has been suggested 

as the key connection within a ‘temporo-amygdala-orbitofrontal’ network (Catani, Dell’Acqua, 

& De Schotten, 2013) that is critical to the regulation of social and emotional behaviour (Von 

Der Heide, Skipper, Klobusicky, & Olson, 2013). The ILF also demonstrates connections 

within the temporal lobe with projections at the posterior temporal lobes and occipital lobes 

(Catani, Jones, Donato, & Ffytche, 2003). By virtue of these connections with temporal 

regions, including the amygdala (Fox, Iaria, & Barton, 2008), the ILF has been linked to the 

integration of visual and emotional processes (Catani, Howard, Pajevic, & Jones, 2002) and 

both the ILF and UF have been implicated in facial expression processing (Coad et al., 2017; 

Unger, Alm, Collins, O’Leary, & Olson, 2016), which has been demonstrated to be impaired 

in antisocial populations (Dawel, O’Kearney, McKone, & Palermo, 2012; Marsh & Blair, 

2008). 

Conversely, no study in adults have linked antisociality to disrupted microstructure in 

the fornix, although Breeden et al. (2015) has reported that adolescents with high antisocial 
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behaviour showed reduced FA compared to non-antisocial controls, which was linked to 

callous symptoms. The fornix represents a major output pathway of the amygdala that projects 

to the mammillary bodies and hypothalamic regions implicated in fear processing (Walker, 

Toufexis, & Davis, 2003). The fornix also forms part of the Papez circuit, which is an important 

structure within the limbic system, and involved in the regulation of emotions by higher order 

frontal areas (Lövblad, Schaller, & Vargas, 2014). In addition, there is evidence that increased 

white-matter microstructural organisation within the fornix is associated with elevated anxiety 

(Modi et al., 2013) and, therefore, reduced white-matter microstructural organisation within 

the fornix may reflect diminished anxiety, consistent with patterns of fearlessness associated 

with conduct problems and callous symptoms in children (Fanti, 2016). 

We note that the relationships between conduct difficulties and altered mean FD were 

specific to the fornix and ILF. There is evidence that the fornix and ILF show an early peak in 

FA suggesting earlier developmental maturation compared to many of the other major white-

matter tracts (Lebel et al., 2012; Lebel, Treit, & Beaulieu, 2017; Slater et al., 2019). Altered 

white matter microstructural development may therefore be more evident at a younger age 

within the fornix and ILF, which may account for the specificity of the current findings in 

relation to conduct problems. In contrast, white matter tracts such as the SLF, IFOF and in 

particular the UF show a later peak in FA values suggesting more delayed developmental 

maturation (Lebel et al., 2012; Sawiak et al., 2018; Slater et al., 2019) and we did not observe 

altered FD within these tracts. It may therefore be possible that FBA metrics within an older 

sample with conduct problems would identify more pervasive (and severe) microstructural 

impairments across association white-matter tracts. Likewise to the current study, Grazioplene 

et al. (2020) found no effect of childhood aggression on FD within the UF. However, we did 

identify that conduct problems were associated with reduced FC within the UF, suggesting that 
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the macroscopic cross-section of fibres may be a more sensitive index for detecting 

developmental alterations to white matter microstructure within the UF.

A strength of the current study is the relatively narrow age range at each of the two 

imaging time-points, which allowed for a more focused analysis of the effect of conduct 

problems and white-matter microstructural properties within development. We also examined 

white-matter microstructural development across these two time-points, and while conduct 

problems were related to white-matter alterations at each time-point, we observed no effects of 

change in conduct difficulties on longitudinal white-matter development between time-points. 

This was contrary to expectation but may reflect the limited duration between imaging time-

points (approximately 16 months) and a longer gap may have allowed for greater 

developmental differences to emerge in relation to conduct difficulties as the majority of the 

sample showed no change (42.4%) or a single point change (decrease, 16.8%; increase, 17.6%) 

from their initial conduct problems score. A further strength of the current study is that we 

employed a dimensional approach that allowed us to explore the specificity of our findings to 

conduct problems; this approach is consistent with contemporary conceptualisations of 

antisocial behaviour as a heterogeneous construct that varies in severity and encapsulates a 

wide range of externalising and internalising difficulties (Raine, 2018). Importantly, we 

identified that reduced FD across the fornix and the ILF was primarily driven by increased 

conduct difficulties rather than emotional, hyperactivity, peer or prosocial problems. This 

finding is consistent with Grazioplene et al. (2020) who reported that childhood aggression was 

linked with lower FD and neither anxiety nor callous-unemotional symptoms – the prosocial 

scale of the SDQ, as used in the current study, has been previously reverse scored to index 

callous-unemotional traits (Dadds, Fraser, Frost, & Hawes, 2005; Viding, Blair, Moffitt, & 

Plomin, 2005) – affected this relationship. However, we also found that reduced FC within the 
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UF was not uniquely predicted by either conduct, emotional, hyperactivity, peer or prosocial 

problems; this may suggest that shared variance across these neurodevelopmental dimensions 

potentially explains altered FC in development.

Overall, we found that childhood conduct difficulties were related to reductions in white 

matter fibre density and morphology within the fornix, ILF and UF. Our findings suggest that 

the development of specific white matter fibre pathways underpinning socio-emotional

functioning are related to early conduct problems in childhood.
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Figure 1. Panels A-B. Participant age and change in SDQ conduct problems over the two 

time-points. Longitudinal data points are connected by a line.

Figure 1. Panels C-F. Significant relationships between SDQ Conduct Problems and mean 

FBA metrics across tracts and time-points: Panel C, fibre density within the fornix at time-

point 1; Panel D, fibre density within the inferior longitudinal fasciculus, ILF, at time -point 

1; Panel E, fibre density within the fornix at time -point 2; Panel F, fibre density within the 

uncinate fasciculus at time -point 1. Trend-line is illustrated with 95% confidence interval.
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Table 1. Demographic information for the sample across imaging time-points.

Time-point 1 Time-point 2

Sex 

Female/male 47/83

IQ

M (SD) 100.21 (13.95)

Age at MRI

M (SD)

Min., Max.

10.38 (0.44)

9.47 – 11.86

11.72 (0.51)

10.67 – 13.45

Socio-economic status

M (SD)

1016.57 (45.15) 1016.36 (45.19)

SDQ Conduct Problems

M (SD)

High-risk*

2.26 (2.25)

27.7 %

2.00 (2.04)

24.7 %

SDQ Conduct Problems 

change from time-point 1

M (SD)

Min., Max.

-0.26 (1.46)

-5, 3

DISC-IV ADHD n(%)

DISC-IV ODD  n(%)

DISC-IV CD  n(%)

52 (40 %)

39 (30 %)

9 (6.9 %)

Socio-economic status is based on the index of relative socio-economic advantage and 

disadvantage (IRSAD), scores are standardised to a mean of 1000 with a standard deviation 

of 100.

* High risk for the SDQ Conduct Problems scale was defined as scores within the ‘High’ or 

‘Very High’ categorisation.  
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Table 2: Descriptive data for fibre density and fibre cross-section for each white-matter tract at each time-points. 

Fibre density Fibre cross-section

Time-point 1

M (SD) Min, Max

Time-point 2

M (SD) Min, Max

Change

M (SD) Min, Max

Time-point 1

M (SD), Range

Time-point 2

M (SD), Range

Change

M (SD) Min, Max

Fx .58 (.08) .25, .73 .59 (.09) .24, .77 .007 (.03) -.08, .13 -.07 (.10) -.26, .23 -.06 (.11) -.26, .34 .011 (.03) -.06, .10

IFOF .56 (.03) .48, .64 .57 (.03) .49, .64 .006 (.01) -.03, .04 .04 (.07) -.13, .21 .05 (.07) -.12, .22 .010 (.02) -.06, .07

ILF .52 (.05) .38, .65 .53 (.04) .40, .63 .006 (.02) -.03, .07 .08 (.10) -.11, .32 .12 (.10) -.09, .43 .015 (.04) -.08, .14

SLF .54 (.04) .45, .61 .54 (.04) .47, .63 .009 (.01) -.02, .04 .08 (.11) -.19, .32 .11 (.11) -.15, .35 .032 (.03) -.08, .18

UF .56 (.04) .41, .68 .57 (.04) .44, .70 .004 (.03) -.07, .07 .02 (.09) -.28, .28 .03 (.09) -.24, .28 .009 (.03) -.10, .12

Time-point 1, n = 125; time-point 2, N = 130

Fx, Fornix, IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus; UF, uncinate 

fasciculus.
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Table 3. Zero-order and partial correlations between parent-rated SDQ conduct problems 

and fixel-based analysis metrics across white-matter tracts.

Fibre density Fibre cross-section

Time-point 1 Time-point 2 Time-point 1

r p r p r p

Fx -.27* .003 -.27* .002 -.03 .72

IFOF -.13 .16 -.17 .05 -.06 .51

ILF -.14 .13 -.29* .001 -.02 .88

SLF -.02 .86 .01 .92 .14 .12

UF -.12 .17 -.09 .30 -.20 .03

Note. Correlations were run only for metrics and time-points where a significant SDQ 

conduct problems and white matter tract interaction had been identified within the previous 

mixed-effects model analysis.

Significant relationships highlighted in bold and associations that survived adjusted 

statistical significance at pFDR < .05 are annotated with an asterisk (*)

Time-point 1, n = 125; time-point 2, N = 130

Total intracranial volume entered as a covariate for FC at time-point 1

Fx, Fornix, IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; 

SLF, superior longitudinal fasciculus; UF, uncinate fasciculus.
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